
1. Introduction

The multifractal analysis, i.e., the analysis of invariant sets and measures with

multifractal structure, has been recently developed as a powerful tool for numerical

study of dynamical systems. These spectra capture information about various di-

mensions associated with the dynamics. Among them are the well-known Hausdor�

dimension, correlation dimension, and information dimension of invariant measures.

Another example of multifractal spectra is entropy spectra introduced in [3]. They

provide an integrated information on the distribution of topological entropy associ-

ated with local entropies.

In [3, 4, 5] it is demonstrated that multifractal spectra can be used in a sense to

�restore� the dynamics � the phenomenon that we call multifractal rigidity.

The multifractal analysis is essentially measuring the �size� (in the sense of Haus-

dor� dimension or topological entropy) of special discontinuous measurable functions

(such as the local entropy, the pointwise dimension, etc.) on geometrically compli-

cated objects (supports of invariant measures). This is expressed in a function f
which is called the spectrum.

This analysis was investigated in several di�erent situations and there is a huge

amount of literature on this subject (see [9] for references and more details). One

of the main results of this theory is that there is an interval (�1; �2) on which the

spectrum f(�) (for de�nition see below) is analytic, convex, and can be continuously

extended to the boundary provided it is not a point spectrum (see section 4).

One of the questions which arise is what happens outside this interval? We will

see that for expanding conformal repellers the closed interval [�1; �2] coincides with
the domain of de�nition of the spectrum (completeness of the spectrum).

The other question we are interested in is which intervals occur as the domain of

de�nition of spectra, and which values does it take on the boundary of [�1; �2]. We

will give a complete answer to this question by proving that for a given expanding

conformal repeller J any interval in R+ containing the point dimH J is the domain of

de�nition of the dimension spectrum of some Gibbs measure. We call those intervals

admissible.

This is supported by experimental and numerical observations of chaotic systems.

Although the majority of these studies seem to indicate that the spectrum vanishes

at its boundary there is no rigorous result in this direction known to the authors

besides some results on geometric constructions with Bernoulli measures supported

on their limit sets (see for example [6, 15]). In fact we will show that this is not true

in general. On the contrary, for a given admissible interval (�1; �2) and a given pair

of admissible boundary values on f1, f2 we construct a Hölder continuous potential

for which the spectrum takes these values at the endpoints of its domain of de�nition

[�1; �2]. Hereby the admissability of a pair of boundary values is determined by

canonical restrictions given by the general shape of the graph of the spectrum. We
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will call spectra with at least one strictly positive boundary value degenerate. Note

that point spectra are degenerated in this sense.

On the other hand, in section 7 we prove that degenerate spectra are not very likely.

Namely, for a typical (in the sense of Baire) Hölder continuous potential the dimension

or entropy spectrum of its corresponding Gibbs measure is non-degenerated. This

justi�es the experimental and numerical observations. It also shows that despite the

spectrum being de�ned in terms of the analytic pressure functional the graph of the

spectrum does not depend continuously on the potential.

Throughout the paper we use some standard notations which are explained in the

appendix.

2. Examples of multifractal spectra

In this section we illustrate the general concept of multifractal spectra. See [3] for

more details.

2.1. Dimension and entropy spectra. Let X be a complete separable metric

space and F : X ! X a continuous map. There are two �natural� set functions on

X. The �rst one is generated by the metric structure on X. Namely, given a subset

Z � X, we set

GD(Z) = dimH Z; (1)

where dimH Z is the Hausdor� dimension of Z (see Appendix).

The second function is generated by the dynamical system f acting on X and the

metric on X. Namely,

GE(Z) = h(f jZ); (2)

where h(F jZ) is the topological entropy of F on Z (see Appendix; notice that Z
need not be compact nor F -invariant). We call the multifractal spectra generated

by the function GD dimension spectra, and the multifractal spectra generated by the

function GE entropy spectra. We give a precise description below.

2.2. Multifractal spectra for pointwise dimensions. Let m be a Borel �nite

measure on X. Consider the subset Y � X consisting of all points x 2 X for which

the limit

dm(x) = lim
r!0

logm(B(x; r))

log r

exists, where B(x; r) denotes the ball of radius r centered at x. The number dm(x) is
called the pointwise dimension of m at x. Whenever x 2 Y we say that the pointwise

dimension of m exists at the point x. Although the pointwise dimension may not
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exist for all points in an expanding conformal repeller J with respect to an invariant

measure m 2Minv(J) we can always de�ne

dm(x) = lim
r!0

logm(B(x; r))

log r
and dm(x) = lim

r!0

logm(B(x; r))

log r

We de�ne the function gD on Y by

gD(x) = dm(x):

The corresponding multifractal decomposition consists of the sets

D� = fx : dm(x) = �g:

We also consider the sets

D�

� = fx : dm(x) = �g and D+
� = fx : dm(x) = �g

We obtain the multifractal spectrum fD(�) = fDm (�) = GD(D�) = dimH D� speci�ed

by the pair of functions (gD; GD). The spectrum fD is known in the literature as the

dimension spectrum or f(�)-spectrum for dimensions. We will omit the subscript m
if it will cause no confusion. The concept of a multifractal analysis was suggested by

a group of physicists in [8] (see [9] for more references and details).

In [7], Eckmann and Ruelle discussed the pointwise dimension of hyperbolic mea-

sures (that is, measures with non-zero Lyapunov exponents almost everywhere), in-

variant under di�eomorphisms. They conjectured that the pointwise dimension ex-

ists almost everywhere, that is, m(X n Y ) = 0. This claim has been known as the

Eckmann�Ruelle conjecture and has become a celebrated problem in the dimension

theory of dynamical systems. In [2], we establish the a�rmative solution of this

conjecture for C1+" di�eomorphisms (an announcement appeared in [1]).

2.3. Multifractal spectra for local entropies. Let X be a complete separable

metric space and F : X ! X a continuous map preserving a Borel probability mea-

sure �. Consider a �nite measurable partition � of X. For every n > 0, we write

�n = � _ F�1� _ � � � _ F�n�, and denote by �n(x) the element of the partition �n that

contains the point x. Consider the set Y = Y� � X consisting of all points x 2 X for

which the limit

h�(F; �; x) = lim
n!1

�
1

n
log�(�n(x))

exists. We call h�(F; �; x) the �-local entropy of F at the point x (with respect to �).
Clearly, Y is F -invariant and h�(F; �; Fx) = h�(F; �; x) for every x 2 Y . By the

Shannon�McMillan�Breiman theorem, �(X nY ) = 0. In addition, if � is a generating

partition and � is ergodic, then

h�(F ) = h�(F; �; x)
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for �-almost all x 2 X, where h�(F ) is the measure-theoretic entropy of F (with

respect to �). We de�ne the function gE on Y by

gE(x) = h�(F; �; x):

Let us stress that gE may depend on �. The corresponding multifractal decomposition

consists of the sets

E� = fx : h�(F; �; x) = �g:

We obtain the multifractal spectrum fE = fE� speci�ed by the pair of functions

(gE; GE). We call it the multifractal spectra for (local) entropies or simply entropy

spectrum. In Sections 3 and 4 below we will observe that in some situations these

spectra, in fact, do not dependent on � for a broad class of partitions.

We remark that in the study of the multifractal spectra for local entropies, the

Shannon�McMillan�Breiman theorem plays the same role as the Eckmann�Ruelle

conjecture in the study of the multifractal spectra for pointwise dimensions.

3. Multifractal Spectra of Gibbs measures for Subshifts of Finite

Type

The results described in the next two sections are proved in [11, 3]. Let A be a p�p
matrix whose entries are either 0 or 1. The topological Markov chain �+

A consists of

the sequences x = (i1i2 � � � ) 2 f1, : : : , pg
N such that aikik+1

= 1 for every k � 1. Let
�(i1i2 � � � ) = (i2i3 � � � ) be the shift map on �+

A. We assume that A is transitive, i.e.,

there exists a positive integer M such that all entries of AM are positive (this holds

if and only if �j�+
A
is topologically mixing).

Fix a > 1 and de�ne a metric on �+
A by

d(x; x0) =
1X
k=1

a�kjik � i0kj:

Notice that d(�x; �x0) = a � d(x; x0) for all x, x0 2 �+
A with d(x; x0) < a�1.

Given a continuous function ' on �+
A, a measure � on �+

A is said to be a Gibbs

measure for ' if there exist constants C1, C2 > 0, such that for every x = (i1i2 � � � ) 2
�+
A and n 2 N

C1 �
�(Ci1���in)

exp(�nP (') +
Pn�1

k=0 '(�
kx))

� C2;

where Ci1���in = Cn(x) = fx0 2 �+
A : ik = i0k for 1 � k � ng is the cylinder set of

length n containing x, and P is the topological pressure with respect to � (see Ap-

pendix).
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Let F� be the space of Hölder continuous functions on �+
A with Hölder exponent �.

We can decompose F� into

F� =
[
K>0

F
K
�

where

FK� = f' 2 C0(�+
A) : j'(x)� '(x0)j � Kd(x; x0)� for all x; x0 2 �+

Ag:

For a Hölder continuous function ' 2 F� on �+
A we de�ne its norm k'k� by

k'k� = sup j'j+ inffK : ' 2 FK� g:

If ' 2 F� and x , x0 are contained in the same cylinder Cn of length n then�����
n�1X
j=0

'(�jx)�
n�1X
j=0

'(�jx0)

����� �
n�1X
j=0

k'k�d(�
jx; �jx0)�

� k'k�

1X
j=0

a��j = k'k�
1

1� a��

Let ' be a Hölder continuous function on �+
A and � the corresponding Gibbs measure;

it exists and is unique (because �j�+
A
is topologically mixing). It is more convenient

to work with the �normalized� function log on �+
A de�ned by log = ' � P (').

Note that � is also the Gibbs measure for log .
For each q 2 R let us consider the function

'Eq = �T (q) + q log ;

and the corresponding Gibbs measure �Eq where the number T (q) is chosen in such a

way that P ('Eq ) = 0. Clearly,

T (q) = P (q log ): (3)

Let h be the spectral radius of A (which is also the topological entropy of �j�+
A
).

Proposition 3.1. The function T is real analytic on R, and satis�es T 0(q) � 0 and

T 00(q) � 0 for every q 2 R. Moreover, T (0) = h= log a and T (1) = 0.

Denote by P the class of �nite partitions of �+
A into disjoint cylinder sets (not

necessarily of the same length). Clearly, each � 2 P is a generating partition. We

use it to de�ne the entropy spectrum.

Let �E be the measure of maximal entropy. We set �(q) = �E(q) = �T 0(q).
The range of the function �(q) is the interval [�1; �2], where �1 = �(+1) and

�2 = �(�1).

Theorem 3.2.
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1. There exists a set S � �+
A with �(S) = 1 such that for every partition � 2 P and

every x 2 S, the local entropy of � at x exists, has the same value for every �,
and

gE(x) = h�(�; �; x) = �

Z
�+
A

log d�:

2. For �Eq -a.e. point x 2 �+
A,

�(q) = �

Z
�+
A

log d�Eq = � lim
n!1

1

n

nX
j=0

log (�jx):

3. The domain of the function � 7! fE(�) contains a closed interval [�1; �2] 2
(0;1) which is the range of the function �(q). For every q 2 R, we have

fE(�(q)) = T (q) + q�(q):

4. If � 6= �E, then f
E
is an analytic strictly convex function on (�1; �2), and hence,

(fE(�); T ) are Legendre pairs with respect to the variables �, q.

Remarks. Let HP� and R� be respectively the Hentschel�Procaccia and Rényi

spectra for dimensions (see [9]). In [11], Pesin and Weiss proved that for every q 2 R,

T (q) = (1� q)HP�(q) = (1� q)R�(q) = lim
n!1

1

n log a
log
X
C

�(C)q;

where the sum is taken over all cylinder sets of length n.

4. Multifractal Spectra of Gibbs Measures For Conformal

Repellers

We consider Gibbs measures invariant under conformal expanding maps, and de-

scribe the associated multifractal spectra for dimensions and entropies.

4.1. Coding of expanding repellers. Let M be a smooth Riemannian manifold

and F : M ! M a C1 map. Consider a compact subset J of M . We say that F is

expanding and J is a repeller of F if:

1. there are constants C > 0 and � > 1 such that kDxF
nuk � C�nkuk for all

x 2 J, u 2 TxM , and n � 1;
2. J =

T
n�0 F

�nV for some open neighborhood V of J.

One can easily show that FJ = J.

We recall that a �nite cover fR1, : : : , Rpg of X by closed sets is called a Markov

partition if:

1. intRi = Ri for each i = 1, : : : , p;
2. intRi \ intRj = ? if i 6= j;
3. each FRi is a union of sets Rj.
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It is well known that repellers admit Markov partitions of arbitrarily small diameter.

Markov partitions are used to build symbolic models of repellers by subshifts of �nite

type (see Section 3).

Let J be a repeller of an expanding map F , and � = fR1, : : : , Rpg a Markov

partition of J with respect to F . We de�ne a p � p transfer matrix A = (aij) by

setting aij = 1 if Ri \ F
�1Rj 6= ?, and aij = 0 otherwise. Consider the associated

subshift of �nite type (�+
A; �). For each x = (i1i2 � � � ) 2 �+

A, we set

�(x) =
�
x 2 X : F k�1x 2 Rik for every k � 1

	
:

The set �(x) consists of a single point x 2 J, and we obtain the coding map � : �+
A !

J for the repeller. The map � is continuous, onto, and the following diagram is

commutative:

�+
A

�
���! �+

A

�

??y ??y�
J

F
���! J

We assume that the matrix A is transitive (and thus, F is topologically mixing).

It is clear that any Markov partition � is a generating partition. The same is true

for any partition of J by rectangles obtained from a Markov partition (not necessarily

all of the same level) and corresponding to disjoint cylinder sets in �+
A. We denote

the class of such partitions by PF . It is easy to see that for every partition � 2 PF ,

there is a partition � 2 P such that �� = �.
A smooth map F : M ! M is called conformal if DxF is a multiple of an

isometry at every point x 2 M . Well-known examples of conformal expanding

maps include one-dimensional Markov maps, and holomorphic maps. We write

â(x) = kDxFk for each x 2 M and denote by a some lift of â to �+
A via �, i.e.,

â(x) = a(�(x)) for x 2 J n
S
i;j (Ri \ Rj). The multifractal spectra for J do not

depend on the ambiguity at the boundaries of the rectangles and we have the set

fx 2 J : F nx 62
S
i;j (Ri \ Rj) for all ng in mind when we write J. On this set the

function � is invertible and the point x = ��1(x) is uniquely de�ned.

A Moran cover of depth n associated to a positive number B and a set X � J is

a �nite set of points xi 2 �+
A such that X �

S
i �(Cni(xi)) where Cni(xi) are the

cylinder sets of length ni � n containing xi and

B�1

ni�1Y
j=0

a(�jxi) � diam�(Cni(xi)) � B

ni�1Y
j=0

a(�jxi):

Sometimes we will also view the Moran cover as a set of cylinder sets fCni(xi)g.
An expanding conformal repeller J admits Moran covers of arbitrary depths and

multiplicity Q for any subset X � J and some positive real numbers B and Q not

depending on the depth or the subset (see [11] for details).
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4.2. Multifractal spectra. Let J be a repeller of a conformal C1+" expanding

map F , for some " > 0. Let also mD be the unique Gibbs measure correspond-

ing to the function x 7! � dimH J � log â(x) on J and �D its lift to �+
A. It is known

that mD is a measure of maximal dimension, i.e., dimH J = dimH mD (see [14]). We

denote by mE the measure of maximal entropy for f : J! J, by �E its lift to �+
A and

by h the topological entropy of F on J.

Let ' be a Hölder continuous function on �+
A and m = � � ��1 the corresponding

Gibbs measure. Write log = '� P (').
For each q, p 2 R, consider the functions

'D;q = �TD(q) log a+ q log 

and the corresponding Gibbs states �Dq on �+
A where the numbers TD(q) are chosen

such that

P ('D;q) = 0:

Proposition 4.1. The function TD is real analytic and satis�es T 0D(q) � 0 and

T 00D(q) � 0 for every q 2 R. We have TD(0) = dimH J and TD(1) = 0.

Note that the equality TD(0) = dimH J follows the formula for the dimension of a

conformal repeller established by Ruelle in [14]. Set

�(q) = �D(q) = �T 0D(q):

The range of the function �(q) is the interval [�1; �2] where �1 = �(+1) and �2 =
�(�1).
We now give a full description of the multifractal spectrum fD, for Gibbs measures

supported on repellers, i.e., measures projected from Gibbs measures on �+
A � of

conformal smooth expanding maps.

The following theorem shows (with minor exceptions) that fD is de�ned on an

interval, is analytic, and strictly convex. It also establishes a relationship between

the functions fD(�) and TD(q); namely, they form a Legendre pair.

Theorem 4.2.

1. For m-almost every x 2 J, the pointwise dimension of m at x exists and

gD(x) = dm(x) = �

R
�+
A

log d�R
�+
A

log a d�
:

2. For �Dq -a.e. point x 2 �+
A,

�D(q) = �

R
�+
A

log d�DqR
�+
A

log a d�Dq
= � lim

n!1

Pn

j=0 log (�
jx)Pn

j=0 log a(�
jx)

;
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3. The domain of the function � 7! fD(�) contains a closed interval (�D1 ; �
D
2 ) 2

(0;+1) which coincides with the range of the function �D(q). For every q 2 R,

we have

fD(�D(q)) = TD(q) + q�D(q): (4)

4. If m 6= mD, then fD and TD are analytic strictly convex functions, and hence,

(fD; TD) is a Legendre pair with respect to the variables �, q.
5. If m = mD, then f

D
is the delta function

fD(�) =

(
dimH J if � = dimH J

0 if � 6= dimH J
:

The identity (4) is a consequence of property 1 in Theorem 4.3 below.

We now describe the full measures for the spectra fD and fE. It turns out that

these are the unique Gibbs measures �Dq and �Ep for the (Hölder continuous) functions

'D;q and 'E;p, respectively.

Theorem 4.3. The following properties hold:

1. For every q 2 R, we have mD
q (D�D(q)) = 1 and

dmD
q
(x) = TD(q) + q�D(q)

for mD
q = �Dq � ��1-a.e. x 2 D�D(q).

2. For every p 2 R, we have mE
p (E�E(p)) = 1 and

hmE
p
(f; ��; x) = h�Ep (�; �; x) = TE(p) + p�E(p)

for mE
p = �Ep � �

�1
-a.e. x 2 E�E(p) and every � 2 Pf .

In the next three sections we are going to establish the main results for the dimen-

sion spectrum f(�) = fD(�) on J. The corresponding statements for the entropy

spectrum can be obtained from the dimension spectrum results by setting log a � 1.
Some of the notations used in the following sections are explained in the appendix.

5. Multifractal spectra are complete

In this section we are going to prove that D� = ? if � 62 [�1; �2] where the numbers

�1 and �2 are de�ned as �1 = limq!1 �(q) and �2 = limq!�1 �(q) (see section 4).

In fact we show that there is no limit point of
log �(B(x;r))

log r
as r ! 0 outside the interval

[�1; �2].
Let ' be a Hölder continuous function on �+

A, � its Gibbs measure on �+
A and

m = � � ��1 the corresponding Gibbs state on J.

Lemma 5.1.

inf
�2Me(J)

�

R
log � � d�R
log â d�

= �1 and sup
�2Me(J)

�

R
log � � d�R
log â d�

= �2:
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Proof. We present the proof of the �rst equality. In view of theorem 4.3 we only have

to prove that inf�2Me(J)�

R
log �� d�R
log â d�

� �1. Simpelaere proved in [16] that

T (q) = inf
�2Me(J)

h� � q
R
log � � d�R

log â d�
=
h�Dq � q

R
�+
A

log d�DqR
�+
A

log a d�Dq
:

This gives for q � 0 that

q�1 � �q

R
log d�qR
log a d�q

� dimH �q � q

R
log d�qR
log a d�q

= T (q)

= inf
�2Me(J)

�
dimH �� q

R
log � � d�R
log â d�

�

� dimH J� q inf
�2Me(J)

R
log � � d�R
log â d�

:

Dividing by q and letting q ! +1 gives the �rst assertion of the lemma. The

other equality can be proved in a similar fashion.

We are now ready to prove the following

Theorem 5.2. We have �1 = infx2J dm(x) and �2 = supx2J dm(x). Hence,

D� = ? i� � 62 [�1; �2]:

Proof. In view of Theorem 4.3 we only have to prove that �1 � infx2J dm(x). Let us
assume that this is not the case. By theorem 4.2 there is a � > 0, a point x 2 �+

A

with �(x) = x 2 J and a subsequence nk of the natural numbers such that

�

Pnk
j=0 log (�

jx)Pnk
j=0 log a(�

jx)
< �1 ��

Let � be an accumulation point of the sequence of measures �k = 1
nk

Pnk�1

j=0 ��jx.

Obviously,

�

R
log d�kR
log a d�k

� �1 ��:

Hence,

�

R
log d�R
log a d�

� �1 ��

what contradicts lemma 5.1. This proves the �rst statement. The proof of the second

assertion goes along the same lines.
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6. There are degenerate multifractal spectra

Let us now �x an expanding repeller J together with its metric. This gives rise to

the symbolic coding space �+
A with transition matrix A and to the Hölder continuous

potential log a = log kDFk as explained in section 4. In this section we show that

for arbitrary �allowed� boundary values (�1; f(�1); �2; f(�2)) we can �nd a Hölder

continuous potential whose multifractal dimension spectrum attains these values at

its boundary. Since the spectrum f(�) = fD(�) is a convex function and is not

above the diagonal�i.e., f(�) � � for all � 2 (�1; �2) � , its maximum value is

equal to dimH J and its graph touches the diagonal to the left of its maximum at

� = �(1) = f(�(1)) = dimH m we get the obvious restrictions:

(�1; f(�1); �2; f(�2)) 2 B 2 R
4

with

B = f(x1; y1; x2; y2) 2 R
4 : y1 � x1 � dimH J; y2 � dimH J � x2g

Let

B
0 = B \ f(x1; y1; x2; y2) : y1 < x1 < dimH J; y2 < dimH J < x2g

be the set of admissible boundary values. The main result of this section is the

following

Theorem 6.1. Let J be an expanding conformal repeller. Then for any quadruple

(x1; y1; x2; y2) 2 B
0
there is a Hölder continuous potential log with dimension spec-

trum f(�) satisfying

�1 = x1 f(�1) = y1

�2 = x2 f(�2) = y2

Remark. If (x1; y1; x2; y2) 2 B and x1 = y1 or x2 = y2 or y1 = dimH J or y2 = dimH J

then the measure m is the measure of maximal dimension mD and has a degenerate

spectrum consisting of the point (dimH J; dimH J). We are not going to prove this

explicitly but one can derive that no boundary values outside B 0 can be attained

from the proof of the above theorem 6.1 and the well-known fact that any proper

subshift � i.e. closed shift-invariant proper subset of �+
A � has topological entropy

strictly less then htop(�
+
A).

The proof of the theorem relies on a series of lemmas. Some of them are gener-

alizations of well-known facts in symbolic dynamics. However, we choose to prove

them with the help of the multifractal analysis in order to show that this analysis

can be used to derive results in symbolic dynamics.

The next lemma is due to Simpelaere for repellers equipped with Gibbs measures.

It has been proven by several other authors for �geometric constuctions�(see for ex-

ample [6, 15]).
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Lemma 6.2 ([16]). Let log be a Hölder continuous function on �+
A, m the corre-

sponding Gibbs measure on J and f its dimension spectrum. There exist probability

measures �1 and �2 concentrated on D�1 and D�2, respectively, such that

dimH(D�1) = lim
q!+1

f(�(q)) = dimH �1 := fD1 = f1

and

dimH(D�2) = lim
q!�1

f(�(q)) = dimH �2 := fD2 = f2:

We also need the following fact.

Lemma 6.3. Let log be a Hölder continuous function on �+
A, m the corresponding

Gibbs measure on J and f its dimension spectrum. We have:

i) dimH D
�

�(q)
� f(�(q)) for q � 0;

ii) dimH D
+
�(q)

� f(�(q)) for q � 0;

In particular dimH D
�
�1

= f1 and dimH D
+
�2

= f2.

Proof. �x q � 0. We are going to prove that the s-dimensional Hausdor� measure of

D�

�(q)
is �nite provided that s > f(�(q)) = T (q) + �(q)q.

We set s = f(�(q)) + " = T (q) + �(q)q + " where " > 0. If x 2 D�

�(q)
then by

theorem 4.2

�

Pnk
j=0 log (�

jx)Pnk
j=0 log a(�

jx)
� �(q) +

1

k

for some subsequence nk = nk(x) of the naturals. Therefore, we can �nd a Moran

cover (see section 4) C = fx1; : : : ; xlg of D�

�(q)
with arbitrary large depth and multi-

plicity Q such that

X
xi2C

(diamCnk(xi))
s
�
X
i

QB

nk(xi)�1Y
j=0

a(�jxi)
�s

�
X
i

QB

nk(xi)�1Y
j=0

a(�jxi)
�(T (q)+�(q)q+")

� QB
X
i

nk(xi)�1Y
j=0

 (�jxi)
qa(�jxi)

�T (q)min( )�
q
k max a"

� QB
X
xi2C

�q(Ci) � QB <1

if k is su�ciently large. A similar proof works for the set D+
�(q)

when q � 0.
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For our next sections we need estimates on the entropy � which equals the Hausdor�

dimension in the symbolic space �+
A equipped with the constant metric corresponding

to the function log a � 1 according to theorem 3.2 and theorem 4.2 � of larger sets

then D�
�i
. These estimations are based on the variational principle for non-compact

sets developed by Pesin and Pitskel' (see [10] and Appendix).

De�ne the maximum and minimum sets for ' by

M(') = fx 2 �+
A : '(x) = max'g and M(') = fx 2 �+

A : '(x) = min'g:

Lemma 6.4. Let ' be a Hölder continuous function on �+
A and fE the entropy spec-

trum for its Gibbs measure. Let us assume thatM(') andM(') are compact invariant

sets. Then

fE1 = htop(M(')) and fE2 = htop(M('))

Proof. Since

sup
x2�+

A

lim
n!1

1

n

n�1X
j=0

'(�jx) � max(') =
1

n

n�1X
j=0

'(�jy)

for all y 2 M('), the set M(') is contained in the set D�1 . Similary M(') 2 D�2 .

Hence,

f1 = fE1 � htop(M(')) and f2 = fE2 � htop(M(')):

For the reverse inequality we observe that

x 2 D�

�1
if and only if lim

n!1

1

n

n�1X
j=0

'(�jx) = max':

But this is only possible if V�(x) \Minv(M(')) 6= ? where V�(x) is the set of ac-

cumulation points of the sequence of measures 1
n

Pn�1

j=0 ��jx (see also appendix). By

theorem 8.3 from the appendix this yields f1 = htop(M(')). The arguments for f2
are analog.

Examples. Let �+
A = �N be the full shift on N symbols, log a � const. = 1 and � the

Bernoulli measure generated by the probability vector (p1; : : : ; pN) � i.e. log (x) =
log (x1) = log px1 where x = x1x2x3 : : : � then fi = 0 ; i = 1; 2; if and only if

there is a imax and a imin such that pimin < pj < pimax for all j 62 fimin; imaxg. In

this case M(log ) and M(log ) consist of the periodic point x = imin; imin; imin; : : :

or x = imax; imax; imax; : : : , respectively. Otherwise the sets M(log ) and M(log )
are subshifts of �nite type generated by the sets of symbols fi : pi = min pjg or

fi : pi = max pjg, respectively. It is not hard to see that the extremal sets M(log )
and M(log ) for measures de�ned by potentials depending only on a �nite number

of coordinates - i.e. log (x) = log (x0; : : : ; xn) - are subshifts of �nite type. This

need not to be true for arbitrary Hölder potentials.
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Proposition 6.5. Let J be an expanding conformal repeller. For any pair of numbers

di < dimH J ; i = 1; 2; there are disjoint closed invariant subsets Si � J such that

dimH Si = di and it exists limn!1
1
n
log kDF n(x)k = �i if x 2 Si.

Proof. We �x d1 and d2 according to the assumption of the proposition. The proof

goes by constructing inductively closed invariant subsets S
(n)

i which are images of

subshifts of �nite type in �+
A under the projection � and approximate the �nal sets

Si. Let us denote by �D the pull back of the measure of maximal dimension on J to

�+
A. Let �D = ��D , hD = h�D = �D dimH J and � = maxflog a; 1g ; � = min log a.

We also �x " < min(dimH J� di)�D. For m 2 N let L = 1=min4(di + 1),

�m" =

(
x 2 �+

A :

����� 1n
n�1X
j=0

log a(�jx)� �D

����� � L" for all n � m

)

and

Hm
" =

�
x 2 �+

A :

����hD � 1

n
log�D(Cnx)

���� � " for all n � m

�
:

Finally we put

�m" = �m" \H
m
"

and set

m̂(1) = minfm 2 N : �D(�
m
" ) > 1=2g

In view of the Birkho� Ergodic Theorem and the Shannon-McMillan-Breiman The-

orem the number m̂(1) is �nite and we can de�ne

m(1) = max

��
4(K +M)�(di + 1)

"

�
+ 1;

�
1 + log 4

(dimH J� di)�D � "

�
; m̂(1)

�

where b�c denotes the integer part of a real number, K = klog ak�
e�

1�e�
and M is the

smallest number such that AM > 0.
For m � m(1) we consider

Cm = fCm(x) : x 2 �m
(1)

" g

Then

�D(Cm(x)) � emhD+m"

and

CardfCmg �
�D(�

m
" )

max�D(Cm(x))
�

1

2
emhD�m"

By the choice of " and m(1) we can choose a subset C
(1)
1 2 Cm(1) with cardinality

bexpfm(1)(�Dd1 + d1"=4)gc + 1. We de�ne the subshift S
(1)
1 as the set of points

x 2 �+
A with the property that there is a l < m(1) +M such that for all j 2 N the
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cylinders Cm(1)(�l+j(m
(1)+M)x) are from the set C

(1)
1 . According to this construction

the set S
(1)
1 is a subshift of �nite type. We set S(i) = �(S(i)). We note that M is

the number that all entries in the transition matrix A are positive. This means that

S
(1)
1 6= ? and

lim
k!1

1

k
logCardfCk(x) : x 2 S

(1)
1 g � lim

k!1

1

k
logCard(C

(1)
1 )

�
k

m(1)+M

�
�1

� �Dd1 +
"

2

and

lim
k!1

1

k
logCardfCk(x) : x 2 S

(1)
1 g � lim

k!1

1

k
logCard(C

(1)
1 )

�
k

m(1)+M

�
rank(A)

�
k

m(1)+M

�
+l

� �Dd1 +
3

2
"

Hence,

�Dd1 +
1

2
" � htop(S

(1)
1 ) � �Dd1 +

3

2
"

For all x 2 S
(1)
1 we have

lim
k!1

1

k

k�1X
j=0

log a(�jx) � lim
k!1

�
m(1)+M

k

�
+1X

l=0

1

m(1) +M

m(1)�1X
j=0

log a(�j+l(m
(1)+M)x) +M�)

� �D + L"+
K

m(1) +M
+

M

m(1) +M

� �D + (L+ 1)"

and

lim
k!1

1

k

k�1X
j=0

log a(�jx) � lim
k!1

�
m(1)+M

k

�
+1X

l=0

1

m(1) +M

m(1)�1X
j=0

log a(�j+l(m
(1)+M)x) +M�)

� �D � L"�
K

m(1) +M
�

M

m(1) +M

� �D � (L+ 1)"

Combining the above estimates on the entropy and the Lyapunov exponents and

setting S
(1)
1 = �(S

(1)
1 ) we can conclude that

d1 +
"

4
< dimH(S

(1)
1 ) < d1 + 2"
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Now we will construct the set S
(1)
2 2 �+

A nS
(1)
1 . Since " < min(dimH J�di)�D we can

choose a subset C
(1)
2 2 Cm(1) with cardinality bexpfm(1)(�Dd2+d2"=4)gc+1. We note

that there is a cylinder Ĉ 2 �+
A of length m(1) which has empty intersection with the

subshift S
(1)
1 . Let m = 8m(1)=". Then we de�ne the subshift S

(1)
2 as consisting of all

points x 2 �+
A such that there is a l < m +M such that for all j 2 N the cylinders

Cm+m(1)(�l+j(m+m(1)+M)x) are of the form

Cm(1);1 � : : : � Cm(1);m � Ĉ

where Cm(1);i 2 C
(1)
2 ; i = 1; : : : ; m ; and C1 � C2 is the cylinder C1 \ ��jC1jC2.

Obviously, S
(1)
1 \ S

(1)
2 = ? and S

(1)
2 is of �nite type.

Proceeding the same estimations for the entropy and the Lyapunov exponents for

the subshift S
(1)
2 as for the subshift S

(1)
1 yields

�Dd2 +
3

8
" � htop(S

(1)
2 ) � �Dd2 +

13

8
"

For all x 2 S
(1)
2 we have

lim
k!1

1

k

k�1X
j=0

log a(�jx) � �D +

�
L+

9

8

�
"

and

lim
k!1

1

k

k�1X
j=0

log a(�jx) � �D �

�
L +

9

8

�
"

Combining the above estimates we see that for S
(1)
2 = �(S

(1)
2 )

d2 +
"

8
< dimH(S

(1)
2 ) < d2 +

17

8
"

Let us now assume that for given su�ciently small � and each l � n we have

constructed two subshifts of �nite type S
(l)
1 and S

(l)
2 with the properties

(iii) S
(l)
i � S

(l�1)
i

(iv)

�Ddi +
�

2l+1
� htop(S

(l)
i ) � �Ddi +

�

2l�2

(v) For all x 2 S
(l)
i we have

lim
k!1

1

k

k�1X
j=0

log a(�jx) � �
(l)
i +

�

2l
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and

lim
k!1

1

k

k�1X
j=0

log a(�jx) � �
(l)
i �

�

2l

(vi) For S
(l)
i = �(S

(l)
i )

di +
�

2l+1
< dimH S

(l)
i < di +

�

2l�2

where i = 1; 2 ; l = 1; : : : ; n and �
(l)
i are some real numbers. In particular, if we set

� = " we can assume that �
(1)

i = �D.

Now we repeat the construction of S
(1)
1 in �+

A by substituting �+
A by S

(n)
1 and

setting " = �=2n. The role of the measure of maximal dimension �D is played by

the lift �
(1)
n to �+

A of the measure of maximal dimension of S
(n)
1 . This means we

construct subshifts of �nite type S
(n+1)
1 inside the subshifts of �nite type S

(n)
1 in the

same manner as we constructed S
(1)
1 inside �+

A. We then get a subshift S
(n+1)
1 which

satis�es the inequalities (iv) � (vi) for l = n + 1.

The subshift S
(n+1)
2 is constructed in a similar manner by substituting �+

A by S
(n)
2

and proceeding as above. We de�ne S
(n+1)
i = �(S(n+1)).

This way for each natural number we have two subshifts of �nite type with prop-

erties (iv) � (vi) and which form two nested sequences. We observe that the numbers

�
(n)

i converge to a number �i = �
(1)

i as n tends to in�nity. Let

Si =
\
n�1

S
(n)

i and Si =
\
n�1

S
(n)

i i = 1; 2

Then for all x 2 Si

lim
k!1

1

k

k�1X
j=0

log a(�jx) = �
(1)

i

and for Si = �(Si)

dimH Si � inf
n
dimH S

(n)
i = di

Moreover, S1\S2 = ? since S
(1)
1 \S

(1)
2 = ?. But on the other hand any accumulation

point �
(i)
1 of the sequence of measures f�

(i)
n g sits on Si. By the upper semicontinuity

of the metric entropies we derive

dimH Si � dimH �
(i)
1 � ��1 � limdimH �

(i)
n � ��1 = limdimH S

(n)
i = di

This completes the proof of the proposition.

Corollary. htop(Si) = �idi
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We are going to de�ne a potential ' on �+
A which achives its maximum on S1

and its minimum on S2. We will show that the corresponding Gibbs measure has an

entropy spectrum with f1 = d1 and f2 = d2.
Let d1, d2, S1 and S2 be as in the proof of the proposition � i.e. Si = �(Si). For

z1 > z2 we consider the following set of functions

F(z1; z2) =

8><
>:' 2 F� : '(x) =

8><
>:
z1 if x 2 S1

z2 if x 2 S2

'(x) 2 (z2; z1) else

9>=
>;

Lemma 6.6. If d1 = dimH S1 < �z1 < dimH J and �z2 > dimH J then there is a

function '0 2 F(z1; z2) with P ('0 log a) = 0.

Proof. Let U
(1)
n and U

(2)
n be two nested sequences of open sets converging to S1 and

S2, respectively. We specify for n 2 N two functions

'(1)
n (x) =

8><
>:
z1 if x 62 U

(2)
n

z2 if x 2 S2

'(x) 2 (z2; z1) else

and

'(2)
n (x) =

8><
>:
z1 if x 2 S1

z2 if x 62 U
(1)
n

'(x) 2 (z2; z1) else

We note that we can �nd such functions because the sets Si are closed. The functions

'
(i)
n are in the closure of the set F(z1; z2). If we denote by P

(i)
n ; i = 1; 2 ; the

topological pressure of the Gibbs measures corresponding to '
(i)
n log a, respectively

we have

P (1)
n = max

�2Me(�
+
A
)

fh� +

Z
'(1)
n log a d�g

� h�D +

Z
'(1)
n log a d�D

� dimH J + z2�D(U
(2)
n ) + z1�D(1� �D(U

(2)
n ))

Because dimH S2 < dimH J and consequently, mD(S2) = 0 and the fact that �D is a

Borel measure we see that limn!1 �D(U
(2)
n ) = 0. Hence, by the assumptions of the

lemma

lim
n!1

P (1)
n � �D dimH J+ z1 > 0
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On the other hand

P (2)
n = max

�2Me(�
+
A
)

fh� +

Z
'(2)
n log a d�g

= max

�
max
�2M1

fh� +

Z
'(2)
n log a d�g; max

�2M2

fh� +

Z
'(2)
n log a d�g

�

� max

�
h�D +

Z
'(2)
n log a d�D; htop(S1) + max

�2M2

f

Z
'(2)
n log a d�g

�

� max

�
dimH J+ z2 + z1�D(U

(1)
n ); d1�1 + z1�1 + max

�2M2

fz2�(U
(1)
n g

�

where M1 = f� 2 Me(�
+
A) : �(S1) = 0g and M2 = f� 2 Me(�

+
A) : �(S1) = 1g.

Hence, by the assumptions of the lemma and the de�nition of the sets U
(1)
n and U

(2)
n

lim
n!1

P (1)
n � maxfdimH J + z2; (d1 + z1)�1g < 0

Since the topological pressure is a continuous functional on the connected set F(z1; z2)
the assertion of the lemma follows.

The next lemma gives us information on the boundary values of the entropy spec-

trum for the above considered potentials. It will also be used in the next section.

Lemma 6.7. Let di, Si, zi ; i = 1; 2 ; be as above and '0 2 F(z1; z2) be a potential

with P�('0 log a) = 0 according to the previous lemma. If fD(�) is the dimension

spectrum of the Gibbs measure corresponding to '0 log a then fDi = di and �i = �zi.

Proof. We are going to show that x 2 D�i then V�(x) \Minv(Si) 6= ?. Since each

x 2 Si has the property that V�(x) \MinvSi 6= ? the corollary 8 of the variational

principle yields the assertion, because, dimH(Si = di and

dim�'0 log a
(x) =

R
Si
'0 log a d�R
Si
log d�

= zi

for x 2 Si where � 2 V�(x) and �'0 log a is the Gibbs measure for the potential '0 log a.
For the latter equality we used that the pressure of '0 log a is zero, '0 = z1 is constant
on Si and theorem 4.2.

Let us �x x 2 �+
A and assume that V�(x) \MinvS1 = ?. This means that

lim
n!1

1

n

n�1X
j=0

'0(�
jx) = w < z1

and

lim
n!1

A(n; x) = 
 < 1
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where A(n; x) = CardfG(n)g and G(n) = f0 � j � n � 1 : �j � wg. We can

conclude that

lim
n!1

Pn�1

j=0 '0(�
jx) log a(�jx)Pn�1

j=0 log a(�
jx)

� lim
n!1

P
j2G(n) '0(�

jx) log a(�jx) +
P

j 62G(n) '0(�
jx) log a(�jx)Pn�1

j=0 log a(�
jx)

� z1 � (z1 � w) lim
n!1

(1� A(n; x))min(log a)

max(log a)

< z1

Therefore, x 62 D�1 . The proof for �2 is similar.

Proof of theorem 6.1. Let '0 be as in lemma 6.6 withz1 = x1, z2 = x2, f1 = y1 and

f2 = y2. The proof of the theorem 6.1 is now a concatination of proposition 6.5 and

lemma 6.7.

7. Typical multifractal spectra are non-degenerate

In this section we are going to show that a typical (in the sense of Baire category)

Hölder continuous potential gives rise to a Gibbs measure with non-degenerate spec-

trum � i.e. f1 = f2 = 0. We note that the space of Hölder continuous functions on

J as well as the space F� are Baire spaces with the topology of uniform convergence.

We �rst proof that the above situation holds for entropy spectra of Hölder continuous

potentials on �+
A and then use the same approach as in the proof of theorem 6.1 to

conclude the result for dimension spectra on J. The result can be stated as

Theorem 7.1. Let J be an expanding repeller for the map F . Then there is a residual

subset R � F� such that every Gibbs state on J which corresponds to a potential in

R has a non-degenerate spectrum.

We will use the next lemma

Lemma 7.2. For any invariant set S and any natural number m,

lim
a!1

htopfx 2 �+
A : lim

N!1

A(Cm(S); N; x) � aNg = htop(Um(S)):

Proof. Let m 2 N and S 2 �+
A ; �(S) = S be �xed. Since S is invariant the set

Um(S) 6= ?. Moreover, Cm(S) is a �nite union of cylinder sets and, hence, closed.

This implies that the characteristic function � = �Cm(S) of the set Cm(S) is a Hölder

continuous potential on �+
A. It is easy to see that the multifractal decomposition D�

of the entropy spectrum of the Gibbs measure corresponding to � has the following

expression

D� =

�
x 2 �+

A : lim
N!1

A(Um; N; x)

N
= �� + P�(�)

�
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and

D�

� =

�
x 2 �+

A : lim
N!1

A(Um; N; x)

N
� �� + P�(�)

�

Because relative frequencies are bounded in between 0 and 1 we get �1 = P�(�)� 1,
�2 = P�(�) and

Um(S) � D�1 �
[

�2(�1;�1+(1�a))

D�

�

= D�

�1+(1�a)
= fx 2 �+

A : lim
N!1

A(Cm(S); N; x) � aNg

This together with lemma 6.3 implies the assertion of the lemma.

The next proposition deals with the statements of theorem 7.1 in the case of the

entropy spectrum of Gibbs measures on �+
A.

Proposition 7.3. There is a residual subset � � F� such that the entropy spectra

for Gibbs measures corresponding to potentials in � are non-degenerated.

Proof. The idea of the proof is to �nd a residual set � � F� such that any function

' 2 � has htop(M(')) = htop(M(')) = 0. The assertion follows then from lemma 6.4.

First we �nd for any " > 0 an open dense subset �"
1 � F�.

Let us �x " > 0, r 2 N and ' 2 F�. Then there is a periodic point x0 with some

period n0 such that

Max' �
"

r
:= sup

x2�+
A

lim
n!1

1

n

n�1X
j=0

'(�jx)�
"

r
<

1

n0

n0�1X
j=0

'(�jx0) < Max'

We consider the set C = Cn0(Sx0) =
Sn0�1

j=0 Cn0(�
jx0) where Sx0 is the trajectory

of the periodic point x0. We observe that U = Un0(Sx0) = Sx0 and hence has zero

entropy. We de�ne a new function close to ' by

'̂(x) =

(
'(x) if x 2 C

'(x)� " else
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Clearly, '̂ 2 F� and k'� '̂k� < ". We will see that this function '̂ has the property

that htop(M('̂)) < ". For x 2 �+
A and n 2 N we estimate

1

n

n�1X
j=0

'̂(�jx) =
1

n

0
@ X
�jx2C

'̂(�jx) +
X
�j 62C

'̂(�jx)

1
A

�
1

n

0
@ X
�jx2C

'(�jx) +
X
�j 62C

'(�jx)� (n� A(C; n; x))"

1
A

�
1

n

n�1X
j=1

'(�jx)�

�
1�

A(C; n; x)

n

�
"

�Max' �

�
1�

A(C; n; x)

n

�
"

�Max'̂ +
"

r
�

�
1�

A(C; n; x)

n

�
"

because

Max'̂ �
1

n0

n0�1X
j=0

'(�jx0) �Max' �
"

r

Hence,

M('̂) �

(
x 2 �+

A : lim
n!1

1

n

n�1X
j=0

'(�jx) =Max'̂

)

�

�
x 2 �+

A : lim
n!1

A(C; n; x)

n
� 1�

1

r

�
In view of lemma 7.2 we can �nd a " > 0 such that

" > htop

�
x 2 �+

A : lim
n!1

A(C; n; x)

n
� 1�

1

r

�
� htop(M('̂)):

We set


"1(') := f 2 F� : k'̂�  k� < "g:

The above estimations still hold with "0 = 2" for all potentials  2 
"1('). Therefore,
for all " > 0 the set

�"
1 :=

[
'2F�


"1(')

is an open and dense in F� for which the entropy of the maximum sets M(') of

its elements ' has topological entropy less then 2". We repeat the same procedure
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for the set M and produce a set �"
2 with the property that htop(M(')) < 2" for all

' 2 �"
2. Let

� :=
1\
N=0

[
n�N

(�
1
n

1 \ �
1
n

2 ):

Now we observe that functions ' 2 � have the property that

htop(M(')) = htop(M(')) = 0

Moreover, by the way of constructing the set � we immediately have that � is a

residual subset of F�.

Proof of theorem 7.1. As we have seen in the proof of theorem 6.1 and f lemma 6.7

the boundary values of the dimension spectrum of the Gibbs measure m = � � ��1

on J adjoint to the potential  (x) = '(x) log a(x) coincide with those of the entropy

spectrum of the Gibbs measure � on �+
A corresponding to the potential '. The proof

of the theorem 7.1 concludes by observing that the operator La on F� de�ned by

La('(x)) = '(x) log a(x) is in fact a homeomorphism of the space F� � in particular

it transforms residual sets into residual sets � because log a is bounded away from

zero.

8. Concluding remarks

In the previous sections we proved results about the behavior of the dimension

spectrum of a Gibbs state on an expanding conformal repeller at its boundary. We

used an approach which is related to the entropy spectrum of the underlying symbolic

space, but stated the results only in terms of the dimension spectrum. However, the

corresponding results for the entropy spectrum can easily be derived from the dimen-

sion results by considering the symbolic space �+
A itself as an expanding conformal

repeller equipped with the metric

d(x; x0) =
1X
k=1

e�kjik ��
0

kj:

This metric corresponds to the stretching rate by the constant factor e. Then the

dimension spectrum for a Gibbs measure � on �+A coincides with the entropy spec-

trum for the Gibbsmeasure m = � � � on J. Moreover, the same considerations are

succesful in a more general situation. Namely, we can derive the same results for the

entropy spectrum for any map that admits a �nite Markov partion � i.e. admits a

coding by some symbolic space �+
A. Axiom A basic sets in any �nite dimension be-

long to this class. The situation with the dimension spectrum is more complicated.

The main problem in generalizing the results for expanding conformal repellers to

non-conformal maps in higher dimensions is that there is no general theory of com-

puting the dimension of an invariant set or measure. In particular, the Bowen�Ruelle

dimension formula TD(0) = dimH J (see proposition 4.1) need not hold. However, the
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results on multifractal dimension spectra can be veri�ed for two-dimensional hyper-

bolic horseshoes. This investigation was done in [16, 12, 4]. Using the same approach

it is easy to see that the results in this paper also hold for two-dimensional hyperbolic

horseshoes.

Appendix

Let (X; d) be a complete separable metric space. Consider a set Z � X and a

positive number �. A cover of Z by sets of diameter at most � is called a �-cover
of Z. For any s > 0, we de�ne the s-dimensional Hausdor� measure of Z by

mH(Z; s) = lim
�!0

inf
U

X
U2U

(diamU)s;

where the in�mum is taken over all �nite or countable �-covers U of Z. There exists
a unique value of s at which mH(Z; s) jumps from +1 to 0. We call this value the

Hausdor� dimension of Z and denote it by dimH Z. We have

dimH Z = inffs : mH(Z; s) = 0g = supfs : mH(Z; s) = +1g:

Let f : X ! X be a continuous map. If U is a �nite open cover of X, for each

integer n � 1 we denote by Sn(U) the collection of strings U = U1 � � �Un, where
U1, : : : , Un 2 U. For each U 2 Sn(U), we write n(U) = n and de�ne the open set

X(U) =
�
x 2 X : fk�1x 2 Uk for k = 1, : : : , n

	
:

Consider a set Z � X. We say that a collection of strings � covers Z if the unionS
U2�X(U) � Z. For every real number s, we de�ne

M(Z; s;U) = lim
n!1

inf
�

X
U2�

exp (�n(U)s);

where the in�mum is taken over all collections � �
S
k�n Sk(U) covering Z. There

exists a unique value of s at which M(Z; s;U) jumps from +1 to 0, given by

h(Z;U) = inffs :M(Z; s;U) = 0g = supfs :M(Z; s;U) = +1g:

We de�ne the topological entropy of f on the set Z by

h(f jZ) = lim
diamU!0

h(Z;U)

(one can show that the limit always exists). If Z is compact and f -invariant, then
h(f jZ) coincides with the classical topological entropy (see, for example, [9]). How-

ever, the set Z need not be compact nor f -invariant for our de�nition.
The following simple statement follows from the special type of metric on �+

A

introduced in Section 3.

Lemma 8.1. For any subset Z � �+
A we have h(f jZ) = dimH Z � log a.
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For each n 2 N , we de�ne the metric dn on X by

dn(x; y) = max
�
d(fkx; fky) : 0 � k � n� 1

	
:

Given � > 0, we say that a �nite set E � X is a (n; �)-separated set if dn(x; y) > �
whenever x, y 2 E and x 6= y. We de�ne the topological pressure of the continuous

function ' : X ! R (with respect to f) by

P (') = lim
�!0

lim
n!1

1

n
log sup

E

X
x2E

exp
n�1X
k=0

'(fkx);

where the supremum is taken over all (n; �)-separated sets E.
For a subset U 2 �+

A we set Z = Z(U) = fx 2 U : V�(x) \Minv(U) 6= ?g where

Minv(U) is the set of invariant measures concentrated on U . We also use the notation

Me(U) for the set of ergodic measures on U> Pesin and Pitskel' have proven the

following variational principle.

Theorem 8.2 (Pesin and Pitskel' [10]).

htop(Z) = sup
�2Minv(U)

h�

We will use a slight modi�cation of the above variational principle.

Theorem 8.3.

htop(Z) = sup
x2Z

inffh� : � 2 V�(x) \Me(U)g

Proof. We denote by Ẑ the set fx 2 �+
A : V�(x) consists of a single measureg. We

consider an invariant measure � on U . Let � =
R
�� dm(�) be its ergodic decomposi-

tion. Then for m � a.e. � ��(U) = 1 and �� is an ergodic measure. Moreover, since

h� =
R
hmu� dm(�) we can choose � in the way that h� � h�� . If x(�) is a generic

point for the measure �� then x(�) 2 Ẑ. It follows that

sup
�2Minv(U)

h� � sup
x2Ẑ

hV�(x)

� sup
x2Ẑ

inffh� : � 2 V�(x) \Me(U)g

� sup
x2Z

inffh� : � 2 V�(x) \Me(U)g

Obviously, we have

sup
�2Minv(U)

h� � sup
x2Z

supfh� : � 2 V�(x) \Me(U)g

� sup
x2Z

inffh� : � 2 V�(x) \Me(U)g

We will state some simple consequence of this variational principle.
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Corollary. Let S be a compact invariant set. Then

htopfx 2 �+
A : V�(x) \Minv(S) 6= ?g = htop(S)

Proof. Since S 2 fx 2 �+
A : V�(x)\Minv(S) 6= ?g the statement follows immediately.

The Legendre transform of the function T is the function D de�ned by D(�) =
supq(�q � T (q)). We then say that the pair (D; T ) is a Legendre pair with respect

to the variables �, q. We say that a C2 function T is strictly convex if T 00 > 0
everywhere on its domain. Given two strictly convex C2 functions D and T , one can
show that the pair (D; T ) is a Legendre pair with respect to the variables �, q if and
only if D(�) = T (q) + q�, where � = �T 0(q) and q = D0(�).
We will use the following additional notations. Let x 2 �+

A. We consider the set

V�(x) of accumulation points of the sequence of measures
n

1
n

Pn�1

j=0

o
��jx. Clearly,

any measure � 2 V�(x) is invariant.
For a given subset S 2 �+

A we write Cm(S) for the set
S
x2S

Cm(x) and Um(S) =

fx 2 �+
Aj�

kx 2 Cm(S)for allk 2 Ng.

The number of times the trajectory f�kxgNk=0 of the point x hits a given set U is

denoted by A(U;N; x) = Cardf0 � k � N : �kx 2 Ug.
For a given set X we denote the set of invariant, respectively ergodic, measures

supported on X by Minv(X) and Me(X).
If � 2Me(�

+
A) then m = � � ��1 2Me(J) and the limit limn!1

1
n
log kDF n(x)k =

limn!1
1
n

Pn�1

j=0 log a(�
jx) = �(x) exists form - a.e. x 2 J or for � - a.e. x = ��1(x) 2

�+
A , respectively. Since the measure � is ergodic the number �(x) is constant almost

everywhere and hence depends only on the measure. We will denote this number by

�� or �m.
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