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Approximating dynamic phase-field fracture in viscoelastic materials with a
first-order formulation for velocity and stress

Marita Thomas, Sven Tornquist, Christian Wieners

Abstract

We investigate a model for dynamic fracture in viscoelastic materials at small strains. While the sharp crack interface
is approximated with a phase-field method, we consider a viscous evolution with a quadratic dissipation potential for the
phase-field variable. A non-smooth constraint enforces a unidirectional evolution of the phase-field, i.e. material cannot
heal. The viscoelastic equation of motion is transformed into a first order formulation and coupled in a nonlinear way to
the non-smooth evolution law of the phase field. The system is fully discretized in space and time with a discontinuous
Galerkin approach for the first-order formulation. Based on this, existence of discrete solutions is shown and, as the step
size in space and time tends to zero, their convergence to a suitable notion of weak solution of the system is discussed.

1 Introduction

The propagation of dynamic cracks is a complex phenomenon and crucial for the understanding of materials under extreme
loading conditions. Inertia and acceleration terms have to be taken into account in the model description in situations when
fast external loadings are applied to the system or when interacting effects of elastic wave propagation and crack evolution
are too substantial to be neclected. Our work is set in such a context. The material domain is Ω ⊂ Rd, d ∈ {2, 3} and
the deformation and damage of the body will be monitored over a time interval [0, T ] ⊂ R. The fracture, which appears
as a spatial discontinuity of complex geometry in the domain, is approximated with a phase-field method: Instead of a
lower-dimensional crack, the damage variable z : [0, T ] × Ω → [0, 1] is used to characterize the material failure. Here
z(t, x) = 1 stand for the undamaged material state, whereas z(t, x) = 0 refers to the the state of maximal damage in
in the material point x ∈ Ω at time t ∈ [0, T ]. Additional complexity enters the mathematical description when covering
time-dependent behaviour in viscoelastic materials where the material response does not only depend on actual loading
conditions but also on the history of the deformation.
Existence of solutions in this setting has been shown in e.g. [9, 14, 10, 15, 17] with the momentum balance formulated as
as second-order system. Time discretizations for these systems using finite differences or Newmark methods show a high
numerical dissipation [18] and if the focus lies on the hyperbolic nature of the problem, numerical methods are required
that are capable of accurately capturing the elastic wave propagation.
For this purpose, to prevent that energy is lost by the numerical implementation, the viscoelastic momentum balance is
reformulated as a first-order system and combined with a space discretization using a discontinuous Galerkin approach.
This method has been developed and tested in [18]. Our aim in this work is to provide a convergence analysis for the
algorithm introduced in [18].

In the following we give more details about the setting considered in this paper.

We want to determine the displacement vector u : [0, T ] × Ω → Rd, the velocity v = ∂tu, the linearized strain ε =
sym(Du) = 1

2 (Du + DuT ) and the strain rate ε̇ = ∂tε = sym(Dv) , where ε̇ and ∂tε denote the time derivative of
ε, such that formally the elasticity system satisfies

0 = ϱ0∂tv − divσ − f in (0, T )× Ω

with mass density ρ0 > 0, volume force f and degraded viscoelastic stress response σ. With constant material tensors,
C ∈ Rd×d×d×d

sym the Hookean elasticity tensor, damping tensor D ∈ Rd×d×d×d
sym and the degradation function g ∈ C2(R),

the stress field σ : (0, T )× Ω → Rd×d

is here defined by
σ =

(
C(z)ε+ D(z)∂tε

)
.
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Given initial values u0 and ε0 for displacement and strain where ε0 = sym(Du0), the displacement variable u can be

reconstructed from the velocity v such that u(t) = u0+

∫ t

0

v(s) ds. Then, the second-order momentum balance above

can be rewritten as a first-order system using the state variables (v, ε,σ) as

ϱ0∂tv − divσ = f in Q , (1.1a)

∂tε− sym(Dv) = 0 in Q , (1.1b)

σ −
(
C(z)ε+ D(z)∂tε

)
= 0 in Q , (1.1c)

whereQ := (0, T )×Ω denotes the space-time cylinder for a given T > 0 and a domain Ω ⊂ Rd, d = 2, 3. System (1.1)
is complemented by the following boundary and initial conditions on ∂Ω = ∂NΩ ∪ ∂DΩ with ∂NΩ denoting the Neumann
and ∂DΩ the Dirichlet boundary:

v = vD on (0, T )× ∂DΩ , σn = gN on (0, T )× ∂NΩ , (1.2a)

v(0) = v0 in Ω , ε(0) = ε0 in Ω . (1.2b)

This configuration depends on initial data v0 and ε0, volume forces f , and boundary data gN and vD.

We also investigate the case D = 0 without viscosity, but then the regularity of the solution is reduced. As a measure for
the material degradation in every point of the domain, the phase-field variable z : [0, T ]×Ω → [0, 1] is introduced where
z(t, x) = 0 represents the damaged material and z(t, x) = 1 the totally undamaged state. Self-healing of the material
is not allowed. Thus, a monotonically decreasing evolution of the phase-field variable is enforced using the characteristic
function

χ(−∞,0](ż) :=

{
∞ ż > 0 ,

0 ż ≤ 0
(1.3)

and the non-smoothness of the characteristic function leads to a subdifferential inclusion describing the propagation of the
phase-field variable:

0 ∈ βr∂tz + ∂χ(−∞,0](∂tz) +
1

2
C′(z)ε : ε−Gc

(
1− z + l2c ∆z

)
in (0, T )× Ω . (1.4)

The phase-field evolution depends on a retardation time βr > 0, a length scale lc > 0 and a scaling factor Gc > 0 that
is a material parameter and encodes the energy release rate by crack opening. Gc is related to the Griffiths constant for
brittle fracture and the length scale 1/lc. Moreover, the term −(1 − z + lc∆z) approximates the sharp crack surface in
the sense of [1]. The subdifferential inclusion (1.4) is complemented by the following boundary and initial conditions

Gcl
2
c∇z · n = 0 on (0, T )× ∂Ω , (1.5a)

z(0) = z0 in Ω . (1.5b)

Outline of the paper. We specify the problem setup in Sect. 2 and introduce the mathematical assumptions on the do-
main and given data. In Section 2.2 we introduce a suitable weak formulation in Definition 2.1 and summarize our main
result. Subsequently, in Section 2.3 we give a comparison to previous results, in particular with regard to the weak for-
mulation of the momentum balance as a first-order and as a second-order system. The discretized system is presented
in Sect. 3. Here, a staggered implicit scheme is used for the time discretization and for the spatial approximation a dis-
continuous Galerkin approach is employed. The motivation of this approach originates in the solution theory of first-order
hyperbolic systems.
Starting from this point, a comprehensive convergence analysis is carried out. In Proposition 3.5 we show the existence of
discrete solutions and establish a discrete energy-dissipation estimate: In the elastic part, a linear system of equations has
to be solved. For the phase-field evolution the treatment of a nonlinear system requires more advanced techniques. Here,
a generalized Newton method with a descent approach is employed in Section 3.2 to ensure the energy stability estimate
already on the fully discrete level, cf. [3, 17]. Beginning with Proopsition 4.1, the limit passage in the discrete evolution
equations is discussed and the energy dissipation estimate for the solutions in the limit is established in Lemma 4.5 based
on the results of Lemma 4.3, Lemma 4.4. Eventually, the existence of weak solutions in the sense of Def. 2.1 is concluded
in Theorem 4.2.

DOI 10.20347/WIAS.PREPRINT.3002 Berlin 2023



Dynamic phase-field fracture in a first-order formulation for velocity and stress 3

2 Mathematical assumptions and weak formulation

In this section we derive and formulate a weak version of the momentum balance (1.1) and differential inclusion (1.4).

2.1 Basic assumptions on the domain and the given data

For this purpose, we agree on the following setup.

Assumptions on the domain: We assume that

Ω ⊂ Rd, d ∈ {2, 3} is a bounded Lipschitz domain with boundary ∂Ω = Ω̄ \ Ω and

relatively open Dirichlet and Neumann boundaries ΓD,ΓN ⊂ ∂Ω such that ΓD ∪ ΓD = ∂Ω .
(2.1a)

We denote the space-time cylinder by
Q = (0, T )× Ω . (2.1b)

Assumptions on the tensors C,D and on the degradation functions: We assume that the symmetric material ten-
sors C, D : z 7→ Rd×d×d×d

sym can be expressed as the products of sufficiently smooth degradation functions gC, gD : z 7→
[g∗, g

∗] and constant tensors C̃, D̃ ∈ Rd×d×d×d
sym , i.e.,

for all z ∈ R : C(z) := gC(z)C̃ and C̃(z) := gD(z)D̃ . (2.2a)

The constant fourth-order tensors C̃, D̃ are further assumed to be symmetric

C̃, D̃ ∈ Rd×d×d×d
sym (2.2b)

and positive (semi-)definite. More precisely, we assume that C̃ is uniformly positive definite, i.e.,

there is a constant cC̃ > 0 such that for all A ∈ Rd×d
sym : C̃A : A ≥ cC̃|A|

2 , (2.2c)

and that D̃ is positive semi-definite, only, i.e.,

there is a constant cD̃ ≥ 0 such that for all A ∈ Rd×d
sym : D̃A : A ≥ cD̃|A|

2 . (2.2d)

Observe that we explicitly allow for the case cD̃ = 0, so that viscous dissipation cannot act as a regularization. We will
therefore distinguish in our results the two cases cD̃ = 0 and cD̃ > 0.

According to (2.2a), in dependence of z, the material is degraded by the elastic and the viscous degradation functions gC
and gD. For the two degradation functions we impose the following assumptions:

Regularity: gC, gD ∈ C2(R) , (2.2e)

Monotonicity: g′C(z), g
′
D(z) ≥ 0 for all z ∈ R, more precisely,

g′C(z), g
′
D(z)

 > 0 for z ∈ [0, 1] ,
≥ 0 for z ∈ (z∗, 0) ∪ (1, z∗) for given z∗ < 0 < 1 < z∗ ,
= 0 for z ∈ (−∞, z∗] ∪ [z∗,∞) .

(2.2f)

Boundedness from below: there is a constant g∗ > 0 such that g(z) ≥ g∗ for all z ∈ R . (2.2g)

The monotonicity assumption (2.2f) ensures that increasing material damage decreases the stored elastic energy, i.e., if
0 < z1 < z2 ≤ 1 then Eel(z1, ε) > Eel(z2, ε) for any ε ∈ Rd×d×d×d

sym , because g(z1) > g(z2) for g ∈ {gC, gD}.
This strict monotonicity is imposed on the physically relevant range z ∈ [0, 1], where z represents the volume fraction of
undamaged material. Together with the monotonicity assumptions on the remaining intervals and the boundedness from
below (2.2g) we may conclude that

there are constants 0 < g∗ < g∗ and g∗∗ such that 0 < g∗ ≤ g(z) ≤ g∗ , (2.2h)

so that g(z), g(z)−1 ∈ L∞(Ω) for any Ld-measurable function z : Ω → R.

DOI 10.20347/WIAS.PREPRINT.3002 Berlin 2023
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Assumptions on the given data: For the given data in the Cauchy problem (1.1)–(1.2) we make the following assump-
tions

volume load: f ∈ L2(Q;Rd) , (2.3a)

surface load: gN ∈ L2((0, T )× ΓN;Rd) , (2.3b)

surface velocity: vD ∈ L2((0, T )× ΓD;Rd) , (2.3c)

initial data: z0 ∈ H1(Ω), v0 ∈ L2(Ω;Rd) and ε0 ∈ L2(Ω;Rd×d
sym) . (2.3d)

2.2 Weak formulation of Cauchy problem (1.1)–(1.2) & (1.4)–(1.5) and main result

Throughout this paper we denote by
(·, ·)A with A ∈ {Ω, Q} (2.4)

the inner product on L2(A), L2(A;Rd) or L2(A;Rd×d
sym) depending on the respective arguments.

Derivation of a weak formulation for Cauchy problem (1.1)–(1.2): Let z be a sufficiently smooth solution of (1.4) and
let (v, ε,σ) be a sufficiently smooth solution of system (1.1). To deduce a weak formulation for (1.1) in the spirit of a
first-order system we test system (1.1) with sufficiently smooth test functions (w,Φ,Ψ) and integrate the result over Q

0 =
(
ϱ0∂tv − divσ − f ,w

)
Q
+
(
∂tε− sym(Dv),Φ

)
Q
+
(
σ − C(z)ε− D(z)∂tε,Ψ

)
Q

=
(
ϱ0∂tv,w

)
Q
+
(
∂tε,Φ− D(z)Ψ

)
Q
−
(
divσ,w

)
Q
−
(
sym(Dv),Φ

)
Q

+
(
σ − C(z)ε,Ψ

)
Q
−
(
f ,w

)
Q
.

(2.5)

For this, we have used the symmetry (2.2b) of the tensor D(z). Next, we integrate in (2.5) by parts as often as to shift all
appearing derivatives from the solution to the test functions. This gives

0 = −
(
ϱ0v, ∂tw

)
Q
+
(
ϱ0v(T ),w(T )

)
Ω
−
(
ϱ0v(0),w(0)

)
Ω
−
(
ε, ∂tΦ− ∂t

(
D(z)Ψ

))
Q

+
(
ε(T ),Φ(T )− D(z(T ))Ψ(T )

)
Ω
−
(
ε(0),Φ(0)− D(z(0))Ψ(0)

)
Ω

+
(
σ, sym(Dw)

)
Q
−
(
σn,w

)
(0,T )×∂Ω

+
(
v,divΦ

)
Q
−
(
v,Φn

)
(0,T )×∂Ω

+
(
σ − C(z)ε,Ψ

)
Q
−
(
f ,w

)
Q
.

Inserting the Cauchy data (1.2) yields

0 = −
(
ϱ0v, ∂tw

)
Q
+
(
ϱ0v(T ),w(T )

)
Ω
−
(
ϱ0v(0),w(0)

)
Ω
−
(
ε, ∂tΦ− ∂t

(
D(z)Ψ

))
Q

+
(
ε(T ),Φ(T )− D(z(T ))Ψ(T )

)
Ω
−
(
ε0,Φ(0)− D(z(0))Ψ(0)

)
Ω

+
(
σ, sym(Dw)

)
Q
−
(
gN,w

)
(0,T )×ΓN

−
(
σn,w

)
(0,T )×ΓD

+
(
v,divΦ

)
Q
−
(
vD,Φn

)
(0,T )×ΓD

−
(
v,Φn

)
(0,T )×ΓN

+
(
σ − C(z)ε,Ψ

)
Q
−
(
f ,w

)
Q
.

(2.6)

With the additional conditions for the smooth test functions (w,Φ,Ψ)

w(T ) = 0 , Φ(T ) = Ψ(T ) = 0 in Ω , (2.7a)

w = 0 on (0, T )× ΓD , (2.7b)

Φn = 0 on (0, T )× ΓN , (2.7c)
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equation (2.6) results in the following variational characterization of Cauchy problem (1.1)–(1.2)

0 = −
(
ϱ0v, ∂tw

)
Q
−
(
ϱ0v0,w(0)

)
Ω
−
(
ε, ∂tΦ− ∂t

(
D(z)Ψ

))
Q

−
(
ε0,Φ(0)− D(z(0))Ψ(0)

)
Ω

+
(
σ, sym(Dw)

)
Q
−
(
gN,w

)
(0,T )×ΓN

+
(
v,divΦ

)
Q
−
(
vD,Φn

)
(0,T )×ΓD

+
(
σ − C(z)ε,Ψ

)
Q
−
(
f ,w

)
Q

(2.8)

for all sufficiently smooth test functions (w,Φ,Ψ) satisfying (2.7) .

Function spaces for (1.4) and (2.8): In view of conditions (2.7) and (1.4) we define on the time-space cylinder Q =
(0, T )× Ω the following function spaces for the smooth test functions:

V := C1(Q;Rd) , (2.9a)

VT,D :=
{
w ∈ V : w(T ) = 0 in Ω , w = 0 on (0, T )× ΓD

}
, (2.9b)

W := C1(Q;Rd×d
sym ) , (2.9c)

WT :=
{
Ψ ∈ W : Ψ(T ) = 0 in Ω

}
, (2.9d)

WT,N :=
{
Φ ∈ WT : Φn = 0 on (0, T )× ΓN

}
, (2.9e)

Z :=
{
φ ∈ C1(Q) : φ ≤ 0 a.e. in Q

}
. (2.9f)

Short-hand notation for the terms in (1.4) and (2.8): Moreover, we introduce the following short-hand notation for the
Ambrosio-Tortorelli phase-field term appearing in (1.4)

bQ(z, φ) := −Gc
(
1− z, φ

)
Q
+Gcl

2
c

(
∇z,∇φ

)
Q
, (2.10a)

and for the bilinear forms appearing in (2.8)

mQ

(
(v, ε), (w,η)

)
:=
(
ϱ0v,w

)
Q
+
(
ε,η

)
Q
, (2.10b)

aQ
(
(v,σ), (w,Φ)

)
:=
(
σ, sym(Dw)

)
Q
+
(
v,divΦ

)
Q
, (2.10c)

rQ
(
z; (ε,σ),Ψ

)
:=
(
σ − C(z)ε,Ψ

)
Q
, (2.10d)

ℓQ(w,Φ,Ψ) :=
(
f ,w

)
Q
+
(
ϱ0v0,w(0)

)
Ω
+
(
ε0,Φ(0)− D(z)Ψ(0)

)
Ω

+
(
vD,Φn

)
(0,T )×ΓD

+
(
gN,w

)
(0,T )×ΓN

. (2.10e)

Here, the linear form ℓQ depends on the given data f , v0, ε0, vD, and gN.

With this, a weak formulation of the Cauchy problem (1.1)–(1.2) and (1.4)–(1.5) is introduced as follows.

Definition 2.1 (Weak solutions of system (1.1)–(1.2) & (1.4)–(1.5)). A quadruple (v, ε,σ, z) with

(v, ε,σ) ∈ L2(Q;Rd × Rd×d
sym × Rd×d

sym ) and z ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) (2.11)

is a weak solution of the Cauchy problem (1.1)–(1.2) & (1.4)–(1.5) if the following conditions are satisfied:

■ weak formulation of the momentum balance

−mQ

(
(v, ε), (∂tw, ∂tΦ− ∂t

(
D(z)Ψ

)
)
)
+ aQ

(
(v,σ), (w,Φ)

)
+rQ

(
z; (ε,σ),Ψ

)
− ℓQ(w,Φ,Ψ) = 0

(2.12a)

for all test functions (w,Φ,Ψ) ∈ VT,D ×WT,N ×WT ,
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■ one-sided variational inequality for z

βr
(
∂tz, φ

)
Q
+

1

2

(
C′(z)ε : ε, φ

)
Q
+ bQ(z, φ) ≥ 0 for all φ ∈ Z , (2.12b)

z(0) = z0 in H1(Ω) , (2.12c)

■ unidirectionality:
for all t1 < t2 ∈ [0, T ] it is z(t2) ≤ z(t1) a.e. in Ω . (2.12d)

Subsequently, in Sections 3–4 we will prove the existence of a weak solution in the sense of Def. 2.1. More precisely, our
main result can be summarized as follows:

Theorem 2.2 (Existence of a weak solution). Let the assumptions (2.1)–(2.3) on the domain, the material tensors and the
given data be satisfied. Then the following statements hold true:

1. There exists a quadruple (v, ε,σ, z) of regularity (2.11) which is a weak solution of the Cauchy problem (1.1)–(1.2) &
(1.4)–(1.5) in the sense of Definition 2.1.

2. Apart from (2.12b)–(2.12d) a solution z also satisfies z(t) ∈ [0, z0] for all t ∈ [0, T ].

For the proof of Thm. 2.2 we will introduce for system (2.12) a fully discrete approximation in space and time in Section
3. We will show that the discrete system has a solution, see Propsition 3.5, and that, as the fineness of the discretization
increases, the discrete solutions converge in a weak sense to a weak solution of (2.12), see. Yet, before we immerse
into this task, we provide a comparison of the results in [17], which make use of a second-order weak formulation of the
momentum balance with the weak formulation in the sense of Def. 2.1.

2.3 Comparison of the first-order and a second-order weak formulation of the momentum
balance and the energy-dissipation (in)equality

Comparison of weak formulation of the momentum balance as a first-order and as second-order system: Already
in [17] the existence of a weak solution to the dynamic phase-field fracture model was shown by means of a fully discrete
scheme. Herein, a weak solution was introduced as pair (u, z) of regularity

u ∈ H1
(
0, T ; H1

D(Ω,Rd)
)
, z ∈ H1

(
0, T ; L2(Ω)

)
∩ L2

(
0,T; H1(Ω)

)
(2.13)

and characterized by the conditions (2.12b)–(2.12d) for the phase field variable z in addition to a weak formulation of the
momentum balance as a second-order system, i.e., for all t ∈ [0, T ] :

ρ0(u̇(t),ν(t))Ω − ρ0

∫ t

0

(u̇(s), ν̇(s))Ω ds+

∫ t

0

(
C(z)sym(∇u) + D(z)sym(∇u̇), sym(∇ν)

)
Ω
ds

= ρ0(u̇(0),ν(0))Ω +

∫ t

0

(f(s),ν(s))Ω ds

for all test functions ν ∈ L2(0, T ;H1
D(Ω,Rd)) ∩H1(0, T : L2(Ω,Rd)),

(2.14)

where H1
D(Ω,Rd) := {ν̃ ∈ H1(Ω,Rd), ν̃ = 0 on ΓD}.

Hereby, for the results in [17], the positive definiteness of the viscous tensor D was assumed, i.e., that cD̃ > 0 in (2.2d).

In the following we establish the equivalence of the weak formulation (2.12a) of the first order system and of the weak
formulation (2.14) of the second-order system under the restriction that v(T ) = 0 for the test functions in (2.14).

Proposition 2.3 (Equivalence of the weak formulations (2.12a) and (2.14)). Let the assumptions (2.1)–(2.3) on the domain,
the material tensors and the given data be satisfied. Further assume that cD̃ > 0 in (2.2d).

1. Let the pair (u, z) be a weak solution in the sense of (2.12b)–(2.14). Then the triple(
u̇, sym(∇u), (C(z)sym(∇u) + D(z)sym(∇u̇))

)
is also weak solution of the weak formulation (2.12a) of the first order system.

DOI 10.20347/WIAS.PREPRINT.3002 Berlin 2023
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2. Let the quadruple (v, ε,σ, z) be a weak solution in the sense of Def. 2.1. Then there additionally holds

v ∈ L2(0, T ;H1(Ω,Rd)) . (2.15)

Assume that the initial data u0 ∈ H1
D(Ω,Rd) and ε0 ∈ L2(Ω,Rd×d

sym) satisfy

ε0 = sym(∇u0) in L2(Ω;Rd×d) . (2.16)

Then it can be identified

u = u0 +

∫ (·)

0

v(s) ds in H1(0, T ;H1(Ω,Rd)) , (2.17a)

ε = sym(∇u) in L2(Q,Rd×d) , (2.17b)

ε̇ = sym(∇u̇) = sym(∇v) in L2(Q,Rd×d) , (2.17c)

(2.17d)

and the triple (v, ε,σ) can be identified with

(v, ε,σ) =
(
u̇, sym(∇u), (C(z)sym(∇u) + D(z)sym(∇u̇))

)
(2.17e)

and satisfies the weak formulation of the second-order system (2.14) for all test functions

ν ∈ L2(0, T ;H1
D(Ω,Rd)) ∩H1(0, T ;L2(Ω,Rd))

with the restriction that ν(s) = 0 for all s ∈ [t, T ], for any t ∈ (0, T ).
(2.18)

Proof. To 1.: For the weak solution u of (2.14) we observe that the corresponding triple satisfies(
u̇, sym(∇u), (C(z)sym(∇u) + D(z)sym(∇u̇))

)
∈ L2(Q : Rd × Rd×d

sym × Rd×d
sym) ,

which is the regularity (2.11), and we introduce the following notation

v = u̇ , (2.19a)

ε = sym(∇u) , (2.19b)

ε̇ = sym(∇v) , (2.19c)

σ = C(z)sym(∇u) + D(z)sym(∇u̇) = C(z)ε+ D(z)ε̇ , (2.19d)

vD = u̇|ΓD = u̇D = 0 . (2.19e)

Accordingly, testing (2.19c) by Φ ∈ WT,N and (2.19d) by Ψ ∈ WT gives

(ε̇− sym(∇v),Φ)Q = 0 for all Φ ∈ WT,N and (σ − (C(z)ε+ D(z)ε̇))Q = 0 for all Ψ ∈ WT (2.20)

Furthermore, we set t = T in (2.14) and restrict (2.14) to test functions

ν ∈ C2(Q,Rd) ∩ L2(0, T ;H1
D(Ω,Rd)) ∩H1(0, T : L2(Ω,Rd))

with the additional property that also
ν̇ = 0 on (0, T )× ΓD .

We use once more (2.19d) in order to introduce σ in (2.14) and add equations (2.20) to the result. Repeating the integration
by parts and the arguments from (2.5)–(2.8) gives the weak formulation (1.1a) of the first-order system.

To 2.: Let the quadruple (v, ε,σ, z) be a weak solution in the sense of Def. 2.1. Thanks to the uniform positive def-
initeness of the tensor D(z), energy estimates indeed result in the additional regularity (2.15), see Lemma 4.1 below.
Accordingly, we can define the displacement field as in (2.17a) and regularity (2.15) further ensures that sym(∇u) ∈

DOI 10.20347/WIAS.PREPRINT.3002 Berlin 2023



M. Thomas, S. Tornquist, C. Wieners 8

H1(0, T ;L2(Ω,Rd)), cf. (2.17b), as well as the relationsv = u̇ ∈ L2(0, T ;H1(Ω,Rd)) and sym(∇u̇) = sym(∇v) ∈
L2(Q;Rd×d

sym), cf. (2.17c). Testing (2.12a) with the triple (0,Φ,0) ∈ VT,N ×WT,N ×WT and reversing the integration
by parts in space provides

0 = −(ε, ∂tΦ)Q − (ε0,Φ(0))Ω + (v,divΦ)Q − (vD,Φn)(0,T )×ΓD

= −(ε, ∂tΦ)Q − (ε0,Φ(0))Ω − (sym(∇v),Φ)Q
(2.21)

Using (2.17a) and performing another integration by parts in time on the third term gives

0 = −(ε, ∂tΦ)Q − (ε0,Φ(0))Ω + (sym(∇u), ∂tΦ)Q + (sym(∇u0),Φ(0))Ω

= −(ε− sym(∇u), ∂tΦ)Q ,
(2.22)

where we also have used (2.16). Thanks to the fundamental lemma of the calculus of variations this shows that ε −
sym(∇u) = c a.e. in Q for a constant c ∈ R. By the compatibility of the initial data (2.16) we conclude that c = 0.

Similarly, we test (2.12a) with the triple (0,0,Ψ) ∈ VT,N ×WT,N ×WT to find

0 = (ε, ∂t(D(z)Ψ))Q + (ε0,D(z(0))Ψ(0))Ω + (σ − C(z)ε,Ψ)Q . (2.23)

By the density of WT , resp. WT,N in

W̃T := {Ψ̃ ∈ H1(0, T ;H1(Ω,Rd×d
sym)), Ψ̃(T ) = 0 in Ω} , resp.

W̃T,N := {Φ̃ ∈ W̃T , Φ̃n = 0 on (0, T )× ΓN} ,

we conclude that relations (2.21), (2.22) also hold true in W̃T,N and that relation (2.23) also holds true in W̃T . Assuming

further that Ψ in (2.23) is such that even D(z)Ψ ∈ W̃T,N, we are allowed to make use of (2.21) and (2.22) and conclude

0 = (ε, ∂t(D(z)Ψ))Q + (ε0,D(z(0))Ψ(0))Ω + (σ − C(z)ε,Ψ)Q

= −(sym(∇v),D(z)Ψ)Q + (σ − C(z)ε,Ψ)Q

=
(
σ − (C(z)sym(∇u) + D(z)sym(∇v)),Ψ

)
Q
,

(2.24)

Note that D(z)Ψ ∈ W̃T,N is possible, since z ∈ H1(0, T ;H1(Ω)).

Now we choose two test functions

ν̂, ν̃ ∈ ṼD := C2(Q;Rd) ∩ L2(0, T ;H1
D(Ω,Rd)) ∩H1(0, T ;L2(Ω,Rd))

with the additional properties

ν̂(s) = ν̃(s) in Ω for all s ∈ [t, T ] and any t ∈ (0, T ] , (2.25a)

D(z)sym(∇ν̂)n = D(z)sym(∇ν̃)n on (0, T )× ΓN . (2.25b)

From this we infer that a triple (w,Φ,Ψ) given by

w := (ν̂ − ν̃) ∈ VT,D and Φ = Ψ := sym(∇(ν̂ − ν̃)) ∈ W̃T,N (2.26)

provides admissible test functions for (2.12a), such that also (2.21)–(2.24) are valid. Due to this, (2.12a) rewrites as

0 =−mQ

(
(v, ε), (∂tw, ∂tΦ− ∂t

(
D(z)Ψ

)
)
)
+ aQ

(
(v,σ), (w,Φ)

)
+ rQ

(
z; (ε,σ),Ψ

)
− ℓQ(w,Φ,Ψ)

=− (ρ0v(0),w(0))Ω − (ρ0v, ẇ)Q + (C(z)sym(∇u) + D(z)sym(∇u̇), sym(∇w))Q

− (f ,w)Q − (gN,w)(0,T )×ΓN
for all w ∈ VT,D ∩ C2(Q;Rd) .

Since VT,D is dense in the set of functions w = (ν̂ − ν̃) ∈ L2(0, T ;H1
D(Ω,Rd)) ∩ H1(0, T ;L2(Ω,Rd)) with the

additional property (2.25a) this gives

0 =− (ρ0v(0),w(0))Ω − (ρ0v, ẇ)Qt + (C(z)sym(∇u) + D(z)sym(∇u̇), sym(∇w))Qt

− (f ,w)Qt − (gN,w)(0,t)×ΓN

for all w = (ν̂ − ν̃) ∈ L2(0, T ;H1
D(Ω,Rd)) ∩H1(0, T ;L2(Ω,Rd)) with (2.25a) ,

where Qt := (0, t)× Ω. This finishes the proof of statement 2.
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Discussion of the energy-dissipation (in)equality: Moreover it has to be mentioned that under the assumption of
uniform positive definiteness of D(z), in addition to (2.12c)–(2.14) it was possible in [17] to show that a weak solution
(u, z) also satisfies the following energy-dissipation balance for all t ∈ [0, T ]

Ẽkin
(
u̇(t)

)
+ Ẽel

(
z(t),u(t)

)
+ Eext

(
t,u(t)

)
+

∫ t

0

2R̃vis(z(r); u̇(r)) dr + Rpf(ż(r))dr
= Ẽkin

(
u̇(0)

)
+ Ẽel

(
z(0),u(0)

)
+ Ẽext

(
0,u(0)

)
+

∫ t

0

∂tẼ
ext
(
r, u(r)

)
dr .

(2.27)

Above, in (2.27) and in the discussion below we use the following notation for the energy functionals and dissipation
potentials of the system

Ẽel(z,u) = Eel(z, ε) :=

∫
Ω

1

2
C(z)ε : ε dx , where ε = sym(∇u) , (2.28a)

Ẽkin(u̇) = Ekin(v) :=
ϱ0
2

∫
Ω

|v|2 dx , where v = u̇ , (2.28b)

Epf(z) :=
Gc

2

∫
Ω

(
(1− z)2 + l2c |∇z|2

)
dx , (2.28c)

Ẽext(t,u) := −
∫
Ω

f(t) · u(t) dx−
∫
ΓN

gN(t) · u(t) dx , (2.28d)

∂tẼ
ext(t,u) :=

∫
Ω

ḟ(t) · u(t) dx+

∫
ΓN

ġN(t) · u(t) dx , (2.28e)

Eext(t,v) :=

∫
Ω

f(t) · v dx+

∫
ΓN

gN(t) · v dx , (2.28f)

so that

∫ t

0

Eext(r,v) dr = Ẽext(t,u)− Ẽext(0,u)−
∫ t

0

∂tẼ
ext(r,u) dr

R̃vis(z; u̇) = Rvis(z; ε̇) :=

∫
Ω

1

2
D(z)ε̇ : ε̇ dx , where ε̇ = sym(∇u̇) , (2.28g)

Rpf(ż) :=

∫
Ω

βr
2
|ż|2 + χ(−∞,0](ż) dx with χ(−∞,0] from (1.3) . (2.28h)

Remark 2.4 (Energy-dissipation balance for weak solutions in Def. 2.1). For the viscous system, i.e. cD > 0 in (2.2d),
the proof of the equality (2.27) in [17] relies on testing the weak second-order momentum balance (2.14) by the the time-
derivative u̇ of the solution u. This is an admissible test function in the setting of (2.14). However, in Proposition 2.3
equivalence of the weak first-order momentum balance (2.12a) and the weak second-order momentum balance (2.14) is
only valid when restricting the test functions ν ∈ L2(0, T ;H1

D(Ω,Rd))∩H1(0, T ;L2(Ω,Rd)) in (2.14) by the additional
property that ν(s) = 0 for all s ∈ [t, T ] for some t ∈ (0, T ], cf. (2.18). Hence, in the setting of Proposition 2.3, 2. u̇ is
no longer a suitable test function for the momentum balance, since u̇(t) ̸= 0, in general. Therefore, we cannot expect to
establish an energy balance for a weak solution (v, ε,σ, z) in the sense of Def. 2.1, even if cD > 0 in (2.2d).

As explained in Remark 2.4, instead of the balance (2.27) we can only deduce the following upper energy-dissipation
estimate for weak solutions in the sense of Def. 2.1:

Proposition 2.5 (Energy-dissipation inequality for weak solutions in Def. 2.1). Let the assumptions (2.1)–(2.3) on the
domain, the material tensors and the given data be satisfied and assume that the quadruple (v, ε,σ, z) of regularity
(2.11) is a weak solution of the Cauchy problem (1.1)–(1.2) & (1.4)–(1.5) in the sense of Definition 2.1. Assume that D is
uniformly positive definite, i.e., that cD̃ > 0 in (2.2d). Then the energy-dissipation estimate

Ekin
(
v(t)

)
+ Eel

(
z(t), ε(t)

)
+ Epf

(
z(t)

)
+

∫ t

0

2Rvis(ε̇) + Rpf(∂sz) ds

≤ Ekin
(
v(0)

)
+ Eel

(
z(0), ε(0)

)
+ Epf

(
z(0)

)
+

∫ t

0

Eext
(
s,v(s)

)
ds

(2.29)

holds true for all t ∈ (0, T ].
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3 Discrete system

3.1 Discretization in space and time

In order to find a solution in the sense of Definition 2.1, the system (2.12a)–(2.12d) is fully approximated in space and time.

Approximation in space: The visco-elastic wave equation (2.12a) is approximated with a discontinuous Galerkin (DG)
method, while the phase field evolution law (2.12b) is approximated with lowest order conforming finite elements.

On a mesh Ωh =
⋃

K∈Kh
K with elements K , let

V dg
h :=

∏
K∈Kh

Pk(K;Rd) and W dg
h :=

∏
K∈Kh

Pk(K;Rd×d
sym ) (3.1a)

be the discontinuous finite element space of polynomial degree k ≥ 1, and let

V cf
h ⊂ P(Ωh) ∩ C0(Ω) be the lowest order conforming finite elements, (3.1b)

so that φh ∈ V cf
h is uniquely defined by the values

(
φh(x)

)
x∈Nh

at the element vertices Nh =
⋃

K∈Kh
NK ⊂ Ω.

Then, we have

min
x∈NK

φh(x) = min
x∈K

φh(x) and max
x∈NK

φh(x) = max
x∈K

φh(x) , K ∈ Kh .

We assume that the mesh is shape regular and that diam(K) ≤ h for K ∈ Kh.

For the discontinuous functions, we define jump terms on the faces Fh =
⋃

K FK , where FK are the faces on every
element K . For inner faces f ∈ Fh ∩ Ω, let Kf be the neighboring cell such that f̄ = ∂K ∩ ∂Kf . On boundary
faces f ∈ Fh ∩ ∂Ω we set Kf = K . Let nK be the outer unit normal vector on ∂K . We define the jump [vh]K,f =
vh,Kf

− vh,K on inner faces, where vh,K denotes the continuous extension of vh|K to K . In the same way, the jump
for the stress tensor is defined. On Dirichlet boundary faces, we set [vh]K,f = −2vh and [σh]K,fn = 0. On Neumann
boundaries, set [vh]K,f = 0 and [σh]K,fn = −2σhn.

Following [11, 7, 18], this defines the DG approximation of the forms aQ and ℓQ appearing in the weak momentum balance

(2.12a), cf. also (2.10), which now involve the discontinuous functions (vh,σh), (wh,Φh) ∈ V dg
h ×W dg

h depending on
the phase field zh ∈ V cf

h with

adg
h

(
zh; (vh,σh), (wh,Φh)

)
=
(
σh, sym(Dwh)

)
Ωh

+
(
vh,divΦh

)
Ωh

− 1

2

∑
K∈Kh

∑
f∈FK

(
nK ·

(
σh,KnK − ZP(zh)vh,K

)
,nK ·

(
ZP(zh)

−1[Φh]K,fnK − [wh]K,f

))
f

− 1

2

∑
K∈Kh

∑
f∈FK

(
nK ×

(
σh,KnK − ZP(zh)vh,K

)
,nK ×

(
ZP(zh)

−1[Φh]K,fnK − [wh]K,f

))
f

(3.2a)

and the right-hand side

ℓdg
h

(
t, zh; (wh,Φh)

)
=
(
f(t),wh

)
Ω
+
(
vD(t),Φhn

)
ΓD

+
(
gN(t),wh

)
ΓN

−
(
vD(t), ZP(zh)(n ·wh)n+ ZS(zh)(n×wh)

)
ΓD

−
(
gN(t), ZP(zh)(n ·Φhn)n+ ZS(zh)n× (Φhn)

)
ΓN
.

(3.2b)

Following the methods of [7], we have introduced here the zh-dependent impedances

ZP(zh) =
√
g(zh)ϱ0(2µ+ λ) and ZS(zh) =

√
g(zh)ϱ0µ (3.2c)

of compressional waves and shear waves, respectively, see Remark 3.1 for a discussion. Above, in (3.2c) λ > 0 and
µ > 0 denote the Lamé constants of the material tensor C̃ from (2.2a).
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Remark 3.1. The form of the DG-operators and in particular the impedances are highly motivated by the solution theory
of general Riemann problems for linear first-order hyperbolic conservation laws, see [7, Section 3, p. 22ff] and [11, Section
3, p. 4ff] for the construction of solutions. The Riemann problem is considered locally across the face f ∈ Fh between
finite element cells K ∈ Kh and solutions of the (local) Riemann problem are used to approximate the flux across the
interface f .

The numerical method can be simplified by using fixed impedances ZP =
√
ϱ0(2µ+ λ) and ZS =

√
ϱ0µ independently

of the degradation. The arguments in the subsequent sections only rely on the monotonicity (3.3) and the consistency
(3.4) of the DG approximation.

Proposition 3.2 (Monotonicity and consistency of the DG approximation). Let the assumptions (2.1)–(2.3) on the domain,
the material tensors, and the given data hold true. Then, for all h > 0 the DG approximation introduced in (3.2) has the
following properties:

1. For all zh ∈ V cf
h the bilinear form adg

h (zh; ·, ·) : (V
dg
h ×W dg

h )× (V dg
h ×W dg

h ) → R is monotone, i.e.,

adg
h

(
zh; (vh,σh), (vh,σh)

)
=

1

4

∑
K∈Kh

∑
f∈FK

(∥∥ZP(zh)
−1/2nK · [σh]K,fnK∥2f +

∥∥ZP(zh)
1/2nK · [vh]K,f∥2f

+
∥∥ZS(zh)

−1/2nK × [σh]K,fnK∥2f +
∥∥ZS(zh)

1/2nK × [vh]K,f∥2f
)

≥ 0 for all (vh,σh) ∈ (V dg
h ×W dg

h ) ,

(3.3)

2. For all t ∈ (0, T ) and for all zh ∈ V cf
h the bilinear form adg

h (zh; ·, ·) : (V dg
h × W dg

h ) × (V dg
h × W dg

h ) → R
and the linear form ℓdg

h

(
t, zh; ·) : (V dg

h ×W dg
h ) → R are consistent, i.e., they satisfy for all smooth test functions

(w,Φ) ∈ VT,D ×WN:

adg
h

(
zh; (vh,σh), (w,Φ)(t)

)
=
(
σh, sym(Dw)(t)

)
Ω
+
(
vh,divΦ(t)

)
Ω
, (3.4a)

ℓdg
h

(
t, zh; (w,Φ)(t)

)
=
(
f(t),w

)
Ω
+
(
vD(t),Φ(t)n

)
ΓD

+
(
gN(t),w(t)

)
ΓN
. (3.4b)

Proof. The proof of Prop. 3.2 is carried out in Appendix A.

Approximation in time: In the discrete formulation, the condition ∂tz ≤ 0 is approximated using a Yosida regularization

Yh(ż) :=
δh
2
M2

+(ż) with M+(ż) := max{ż, 0} and penalty parameter δh :=
δ0
h
> 0 , (3.5)

for δ0 > 0 fixed. Note that the Yosida regularization is continuously differentiable with

Yh
′(u) =

dYh(u)

du
=

{
u if u > 0 ,
0 if u ≤ 0 .

(3.6)

In this way we regularize the viscous dissipation potential for the phase field variable by

R
pf
h (ż) =

∫
Ω

(
βr
2
|ż|2 + Yh(ż)

)
dx . (3.7)

Moreover, depending on zn−1
h ∈ V cf

h and εn−1
h and with the notation (2.28), we also introduce the functional

Gn
h(z

n−1
h , εn−1

h ; zh) :=
1

△tnh
R

pf
h (zh − zn−1

h ) + Eel(zh, ε
n−1
h ) + Epf(zh)

=

∫
Ω

( βr
2△tnh

(
zh − zn−1

h

)2
+

1

△tnh
Yh
(
zh − zn−1

h

)
+

1

2
C(z)εn−1

h : εn−1
h

+
Gc

2

(
(1− zh)

2 + l2c |∇zh|2
))

dx

(3.8)
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In analogy to (2.10) we define in in Ω the following linear and bilinear forms

mΩ

(
(v, ε), (w,η)

)
:=
(
ϱ0v,w

)
Ω
+
(
ε,η

)
Ω

for all v,w ∈ L2(Ω;Rd) and all ε,η ∈ L2(Ω;Rd×d
sym ) , (3.9a)

rΩ
(
z; (ε,σ),Ψ

)
:=
(
σ − C(z)ε,Ψ

)
Ω

for all z ∈ L∞(Ω) and σ, ε,Ψ ∈ L2(Ω;Rd×d
sym ) , (3.9b)

bΩ(z, φ) := −Gc
(
(1− z), φ

)
Ω
+Gcl

2
c

(
∇z,∇φ

)
Ω

for all z, φ ∈ H1(Ω) , (3.9c)

Time discretization: We assume that the loading is much slower than the wave speed. Thus we start with large time
steps △tqs > 0 for quasi-static increments. If waves are initiated by crack opening, the time step is decreased to

△tpf ∈ (0,△tqs) such that cP△tpf ≈ h with wave speed cP =
√
(2µ+ λ)/ρ) . (3.10)

Staggered time-discrete scheme: Let t0h = 0, t1h = △tqs, and △t1h = t1h − t0h. Given the quadruple of initial values

(v0
h, ε

0
h,σ

0
h, z

0
h) with (v0

h, ε
0
h,σ

0
h) ∈ V dg

h ×W dg
h ×W dg

h and z0h ∈ V cf
h with z0h ∈ (0, 1] we proceed as follows in every

time step n = 1, 2, 3, . . .:

(S1) Depending on (εn−1
h , zn−1

h ) from the previous time step, we approximate the phase field znh ∈ V cf
h by the implicit

Euler method, i.e., by computing a critical point of Gn
h(ε

n−1
h , zn−1

h ; ·) by solving the nonlinear equation

βr
△tnh

(
znh − zn−1

h , φh

)
Ω
+

1

△tnh

(
Yh

′(znh − zn−1
h ), φh

)
Ω

+
1

2

(
C′(znh )ε

n−1
h : εn−1

h , φh

)
Ω
+ bΩ(z

n
h , φh) = 0

for all φh ∈ V cf
h

(3.11a)

such that
Gn
h(ε

n−1
h , zn−1

h ; znh ) ≤ Gn
h(ε

n−1
h , zn−1

h ; zn−1
h ) . (3.11b)

We introduce in Section 3.2 an iterative solution method for (3.11a) and show that (3.11b) is satisfied when starting
the iteration procedure with zn−1

h .

(S2) Depending on (vn−1
h , εn−1

h ,σn−1
h ) ∈ V dg

h ×W dg
h ×W dg

h and znh ∈ V cf
h we compute the solution (vn

h, ε
n
h,σ

n
h) ∈

V dg
h ×W dg

h ×W dg
h for time step n by the implicit Euler method, i.e., by solving the linear equation

mΩ

(
(vn

h, ε
n
h), (wh,Φh − D(znh )Ψh)

)
+ △tnhrΩ

(
znh ; (ε

n
h,σ

n
h),Ψh

)
+ △tnha

dg
h

(
znh ; (v

n
h,σ

n
h), (wh,Φh)

)
= mΩ

(
(vn−1

h , εn−1
h ), (wh,Φh − D(znh )Ψh)

)
+ △tnhℓ

dg
h

(
tnh, z

n
h ; (wh,Φh)

) (3.12)

for all (wh,Φh,Ψh) ∈ V dg
h ×W dg

h ×W dg
h .

(S3) If the relaxed energy is small and znh ≈ zn−1
h , we expect that the next time step will also be quasi-static, and we

set △tn+1
h = △tqs; otherwise, we set △tn+1

h = △tpf.
Then, we set tn+1

h = tnh + △tn+1
h , and we continue with the next time step n := n+ 1 proceeding with (S1).

For simplicity of the presentation, we consider in the following only the case of homogeneous boundary data vD = 0 and
gN = 0, and the volume forces are approximated by the L2 projection fnh ∈ V dg

h in (tn−1
h , tnh)× Ω, i.e.,(

fnh,wh

)
(tn−1

h ,tnh)×Ω
=
(
f ,wh

)
(tn−1

h ,tnh)×Ω
, wh ∈ V dg

h , (3.13)

and we use for the subsequent analysis the discrete right-hand side

ℓdg
h

(
tnh, z

n
h ; (wh,Φh)

)
=
(
fnh,w

n
h

)
Ω
. (3.14)

We also assume that (v0
h, ε

0
h) are the L2 projections of the initial values (v0, ε0).

For later reference we collect the main properties of the functional Gn
h(ε

n−1
h , zn−1

h ; ·) in the following lemma
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Lemma 3.3 (Properties of Gn
h(ε

n−1
h , zn−1

h ; ·)). Let the assumptions (2.1)–(2.3) hold true. Then, for all h > 0, all n ∈ N
and all (εn−1

h , zn−1
h ) ∈ W cf

h × V cf
h the functional Gn

h(ε
n−1
h , zn−1

h ; ·) : V cf
h → R is continuous and coercive, i.e., there

are constants cG1
, cG2

> 0 such that

Gn
h(ε

n−1
h , zn−1

h ; zh) ≥ cG1
∥zh∥2H1(Ω) − cG2

. (3.15)

Proof. Coercivity: Omitting quadratic terms of lower order wrt. zh in Gn
h and using the positivity of the degradation

function gC in (2.2a) we conclude

Gn
h(z

n−1
h , εn−1

h ; zh) =

∫
Ω

( βr
2△tnh

(
zh − zn−1

h

)2
+

1

△tnh
Yh
(
zh − zn−1

h

)
+

1

2
C(zh)εn−1

h : εn−1
h

+
Gc

2

(
(1− zh)

2 + l2c |∇zh|2
))

dx

≥
∫
Ω

(Gc

2

(
(1− zh)

2 + l2c |∇zh|2
))

dx

≥
∫
Ω

(
Gc

2

(z2h
2

− 1 + l2c |∇zh|2
))

dx

≥
∫
Ω

(Gc

4
z2h − Gc

2
+
Gc

2
l2c |∇zh|2

)
dx

≥ cG1∥zh∥2H1(Ω) − cG2

with cG1 = cG1(Gc, lc) and cG2 = cG1(Gc, |Ω|).

Continuity: The functional Gn
h(z

n−1
h , εn−1

h ; ·) consists of linear and quadratic terms in zh and in addition zh 7→ gC(zh)
is by definition in (2.2a) smooth. This ensures the continuity of the mapping zh 7→ Gn

h(z
n−1
h , εn−1

h ; zh).

3.2 Computation of a critical point in (S1)

We show that the discrete nonlinear problem in (S1) can be solved iteratively such that, additionally, for alln ∈ {1, . . . , N},
the discrete solutions znh and zn−1

h at steps n and n− 1 also satisfy the condition

Gn
h(ε

n−1
h , zn−1

h ; znh ) ≤ Gn
h(ε

n−1
h , zn−1

h ; zn−1
h ) , (3.16)

where (εn−1
h , zn−1

h ) are the solutions computed in the previous step n − 1. This result is accomplished by constructing
a minimizing sequence for the coercive and continuous functional Gn

h in the finite-dimensional space V cf
h .

Given the solutions (εn−1
h , zn−1

h ) ∈ V cf
h ×W dg

h from the previous step n− 1, recall from (3.15) that

Gn
h(ε

n−1
h , zn−1

h ; zh) :=

∫
Ω

( βr
2△tnh

(
zh − zn−1

h

)2
+

1

△tnh
Yh(zh − zn−1

h ) (3.17)

+
1

2
C(zh)εn−1

h : εn−1
h +

Gc

2

(
(1− zh)

2 + l2c |∇zh|2
))

dx .

for any zh ∈ V cf
h . With this, one calculates

DGn
h(ε

n−1
h , zn−1

h ; zh)[φh] =
βr
△tnh

(
zh − zn−1

h , φh

)
Ω
+

1

△tnh

(
Y ′
h(zh − zn−1

h ), φh

)
Ω

+
1

2

(
C′(zh)ε

n−1
h : εn−1

h , φh

)
Ω
+ bΩ(zh, φh)

for all zh, φh ∈ V cf
h . To find a zero of DGn

h(ε
n−1
h , zn−1

h ; ·) a generalized Newton method is used. This is applicable since
dimV cf

h <∞ and DGn
h(ε

n−1
h , zn−1

h ; ·) is semi-smooth.
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For all zh, ψh, φh ∈ V cf
h we define the approximative linearization cΩ by

cΩ(zh;ψh, φh) :=
βr
△tnh

(
ϕh, φh

)
Ω
+

δh
△tnh

(
ψh, φh

)
Ω
+Gc

(
ψh, φh

)
Ω
+Gcl

2
c

(
∇ψh,∇φh

)
Ω
,

where in the linearization the derivative g′′C(zh) is omitted and the subdifferential of Yh
′(zh) is replaced by δh

△tnh

(
ψh, φh

)
Ω

.

Thus, for all zh ∈ V cf
h the bilinear form cΩ(zh; ·, ·) : V cf

h × V cf
h → R is positive definite and continuous.

For all n ∈ {1, . . . , N} the algorithm to compute znh is the following:

1. Set zn,0h := zn−1
h .

2. For k = 1, 2, 3, . . . compute a direction of descent dn,kh ∈ Vh by solving

cΩ(z
n,k−1
h ; dn,kh , φh) = −DGn

h(ε
n−1
h , zn−1

h ; zn,k−1
h )[φh] , for all φh ∈ V cf

h . (3.18)

3. Stop if DGn
h(ε

n−1
h , zn−1

h ; zn,k−1
h ) = 0.

4. Otherwise, dn,kh ̸= 0, and we show that there exists a step size αn,k > 0 such that

Gn
h(ε

n−1
h , zn−1

h ; zn,k−1
h + αn,kd

n,k
h ) ≤ Gn

h(ε
n−1
h , zn−1

h ; zn,k−1
h ) . (3.19)

5. Set zn,kh := zn,k−1
h + αn,kd

n,k
h . Proceed with step k + 1 using 2..

In order to verify (3.19), we discuss each of the five summands appearing in Gn
h(ε

n−1
h , zn−1

h ; zn,k−1
h + αn,kd

n,k
h )

separately, cf. (3.17). For the first, the fourth, and the fifth summand we observe

1

2

∥∥zn,k−1
h + αn,kd

n,k
h − zn−1

h

∥∥2
Ω
=

1

2

∥∥zn,k−1
h − zn−1

h

∥∥2
Ω
+ αn,k

(
zn,k−1
h − zn−1

h , dn,kh

)
Ω
+

1

2
α2
n,k

∥∥dn,kh

∥∥2
Ω
,

(3.20)

1

2

∥∥1− (zn,k−1
h + αn,kd

n,k
h

)∥∥2
Ω
=

1

2

∥∥1− zn,k−1
h

∥∥2
Ω
− αn,k

(
1− zn,k−1

h , dn,kh

)
Ω
+

1

2
α2
n,k

∥∥dn,kh

∥∥2
Ω
, (3.21)

1

2

∥∥∇zn,k−1
h + αn,k∇dn,kh

∥∥2
Ω
=

1

2

∥∥∇zn,k−1
h

∥∥2
Ω
+ αn,k

(
∇zn,k−1

h ,∇dn,kh

)
Ω
+

1

2
α2
n,k

∥∥∇dn,kh

∥∥2
Ω
. (3.22)

For the third term in (3.17), remember thatC(z) = gC(z). We make a Taylor expansion of gC ∈ C2(R) around zn,k−1
h (x)

for a.a. x ∈ Ω. This yields

gC
(
zn,k−1
h (x) + αn,kd

n,k
h (x)

)
= gC

(
zn,k−1
h (x)

)
+ αn,kg

′
C
(
zn,k−1
h (x)

)
dn,kh (x) +

1

2
α2
n,kg

′′
C
(
z̃n,k−1
h (x)

)(
dn,kh (x)

)2 (3.23)

with an intermediate value such that
∣∣z̃n,k−1

h (x)− zn,k−1
h (x)

∣∣ ≤ αn,k

∣∣dn,kh (x)
∣∣.

Finally, we verify for the second term in (3.17) that

Yh
(
zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x)
)

≤ Yh
(
zn,k−1
h (x)− zn−1

h (x)
)
+ αn,kYh

′(zn,k−1
h (x)− zn−1

h (x)
)
dn,kh (x) +

1

2
α2
n,k

(
dn,kh (x)

)2
.

(3.24)

For this, we distinguish the following four cases:

1) zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x) > 0 and zn,k−1
h (x)− zn−1

h (x) > 0,

2) zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x) > 0 and zn,k−1
h (x)− zn−1

h (x) ≤ 0,

3) zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x) ≤ 0 and zn,k−1
h (x)− zn−1

h (x) > 0,

4) zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x) ≤ 0 and zn,k−1
h (x)− zn−1

h (x) ≤ 0.
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In case 1), i.e., if zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x) > 0 and zn,k−1
h (x)− zn−1

h (x) > 0, we have

Yh
(
zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x)
)
=

1

2

(
zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x)
)2

=
1

2

(
zn,k−1
h (x)− zn−1

h (x)
)2

+ αn,k

(
zn,k−1
h (x)− zn−1

h (x)
)
dn,kh (x) +

1

2
α2
n,k

(
dn,kh (x)

)2
= Yh

(
zn,k−1
h (x)− zn−1

h (x)
)
+ αn,kYh

′(zn,k−1
h (x)− zn−1

h (x)
)
dn,kh (x) +

1

2
α2
n,k

(
dn,kh (x)

)2
,

hence (3.24) for case 1).

In case 2), i.e., if zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x) > 0 and zn,k−1
h (x)− zn−1

h (x) ≤ 0, we have

max
{
zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x), 0
}
≤ αn,kd

n,k
h (x)

and thus

0 < Yh
(
zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x)
)
≤ 1

2
α2
n,k

(
dn,kh (x)

)2
= Yh

(
zn,k−1
h (x)− zn−1

h (x)
)
+ αn,kYh

′(zn,k−1
h (x)− zn−1

h (x)
)
dn,kh (x) +

1

2
α2
n,k

(
dn,kh (x)

)2
,

which is (3.24) for case 2).

In case 3), i.e., if zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x) ≤ 0 and zn,k−1
h (x)− zn−1

h (x) > 0, we have

Yh
(
zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x)
)
= 0

and

Yh
(
zn,k−1
h (x)− zn−1

h (x)
)
+ αn,kYh

′(zn,k−1
h (x)− zn−1

h (x)
)
dn,kh (x) +

1

2
α2
n,k

(
dn,kh (x)

)2
=

1

2

(
zn,k−1
h (x)− zn−1

h (x)
)2

+ αn,k

(
zn,k−1
h (x)− zn−1

h (x)
)
dn,kh (x) +

1

2
α2
n,k

(
dn,kh (x)

)2
=

1

2

(
zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x)
)2
> 0 ,

which yields (3.24) for case 3).

In case 4), i.e., if zn,k−1
h (x) + αn,kd

n,k
h (x)− zn−1

h (x) ≤ 0 and zn,k−1
h (x)− zn−1

h (x) ≤ 0 we observe that

Yh(z
n,k−1
h (x)+αn,kd

n,k
h (x)−zn−1

h (x)) = 0 , Yh(z
n,k−1
h (x)−zn−1

h (x)) = 0 , and Yh
′(zn,k−1

h (x)−zn−1
h (x)) = 0 ,

and thus we have (3.24) also in case 4).

Collecting all estimates (3.20)–(3.24) for the five contributions of Gn
h(ε

n−1
h , zn−1

h ; zn,k−1
h (x)+αn,kd

n,k
h (x)−zn−1

h (x)),
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we find

Gn
h(ε

n−1
h , zn−1

h ; zn,k−1
h + αn,kd

n,k
h ) =

βr
2△tnh

∥∥zn,k−1
h + αn,kd

n,k
h − zn−1

h

∥∥2
Ω

+

∫
Ω

( 1

△tnh
Yh
(
zn,k−1
h + αn,kd

n,k
h − zn−1

h

)
+

1

2
gC(z

n,k−1
h + αn,kd

n,k
h )C̃εn−1

h : εn−1
h

)
dx (3.26)

+
Gc

2

(∥∥1− (zn,k−1
h + αn,kd

n,k
h

)∥∥2
Ω
+ l2c

∥∥∇zn,k−1
h + αn,k∇dn,kh

∥∥2
Ω

)
≤ βr

2△tnh

∥∥zn,k−1
h − zn−1

h

∥∥2
Ω
+ αn,k

βr
△tnh

(
zn,k−1
h − zn−1

h , dn,kh

)
Ω
+ α2

n,k

βr
2△tnh

∥∥dn,kh

∥∥2
Ω

+
1

△tnh

∫
Ω

Yh
(
zn,k−1
h − zn−1

h

)
dx+ αn,k

(
Yh

′(zn,k−1
h − zn−1

h ), dn,kh

)
Ω
+
α2
n,k

2

∥∥dn,kh

∥∥2
Ω

+
1

2

∫
Ω

gC(z
n,k−1
h )C̃εn−1

h : εn−1
h dx+

αn,k

2

(
g′C(z

n,k−1
h )C̃εn−1

h : εn−1
h , dn,kh

)
Ω

+
α2
n,k

4

(
g′′C(z̃

n,k−1
h )C̃εn−1

h : εn−1
h dn,kh , dn,kh

)
Ω

+
Gc

2

(∥∥1− zn,k−1
h

∥∥2
Ω
+ l2c

∥∥∇zn,k−1
h

∥∥2
Ω
− 2αn,k

((
1− zn,k−1

h , dn,kh

)
Ω
− l2c

(
∇zn,k−1

h ,∇dn,kh

)
Ω

)
+ α2

n,k

(∥∥dn,kh

∥∥2
Ω
+ l2c

∥∥∇dn,kh

∥∥2
Ω

))
= Gn

h(ε
n−1
h , zn−1

h ; zn,k−1
h ) + αn,kDGn

h(ε
n−1
h , zn−1

h ; zn,k−1
h )[dn,kh ] +

α2
n,k

2
cΩ(z

n,k−1
h ; dn,kh , dn,kh )

+
α2
n,k

4

(
g′′C(z̃

n,k−1
h )C̃εn−1

h : εn−1
h dn,kh , dn,kh

)
Ω

(3.27)

= Gn
h(ε

n−1
h , zn−1

h ; zn,k−1
h ) +

(α2
n,k

2
− αn,k

)
cΩ(z

n,k−1
h ; dn,kh , dn,kh )

+
α2
n,k

4

(
g′′C(z̃

n,k−1
h )C̃εn−1

h : εn−1
h dn,kh , dn,kh

)
Ω

=: Gn
h(ε

n−1
h , zn−1

h ; zn,k−1
h ) +Rn

h(d
n,k
h ;αn,k) . (3.28)

In order to deduce (3.19) from this estimate it now has to be shown that a step size αn,k can be chosen such that

Rn
h(d

n,k
h ;αn,k) :=

(α2
n,k

2
− αn,k

)
cΩ(z

n,k−1
h ; dn,kh , dn,kh ) +

α2
n,k

4

(
g′′C(z̃

n,k−1
h )C̃εn−1

h : εn−1
h dn,kh , dn,kh

)
Ω

!
≤ 0 .

(3.29)
For this, we recall that g′′C is continuous and that g′C = 0 in R \ [0, 2], so that g′′C is bounded. Thus, there exists a constant
0 < Ch,n = Ch,n(ε

n−1
h , C̃, g′′C) depending on h but independent of k such that

1

2

(
g′′C(z̃

n,k−1
h )C̃εn−1

h : εn−1
h dn,kh , dn,kh

)
Ω
≤ Ch,n

∥∥dn,kh

∥∥2
Ω
≤ C̃h,n cΩ(z

n,k−1
h ; dn,kh , dn,kh ) (3.30)

with C̃h,n =
2△tnhCh,n

βr
,

where we also used the positive definiteness of cΩ(z
n,k−1
h ; ·, ·) for the second estimate in (3.30). With this, we estimate

Rn
h(d

n,k
h ;αn,k) :=

(α2
n,k

2
− αn,k

)
cΩ(z

n,k−1
h ; dn,kh , dn,kh ) +

α2
n,k

4

(
g′′C(z̃

n,k−1
h )C̃εn−1

h : εn−1
h dn,kh , dn,kh

)
Ω

≤
(
(1 + C̃h,n)

α2
n,k

2
− αn,k

)
cΩ(z

n,k−1
h ; dn,kh , dn,kh ) .

(3.31)
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We are now able to select

αn :=
1

1 + C̃h,n

and αn,k := αn , so that
(
(1 + C̃h,n)

α2
n,k

2
− αn,k

)
= − 1

2(1 + C̃h,n)
< 0 . (3.32)

Inserting this in (3.31), thanks to the positive definiteness of cΩ(z
n,k−1
h ; ·, ·), we conclude (3.29).

Moreover, inserting our choice of αn from (3.32) into (3.28) we deduce with zn,kh = zn,k−1
h + αnd

n,k
h that

Gn
h(ε

n−1
h , zn−1

h ; zn,kh ) ≤ Gn
h(ε

n−1
h , zn−1

h ; zn,k−1
h )− 1

2(1 + C̃h,n)
cΩ(z

n,k−1
h ; dn,kh , dn,kh ) . (3.33)

In consequence, the sequence (Gn
h(ε

n−1
h , zn−1

h ; zn,kh ))k∈N is (strictly) monotonically decreasing. SinceGn
h(ε

n−1
h , zn−1

h ; ·)
is also bounded from below (by 0), (Gn

h(ε
n−1
h , zn−1

h ; zn,kh ))k∈N converges to its infimum. Rearranging terms in (3.33)

and making once more use of the positive definiteness of cΩ(z
n,k−1
h ; ·, ·) we infer that

c∗∥dn,kh ∥2Ω ≤ cΩ(z
n,k−1
h ; dn,kh , dn,kh )

≤ (2(1 + C̃h,n))
(
Gn
h(ε

n−1
h , zn−1

h ; zn,k−1
h )− Gn

h(ε
n−1
h , zn−1

h ; zn,kh )
)

−→ 0 as k → ∞ .

(3.34)

This implies that dn,kh → 0 as k → ∞.

By coercivity of Gn
h(ε

n−1
h , zn−1

h ; ·), the sequence (zn,kh )k∈N is bounded in the finite dimensional space V cf
h . Thus, there

exists a converging subsequence (z
n,kj

h )j∈N and a limit znh in V cf
h .

Now we show by contradiction, that znh is a critical point in (S1):
Suppose that znh is not a critical point. Then DGn

h(ε
n−1
h , zn−1

h ; znh )[φh] ̸= 0 for some φh ∈ V cf
h and as a consequence

of (3.18), also cΩ(znh ; d
n
h, φh) ̸= 0 for some φh ∈ V cf

h . By continuity of DGn
h(ε

n−1
h , zn−1

h ; ·)[φh] and cΩ(·; ·, φh), since

z
n,kj

h → znh in the finite dimensional space V cf
h , we also have that

0 ̸= DGn
h(ε

n−1
h , zn−1

h ; z
n,kj

h )[φh] → DGn
h(ε

n−1
h , zn−1

h ; znh )[φh] ̸= 0

from some index j0 ∈ N on. Consequently also cΩ(z
n,kj

h ; d
n,kj

h , d
n,kj

h ) ̸→ 0 as j → ∞, in contradiction to (3.34).

This concludes the proof. □

Remark 3.4. This result is only required to guarantee that the numerical algorithm in (S1) is well-defined. For the existence
proof of a weak solution only the existence of a critical point of the functional Gn

h(·) is required, and this holds by coercivity
and is independent from the numerical realization of (S1).

3.3 Existence of discrete solutions

In this section we show that the discrete problems (3.11) and (3.12) defined in the staggered scheme (S1)–(S3) admit a
solution. For shorter notation we set

△εnh = εnh − εn−1
h and △znh = znh − zn−1

h for n = 1, . . . , N , (3.35)

and define the projection

Πdg
h : L1(Ω;Rd×d

sym ) →W dg
h ,

(
Πdg

h Φ,Ψh

)
Ω
=
(
Φ,Ψh

)
Ω

for all Φ ∈ L1(Ω;Rd×d
sym ) , Ψh ∈W dg

h . (3.36)

Proposition 3.5 (Existence of discrete solutions). Let the assumptions (2.1)–(2.3) as well as the setup for the discretization
introduced in Sec. 3.1 hold true. Then the following statements hold true:
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1. For every h > 0, n = 1, . . . , N and N ∈ N fixed there exists a solution znh ∈ V cf
h of the nonlinear problem (3.11) in

(S1) and a unique solution (vn
h, ε

n
h,σ

n
h) ∈ V dg

h ×W dg
h ×W dg

h of the linear problem (3.12) in (S2).

2. For every h > 0, n = 1, . . . , N and N ∈ N the discrete stress tensor σn
h ∈W dg

h is characterized by the identity(
σn

h,Ψh

)
Ω
=
(
Πdg

h (C(z
n
h )ε

n
h) +

1

△tnh
Πdg

h (D(z
n
h )△ε

n
h),Ψh

)
Ω

for all Ψh ∈W dg
h . (3.37)

3. In case of homogeneous boundary data vD = 0, gN = 0, the discrete solution is bounded by the discrete energy-
dissipation inequality

Ekin(vn
h) + Eel(znh , ε

n
h) + Epf(znh ) +

n∑
k=1

(
2

△tkh
Rvis(△εkh) +

1

△tkh
R

pf
h (△z

k
h)

)

≤ Ekin(v0
h) + Eel(z0h, ε

0
h) + Epf(z0h) +

n∑
k=1

△tkh
(
fkh,v

k
h

)
Ω
.

(3.38)

Proof. To 1.: Existence of a solution znh ∈ V cf
h of (3.11a): By Lemma 3.3 the functional Gn

h(·) is coercive and continu-
ous, thus lower semicontinous, and therefore has a minimizer znh in V cf

h . The minimizer is a critical point of Gn
h and solves

the nonlinear equation (3.11a) in (S1). On the other hand, a critical point and local minimizer for (S1) can be calculated
iteratively as has been shown in Section 3.2.

Existence and uniqueness of a solution (vn
h, ε

n
h,σ

n
h) ∈ V dg

h ×W dg
h ×W dg

h for (3.12): We show that the discrete
linear system (3.12) has a unique solution. Since (3.12) is finite dimensional and linear, it suffices to prove that the kernel
of the mapping

(w0
h,Φ

0
h,Ψ

0
h) 7→mΩ

(
(w0

h,Φ
0
h), ·

)
+ △tnha

dg
h

(
znh ; (w

0
h,Ψ

0
h), ·

)
+ △tnhrΩ

(
znh ; (Φ

0
h,Ψ

0
h), ·

)
related to the homogeneous problem is given by {(0,0,0) ∈ V dg

h × W dg
h × W dg

h }. It follows immediately that the
dimension of the image is equal to the dimension of the domain, i.e., the existence of a solution is clear.

Thus, assume that (w0
h,Φ

0
h,Ψ

0
h) ∈ V dg

h ×W dg
h ×W dg

h solves the homogeneous problem

mΩ

(
(w0

h,Φ
0
h), (wh,Φh − D(znh )Ψh)

)
+ △tnha

dg
h

(
znh ; (w

0
h,Ψ

0
h), (wh,Φh)

)
+ △tnhrΩ

(
znh ; (Φ

0
h,Ψ

0
h),Ψh

)
= 0

(3.39)

for all (wh,Φh,Ψh) ∈ V dg
h ×W dg

h ×W dg
h . We show in the following that necessarily (w0

h,Φ
0
h,Ψ

0
h) = (0,0,0).

Choosing (0,0,Ψh) as a test function in (3.39) yields

0 = −
(
Φ0

h,D(znh )Ψh

)
Ω
+ △tnh

(
Ψ0

h − C(znh )Φ0
h,Ψh

)
Ω

(3.40)

= −
(
Πdg

h (D(z
n
h )Φ

0
h),Ψh

)
Ω
+ △tnh

(
Ψ0

h −Πdg
h (C(z

n
h )Φ

0
h),Ψh

)
Ω

for all Ψh ∈W dg
h .

This shows that
Ψ0

h = Πdg
h (C(z

n
h )Φ

0
h) + (△tnh)

−1Πdg
h (D(z

n
h )Φ

0
h) . (3.41)

Next, testing (3.39) with (w0
h,Ψ

0
h,0) and exploiting the monotonicity (3.3) of adg

h as well as (3.41) and assumptions (2.2)
on the tensor C, results in

0 = mΩ

(
(w0

h,Φ
0
h), (w

0
h,Ψ

0
h)
)
+ △tnha

dg
h

(
znh ; (w

0
h,Ψ

0
h), (w

0
h,Ψ

0
h)
)

≥ mΩ

(
(w0

h,Φ
0
h), (w

0
h,Ψ

0
h)
)
= ϱ0

(
w0

h,w
0
h

)
Ω
+
(
Φ0

h,Ψ
0
h

)
Ω

= ϱ0
(
w0

h,w
0
h

)
Ω
+
(
Φ0

h,C(znh )Φ0
h

)
Ω
+ (△tnh)

−1
(
Φ0

h,D(znh )Φ0
h

)
Ω

≥ ϱ0
∥∥w0

h∥2Ω +
∥∥C(znh )1/2Φ0

h

∥∥2
Ω
≥ ϱ0

∥∥w0
h∥2Ω + g∗cC̃

∥∥Φ0
h

∥∥2
Ω
.

Thanks to ρ0, g∗cC̃ > 0 this implies
w0

h = 0 and Φ0
h = 0 . (3.42)
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Inserting this into (3.40) yields
Ψ0

h = 0 , (3.43)

so that we can indeed conclude that the solution of the homogeneous problem is (0,0,0).

To 2. Characterization (3.37) of the discrete stress tensor σn
h: To determine the form of the discrete stress σn

h, we

test (3.12) for the unique solution (vn
h, ε

n
h,σ

n
h) with a test function (0,0,Ψh). This yields for all Ψh ∈W dg

h

mΩ

(
(vn

h, ε
n
h), (0,−D(znh )Ψh)

)
+ △tnhrΩ

(
znh ; (ε

n
h,σ

n
h),Ψh

)
= mΩ

(
(vn−1

h , εn−1
h ), (0,−D(znh )Ψh)

)
.

Rearranging terms and exploiting definitions (2.10) gives for all Ψh ∈W dg
h

0 = △tnhrΩ
(
znh ; (ε

n
h,σ

n
h),Ψh

)
−
(
εnh − εn−1

h ,D(znh )Ψh

)
Ω

= △tnh
(
σn

h − C(znh )εnh,Ψh

)
Ω
−
(
△εnh,D(znh )Ψh

)
Ω

= △tnh
(
σn

h −Πdg
h (C(z

n
h )ε

n
h),Ψh

)
Ω
−
(
Πdg

h (D(z
n
h )△ε

n
h),Ψh

)
Ω
.

From this we infer that

σn
h = Πdg

h (C(z
n
h )ε

n
h) +

1

△tnh
Πdg

h (D(z
n
h )△ε

n
h) . (3.44)

To 3. Energy-dissipation inequality (3.38): The discrete energy-dissipation estimate (3.38) is deduced in the following
by testing (3.12) in (S2) with the triple

(
vn
h,σ

n
h, (△t

n
h)

−1△εnh
)
. This results in the following expression

mΩ

(
(vn

h, ε
n
h), (v

n
h,σ

n
h − D(znh )(△tnh)−1△εnh)

)
+ △tnhrΩ

(
znh ; (ε

n
h,σ

n
h), (△t

n
h)

−1△εnh
)

+ △tnha
dg
h

(
znh ; (v

n
h,σ

n
h), (v

n
h,σ

n
h)
)

= mΩ

(
(vn−1

h , εn−1
h ), (vn

h,σ
n
h − D(znh )(△tnh)−1△εnh)

)
+ △tnhℓ

dg
h

(
tnh, z

n
h ; (v

n
h,σ

n
h)
) (3.45)

and the expressions herein have to be further rearranged using the definitions (2.10) of the quadratic forms and of the
energies and dissipation potentials (2.28).

For this, we insert the characterization (3.44) of σn
h into (3.45) and find

mΩ

(
(vn

h, ε
n
h), (v

n
h,Π

dg
h (C(z

n
h )ε

n
h))
)
+ rΩ

(
znh ; (ε

n
h,σ

n
h),△ε

n
h

)
+ △tnha

dg
h

(
znh ; (v

n
h,σ

n
h), (v

n
h,σ

n
h)
)

= mΩ

(
(vn−1

h , εn−1
h ), (vn

h,Π
dg
h (C(z

n
h )ε

n
h))
)
+ △tnhℓ

dg
h

(
tnh, z

n
h ; (v

n
h,σ

n
h)
)
.

(3.46)

Herein, we further observe with the aid of (2.10) and (2.28) that

mΩ

(
(vn

h, ε
n
h), (v

n
h,Π

dg
h (C(z

n
h )ε

n
h))
)
= ϱ0

(
vn
h,v

n
h

)
Ω
+
(
εnh,Π

dg
h (C(z

n
h )ε

n
h)
)
Ω

= ϱ0
(
vn
h,v

n
h

)
Ω
+
(
εnh,C(znh )εnh

)
Ω

= 2Ekin(vn
h) + 2Eel(znh , ε

n
h) ,

(3.47)

and similarly, that

mΩ

(
vn−1
h , εn−1

h ), (vn
h,Π

dg
h (C(z

n
h )ε

n
h))
)
= ϱ0

(
vn−1
h ,vn

h

)
Ω
+
(
εn−1
h ,C(znh )εnh

)
Ω

≤ Ekin(vn
h) + Eel(znh , ε

n
h) + Ekin(vn−1

h ) + Eel(znh , ε
n−1
h ) ,

(3.48)

where we have used Young’s inequality. Furthermore, again in view of (2.10) and (2.28), we find for rΩ in (3.46) that

rΩ
(
znh ; (ε

n
h,σ

n
h),△ε

n
h

)
=
(
σn

h − C(znh )εnh,△εnh
)
Ω
=
(
σn

h −Πdg
h (C(z

n
h )ε

n
h),△ε

n
h

)
Ω

=
( 1

△tnh
Πdg

h (D(z
n
h )△ε

n
h),△ε

n
h

)
Ω
=
( 1

△tnh
D(znh )△εnh,△εnh

)
Ω

=
2

△tnh
Rvis(△εnh) .

(3.49)

DOI 10.20347/WIAS.PREPRINT.3002 Berlin 2023



M. Thomas, S. Tornquist, C. Wieners 20

Here we have also exploited the definition (3.36) of the projection operator Πdg
h .

Inserting (3.47)–(3.49) into (3.46) and rearranging terms results in the estimate

Ekin(vn
h) + Eel(znh , ε

n
h) +

2

△tnh
Rvis(△εnh) + △tnha

dg
h

(
znh ; (v

n
h,σ

n
h), (v

n
h,σ

n
h)
)

≤ Ekin(vn−1
h ) + Eel(znh , ε

n−1
h ) + △tnhℓ

dg
h

(
tnh, z

n
h ; (v

n
h,σ

n
h)
)
.

(3.50)

In view of (3.2) and the properties of the DG-approximation stated in Prop. 3.2 we further have that

ℓdg
h

(
tnh, z

n
h ; (v

n
h,σ

n
h)
)
= (fnh,v

n
h)Ω (3.51a)

and
adg
h

(
znh ; (v

n
h,σ

n
h), (v

n
h,σ

n
h)
)
≥ 0 (3.51b)

by the monotonicity (3.3) of the DG-operator.

With the aid of the findings (3.51) relation (3.50) can be further estimated by

Ekin(vn
h) + Eel(znh , ε

n
h) +

2

△tnh
Rvis(△εnh) ≤ (3.50) = Ekin(vn−1

h ) + Eel(znh , ε
n−1
h ) + △tnh(f

n
h,v

n
h)Ω . (3.52)

In order to complete the energy-dissipation estimate (3.38) it remains to deduce from the discrete phase-field equation
(3.11) in (S1) an estimate corresponding to (3.52). For this, we exploit that a discrete solution znh ∈ V cf

h in particular
satisfies (3.11b), i.e., we assume

Gn
h(ε

n−1
h , zn−1

h ; znh ) ≤ Gn
h(ε

n−1
h , zn−1

h ; zn−1
h ) ,

as we have verified in Section 3.2. Thanks to this property we obtain

1

△tnh
R

pf
h (△z

n
h ) + Eel(znh , ε

n−1
h ) + Epf(znh ) = Gn

h(ε
n−1
h , zn−1

h ; znh )

≤ Gn
h(ε

n−1
h , zn−1

h ; zn−1
h ) = Eel(zn−1

h , εn−1
h ) + Epf(zn−1

h ) ,

and rearranging terms gives

1

△tnh
R

pf
h (△z

n
h ) + Epf(znh ) ≤ Eel(zn−1

h , εn−1
h )− Eel(znh , ε

n−1
h ) + Epf(zn−1

h ) . (3.53)

Putting (3.53) together with (3.52) ultimately yields

Ekin(vn
h) + Eel(znh , ε

n
h) + Epf(znh ) +

2

△tnh
Rvis(△εnh) +

1

△tnh
R

pf
h (△z

n
h )

≤ Ekin(vn−1
h ) + Eel(zn−1

h , εn−1
h ) + Epf(zn−1

h ) + △tnh
(
fnh,v

n
h

)
Ω
.

(3.54)

Summing (3.54) over n results in telescopic terms and thus proves the assertion.

3.4 Discrete version of the weak formulation (2.12)

Let {t0h = 0 < t1h < . . . < tn−1
h < tnh < . . . < tNh

h = T} with Nh ∈ N be a discretization of the time interval [0, T ].
For all n ∈ {0, 1, . . . , Nh} we now define piecewise constant interpolants in time

(zh,vh, εh,σh) ∈ L2(0, T ;V cf
h × V dg

h ×W dg
h ×W dg

h ) by

(zh,vh, εh,σh)(t) := (znh ,v
n
h, ε

n
h,σ

n
h) for all t ∈ (tn−1

h , tnh] ,
(3.55a)
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piecewise constant interpolants evaluating in a previous time step

(zh,vh, εh,σh) ∈ L2(0, T ;V cf
h × V dg

h ×W dg
h ×W dg

h ) by

(zh,vh, εh,σh)(t) := (zn−1
h ,vn−1

h , εn−1
h ,σn−1

h ) for all t ∈ (tn−1
h , tnh] ,

(3.55b)

and the piecewise linear interpolants by

(żh, ε̇h) ∈ L2(0, T ;V cf
h ×W dg

h ) by

(żh, ε̇h)(t) :=
1

△tnh
(△znh ,△ε

n
h) for all t ∈ (tn−1

h , tnh).
(3.55c)

These interpolants in time can be used both for the solutions and for the test functions of the discrete scheme (3.11)–(3.12)
and also for the given data. Based on this we conclude the following result:

Proposition 3.6 (Properties of the interpolants of the discrete solutions). Let the assumptions of Prop. 3.5 be satisfied.
Keep h > 0 and Nh ∈ N fixed. Let (zh,vh, εh,σh) ∈ L2(0, T ;V cf

h × V dg
h ×W dg

h ×W dg
h ) be the interpolants of the

discrete solutions obtained by (3.11)–(3.12) of the staggered time-discrete scheme. Then the following statements hold
true:

1. The quadruple (zh,vh, εh,σh) ∈ L2(0, T ;V cf
h × V dg

h ×W dg
h ×W dg

h ) satisfies
• the discrete phase field evolution(

βrżh, φh

)
Q
+
(
Yh

′(żh), φh

)
Q
+

1

2

(
C′(zh)εh : εh, φh

)
Q
+ bQ(zh, φh) = 0 (3.56a)

for all (φn
h)

Nh
n=1 ⊂ V cf

h , φh(s) = φn
h for s ∈ (tn−1

h , tnh].
• the discrete weak momentum balance

mQ

(
(v̇h, ε̇h), (wh,Φh − D(zh)Ψh)

)
+ rQ

(
zh; (εh,σh),Ψh

)
+

∫ T

0

adg
h

(
zh; (vh,σh), (wh,Φh)

)
dt

=

Nh∑
n=1

ℓdg
h

(
tnh, z

n
h ; (w

n
h,Φ

n
h)
)

(3.56b)

for all (wn
h,Φ

n
h,Ψ

n
h)

Nh
n=1 ⊂ V dg

h ×W dg
h ×W dg

h , (wh,Φh,Ψh)(s) = (wn
h,Φ

n
h,Ψ

n
h) if s ∈ (tn−1

h , tnh].

2. The discrete stress tensor σh ∈ L2(0, T ;W dg
h ) is characterized by the identity(

σh,Ψh

)
Q
=
(
Πdg

h (C(zh)εh) + Πdg
h (D(zh)ε̇h),Ψh

)
Q

for all (Ψn
h)

Nh
n=1 ⊂W dg

h ,Ψh(s) = Ψn
h

if s ∈ (tn−1
h , tnh] .

(3.57)

3. In case of homogeneous boundary data vD = 0, gN = 0, the discrete solution is bounded by the discrete energy-
dissipation inequality for all t ∈ (0, T ]

Ekin(vh(t)) + Eel(zh(t), εh(t)) + Epf(zh(t)) +

∫ t

0

(
2Rvis(ε̇h) + R

pf
h (żh)

)
ds

≤ Ekin(v0
h) + Eel(z0h, ε

0
h) + Epf(z0h) +

∫ t

0

(
fh,vh

)
Ω
.

(3.58)

4. The quadruple (zh,vh, εh,σh) ∈ L2(0, T ;V cf
h ×V dg

h ×W dg
h ×W dg

h ) with σh = Πdg
h (C(zh)εh)+Πdg

h (D(zh)ε̇h)
satisfies the following uniform a priori bounds

ϱ0
4

∥∥vh

∥∥2
Q
+

1

2
g∗cC̃

∥∥εh∥∥2Q +
Gc

2

(∥∥1− zh
∥∥2
Q
+ l2c

∥∥∇zh∥∥2Q)
+ g∗cD̃

∥∥ε̇h∥∥2Q +
βr
2

∥∥żh∥∥2Q +
δh
2

∥∥max{żh, 0}
∥∥2
Q

≤ max{T, 1}
(
Ekin(v0

h) + Eel(z0h, ε
0
h) + Epf(z0h)

)
+

max{T, 1}2

ϱ0

∥∥f∥∥2
Q
,

(3.59)

hence the sequence (zh,vh, εh, żh, cD̃ε̇h)h is uniformly bounded inL2(0, T ;V cf
h ×V dg

h ×W dg
h ×W dg

h ×V cf
h ×W dg

h ).
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Proof. Statements 1.–3. are direct translations of Prop. 3.5, 1.–3., when using the definition of the interpolants (3.55) in
time of the solutions obtained at every time step by the staggered scheme (3.11)–(3.12).

For statement 4., we observe for the total energy

ϱ0
2

∥∥vh

∥∥2
Q
+

1

2

∥∥C(zh)1/2εh∥∥2Q +
Gc

2

(∥∥1− zh
∥∥2
Q
+ l2c

∥∥∇zh∥∥2Q)
=

N∑
n=1

△tnh
(
Ekin(vn

h) + Eel(znh , ε
n
h) + Epf(znh )

)
and for the dissipation

∥∥D(zh)1/2ε̇h∥∥2Q +
βr
2

∥∥żh∥∥2Q +
δh
2

∥∥max{żh, 0}
∥∥2
Q

=

N∑
n=1

(∥∥D(zh)1/2ε̇h∥∥2(tn−1
h ,tnh)×Ω

+
βr
2

∥∥żh∥∥2(tn−1
h ,tnh)×Ω

+
δh
2

∥∥max{żh, 0}
∥∥2
(tn−1

h ,tnh)×Ω

)

=

N∑
n=1

1

△tnh

(∥∥D(znh )1/2△εnh∥∥2Ω +
βr
2

∥∥△znh∥∥2Ω +
δh
2

∥∥max{△znh , 0}
∥∥2
Ω

)

=

N∑
n=1

(
2

△tnh
Rvis(△εnh) +

1

△tnh
R

pf
h (△z

n
h )

)

Using (3.13), we get
N∑

n=1

△tnh
(
fnh,v

n
h

)
Ω
=

N∑
n=1

(
f ,vh

)
(tn−1

h ,tnh)×Ω
=
(
f ,vh

)
Q

.

Together, the estimate (3.38) for the energy (n = 1, . . . , N ) and for the dissipation (n = N ) yields the assertion by

ϱ0
2

∥∥vh

∥∥2
Q
+

1

2

∥∥C(zh)1/2εh∥∥2Q +
Gc

2

(∥∥1− zh
∥∥2
Q
+ l2c

∥∥∇zh∥∥2Q)
+
∥∥D(zh)1/2ε̇h∥∥2Q +

βr
2

∥∥żh∥∥2Q +
δh
2

∥∥max{żh, 0}
∥∥2
Q

=

N∑
n=1

△tnh
(
Ekin(vn

h) + Eel(znh , ε
n
h) + Epf(znh )

)
+

N∑
n=1

(
2

△thn
Rvis(△εnh) +

1

△tk
R

pf
h (△z

n
h )

)

≤ max
{ N∑

n=1

△tnh, 1
}(

Ekin(v0
h) + Eel(z0h, ε

0
h) + Epf(z0h) +

(
f ,vh

)
Q

)
≤ max{T, 1}

(
Ekin(v0

h) + Eel(z0h, ε
0
h) + Epf(z0h)

)
+

max{T, 1}2

ϱ0

∥∥f∥∥2
Q
+
ϱ0
4

∥∥vh

∥∥2
Q
.
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4 Limit passage in the discrete systems (3.56) and existence of weak solu-
tions for system (2.12)

We consider a shape-regular family
(
Ωh

)
h∈H

of meshes with 0 ∈ H, e.g., obtained by uniform refinement of a coarse
mesh. For simplicity, we consider uniform time steps

△tnh = △th = T/Nh with Nh ∈ N such that cws△th ≈ h (4.1a)

with respect to a reference wave speed cws > 0. We set

tnh = n△th and t
n−1/2
h =

1

2
(tn−1

h + tnh). (4.1b)

By Prop. 3.6 the discrete solutions (zh,vh, εh, żh,D(zh)
1
2 ε̇h)h∈H with D(zh) = gD(zh)D̃ are uniformly bounded so

that we obtain the compactness result stated below in Prop. 4.1. We point out that subsequently we write cD̃ε̇h in order to
indicate that we also include the case that D(zh) is not positive definite, so that cD̃ = 0 and then

D(zh)ε̇h = cD̃ε̇h = 0 = D(z)ε̇ = cD̃ε̇ , (4.2)

see (4.5e) below. While convergence statements (4.5a)–(4.5e) follow from standard compactness arguments, convergence
result (4.5f) is a consequence of (a discrete version of) the Aubin-Lions Lemma, cf. e.g. [16, Lem. 7.7], which guarantees
that the embedding

H1
(
0, T ; L2(Ω)

)
∩ L2

(
0, T ; H1(Ω)

)
−→ L2(Q)

is compact. This yields strong convergence (4.5f) of the discrete phase field approximations, which, in turn facilitates the
convergence and identifaction (4.5g) of the stress tensor. Let us also point out that (4.6) states the unidirectionality of the
phase-field evolution in a weaker way as the (2.12d). The improved result (2.12d) is obtained in Theorem 4.2.

Proposition 4.1. Let the assumptions of Prop. 3.5 be satisfied. For all h ∈ and Nh ∈ N let (zh,vh, εh,σh) ∈
L2(0, T ;V cf

h × V dg
h ×W dg

h ×W dg
h ) be the interpolants of the discrete solutions obtained by (3.11)–(3.12) of the stag-

gered time-discrete scheme with σh = (Πdg
h (C(zh)εh +Πdg

h (D(zh)ε̇h)). Assume that the discrete initial data converge
strongly, i.e., that

(z0h,v
0
h) → (z0,v0) in H1(Q)× L2(Q;Rd) (4.3)

Then there exists a (not relabelled) subsequence (zh,vh, εh,σh)h∈H0 with H0 ⊂ H and 0 ∈ H0 and a weak limit

(z,v, ε,σ) ∈ L2
(
0, T ; H1(Ω)

)
× L2(Q;Rd)× L2(Q;Rd×d

sym )× L2(Q;Rd×d
sym ) (4.4)

such that the following convergence statements hold true:

zh ⇀ z in L2
(
0, T ; H1(Ω)

)
, (4.5a)

vh ⇀ v in L2(Q;Rd) , (4.5b)

εh ⇀ ε in L2(Q;Rd×d
sym ) , (4.5c)

żh ⇀ ż in L2(Q;Rd) , (4.5d)

cD̃ε̇h ⇀ cD̃ε̇ in L2(Q;Rd×d
sym ) , (4.5e)

zh → z strongly in L2(Q;Rd) , (4.5f)

σh ⇀ σ = C(z)ε+ D(z)ε̇ in L2(Q;Rd×d
sym ) . (4.5g)

Moreover, the following statements hold true:

1. For the limit z the weak derivative ∂tz exists, so that ∂tz = ż from (4.5d), and

z ∈ H1
(
0, T ; L2(Ω)

)
with z(0) = z0 and ∂tz = ż ≤ 0 a.e. in Q , (4.6)

i.e., the initial datum is attained and a weaker version of the unidirectionality (2.12d) of the phase-field evolution is
ensured.
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2. Assume in addition that D̃ is positive definite, i.e. cD̃ > 0 in (2.2d) and that the initial datum is well prepared, i.e.

ε0h → ε0 in L2(Q;Rd×d
sym) (4.7)

also the weak derivatives ∂tε and sym(Dv) exist, and

ε(0) = ε0 and ∂tε = ε̇ = sym(Dv) . (4.8)

Proof. To convergence statements (4.5a)–(4.5e): By (3.59) in Prop. 3.6, the discrete solutions (zh,vh, εh, żh, cD̃ε̇h)h∈H

are uniformly bounded by∥∥vh

∥∥2
Q
+
∥∥εh∥∥2Q +

(∥∥1− zh
∥∥2
Q
+
∥∥∇zh∥∥2Q)+ ∥∥√cD̃ ε̇h

∥∥2
Q
+
∥∥żh∥∥2Q + δh

∥∥max{żh, 0}
∥∥2
Q
≤ C

with a constant C > 0 independent of h ∈ H but depending on the initial data v0, z0 ε0, the load f , the lower
bound g(zh) ≥ g∗ > 0, and the material parameters. Thus, by compactness, there exist subsequences (zh)h∈H0 ⊂
L2
(
0, T ; H1(Ω)

)
and (vh, εh, żh,

√
cD̃ ε̇h)h∈H0

that converge weakly in L2 to a limit (z,v, ε, ż,
√
cD̃ ε̇), which proves

convergence statements (4.5a)–(4.5e).

To statement 1.: Since δh → ∞ for h→ 0, we obtain for the limit

∥∥max{ż, 0}
∥∥
Q
≤ lim

h∈H0

∥∥max{żh, 0}
∥∥
Q
≤ lim

h∈H0

C

δh
= 0 and thus ż ≤ 0 a.e. in Q .

Now we show that the weak time-derivative of the limit z exists and that it can be identified with ż. Thus, checking the
definition of the weak derivative for smooth test functions ϕ ∈ C1(Q) with ϕ(T ) = 0 gives

(
zh, ∂tϕ

)
Q
=

Nh∑
n=1

(
znh , ∂tϕ

)
(tn−1

h ,tnh)×Ω

=

Nh∑
n=1

(
znh , ϕ(t

n
h)− ϕ(tn−1

h )
)
Ω

= −
(
z0h, ϕ(0)

)
Ω
+

Nh∑
n=1

(
zn−1
h − znh , ϕ(t

n−1
h )

)
Ω

= −
(
z0h, ϕ(0)

)
Ω
−

Nh∑
n=1

(
△znh , ϕ(t

n−1
h )

)
Ω

= −
(
z0h, ϕ(0)

)
Ω
−

Nh∑
n=1

(
żh, ϕ(t

n−1
h )

)
(tn−1

h ,tnh)×Ω
.

By the well-preparedness of the initial datum (4.3) and the fact that ∥ϕ(tn−1
h ) − ϕ(t)∥Ω → 0 as tn−1

h → t by the
smoothness of ϕ, we conclude(

z0, ϕ(0)
)
Ω
+
(
z, ∂tϕ

)
Q
= lim

h∈H0

((
z0h, ϕ(0)

)
Ω
+
(
zh, ∂tϕ

)
Q

)
= − lim

h∈H0

Nh∑
n=1

(
żh, ϕ(t

n−1
h )

)
(tn−1

h ,tnh)×Ω

= − lim
h∈H0

Nh∑
n=1

(
żh, ϕ

)
(tn−1

h ,tnh)×Ω

= −
(
ż, ϕ
)
Q
.

(4.9)
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Testing (4.9) with ϕ ∈ C1
c (Q) shows that the weak derivative in time of z exists and identifies ∂tz = ż. This implies that

z ∈ H1
(
0, T ; L2(Ω)

)
. By the regularity of Bochner spaces we thus also have z ∈ C0

(
[0, T ]; L2(Ω)

)
. Hence, testing

(4.9) with ϕ(0) ̸= 0 and ϕ(T ) = 0 shows that the initial datum z(0) = z0 is attained. This finishes the proof of statement
1..

To statement 2.: If, in addition, D̃ is positive definite, i.e., cD̃ > 0 in (2.2d), also the subsequence (ε̇h)h∈H0 itself weakly
converges in L2 to a limit ε̇, and, thanks to the well-preparedness (4.7) of the initial datum, one can show with the same
arguments as above that the weak derivative in time of ε exists, that the inital datum is attained, and that one can identify

∂tε = ε̇ .

It remains to verify for the limit velocity that sym(∇v) exists and that one can identify sym(∇v) = ε̇.

To do so, we select a smooth test functions Φ ∈ C1
c (Q;Rd×d

sym ), and let Φn
h ∈W dg

h ∩H1
0(Ω;Rd×d

sym ) be an approximation

of Φ that is piecewise constant in the time intervals (tn−1
h , tnh) with lim

h−→0

(∥∥Φn
h −Φ

∥∥
Q
+
∥∥div(Φn

h −Φ)
∥∥
Q

)
= 0.

Then, testing (3.12) in (S2) with (0,Φn
h,0) yields

mΩ

(
(vn

h, ε
n
h), (0,Φ

n
h)
)
+ △tnha

dg
h

(
znh ; (v

n
h,σ

n
h), (0,Φ

n
h)
)
= mΩ

(
vn−1
h , εn−1

h ), (0,Φn
h)
)
,

and further using the definitions (3.9) and (3.2) of the discrete bilinear forms results in

1

△th

(
△εnh,Φ

n
h

)
Ω
+
(
vh,divΦ

n
h

)
Ωh

=
1

2

∑
K∈Kh

∑
f∈FK

((
nK ·

(
σh,KnK − ZP(zh)vh,K

)
,nK ·

(
ZP(zh)

−1[Φh]K,fnK

)
f

+
(
nK ×

(
σh,KnK − ZP(zh)vh,K

)
,nK ×

(
ZP(zh)

−1[Φh]K,fnK

)
f

)
.

Since the approximations Φn
h ∈W dg

h ∩H1
0(Ω;Rd×d

sym ) satisfy [Φn
h]K,f = 0, we obtain(

ε̇,Φ
)
Q
+
(
v,divΦ

)
Q
= lim

h∈H0

((
ε̇h,Φh

)
Q
+
(
vh,divΦh

)
Q

)
= lim

h∈H0

Nh∑
n=1

((
△εnh,Φ

n
h

)
Ω
+ △th

(
vh,divΦ

n
h

)
Ωh

)
= 0 ,

(4.10)

so that, in case of positive viscosity, the weak symmetric gradient in space exists for v and can be identified with ε̇ =
sym(Dv). This finishes the proof of statement 2..

To convergence statement (4.5f): The proof of this convergence result is based on the Aubin-Lions Lemma, cf. e.g. [16,
Lem. 7.7]. Yet, since zh is discontinuous in time, the Aubin-Lions Lemma cannot be applied directly. Thus we define

ẑh(t) = z0 +

∫ t

0

żh(s) ds ∈ V cf
h for t ∈ [0, T ] ,

so that ẑh ∈ H1(0, T ;V cf
h ) and ∂tẑh = żh; from żnh = 1

△tnh
(znh − zn−1

h ) we get ẑh(tnh) = znh for n = 0, . . . , Nh, and

using uniform time step sizes △tnh = △th we obtain

∥zh − ẑh∥2Q =

Nh∑
n=1

∫ tnh

tn−1
h

∥∥znh − zn−1
h −

t− tn−1
h

△th
(znh − zn−1

h )
∥∥2
Ω
dt =

Nh∑
n=1

∫ tnh

tn−1
h

(tnh − t)2

(△th)2
∥∥znh − zn−1

h

∥∥2
Ω
dt

=

Nh∑
n=1

△th
3

∥zn−1
h − znh∥2Ω =

Nh∑
n=1

(△th)3

3
∥żnh∥2Ω =

(△th)2

3
∥żh∥2Q . (4.11)
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Since (zh)h∈H0 converges weakly to z in L2(Q) by (4.5a) and since (żh)h∈H0 is uniformly bounded in L2(Q) by (3.59),
also (ẑh)h∈H0 converges weakly to z in L2(Q). Then, we obtain

0 = lim
h∈H0

(
∇z −∇zh, φ

)
Q

= − lim
h∈H0

(
z − zh,divφ

)
Q

= − lim
h∈H0

(
z − ẑh,divφ

)
Q

= lim
h∈H0

(
∇z −∇ẑh, φ

)
Q

for any φ ∈ C1
c (Q) .

This implies that (∇ẑh)h∈H0 ⇀ ∇z in L2(Q). Alltogether, this gives

ẑh ⇀ z in L2
(
0, T ; H1(Ω)

)
.

Since also żh ⇀ ∂tz = ż in L2(Q) by (4.5d) and statement 1., we conclude that

ẑh ⇀ z in H1
(
0, T ; L2(Ω)

)
and in L2

(
0, T ; H1(Ω)

)
.

Since, by the Aubin-Lions Lemma the embedding of H1
(
0, T ; L2(Ω)

)
∩ L2

(
0, T ; H1(Ω)

)
to L2(Q) is compact, we

obtain strong convergence of (ẑh)h∈H0
in L2(Q). By (4.11) this also holds true for the sequence of piecewise constant

interpolants (zh)h, which finishes the proof of statement (4.5f).

To convergence statement (4.5g): The strong L2-convergence of the interpolants (zh)h obtained in (4.5f) also implies
strong convergence of

(
gJ(zh)

)
h∈H0

in L2(Q) for J ∈ {C,D}. In addition, we have gJ(zh) ∈ L∞(Q) for all h ∈ H0.

Together with the weak convergence of (εh, ε̇h)h∈H0
in L2(Q;Rd×d

sym ,Rd×d
sym ) this yields for all Ψ ∈ L2(Q;Rd×d

sym )

lim
h∈H0

(
σh,Ψ

)
Q
= lim

h∈H0

Nh∑
n=1

△tnh
(
σn

h,Π
dg
h Ψ

n
)
Ω

= lim
h∈H0

Nh∑
n=1

△tnh
(
Πdg

h (C(z
n
h )ε

n
h) + Πdg

h (D(z
n
h )ε̇

n
h),Π

dg
h Ψ

n
)
Ω

= lim
h∈H0

Nh∑
n=1

△tnh
(
C(znh )εnh + D(znh )ε̇

n
h,Π

dg
h Ψ

n
)
Ω

= lim
h∈H0

Nh∑
n=1

△tnh
(
C(znh )εnh,Π

dg
h Ψ

n
)
Ω
+ △tnh

(
D(znh )ε̇

n
h,Π

dg
h Ψ

n
)
Ω

= lim
h∈H0

Nh∑
n=1

△tnh
(
gC(z

n
h )C̃εnh,Π

dg
h Ψ

n
)
Ω
+ △tnh

(
gD(z

n
h )D̃ε̇

n
h,Π

dg
h Ψ

n
)
Ω

= lim
h∈H0

Nh∑
n=1

△tnh
(
C̃εnh, gC(znh )Π

dg
h Ψ

n
)
Ω
+ △tnh

(
D̃ε̇nh, gD(znh )Π

dg
h Ψ

n
)
Ω

= lim
h∈H0

(
C̃εh, gC(zh)Πdg

h Ψ
)
Q
+
(
D̃ε̇h, gD(zh)Πdg

h Ψ
)
Q

(∗)
=
(
C̃ε, gC(z)Ψ

)
Q
+
(
D̃∂tε, gD(z)Ψ

)
Q

=
(
gC(z)C̃ε,Ψ

)
Q
+
(
gD(z)D̃∂tε,Ψ

)
Q

with Ψn = 1
△tnh

∫ tn
tn−1

Ψ(t) dt, so that (σh)h∈H0 converges weakly in L2(Q;Rd×d
sym). In (∗), weak/strong convergence

arguments are used: We have that both gJ(zh) → gJ(z) and Πdg
h Ψ → Ψ strongly in L2(Q) as h → 0. This implies

convergence in measure. Additionally we also have that |gJ(zh)Πdg
h Ψ| ≤ g∗|Πdg

h Ψ| pointwise a.e. in Q by the growth

properties of gJ , cf. (2.2h). Thus, gJ(zh)Π
dg
h Ψ → gJ(z)Ψ strongly in L2(Q : Rd×d

sym by the dominated convergence
theorem.
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Convergence results (4.5) enable us to pass to the limit h → 0 in the discrete version (3.56) of the weak formulation
when using suitable approximations of admissible test functions. This this way we establish now that the weak limit of the
discrete solutions obtained in Lem. 4.1 is a weak solution of the elastodynamic phase field model in the sense of Def. 2.1.

Theorem 4.2 (Existence of weak solutions in the sense of Def. 2.1). Let the assumptions of Proposition 4.1 be satisfied.
The weak limit

(z,v, ε,σ) ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω))× L2(Q;Rd)× L2(Q;Rd×d
sym )× L2(Q;Rd×d

sym )

approximated by the sequence (zh,vh, εh,σh)h∈H0
of discrete solutions constructed by the staggered time-discrete

scheme (3.11a)–(3.12) is a solution of the weak formulation (2.12).

Proof. Proof of the attainment of the initial value z0 (2.12c): This property has already been verified in (4.6).

Proof of the unidirectionality property (2.12d): So far, we have only verified the weaker unidirectionality property stated
in (4.6). For the pointwise-in-time unidirectionality property (2.12d) we refer to [17, 5.2.1 Unidirectionality (10b), p. 33]. The
proof of this pointwise condition relies on the uniform bound in (4.24g) which does not depend on the retardation βr, and
the additional convergence property (4.26f), which we establish in Lemma 4.4 below.

Proof of the one-sided variational inequality (2.12b): We show that the weak limit (z, ε) ∈ H1
(
0, T ; L2(Ω)

)
∩

L2
(
0, T ; H1(Ω)

)
× L2(Q;Rd×d

sym ) of the sequence of interpolants (zh, εh)h∈H0
solves (2.12b) by passing to the limit

h→ 0 in (3.56a).

For this, we introduce suitable approximations φh ∈ H1(0, T ;V cf
h ) of the admissible test functions φ ∈ Z, cf. (2.9). This

is done by nodal interpolation in space such that

φh(tn,x) = φ(tn,x) for x ∈ Nh, and n = 0, . . . , Nh , (4.12a)

and by linear interpolation in time

φh(t) =
1

△tnh

(
(tn − t)φh(tn−1) + (t− tn−1)φh(tn)

)
, t ∈ (tn−1, tn) , n = 1, . . . , Nh . (4.12b)

Since φ ≤ 0 a.e. in Q by definition of Z and since we use lowest order finite elements, we also ensure that

φh ≤ 0 in Q . (4.13)

By construction, since φ is smooth, we also have the following strong convergence results for the interpolants

φh → φ in L2(0, T ; H1(Ω)) and φh → φ in L∞(Q) . (4.14)

Using these interpolants we rewrite (3.56a) as follows(
βrżh, φh

)
Q
+
(
Yh

′(żh), φh

)
Q
+ bQ(zh, φh) =

1

2

(
C′(zh)εh : εh,−φh

)
Q

(4.15)

and next we discuss the limit passage for each of the terms separately.

For the first term in (4.15) we observe by the weak L2-convergence (4.5d) of (żh)h and the strong convergence (4.14) of
the interpolants (

βrżh, φh

)
Q
→
(
βrż, φ

)
Q
. (4.16)

For the second term in (4.15) we use that φh ≤ 0 in Q, whereas Yh
′(żh) ≥ 0 a.e. in Q. This allows for the estimate(

Yh
′(żh), φh

)
Q
≤ 0 . (4.17)

For the third term in (4.15) we argue by the weak L2(0, T ;H1(Ω))-convergence (4.5a) and the strong convergence of
the interpolants (4.14) to conclude that

bQ(zh, φh) → bQ(z, φ) . (4.18)
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For the fourth term in (4.15) we observe that the integrand has nonnegative sign, i.e. −φhC′(zh)εh : εh ≥ 0 a.e.
in Q, thanks to the growth properties of the material tensor (2.2f) and the fact that φh ≤ 0 a.e. in Q. Due to this, the
integrand is also convex in εh. Therefore we would like to pass to the limit in the fourth term of (4.15) with the aid of a lower
semicontinuity result [6, Thm. 3.23]. For this we define the map f : R × Rd×d

sym → R, f(y, ξ) = yC̃ξ : ξ. We observe
that f(·, ·) is a Carathéodory function and convex in the second variable ξ. With this we define the functional

J : L2(Q) ∩ L∞(Q)× L2(Q;Rd×d
sym ) −→ R ,

J(g′C(z)φ, ε) :=

∫
Q

f(−g′C(z)φ, ε) dx dt =
(
g′C(z)C̃ε : ε,−φ

)
Q
=
(
C′(z)ε : ε,−φ

)
Q
.

The strong convergence (4.5f) of (zh)h∈H0
in L2(Q), hence also of (g′C(zh))h∈H0

, and the strong convergence (4.14)
of (φh)h∈H0

in L∞(Q) by construction implies the strong convergence of
(
g′C(zh)φh

)
h∈H0

in L2(Q). Then, weak

L2(Q)-convergence in the variable ε enables us to invoke [6, Thm. 3.23] and to conclude lower semicontinuity of the
functional J.

However, observe that the fourth term in (4.15) involves the left-continuous piecewise constant interpolants (εh)h, for
which we have not yet established the required L2(Q)-convergence. This convergence result has only been established
for the right-continuous piecewise constant interpolants (εh)h in (4.5c). Therefore we show below in (4.23) that we may
replace εh by εh upon creating an error term ERR(h) = |J(g′C(zh)φh, εh)− J(g′C(zh)φh, εh)| that tends to zero as
h→ 0. Accordingly, we can pass to the limit in the fourth term in (4.15)

1

2

(
C′(zh)εh : εh,−φh

)
Q
= J(g′C(zh)φh, εh) = J(g′C(zh)φh, εh) + ERR(h) , and hence

lim inf
h→0

1

2

(
C′(zh)εh : εh,−φh

)
Q
= lim inf

h→0

(
J(g′C(zh)φh, εh) + ERR(h)

)
≥
(
C′(z)ε : ε,−φ

)
Q

(4.19)

by the above established lower semicontinuity and the convergence of the error term (4.23).

Now, (4.15) together with (4.16)–(4.19) ultimately results in

1

2
(C′(z)ε : ε,−φ)Q ≤

(
βrż, φ

)
Q
+ bQ(z, φ) for all φ ∈ Z , (4.20)

which is (2.12b).

To conclude the proof of (2.12b) it remains to discuss the error term ERR(h) introduced in (4.19).

For this, we insert φn
h = φh(t

n−1/2
h ) and observe that

△tnh
(
C′(znh )ε

n
h : εnh,−φn

h

)
Ω
=
(
C′(zh)εh : εh,−φh

)
(tn−1

h ,tnh)×Ω

since φh is linear and zh and εh are constant in time in every interval (tn−1
h , tnh), so that we have

(
C′(zh)εh : εh,−φh

)
Q
=

Nh∑
n=1

△tnh
(
C′(znh )ε

n
h : εnh,−φn

h

)
Ω
. (4.21)

Moreover, we have

(
C′(zh)εh : εh,−φh

)
Q
=

Nh∑
n=1

△tnh
(
C′(znh )ε

n−1
h : εn−1

h ,−φn
h

)
Ω
. (4.22)

The error term ERR(h) = |J(g′C(zh)φh, εh) − J(g′C(zh)φh, εh)| is thus given by the difference of (4.21) and (4.22).
To further express it we observe that

(
C′(zh)εh : εh,−φh

)
Q
−

Nh∑
n=1

△tnh
(
C′(znh )ε

n−1
h : εn−1

h ,−φn
h

)
Ω

− △tNh

h

(
C′(zNh

h )εNh

h : εNh

h ,−φNh

h

)
Ω

= △t1h
(
C′(z1h)ε

0
h : ε0h,−φ1

h

)
Ω
+

Nh−1∑
n=1

△tnh
((

C′(zn+1
h )εnh : εnh,−φn+1

h

)
Ω
−
(
C′(znh )ε

n
h : εnh,−φn

h

)
Ω

)
.
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Rearranging terms gives

ERR(h) =
∣∣∣(C′(zh)εh : εh,−φh

)
Q
−

Nh∑
n=1

△tnh
(
C′(znh )ε

n−1
h : εn−1

h ,−φn
h

)
Ω

∣∣∣
=
∣∣∣△tNh

h

(
C′(zNh

h )εNh

h : εNh

h ,−φNh

h

)
Ω
+ △t1h

(
C′(z1h)ε

0
h : ε0h,−φ1

h

)
Ω

+

Nh−1∑
n=1

△tnh
((

C′(zn+1
h )εnh : εnh,−φn+1

h

)
Ω
−
(
C′(znh )ε

n
h : εnh,−φn

h

)
Ω

)∣∣∣ .
Since φ is smooth, we obtain for the interpolation lim

h∈H0

(
φn+1
h − φn

h

)
= 0 in L∞(Ω), and since z ∈ H1(0, T ; Ω) and

thus continuous in time, and g′ is continuous and bounded, we also observe lim
h∈H0

(
g′(zn+1

h ) − g′(znh ), ψ
)
Ω

= 0 for

all ψ ∈ L2(Ω). Moreover,
(
C̃εnh, εnh

)
Ω

is uniformly bounded, so that the terms on the right-hand side tend to zero. This
proves that

ERR(h) :=
∣∣∣(C′(zh)εh : εh,−φh

)
Q
−

Nh∑
n=1

△tnh
(
C′(znh )ε

n−1
h : εn−1

h ,−φn
h

)
Ω

∣∣∣ → 0 as h→ ∞ . (4.23)

This concludes the proof of (2.12b).

Proof of the weak momentum balance (2.12a): For (w,Φ,Ψ) ∈ VT,D ×WT ×WN let (wn
h,Φ

n
h,Ψ

n
h) ∈ (V dg

h ×
W dg

h ×W dg
h ) ∩ C0(Ω;Rd × Rd×d

sym × Rd×d
sym ) be the nodal interpolant in space of (w,Φ,Ψ)(tnh) defined by

(wn
h,Φ

n
h,Ψ

n
h)(tn,x) = (w,Φ,Ψ)(tnh,x) for x ∈ Nh and n = 0, . . . , Nh,

and let (wh,Φh,Ψh) ∈ H1(0, T ;V dg
h ×W dg

h ×W dg
h ) be the linear interpolation in time, cf. (4.12b), so that we have

strong convergence of (wh,Φh,Ψh)h∈H0
to (w,Φ,Ψ).

We set (wn−1
h ,Φn−1

h ,Ψn−1
h ) = (wh,Φh,Ψh)(t

n−1/2
h ) and observe ∂twh(t) =

1
△tnh

△wn
h for △wn

h = wn
h−wn−1

h

and t ∈ (tn−1, tn), n = 1, . . . , Nh. Using wNh

h = 0, we obtain

−
(
ϱ0vh, ∂twh

)
Q
= −

Nh∑
n=1

(
ϱ0v

n
h,△w

n
h

)
Ω
= −

Nh∑
n=1

(
ϱ0v

n
h,w

n
h

)
Ω
+

Nh∑
n=1

(
ϱ0v

n
h,w

n−1
h

)
Ω

=
(
ϱ0v

0
h,w

0
h

)
Ω
+

Nh∑
n=1

(
ϱ0△v

n
h,w

n−1
h

)
Ω

and for △Φn
h = Φn

h −Φn−1
h analogously, i.e., −

(
εh, ∂tΦh

)
Q
=
(
ε0h,Φ

0
)
Ω
+

Nh∑
n=1

(
△εnh,Φ

n−1
h

)
Ω
.

Since for (wn−1
h ,Φn−1

h ) all jump terms and boundary terms vanish, we obtain consistency (3.4) for the DG bilinear form

adg
h

(
znh ; (v

n
h,σ

n
h), (w

n−1
h ,Φn−1

h )
)
=
(
σn

h, sym(Dwn−1
h )

)
Ω
+
(
vn
h,divΦ

n−1
h

)
Ω
.

Thus we obtain (3.12) in (S2), since we assume homogenous boundary conditions vD = 0 and gN = 0,

mΩ

(
(△vn

h,△ε
n
h), (w

n−1
h ,Φn−1

h − D(znh )Ψ
n−1
h )

)
= △tnh

(
ℓdg
h

(
tnh, z

n
h ; (w

n−1
h ,Φn−1

h )
)
− adg

h

(
znh ; (v

n
h,σ

n
h), (w

n−1
h ,Φn−1

h )
)

− rΩ
(
znh ; (ε

n
h,σ

n
h),Ψ

n−1
h

))
= △tnh

((
fnh,w

n−1
h

)
Ω
−
(
σn

h, sym(Dwn−1
h )

)
Ω
−
(
vn
h,divΦ

n−1
h

)
Ω

−
(
σn

h − C(znh )εnh,Ψ
n−1
h

)
Ω

)
.
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Together with

mΩ

(
(△vn

h,△ε
n
h), (0,D(znh )Ψ

n−1
h )

)
=
(
△εnh,D(znh )Ψ

n−1
h

)
Ω
= △tnh

(
D(znh )ε̇

n
h,Ψ

n−1
h

)
Ω

this yields (
ϱ0vh, ∂twh

)
Q
+
(
εh, ∂tΦh

)
Q
+
(
ϱ0v

0
h,w

0
h

)
Ω
+
(
ε0h,Φ

0
)
Ω

= −
Nh∑
n=1

((
ϱ0△v

n
h,w

n−1
h

)
Ω
+
(
△εnh,Φ

n−1
h

)
Ω

)
= −

Nh∑
n=1

mΩ

(
(△vn

h,△ε
n
h), (w

n−1
h ,Φn−1

h )
)

=

Nh∑
n=1

△tnh
((

σn
h, sym(Dwn−1

h )
)
Ω
+
(
vn
h,divΦ

n−1
h

)
Ω

+
(
σn

h − C(znh )εnh − D(znh )ε̇
n
h,Ψ

n−1
h

)
Ω
−
(
fnh,w

n−1
h

)
Ω

)
.

Using strong convergence of the test functions and of
(
g(zh)

)
h∈H0

we find in the limit

ϱ0
(
v, ∂tw

)
Q
+
(
ε, ∂tΦ

)
Q
+ ϱ0

(
v0,w(0)

)
Ω
+
(
ε0,Φ(0)

)
Ω

= lim
h∈H0

((
ϱ0vh, ∂twh

)
Q
+
(
εh, ∂tΦh

)
Q
+
(
ϱ0v

0
h,w

0
h

)
Ω
+
(
ε0h,Φ

0
)
Ω

)
= lim

h∈H0

Nh∑
n=1

△tnh
((

σn
h, sym(Dwn−1

h )
)
Ω
+
(
vn
h,divΦ

n−1
h

)
Ω

+
(
σn

h − C(znh )εnh − D(znh )ε̇
n
h,Ψ

n−1
h

)
Ω
−
(
fnh,w

n−1
h

)
Ω

)
= lim

h∈H0

((
σh, sym(Dwh)

)
Q
+
(
vh,divΦh

)
Q

+
(
σh − C(zh)εh − D(zh)ε̇h,Ψh

)
Q
−
(
fh,wh

)
Q

)
=
(
σ, sym(Dw)

)
Q
+
(
v,divΦ

)
Q
+
(
σ − C(z)ε− D(z)ε̇,Ψ

)
Q
−
(
f ,w

)
Q
.

This shows that the weak limit solves (2.12a).

Improved convergence results and energy-dissipation estimate for the weak solutions

In the remaining part of the section we will discuss the energy-dissipation estimate (2.29) and show how to obtain this
estimate by investigating the limit passage in the discrete energy estimate in (3.38).
We remark that for sufficiently regular solutions the energy-dissipation balance [17, Def. 1.3]

Ekin(v(t)) + Eel(z(t), ε(t)) + Epf(z(t))− Eext(t,u(t)) +

∫ t

0

(
Rvis(ε̇(s)) + Rpf(ż(s))

)
ds

= Ekin(v0) + Eel(z0, ε0)− Eext(0,u(0))−
∫ t

0

Ėext(s,u(s)) ds

with

Ėext(s,u(s)) =
(
∂tf(s),u(s)

)
Ω
dx+

(
∂tgN(s),u(s)

)
∂NΩ
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can be established [17, Thm. 5.1]. An integration by parts yields

Ekin(v(t)) + Eel(z(t), ε(t)) + Epf(z(t)) +

∫ t

0

(
Rvis(ε̇(s)) + Rpf(ż(s))

)
ds

= Ekin(v0) + Eel(z0, ε0) +

∫ t

0

Eext(s,v(s)) ds

and this is the relaxed form we are considering here with less regularity.

To pass to the limit in the discrete energy inequality (3.38), in particular pointwise in time convergences for the state
variables are needed to estimate the first three energies Ekin, Eel and Epf on the left-hand side.
This demands having uniform bounds also pointwise in time at hand.

Lemma 4.3. Let the assumptions of Proposition 4.1 be satisfied. For the discrete solutions (zh,vh, ε, cD̃ε̇)h obtained by
the staggered time-discrete scheme (3.11a)–(3.12) the additional estimates hold true with a constant C > 0 independent
of h > 0:

∥vh∥B(0,T ;L2(Ω,Rd)) ≤ C, (4.24a)

∥εh∥B(0,T ;L2(Ω,Rd×d
sym )) ≤ C, (4.24b)

∥ε̇h∥L2(0,T ;L2(Ω,Rd×d
sym )) ≤ C, (4.24c)

∥εh∥BV(0,T ;L2(Ω,Rd×d
sym )) ≤ C, (4.24d)

∥zh∥B(0,T ;H1(Ω)) ≤ C, (4.24e)

∥żh∥L2(0,T ;L2(Ω)) ≤
C√
βr
, (4.24f)

∥zh∥BV(0,T ;L1(Ω)) ≤ C, (4.24g)

Proof. The discrete energy dissipation estimate (3.38) gives

Ekin(vn
h) =

1

2

∫
Ω

ρ0|vn
h|2 dx ≤ C̃ +

∑
k

∆tkh
(
fkh,v

k
h

)
Ω

= C̃ +
(
f ,vh

)
Q

≤ C̃ + ∥f∥Q∥vh∥Q
≤ C

with C̃ = C̃(v0, ε0, z0) and since by Lemma 3.6 vh is uniformly bounded in L2(Q). This shows (4.24a) and in a similar
way the bounds in (4.24b)-(4.24e). Notice, that for (4.24d), the bound on ε̇h in Lemma 3.6 is used to find

Nh∑
n=1

∥εkh − εk−1∥L2 =

Nh∑
k=1

∆tnh
∥∥εnh − εn−1

h

∆tnh

∥∥
L2 =

∫ T

0

∥ε̇h(r)∥L2 dr

= ∥ε̇h∥L1(0,T ;L2) ≤
√
T∥ε̇h∥L2(0,T ;L2) ≤ C .

(4.25)

The uniform bounds on the z-dissipation gives (4.24f) where the bound still depends on βr. To find bounds not depending
on the parameter βr, we concentrate on the Yosida part of the dissipation and proceed like in [17, proof of (48h), p. 26/27].
In this way, from Lemma 3.5 one can derive an uniform bound on the total (pointwise) variation

∑Nh

k=1∥z
k−1
h − zkh∥L1(Ω)

of zh such that together with (4.24e) it follows (4.24g).

We discuss now the limit passage in the discrete energy dissipation estimate of Lemma 3.5 which are based on the results
hereafter.
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Lemma 4.4. Let the assumptions of Lemma 4.3 be satisfied. The following convergence statements are valid.

vh ⇀ v weakly in L2
(
0, T ; L2(Ω,Rd)

)
, (4.26a)

vh(t)⇀ v(t) weakly in L2(Ω,Rd) for all t ∈ [0, T ] , (4.26b)

εh ⇀ ε weakly in L2
(
0, T ; L2(Rd×d

sym)
)
, (4.26c)

εh(t)⇀ ε(t) weakly in L2(Ω,Rd×d
sym)) for all t ∈ [0, T ], (4.26d)

zh(t)⇀ z(t) weakly in H1(Ω) for all t ∈ [0, T ], (4.26e)

zh(t) → z(t) strongly in L2(Ω) for all t ∈ [0, T ], (4.26f)

zh → z strongly in Lp

(
0, T ; L2(Ω)

)
for all p ∈ [1,∞), (4.26g)

zh
∗
⇁ z weakly-∗ in L∞(0, T ; H1(Ω)

)
, (4.26h)

Proof. As a consequence of (4.24g), a variant of Helly’s Theorem in eg. [12, Theorem 2.1.24, p. 74]

can be used to see that (4.26e) and by compactness (4.26f) are true. Thus, in case of a vanishing mobility parameter βr →
0, the damage variable z has a time derivative in the sense of measures with values in L1(Ω), i.e. z ∈ BV(0, T ; L1(Ω)),
although the pointwise convergences are with respect to H1(Ω), respectively L2(Ω) in a strong sense. The bound in
(4.24e) is here crucial.
(4.26a) follows from the uniform bound in (4.24a). Applying dominated convergence in conjunction with (4.26f) and using
the bound (4.24e) it follows (4.26g) and in addition that the limit is equal to (4.26h). The weak-∗ convergence is here clear
by (4.24e).
Eventually, (4.26c) is a consequence of (4.24b), while (4.26d) follows from (4.24d) by a version of Helly’s Theorem [13,
Theorem 6.1]. At first, we find

εh(t)⇀ ε̃(t) weakly in L2(Ω,Rd×d
sym)) for all t ∈ [0, T ] (4.27)

and it has to be shown that ε̃ = ε. For this, a discrete compactness result in [8, Theorem 1, p. 2] is used:
Since L2(Ω,Rd×d

sym) ⊂⊂ H−1(Ω,Rd×d
sym) compactly, it is with (4.24b) and (4.24c)

∥ε̇h∥
L2
(
0,T ;H−1(Ω,Rd×d

sym )
) + ∥εh∥

L∞
(
0,T ;L2(Ω,Rd×d

sym )
) ≤ 2C .

Thus,

εh → ε̂ strongly in Lq

(
0, T ; H−1(Ω,Rd×d

sym)
)

for all q ∈ [1,∞) (4.28)

and ε̂ ∈ C0([0, T ]; H−1(Ω,Rd×d
sym)). This implies with (4.26c) and (4.27) by uniquenes of strong/weak limits that ε̂ =

ε = ε̃ in L2
(
0, T ; H−1(Ω,Rd×d

sym)
)

since (4.28) implies

εh(t) → ε(t) strongly in H−1(Ω,Rd×d
sym) for almost all t ∈ [0, T ] .

If we now choose ε̃ as representative for this class, (4.26d) can be concluded.

It remains to show the pointwise convergence vh(t) ⇀ v(t) weakly in L2(Ω,Rd) to pass to the limit in the discrete
energy estimate (3.38). To find uniform bounds, see Lemma 4.6 below.
Now, having a bound on v̇h in L2(0, T ; H1

D(Ω,Rd)∗) uniformly for all h > 0, a first consequence is the uniform bound-
edness of the total variation of vh, implying with (4.24a) and Helly’s selection principle [12, Theorem B.5.10] that we find
a subsequence such that

vh(t) → v̂(t) weakly-∗ in H1
D(Ω,Rd)∗ for every t ∈ [0, T ] (4.29)
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and

v̂ ∈ BV
(
0, T ; H1

D(0, T ;Rd)∗
)
. (4.30)

Furthermore, with (4.24a) it is

∥v̇h∥L2(0,T ;H1
D(Ω,Rd)∗) + ∥vh∥L∞(0,T ;L2(Ω,Rd)) ≤ C

and by [8, Theorem 1, p. 2], passing to a subsequence, it can be concluded that

vh → ṽ (4.31)

strongly in every Lq(0, T ; H
1(Ω,Rd)∗) where ṽ ∈ C0([0, T ]; H1

D(Ω,Rd)∗).

Since (4.26a) implies vh ⇀ v weakly in L2(0, T ; H−1(Ω,Rd) we find v = ṽ in L2(0, T ; H−1(Ω,Rd)) and by (4.31)
vh(t) → ṽ(t) in H−1(Ω,Rd) for a.a. t ∈ [0, T ]. With (4.29), this implies

v = ṽ = v̂ in L1
(
0, T ; H1

D(Ω,Rd)∗
)
. (4.32)

Now, for arbitrary t ∈ [0, T ], every subsequence of (vh(t))h is uniformly bounded in L2(Ω,Rd) by (4.24a) and thus ad-
mits a subsequence weakly converging in L2(Ω,Rd) to some vt ∈ L2(Ω,Rd). By (4.29) it is vt = v̂(t) in H1

D(Ω,RD)∗,
i.e. ∥vt − v̂(t)∥H−1 = 0 and the convergence is true for the whole sequence (and everyt t ∈ [0, T ]).

This can be seen as follows: Assume that the statement for t ∈ [0, T ] is not true for the whole sequence. Then there
is a subsequence such that vh2(t) ⇀ vt2 weakly in L2(Ω,Rd). Again we conclude that vt2 = v̂(t) identified in
H−1(Ω,Rd) and thus ∥vt2 − vt∥H−1 = 0. We want to show that this is also true with respect to the L2-Norm. For
that, let w ∈ L2(Ω,Rd) and (wh)h ⊂ H1

D(Ω,Rd) s.t. ∥wh − w∥L2 → 0 as h → 0. Then, ⟨vt − vt2,w⟩L2 =
limh→0⟨vt − vt2,wh⟩L2 = 0 which shows that the identity vt = vt2 is also true in L2(Ω,Rd) and we conclude that
for the whole sequence and every t ∈ [0, T ] it is

vh(t)⇀ vt weakly in L2(Ω,Rd) . (4.33)

Since by (4.26a) we already know that for a.a. t ∈ [0, T ] we can identify v(t) with a function in L2(Ω,Rd), it follows like
above that vt = v(t) in L2(Ω,Rd). Thus, we find for almost all t ∈ [0, T ] the convergence vh(t)⇀ v(t) weakly in L2.
Since the limit function v in (4.26a) is defined almost everywhere only, we make a choice for the remaining t ∈ [0, T ]:

v(t) = vt

and can state the L2-convergence in (4.26b) since by (4.33) the whole sequence converges for every t ∈ [0, T ].

It follows that for the first three energies on the left-hand side of the discrete energy estimate (3.38) an estimate from below
can be performed using (4.26b), (4.26e) for first and third, and (4.26f), (4.26d) in conjunction with [5, Thm. 3.4 Dacorogna,
p. 74] for the middle term. The dissipation potentials on the left-hand side can be estimated by convergences ε̇h ⇀ ε̇,
żh ⇀ ż, lower semi-continuity and non-negativity of the Yosida-part. Eventually, for the remaining parts on the right-hand
side the strong convergences of the L2-projected initial v0

h, z
0
h, ε

0
h are exploited for the first three terms while for the last

a weak/strong argument is used.

Finally, we present the energy-dissipation estimate (2.29) in the following Lemma.

Lemma 4.5. Let the assumptions of Proposition 4.1 be satisfied. Then the limit quadruple (4.4) satisfies the energy-
dissipation estimate

Ekin(v(t)) + Eel(z(t), ε(t)) + Epf(z(t)) +

∫ t

0

(
Rvis(ε̇(s)) + Rpf(ż(s))

)
ds

≤ Ekin(v0) + Eel(z0, ε0) +

∫ t

0

Eext(s,v(s)) ds

(4.34)

for all t ∈ [0, T ].
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A crucial step in the preceding proofs, especially in the proof of (4.26b) in Lemma 4.4 needed the following bound:

Lemma 4.6. Let vn
h ∈ V dg

h be discrete solution of (S2) obtained in Lemma 3.5.Define v̇h(t) = 1
∆tnh

(vn
h − vn−1

h ) for

t ∈ (tn−1
h , tnh). The sequence (v̇h)h∈H is uniformly bounded in L2(0, T ; H1

D(Ω,Rd)∗).

Proof. Following the argumentation in [17, proof of (76e) on p. 32], we want to show that v̇h defines an element of the
space L2(0, T ; H1

D(Ω,Rd)∗) for every h ∈ H and that (v̇h)h∈H ⊂ L2(0, T ; H1
D(Ω,Rd)∗) is uniformly bounded.

For this purpose, we assume that for w ∈ V = C1(Q̄,Rd) an approximation w̃h ∈ L2(0, T ;V dg
h ) ⊂ L2(Q,Rd) by

H1-stable L2-projection in space exists such that

(v̂h, w̃h)Q = (v̂h,w)Q for all v̂h ∈ L2(0, T ;V dg
h ) ⊂ L2(Q,Rd)

and the gradient of the projection can be estimated from above by the original function, i.e.

∥∇w̃h(t)∥Ω ≤ ck∥∇w(t)∥Ω , (4.35)

see e.g. in [2, 4] where conforming and shape regular triangulations and continuous piecewise polynomial conforming
elements guarantee these properties. In particular, continuous elements are contained in the spaces V dg

h by definition in
Section 3.

A test in (S2) with (w̃h(t),0,0), t ∈ (tn−1
h , tnh), yields:(

v̇h(t), w̃h(t)
)
Ω
= −

(
σn

h, ε(w̃h(t)
)
Ω
+
(
fh(t), w̃h(t)

)
Ω

since the DG-terms vanish by estimate (4.35) and if ∥w̃h∥L2(0,T ;H1
D) ≤ 1, we find(

v̇h, w̃h

)
Q
= −

(
σh, ε(w̃h)

)
Q
+
(
f , w̃h

)
Q

≤ ∥σh∥Q∥ε(w̃h)∥Q + ∥f∥Q∥w̃h∥Q ≤ C

by Lemma 3.6. We conclude for w ∈ V = C1(Q̄,Rd) with ∥w∥L2(0,T ;H1
D)≤ 1 that(

v̇h,w
)
Q
=
(
v̇h, w̃h

)
Q
+
(
v̇h,w − w̃h

)
Q

≤ C + 0
(4.36)

since w and L2-projection w̃ have the same action on elements of V dg
h . Taking the supremum over all w ∈ C1(Q̄,Rd)

with ∥w∥L2(0,T ;H1
D) ≤ 1 shows that

∥v̇h∥L2(0,T ;H1
D(Ω,Rd)∗) = sup

w∈C1(0,T ;H1
D)

∥w∥
L2(0,T ;H1

D
)
≤1

(
v̇h,w

)
Q
≤ C .
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The results in Appendix A are taken from [7], and Appendix B provides a constructive proof of the Aubin-Lions Lemma
which illustrates the connection to space-time finite elements.

Appendix A Consistency and stability of the DG approximation

For (vh,σh), (wh,Ψh) ∈ V dg
h ×W dg

h depending on the phase field zh we have

adg
h

(
zh; (vh,σh), (wh,Ψh)

)
=
(
σh, sym(Dwh)

)
Ωh

+
(
vh,divΨh

)
Ωh

− 1

2

∑
K∈Kh

∑
f∈FK

((
nK ·

(
σh,KnK − ZP(zh)vh,K

)
,nK ·

(
ZP(zh)

−1[Ψh]K,fnK − [wh]K,f

))
f

+
(
nK ×

(
σh,KnK − ZP(zh)vh,K

)
,nK ×

(
ZP(zh)

−1[Ψh]K,fnK − [wh]K,f

))
f

)
= −

(
divσh,wh

)
Ωh

−
(
sym(Dvh),Ψh

)
Ωh

+
∑

K∈Kh

∑
f∈FK

((
σh,KnK ,wh,K

)
f
+
(
vh,K ,Ψh,KnK

)
f

)

+
1

2

∑
K∈Kh

∑
f∈FK

((
σh,KnK , [wh]K,f

)
f
+
(
vh,K , [Ψh]K,fnK

)
f

−
(
nK · σh,KnK , ZP(zh)

−1nK · [Ψh]K,fnK

)
f
−
(
ZP(zh)nK · vh,K ,nK · [wh]K,f

)
f

−
(
nK × σh,KnK , ZS(zh)

−1nK × [Ψh]K,fnK

)
f

−
(
ZS(zh)nK × vh,K ,nK × [wh]K,f

)
f

)

and, using on inner faces(
σh,KnK ,wh,K

)
f
+
(
σh,Kf

nKf
,wh,Kf

)
f
+

1

2

(
σh,KnK , [wh]K,f

)
f
+

1

2

(
σh,Kf

nKf
, [wh]Kf ,f

)
f

=
(
σh,KnK ,wh,K

)
f
−
(
σh,Kf

nK ,wh,Kf

)
f

+
1

2

(
σh,KnK ,wKf ,h

)
f
− 1

2

(
σh,KnK ,wK,h

)
f
− 1

2

(
σh,Kf

nK ,wK,h

)
f
+

1

2

(
σh,Kf

nK ,wKf ,h

)
f

= −1

2

(
[σh]K,fnK ,wK,h

)
f
− 1

2

(
[σh]Kf ,fnKf

,wKf ,h

)
f

−
(
nK · σh,KnK ,nK · [Ψh]K,fnK

)
f
−
(
nKf

· σh,Kf
nKf

,nKf
· [Ψh]Kf ,fnKf

)
f

= −
(
nK · σh,KnK ,nK · [Ψh]K,fnK

)
f
+
(
nK · σh,Kf

nK ,nK · [Ψh]K,fnK

)
f

=
(
nK · [σh]K,fnK ,nK · [Ψh]K,fnK

)
f

= −
(
nK · [σh]K,fnK ,nK ·ΨK,hnK

)
f
−
(
nKf

· [σh]Kf ,fnKf
,nKf

·ΨKf ,hnKf

)
f
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and correspondingly for the other terms and the boundary faces, so that

adg
h

(
zh; (vh,σh), (wh,Ψh)

)
= −

(
divσh,wh

)
Ωh

−
(
sym(Dvh),Ψh

)
Ωh

− 1

2

∑
K∈Kh

∑
f∈FK

((
[σh]K,fnK ,wh,K

)
f
+
(
[vh]K,f ,Ψh,KnK

)
f

+
(
ZP(zh)

−1nK · [σh]K,fnK ,nK ·Ψh,KnK

)
f
+
(
ZP(zh)nK · [vh]K,f ,nK ·wh,K

)
f

+
(
ZP(zh)

−1nK × [σh]K,fnK ,nK ×Ψh,KnK

)
f

+
(
ZP(zh)nK × [vh]K,f ,nK ×wh,K

)
f

)
= −

(
divσh,wh

)
Ωh

−
(
sym(Dvh),Ψh

)
Ωh

− 1

2

∑
K∈Kh

∑
f∈FK

((
nK ·

(
[σh]K,fnK + ZP(zh)[vh]K,f

)
,nK ·

(
ZP(zh)

−1Ψh,KnK +wh,K

))
f

+
(
nK ×

(
[σh]K,fnK + ZS(zh)[vh]K,f

)
,nK ×

(
ZS(zh)

−1Ψh,KnK +wh,K

))
f

)
.

Together, we get

adg
h

(
zh; (vh,σh), (vh,σh)

)
=

1

2
adg
h

(
zh; (vh,σh), (vh,σh)

)
+

1

2
adg
h

(
zh; (vh,σh), (vh,σh)

)
= −1

2

∑
K∈Kh

∑
f∈FK

((
nK ·

(
σh,KnK − ZP(zh)vh,K

)
,nK ·

(
ZP(zh)

−1[σh]K,fnK − [vh]K,f

))
f

+
(
nK ×

(
σh,KnK − ZP(zh)vh,K

)
,nK ×

(
ZP(zh)

−1[σh]K,fnK − [vh]K,f

))
f

+
(
nK ·

(
[σh]K,fnK + ZP(zh)[vh]K,f

)
,nK ·

(
ZP(zh)

−1σh,KnK + vh,K

))
f

+
(
nK ×

(
[σh]K,fnK + ZS(zh)[vh]K,f

)
,nK ×

(
ZS(zh)

−1σh,KnK + vh,K

))
f

)

=
1

4

∑
K∈Kh

∑
f∈FK

((
ZP(zh)

−1nK · [σh]K,fnK ,nK · [σh]K,fnK

)
f
+
(
ZP(zh)nK [̇vh]K,f ,nK [̇vh]K,f

)
f

+
(
ZS(zh)

−1nK × [σh]K,fnK ,nK × [σh]K,fnK

)
f

+
(
ZS(zh)nK × [vh]K,f ,nK × [vh]K,f

)
f

)
.
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For smooth test functions (w,Ψ) ∈ C1(Ω;Rd × Rd×d
sym ) we obtain

adg
h

(
zh; (vh,σh), (w,Ψ)

)
=
(
σh, sym(Dw)

)
Ωh

+
(
vh,divΨ

)
Ωh

− 1

2

∑
K∈Kh

∑
f∈FK

((
nK ·

(
σh,KnK − ZP(zh)vh,K

)
,nK ·

(
ZP(zh)

−1[Ψ]K,fnK − [w]K,f

))
f

+
(
nK ×

(
σh,KnK − ZP(zh)vh,K

)
,nK ×

(
ZP(zh)

−1[Ψ]K,fnK − [w]K,f

))
f

)
=
(
σh, sym(Dw)

)
Ωh

+
(
vh,divΨ

)
Ωh

+
(
nK · σhnK − ZP(zh)nK · vh,nK ·w

)
ΓD

+
(
nK × σhnK − ZS(zh)nK × vh,nK ×w

)
ΓD

+
(
nK · vh − ZP(zh)

−1nK · σhnK ,nK ·ΨnK

)
ΓN

+
(
nK × vh − ZS(zh)

−1nK × σhnK ,nK ×ΨnK

)
ΓN

=
(
σh, sym(Dw)

)
Ωh

+
(
vh,divΨ

)
Ωh

+
(
σhnK − ZP(zh)(nK · vh)nK − ZS(zh)nK × vh,w

)
ΓD

+
(
vh − ZP(zh)

−1(nK · σhnK)nK − ZS(zh)
−1nK × σhnK ,ΨnK

)
ΓN

and thus adg
h

(
zh; (vh,σh), (w,Ψ)

)
=
(
σh, sym(Dw)

)
Ωh

+
(
vh,divΨ

)
Ωh

for test functions with w = 0 on ΓD and
ΨnK = 0 on ΓN.

Appendix B Approximation properties of space-time finite volumes

We define the projections

Πn : L
2(Q) −→ L2(Ω) , (Πnφ)(x) =

1

△tnh

∫ tnh

tn−1
h

φ(t,x) dt , t ∈ (tn−1
h , tnh) ,

Πn,K : L2(Ω) −→ R , Πn,Kφ =
1

|K|

∫
K

(Πnφ)(x) dx , x ∈ K ,

Πh : L
2(Q) −→ L2(Q) , (Πhφ)(t,x) = Πn,Kφ , K ∈ Kh ,

so that Πh is the L2 projection to space-time finite volume aproximations in P0(Qh).

Lemma B.1. For φ ∈ H1
(
0, T ; L2(Ω)

)
∩ L2

(
0, T ; H1(Ω)

)
we have

∥∥φ−Πhφ
∥∥
Q
≤
√
T maxn △tnh

6

∥∥∂tφ∥∥Q +
h√
3

∥∥∇φ∥∥
Q
.
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Proof. For φ ∈ C1(Q) define φn = Πnφ and φh = Πhφ. Then, we obtain for t ∈ (tn−1
h , tnh) and x ∈ K

φ(t,x)− φn(x) =
1

△tnh

∫ tnh

tn−1
h

(
φ(t,x)− φ(s,x)

)
ds

=
1

△tnh

(∫ t

tn−1
h

(
φ(t,x)− φ(s,x)

)
ds−

∫ tnh

t

(
φ(s,x)− φ(t,x)

)
ds

)

=
1

△tnh

(∫ t

tn−1
h

∫ t

s

∂τφ(τ,x)dτds−
∫ tnh

t

∫ s

t

∂τφ(τ,x)dτds

)

=
1

△tnh

(∫ t

tn−1
h

(s− tn−1
h )∂sφ(s,x)ds−

∫ tnh

t

(tnh − s)∂sφ(s,x)ds

)

φn(x)− φn,K =
1

|K|

∫
K

(
φn(x)− φn(y)

)
dy

=
1

△tnh

∫ tnh

tn−1
h

1

|K|

∫
K

∫ 1

0

(x− y) · ∇φ
(
t,y + s(x− y)

)
dsdydt ,

so that

∥∥φ− φn

∥∥2
Q
=

Nh∑
n=1

∫
Ω

∫ tnh

tn−1
h

(
1

△tnh

∫ tnh

tn−1
h

(
φ(s,x)− φn(x)

)2
ds

)2

dtdx

=

Nh∑
n=1

∫
Ω

∫ tnh

tn−1
h

(
1

△tnh

(∫ t

tn−1
h

(s− tn−1
h )∂sφ(s,x)ds−

∫ tnh

t

(tnh − s)∂sφ(s,x)ds

))2

dtdx

≤
Nh∑
n=1

∫
Ω

1

(△tnh)
2

∫ tnh

tn−1
h

((∫ t

tn−1
h

(s− tn−1
h )2ds+

∫ tnh

t

(tnh − s)2ds

)∫ tnh

tn−1
h

(
∂sφ(s,x)

)2
ds

)
dtdx

=
∥∥∂tφ∥∥2Q Nh∑

n=1

1

3(△tnh)
2

∫ tnh

tn−1
h

(∫ t

tn−1
h

(t− tn−1
h )3 + (tnh − t)3

)
dt ≤ T

6

(
max

n=1,...,Nh

△tnh
)∥∥∂tφ∥∥2Q ,

∥∥φn − φh

∥∥2
Q
=

Nh∑
n=1

∑
K∈Kh

∫
K

(
1

△tnh

∫ tnh

tn−1
h

1

|K|

∫
K

(x− y)

∫ 1

0

∇φ
(
t,y + s(x− y)

)
dsdydt

)2

dx

≤
Nh∑
n=1

∑
K∈Kh

∫
K

(
1

△tnh|K|

∫ tnh

tn−1
h

∫
K

|x− y|2dydt
∫ tnh

tn−1
h

∫
K

∫ 1

0

∣∣∇φ(t,y + s(x− y)
)∣∣2 dsdydt)dx

≤
Nh∑
n=1

∑
K∈Kh

hd+2

3△tnh|K|

∫ tnh

tn−1
h

∫
K

∫
K

∫ 1

0

∣∣∇φ(t,y + s(x− y)
)∣∣2 dsdxdydt ≤ h2

3

∥∥∇φ∥∥2
Q
.

This yields the assertion by
∥∥φ− φh

∥∥
Q
≤
∥∥φ− φn

∥∥
Q
+
∥∥φn − φh

∥∥
Q

.

Corollary B.2. The embedding E : H1
(
0, T ; L2(Ω)

)
∩ L2

(
0, T ; H1(Ω)

)
−→ L2(Q), Eϕ = ϕ is compact.

Proof. By Lem. (B.1) we obtain∥∥Eφ−Πhφ
∥∥
Q
=
∥∥φ− φh

∥∥
Q
≤
∥∥φ− φn

∥∥
Q
+
∥∥φn − φh

∥∥
Q

≤ maxn △tnh√
6

∥∥∂tφ∥∥Q +
h√
3

∥∥∇φ∥∥
Q
−→ 0 , h ∈ H ,

so thatE can be approximated by a sequence of mappings Πh : H
1
(
0, T ; L2(Ω)

)
∩L2

(
0, T ; H1(Ω)

)
−→ L2(Q) with

finite dimensional range, which shows compactness of the embedding E.
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