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Abstract. We consider the numerical solution of Mellin convolution equations 
on an interval by the h-zrversion of spline approximation methods. Using a geo-
metric mesh refinement towards the singularity of the integral equation, we prove 
stability and exponential convergence in the Lq norm, 1 _:::; q _:::; oo, for Galerkin, 
collocation and Nystrom methods based on piecewise polynomials. 

1. INTRODUCTION 

We consider the approximate solution of the one-dimensional Mellin convolution 
equation 

u(x) -fo1 K,(x/y)u(y)y- 1dy = f(x), x EI:= (0, 1), (1.1) 

where f and K, are given functions and u is the unknown function. Such integral 
equations having a fixed singularity at the point x = 0 arise in a variety of app-
lications; for example, they occur when boundary integral methods are applied to 
potential problems in plane regions with corners or to crack problems in linear ela-
sticity (see [4], [13] and the references therein). Note that the integral operator in 
(1.1) is not compact so that standard theories for the numerical analysis of second 
kind Fredholm integral equations cannot be applied. Nevertheless, using graded 
meshes and modified spline spaces, results on stability and optimal convergence 
orders of Galerkin, collocation and quadrature methods for Eq. (1.1) which are 
based on piecewise polynomial basis functions have been obtained in [4], [6], [7], 
[9]. These papers apply the technique of the traditional h-version of spline appro-
ximation methods where accuracy is achieved by decreasing the mesh size h, while 
keeping the degree p of piecewise polynomials fixed. 

In the present paper we study the h-zrversion of those approximation methods 
which is obtained if one simultaneously refines the mesh and increases the degree 
of the splines. For the finite element method on a geometric mesh applied to elliptic 
boundary value problems in planar polygonal domains, it has been shown in [10] 
that, if the given data are piecewise analytic, the h-zrversion has an exponential 
rate of convergence with respect to the number of degrees of freedom, whereas 
the h-version has only a polynomial rate. The state of the art of the zr and h-
zrversions of the finite element method is described in [3]. Only recently the h-zr 
version has been introduced into boundary element methods [2], [15]. These papers 
analyze the h-zrversion of boundary element Galerkin methods with quasiuniform 
and geometric meshes for some strongly elliptic first-kind integral equations on a 
polygon; [2] establishes, in particular, the exponential rate of convergence when a 
geometric mesh refinement towards the vertices is used. 
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Our aim is to show corresponding results for spline Galerkin methods applied to 
the second-kind integral equation (1.1). Furthermore, the h-p-version of certain 
collocation and Nystrom quadrature methods is discussed here for the first time. 
In Section 2 we recall some analytical properties of Eq. (1.1) in Lq(I), 1 ~ q ~ oo, 
and in weighted Sobolev spaces. Following [10] we further introduce countable 
normed spaces Bg(I) of real-analytic functions on (0,1] which are adapted to the 
singularities of solutions to Eq. (1.1) at the origin. As one of our main results we 
prove that if the right-hand side f of ( 1.1) belongs to B:( I) and the kernel function 
K, satisfies appropriate conditions then the solution u is also an element of B:(I). 
In Section 3 we define the spline spaces Sn,u,µ, O' E (0, 1), µ > 0, consisting of piece-
wise polynomials of degree [µn] on the subintervals [O'n-i, O'n-i-l], i = 1, · · · , n - 1, 
of the geometric mesh. (Here and in the following [a] denotes the integral part of 
a.) On the first subinterval [O, O'n-l] the splines are assumed to be zero; this corre-
sponds to the simplest modification of the usual spline spaces in order to deal with 
the singularity of the integral equation (1.1) (cf. [4], [6], [7], [9]). Following [10], 
we investigate the Lq approximation of functions u E B:(I) by splines from Sn,u,w 
The underlying approximation theory, however, is simpler than that of [10] and 
essentially relies on Jackson's theorem. Besides the uniform degree distribution, we 
also briefly discuss the case of spline spaces with linear degree distribution; cf. (3.4) 
for definition. 

In Section 4 we prove stability and exponential convergence in the Lq norm (1 ~ 
q ~ oo) of Galer kin and collocation methods with basis functions from Sn,u,w In 
Section 5 we present the corresponding results for the Nystrom method which can 
be regarded as the discrete iterated collocation method based on the spline spaces 
Sn,u,w Using a somewhat different approach, it is possible to treat Galerkin and 
collocation methods with splines which are not required to be zero over the first 
interval [O, O'n-1Ji cf. [7] in case of the h-version. . 

2. SMOOTHNESS OF SOLUTIONS 

We first recall some facts about the solvability of Eq. (1.1) in weighted Sobolev 
spaces; see [7]. Let A be the Mellin convolution operator defined by 

Au(x) := (1 - K)u(x), Ku(x) := fo 1 K,(x/y)u(y)y- 1dy. (2.1) 

For any interval J and 1 ~ q ~ oo, Lq(J) will denote the usual Lebesgue space on 
J with norm 

llu; Lq(J)ll ={Ji lulqdx} l/q, q < oo; llu; Loo(J)ll = ess s~p ju(x)j. 

For any integer l 2: 1, we further introduce the weighted Sobolev space 

Lq,z(I) = { u E Lq(I): xi Diu E Lq(I), j = 1, · · · , z} 
on the unit interval, which is equipped with the canonical norm 

llu; Lq,1(1)11 = L llxj Diu; Lq(I)ll, D = d/dx. 
O< "<l _]_ 
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Let ~ be the Mellin transform of the kernel function of K: 

The function a(z) = 1- ~ (z) is called the symbol of the Mellin convolution 
operator A. For fixed q (1 ~ q ~ oo) and (! > 0, we make the following set of 
assumptions on K- and a. 
(Al): f000 x1 fq-llK-(x)ldx < oo; 

a(z) =/= 0, Re z = 1/ q; { arg a(l/ q + ie)}'.'.'.'00 = 0. 
(A2"): f000 x1 fq-l-"IK-(x)ldx < oo; 

a(z) =/= 0, l/q - (! ~ Rez < 1/q. 

Here l/q := 0 if q = oo, and {arg ·}'.'.'.'00 denotes the change in argument of a(l/q+ie) 
as ~ runs from - oo to oo. 

Note that the Lq operator norm of K is bounded by the integral appearing in 
(Al), and then the second condition of (Al) is equivalent to the invertibility of 
A on Lq(I). Under the assumptions (Al) and (A2"), u E Lq(I) and Au E L~(I) 
imply that u E L~(I), where L~(I) denotes the weighted space x"Lq(I). Note that 
the supremum of the numbers fl for which condition ( A2") is satisfied reflects the 
principal term of the asymptotics of solutions to Eq. (1.1) at the origin; cf. [5]. 
The conditions (Al) are of course necessary for the stability in Lq(I) of any pro-
jection method applied to Eq. (1.1 ). To obtain sufficient stability conditions, we 
usually have to require some additional smoothness of the kernel function: 

( A3l): f000 x1fq-l lxi Di K-( x) ldx < oo, j = 0, · · · , l. 

Condition (A3l) implies that K is a bounded map of Lq(I) into Lq,l(I), and together 
with (Al) this ensures the invertibility of A on Lq,l(I). 
To derive exponential convergence rates for our spline approximation methods, 
the framework of weighted Sobolev spaces does not suffice, and following [10] we 
therefore introduce appropriate countable normed spaces of real-analytic functions 
on (0,1]. For 1 ~ q ~ oo and(!~ 0, let 

B:(I) = { u E C00 (0, 1] : :J d > 0 independent of j such that 
II xi-&>Diu; Lq(I)ll ~ di+lj!, j = 0, 1, .. ·}. 

The functions in B:( I) are characterized by different constants d. If we wish to 
emphasize the dependence of a function u on d, we shall write u E B:.iI). 
In order to state our result on smoothness of solutions with respect to the scale 
B:(I), we introduce the hypothesis 

(A4"): K-11 E Bg(I). 
Theorem 2.1. Assume (Al) and (A4"), and suppose in addition that (A2") holds 
if fl> 0. Then u E Lq(I) and Au E Bg(J) imply u E Bg(I). 
To prove this, we need the following preliminary 
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Lemma 2.2. (i) If u E B;,d(I), then 

ll(xD)iu; Lq(I)ll::; (2ed)i+1j!, j = 0, 1, · · · 

(ii) Conversely, if 

ll(xD)iu; Lq(I)ll::; di+1j!, j = 0, 1, · · · , 

then u E B;,2eil). 
Proof; (i) Using the relation xi Di= xD(xD -1) · · · (xD - j + 1), one obtains 

llxi Diu; L,(I)ll < t, ({)i'll(xD)i-'u; L,(I)ll 

j 
< I: U!/i!)di+l-iji::; u + i)di+lji. 

i=O 

Since by Stirling's formula, 

ji::; (27rt1l 2eij!::; eij!, j = 0, 1, · · ·, (2.2) 
we finally get 

(ii) Note that 
j 

(xD)i = L clxi-ini-i 
i=O 

with certain non-negative numbers cl. Applying the operator xD to the last rela-
tion, we obtain 

·+1 . . . . . . . cI = ct + (J + i - i )ci-1 , s+i = c3_1 := o. 
Now, by induction one can easily show that for any i and j 

Therefore we obtain the estimate 

_j < (j) ·i c; - . J . 
'/, 

which implies the assertion as before. D 

Proof of Theorem 2.1. Step 1. We first verify the assertion in the case f2 = 0. 
We have to show that, under the assumptions (Al) and (A4°), u E Lq(I) and 
Au E B;(J) imply u E B;(I). Thus, by Lemma 2.2, one may assume that for some 
d 2: 1 

llu;Lq(J)ll < d, ll(xD)iAu;Lq(I)ll + ll(xD)ix;;Lq(I)ll 
< dj+l . I . - 0 1 . . J·' J - '_, .... 
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Note that u E Lq,j(I) for any j 2::: 1; cf. [7] (Thm. 1.10). Proceeding by induction 
on j, we suppose that for some k 2::: 1 and d1 2::: d 

ll(xD)iu; Lq(J)ll:::; d{+1j!, j < k. (2.4) 

To show (2.4) for j = k, we start with the relation 

xDKu(x) = KxDu(x) - K(x)u(l), u E Lq,1 (1) 
which follows by applying the operator xD to the integral 

. 1 00 

Ku(x) = h K(x/y)u(y)y-1dy = 1 K(z)u(xjz)z- 1dz. 

By iteration, (2.5) yields for any k 2::: 1 

(2.5) 

(xD)k Au= A(xD)ku + 2:)xD)k-l-j K(x) (xD)iu(l), u E Lq,k(I). (2.6) 
j<k 

Applying Sobolev's embedding theorem for the interval [1/2, 1], one has the esti-
mate 

l(xD)k-1u(l)I:::; cll(xD/u; Lq(I)ll + c(c)ll(xD/-1u; Lq(I)ll 
for any £ > 0 and k :'.'.: 1. Together with (2.3) and (2.6), this implies 

llA(xD)ku; Lq(I)ll < ll(xD)k Au; Lq(I)ll + d{cll(xD)ku; Lq(I)ll 
+ c(c)ll(xD)k-lu; Lq(I)ll} 
+ I: dk-i(k -1- j)!{ll(xD)i+1u; Lq(I)ll 

j'5_k-2 
+ c(l)ll(xD)iu; Lq(J)ll}. 

Choosing £ sufficiently small and using (2.3), (2.4) and the invertibility of A in 
Lq(I), we obtain from the last inequality 

ll(xD/u; Lq(I)ll:::; cdk+1 k! + I: cd{+2(j + l)!dk-j(k - j -1)!, 
j'5_k-2 

where c 2::: 1 does not depend on k. Using the estimates 

(j + l)!(k - j - 1)! :::; (k - 1)! 
and selecting d1 = 2cd2 , we finally have 

ll(xD/u; Lq(J)ll :::; cdk+l k! + I: cd{+2dk-j(k - 1)!:::; d~+l k!. 
j'5_k-2 

This shows (2.4) for j = k and completes the proof of the assertion in view of 
Lemma 2.2. 

Step 2. Passing to the Mellin convolution operator A" = x-" Ax" with kernel func-
tion x-" K, the assertion in the general case may be i:educed to the situation consi-
dered in Step 1. Indeed, using the relations (xD)ix-"K = x-"(xD - p)iK and the 
considerations in the proof of Lemma 2.2, K E Bg(I) implies that x-" K E B;(I). 
Further, by assumption, A" is invertible on Lq(I) while A is invertible on Lq(I) and 
L~(I). Thus it suffices to verify that v = x-"u E Lq(I) and A"v = x-" Au E B;(I) 
imply v E B;(I), which was already done in Step 1. D 
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Remark 2.3. Another analyticity assumption on "'' which is stronger than (A4") 
but usually satisfied in practice, is the following condition 

(A5"): 100 x1 fq-l-elxi Di 11:(x)ldx :s; di+1j!, j = 0, 1, · · · . 

This condition implies that 

(2.7) 

Indeed, for the Mellin convolution operator xi-e Di K x" with kernel function 
xi-e Di K-, one then obtains the estimate 

11 xi-eni Ku; Lq(I)ll = llxi-eDi K x"(x-"u); Lq(I)ll 

:s; (la00 x1 fq-l-elxi D111:(x)ldx) llx-"u; Lq(I)ll :s; cdi+Ij!, j = 0, 1,. · · . 

Notice that (2.7) together with the invertibility of A on Lq(I) and L~(I) yields 
immediately the assertion of Theorem 2.1 if one replaces condition (A4") by (A5") 
there. Moreover, the fact that (A5") implies (A4") can now easily be verified if we 
choose in (2.5) a smooth function u, vanishing in a neighborhood of x = 0 and such 
that u(l) -::j:. 0, and observe that xDKu - KxDu E B:(I). 
Example 2.4. Consider the operator (2.1) with kernel function 11:( x) = -xr( x )x.B, 
f3 > 0, where XI denotes the characteristic function of the interval I (i.e. xr( x) = 1 
if x E I and xr( x) = 0 otherwise). Then the symbol of A takes the form a( z) = 
1 + (f3 + z t 1 , and the conditions (Al), ( A2") and ( A4") are satisfied for 1 :s; q :s; oo 
and 0 :s; e < f3 + 1 / q. 

Example 2.5. Let K-(x) = l/7r(l+:z:2 ). The corresponding equation (1.1) appears as 
a local model when the single layer potential is used to solve the exterior Neumann 
problem for Laplace's equation an:d the plane domain has a corner with right 
angle. Then a(z) = l - l/2sin(7rz/2), and the assumptions (Al), (A2"), (A31) 
and (A5") are fulfilled if 1 :s; q < 3, 0 :s; e < 1/ q - 1/3 and l = 1, 2, · · · . 

3. AUXILIARY RESULTS FROM APPROXIMATION THEORY 

For 1 :s; q :s; oo and k = 0, 1, · · ·, let w:(I) denote the usual Sobolev space of 
order k on the unit interval, where w;(I) = Lq(I). By Em(u; w:) we denote the 
error in the best approximation of the function u by polynomials of degree :s; m 
with respect to the norm in w:(I) : 

Em(u; w;) =inf {llu - <p; w;(J)ll: <p E 1Pm}. 
The following proposition, being a simple consequence of Jackson's theorem, is the 
key to the derivation of exponential convergence rates for our spline approximation 
methods. 
Proposition 3.1. We have 
(i) Em(u;Lq) :s; ck(l +mtkllDku;Lq(I)ll, u E w:(I), m+ 1 2: k; 
(ii) Em(u; Wi) :s; ck+i(l + mtkllDk+iu; Lq(I)ll, u E w;+l(J), m 2: k, 
where c does not depend on u, m and k. 
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Proof. If k = 0, then the result is trivially true. Let k ~ 1. 

(i) By Jackson's theorem 

Em(u; Lq)::; c(l + mt1ljDu; Lq(J)jj, 
and applying successively the relations 

. . -1 +1 . Em-;(D1 u; Lq)::; c(l + m - J) Em-j-1(D1 u; Lq), J = 0, 1, · · · 

and an elementary inequality, one obtains (see [12], Chap. 1.6) 

Em(u; Lq)::; ck(kk /k!)(l + mtkl!Dku; Lq(I)ll. 

Together with Stirling's formula (cf. (2.2) ), this yields the result. 

(ii) By (i) there exists a polynomial 'lj; E 1Pm-l such that 

l!Du - 1/;; Lq(I)ll ::; ckm-kl!Dk+1u; Lq(I)ll, m ~ k ~ 1, 

and setting cp( x) = J; 1/;( t)dt + u(O), the last estimate implies 

llu - <pj w:(J)ll::; c1JID(u - cp); Lq(I)ll::; C1Ckm-kllDk+lu; Lq(I)IJ, 

where c, c1 only depend on q. D 

Let Rm be the orthogonal projection of L2 (1) onto 1Pm. To investigate the Lq 
convergence of spline Galerkin methods, we need the following simultaneous ap-
proximation result. 

Proposition 3.2. For any u E w;+1 (J), 1 ::; q ::; oo and m ~ k, 

11(1 - Rm)u; Lq(I)JJ::; ck+l(l + mtkl!Dk+1u; Lq(I)I!, 

where c is independent of u, m and k. 

Proof. 1. Let 1 ::; q:::; 2. Then, for any cp E 1Pm, the estimate 

Jj(l - Rm)u; Lq(I)ll ::; JJ(l - Rm)u; L2(J)Jj 
::; JJu - cp; L2(J)JJ:::; c1!Ju - cp; Wq1(J)Jj 

holds, where c1 only depends on q. Here we have used Sobolev's embedding theorem. 
Now it suffices to apply Proposition 3.1 (ii). 

2. If 2 :::; q:::; oo, we have for any cp E 1Pm 

JJ(l - Rm)u; Lq(I)ll < !Ju - cp; Lq(I)JI + JJRm(u - cp); Lq(I)JI:::; l!u - cp; Lq(I)ll 
+ c1(l + m)1- 2/ql!u - cp; Lq(I)JI 
< (1 + c1)(l + m)1- 2/ql!u - <p; Lq(I)JJ, 

where c1 is independent of u, <p and m and the second inequality is a consequence 
of [14], Thm. 3.3. It remains to apply Proposition 3.1. (i). D 

To the Chebyshev nodes on I 

(m) 1 { (2j + 1 )7r} . ej = e; := - 1 +cos (. ) ' J = 0, ... 'm, . 2 . 2m+l 
(3.1) 
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we now associate the corresponding Lagrange interpolatory projection .C"' onto 
IP"'. The following result is needed in the convergence analysis of spline collocation 
methods and is the analogue of.the preceding proposition. 

Proposition 3.3. For any u E w;+1(J), 1 :::; q:::; oo and m;:::: k, 

11(1 - .C"')u; Lq(I)ll:::; ck+i(l + mtkllDk+lu; Lq(I)ll, 
where c does not depend on u, m and k. 

Proof. 1. Let q < oo. By a theorem of Erdos and Feldheim (cf. [16] Chap. 14.3), 
we have 

ll.Cmu; Lq(I)ll:::; c(q)llu; Loo(J)ll 

for all m E JN and all continuous functions u on [0,1 J. Utilizing Sobolev's embedding 
theorem, we thus obtain for any cp E IP m 

11(1 - .C"')u; Lq(I)ll :::; llu - cp; Lq(J)ll + ll.Cm(u - cp); Lq(J)ll 
:::; (1 + c(q))llu- cp; Loo(J)ll:::; c1(q)llu - cp; Wq1(J)ll 

and it suffices to apply Proposition 3.1 (ii). 

2. Let q = oo. By a theorem of Bernstein (see [13] Chap. 3.3.1), the L00 operator 
norm of .C"' is bounded by c1(1 + log(l + m)). Now we obtain as before 

11(1 - .Cm)u; Loo(J)ll:::; c1(l + log(l + m))llu - cp; Loo(J)ll 

for any cp E 1Pm, and Proposition 3.1 (i) completes the proof. D 

We now introduce the spaces of piecewise polynomials on geometric meshes occur-
ring in the h-p-version of spline approximation methods. For any n E JN and fixed 
u E (0, 1), we first define the geometric mesh .6.n = .6.n,u ={xi : 0 :::; i :::; n} on I, 
where 

. _ (n) _ n-i · _ l . . . . _ 0 x, - xi - u , i - , , n , x 0 - • (3.2) 

Let Ii= (xi-li Xi), hi= Xi - Xi-l, where the upper index n is omitted for conveni-
ence. To the mesh .6.n,u and a fixed parameter µ > 0, we then associate the spline 
space 

Sn = Sn,u,µ := { U E Loo(I) : ulii = 0, ul1; E IP[µn], i ;:::: 2} (3.3) 

which correspbnds to a uniform degree distribution on the subintervals of .6.n. 
Sometimes we also consider the case of linear degree distribution 

S~~~.µ := { u E Loo(J): ulii = 0, ul1; E IP[µi], i;:::: 2}. (3.4) 

The following theorem is the crucial approximation property of Sn; for q = 2 it 
is of course a special case of the two-dimensional results obtained in [10]. Let Pn 
denote the orthogonal projection of L2(I) onto Sn,u,w 
Theorem 3.4. Let u E B:(I) , 1 :::; q :::; oo and e > 0. Then 

11(1 - Pn)u; Lq(I)ll :::; ce-bn, (3.5) 
where the constants c and b do not depend on n. 
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Proof. Step 1. On the first subinterval (0, x1 ) of the mesh .6.n, we have 

llu; Lq(J1)ll ~ a(n-l)ellx-eu; Lq(J1)ll ~ C1ane. (3.6) 

Here and in the sequel c, c1 , · · · denote various constants not depending on n and 
µ. 

Step 2. Next we prove the estimate 

(3. 7) 

in the case q = 2. In order to do so, we choose a polynomial <pi on each subinterval 
h i 2 2, such that according to Proposition 3.1 (i) (with m = [µn] and k = [vn], 
0 < v < µ) and the scaling argument, the estimate 

llu - <pi; L2tfi)ll < {c2hi/(l + [µn])}[imJ llD[imlu; L2(Ii)ll 
< {c2hi/Xi-1(l + [µn])}[im] xfllx[imJ-un[imlu; L2(Ji)ll 

(3.8) 

holds. Here c2 is also independent of i and v, and v will be chosen sufficiently small 
later on. Since hi/ Xi-l = ( 1 - a)/ a (cf. ( 3. 2)) and u E B~ (I), the last expression 
in (3.8) can be bounded by 

{c3/(l + [µn])}(im] xf[vn]!. 

Therefore we obtain from (3.8) 

since [vn]!(l + [vn])-[im] < 1. Choosing now v = µ/c with sufficiently large c in 
(3.9), we get (3.7) for q = 2. Indeed, if c = 2c3 /a and µn/c 2 1, the last expression 
in (3.9) can be dominated by c4a[im] ~ c11, whereas for all indices n with µn/ c < 1 
it can be bounded by c4 ~ c1aim. 
Step 3. We finally verify (3. 7) for arbitrary q. Then (3.6) and (3. 7) obviously imply 
estimate (3.5). Arguing as before, but applying Proposition 3.2 instead of Propo-
sition 3.1 (i), we get for i 2 2 

llu - Pnu; Lq(Ii)ll ~ c3{c3/(l + [µn])}(imlxf(l + [vn])!. (3.10) 

By virtue of the obvious estimate (1 + [vn])!(l + [vn])-(im] ~ 1, this yields again 

( 1 + [vn]) (im] 
llu-Pnu;Lq(x1,l)ll~c4 C3 [ ] , · 1 + µn 

hence the result. D 

Remark 3.5. Let N be the number of degrees of freedom (i.e. the dimension) of 
Sn,u,w Then N ~ µn2, i.e. n 2 {iii;,, and (3.6) and (3. 7) imply the estimate 

(3.11) 
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where c, c1 and c2 do not depend on N and µ, while b is independent of N but de-
pends onµ. Note that a somewhat more precise estimate for q = 2 and a discussion 
of the optimal choice of µ and O' can be found in [10]. The starting point there is 
the more precise version of Proposition 3.1 (i) 

( ) 2 ( m - k + 1) ! k 2 
Em u;L2 :::; (m+k+l)! /ID u;L2(I)ll, m+l ~ k 

which is shown by approximating u by the Legendre polynomials. 

Remark 3.6. If Pn denotes the orthogonal projection of L2(I) onto S~.1~.µ (cf. 
(3.4)), then the assertion of Theorem 3.4 only holds, in general, ifµ is sufficiently 
large. Indeed, instead of estimate (3.10), one obtains from Proposition 3.2 that 

which gives 

if µ is large enough. These estimates yield 

and consequently 

(3.12) 

where N = dim S~.~.µ and c1 , c2 , b are independent of n, N and µ. This corresponds 
to the result in [10] for q = 2. 

Finally, to the Chebyshev nodes (3.1) and the mesh .6.n,O' we associate the colloca-
tion points 

where J = {(i,j) : 2 :::; i :::; n, 0 :::; j :::; [µn]}. For any continuous function u on 
(0, 1], define the interpolatory projection Qnu E Sn,O",µ by 

(3..13) 

To prove exponential convergence of spline collocation methods, we need the follow-
ing analogue of Theorem 3.4. 

Theorem 3. 7. If u E Bg(I), 1 :::; q:::; oo and g > 0, then 

where c and b are independent of n. 
Proof. This follows as in Step 3 of the proof of Theorem 3.4, using of course 
Prciposition 3:3 in place of Proposition 3.2. D 
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4. STABILITY AND EXPONENTIAL CONVERGENCE OF GALERKIN AND 
COLLOCATION METHODS 

Let A= 1 - K be the Mellin convolution operator defined in (2.1). For the appro-
ximate solution of Eq. ( 1.1), we first consider the h-p-version of spline Galer kin 
methods, namely the Galerkin method with splines from Sn= Sn,u,w The Galerkin 
solution Un E Sn is defined by 

( 4.1) 

Theorem 4.1. (i) Assume (Al), and suppose additionally that condition (A32 ) 

holds if q-=/= 2. Then the Galerkin method (4.1) is stable in Lq(I), i.e. 

( 4.2) 

where n 0 is large enough and c does not depend on Un and n. 

(ii) Under the conditions of (i) and the assumptions f E B:(I), (] > 0, (A2e) 
and (A4e), the Galerkin solution Un of (4.1) converges exponentially to the exact 
solution u of (1.1) in Lq(I), i.e. 

( 4.3) 

where N is the number of degrees of freedom, c and b are some constants not 
depending on N (ifµ is fixed). 

Note that the Galer kin method ( 4.1) is stable in L 2 (1) under the minimal (inver-
tibility) assumptions on A, whereas in our approach the stability in Lq(I), q -=/= 2, 
requires some additional smoothness of the kernel function. The proof of Theorem 
4.1 (i) is based on the stability of the finite section method for Eq. (1.1). Consider 
the truncation operators 

( 4.4) 

Lemma 4.2. If assumption (Al) is satisfied, then 

( 4.5) 

where n 0 is sufficiently large and c is independent of u and n. 

Proof. Consider the map <I>u( x) = e-xfqu( e-x) which is an isomorphism of Lq( I) 
onto Lq(O, oo ). Then <I>(l - K)<I>- 1 becomes the Wiener-Hopf integral operator 

1 - W, Wu(x) := fo00 w(x - y)u(y)dy, 

with kernel function w( x) = e-xfqx:( e-x) E L1 ( -oo, oo ). Now ( 4.5) is a consequence 
of the stability of the finite section method for Wiener-Hopf equations; see [8] for 
q < oo and [1] for q = oo, or [13]. D 

Proof of Theorem 4.1. (i) For any Un E Sn, the relation 

( 4.6) 
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holds. Therefore, by virtue of ( 4.5), for the proof of estimate ( 4.2) it is sufficient to 
verify that 

(4.7) 

where 11 · I lq denotes the operator norm on Lq(I). We first consider the case q = 2. 

Let u E L 2 (I). In the sequel c, c1, · · · denote various constants not depending on 
u, n and i. Applying Proposition 3.1 (i) (with k = 1) and the scaling argument, we 
obtain for i ~ 2 

IJ(l - Pn)Ku; L2(Ji)IJ < chi(l + [µn]t 1 IJDKu; L2(Ii)ll 
< c(hi/xi-1)(1 + [µn])- 1 JJxDKu; L2(Ji)IJ (4.8) 
< c1n-1llxDKu; L2(Ii)ll · 

If we assume, in addition, that K is a continuous map of L 2(I) into L2,1(I), then 
( 4.8) implies that 

117rn(l - Pn)Ku; L2(I)ll:::; c1n-1llxDKu; L2(I)IJ:::; c2n-1llu; L2(I)ll 
which proves (4.7) for q = 2. Now we observe that, for any c: > 0, K may be 
approximated by a convolution operator Ke with kernel K-e satisfying condition 
(A31) such that llK - Kell2:::; c:. Since the projections Pn are of course uniformly 
bounded on L 2 (I), it suffices to verify the L2 stability of the Galerkin method for 
1 - Ke if c: is sufficiently small. 

Next we prove (4.7) for arbitrary q. Applying Proposition 3.2 (with k = 1) and the 
scaling argument, we get for any u E Lq(I) and i ~ 2 

II (1 - Pn)Ku; Lq(Ii)ll:::; ch7(1 + [µn]t1llD2 Ku; Lq(Ii)ll 
:::; c(hi/Xi-1)2(1 + [µnJt1IJx2D2Ku;Lq(Ii)ll:::; c1n-1Jlx2D2Ku;Lq(Ii)ll -

Since K is a bounded operator of Lq(I) into Lq,2 (1) by condition (A32), it follows 
from the last estimate that 

117rn(l -Pn)Ku;Lq(I)ll:::; c1n-1llx2D2Ku;Lq(I)ll:::; c2n-1llu;Lq(I)ll (4.9) 

which completes the stability proof. 

(ii) By assumption and Theorem 2.1, the exact solution u of Eq. (1.1) belongs to 
B:(I). Therefore, in view of Theorem 3.4 and Remark 3.5, it is now sufficient to 
verify the estimate 

JJu - un; Lq(I)ll:::; cJl(l - Pn)u; Lq(I)JJ, n ~no. 

Since llu - un; Lq(I)ll:::; 11(1 - Pn)u; Lq(J)ll + llPnu - Un; Lq(J)ll and the stability 
estimate ( 4.2) implies 

llPnu - Un; Lq(J)ll ~ c[IPnA(l - Pn)u; Lq(J)ll, n ~no, 

it remains to verify that the last expression is bounded by cil(l -Pn)u; Lq(I)JI. For 
q = 2, this is obvious because of the uniform boundedness of Pn. In the general 
case, we have by ( 4. 9) 

llPnA(l - Pn)u; Lq(I)ll < Jl?rnK(l - Pn)u; Lq(I)ll + 
+ !17rn(l - Pn)K(l - I'n)u; Lq(J)ll:::; cil(l - Pn)u; Lq(I)ll 
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which completes the proof. D 

We now consider the h-p-version of spline collocation methods. We seek an element 
Un E Sn such that 

(4.10) 

where Qn denotes the interpolatory projection defined in (3.13). The following 
result is the analogue of Theorem 4.1 for the collocation method. Its proof follows 
the same line as there, using of course Proposition 3.3 and Theorem 3. 7 instead of 
Proposition 3.2 and Theorem 3.4. 

Theorem 4.3. (i) Assume (Al) and (A32 ). Then the collocation method ( 4.10) is 
stable in Lq(I), i.e. estimate ( 4.2) holds with Pn replaced by Qn. 
(ii) If, in addition, the assumptions f E Bg(I), {! > 0, (A2") and (A4") are satisfied, 
then the collocation method converges exponentially in Lq(I), i.e. estimate ( 4.3) 
holds with the collocation solution Un of ( 4.10). 

Remark 4.4. For the approximation methods ( 4.1) and ( 4.10) with basis functions 
from s~i,;,µ (cf. (3.4)), the results of this section hold ifµ is sufficiently large; 
compare Remark 3.6 and the proof of Theorem 4.1. To derive stability of those 
methods, one has to use, for example, the estimates 

11(1 - Pn)Ku; L2(Ji)ll:::; chi(l + [µiJt 1 llDKu; L2(Ii)JJ, i > 2 

instead of ( 4.8). 

Remark 4.5. In contrast to collocation methods based on piecewise polynomials 
of fixed degree (cf. [4], [7]), for the h-p-version one does not have so much freedom 
in the choice of collocation points. If we take, for example, equidistant points ej = 
e;m) = j /m (j = 0, · · · , m) on the unit interval, then the L00 operator norm of 
the corresponding Lagrange interpolatory projection Cm grows exponentially as 
m ~ oo (cf. e.g. [11]) so that the results of Proposition 3.3 and Theorem 4.3 
cannot be expected in this case. Selecting, however, e;m) as the Gauss-Legendre 
points on I, one has the estimate (see [16], Chap. 14.4) 

JJ£mu; Loo( I) II:::; cvmllu; Loo(I)JJ, m = 1, 2, · · · 

for any continuous function u on [O, 1], and defining Qn again by (3.13), Theorem 
4.3 holds with this choice of the collocation points Xij· This only requires a slight 
modification of the corresponding proofs. 

5. NYSTROM METHODS 

We finally study stability and exponential convergence of a quadrature method 
which can be interpreted as the discrete iterated version of the collocation method 
( 4.10). To define this method, consider the (m + 1 )-point interpolatory quadrature 
rule 

(5.1) 
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with weights Wj = w}m) (j = 0, ... 'm) and the Chebyshev nodes ej = e)m) intro-
duced in (3.1 ). The following property which is a consequence of a theorem of Fejer 
(cf. [12], Chap. 3.6.2) is of importance for our convergence analysis: 

w)m) 2 0 for all j and m . (5.2) 

Let Qn be the interpolatory projection onto Sn,<r,µ defined in (3.13) via the colloca-
tion points Xij, ( i, j) E :T. Then the composite quadrature rule obtained by shifting 
(5.1) (with m = [µn]) to each subinterval h i 2 2, of the geometric mesh ,6.n,<T 
and summing over i 2 2 is 

Using (5.3) we approximate the integral operator Kin (2.1) by 

Knu(x) = L w/(x, Xij)u(Xij)hi, x EI, 
( i,j)E:T 

(5.3) 

(5.4) 

where l(x,y) := y-1 /'\,(x/y). The Nystrom solution un(x) to the integral equation 
(1.1) is now defined by 

(1 - Kn)un(x) = J(x), x EI. (5.5) 

Note that (5.5) is a linear system in the values un(Xij), (i,j) E :T, and then f(x) + 
Kn Un( x) may be computed giving un( x) for all x E I. 
To derive a stability result for (5.5), we need the following· technical lemmas. 

Lemma 5.1. If v E W:f+1 (J) and m 2 k, then 

where c is independent of v, k and m. 
Proof. For any cp E 1Pm, the left-hand side of (5.6) can be estimated by 

m 

I h( V - cp )dxl + IL w)m)( V - cp )(<)m))I ~ I Iv - cp; Li(J)l I+ 
j=O 

m 

+ I:w}m)llv - cp; Loo(J)IJ ~ cllv - cp; Wl(J)ll · 
j=O 

Here we have used (5.2) and Sobolev's embedding theorem. Now the assertion 
follows from Proposition 3.1 (ii). D 

Lemma 5.2. Under the condition (A3 2 ), we have 

where c does not depend on u and n and ?rn denotes the truncation operator ( 4.4). 
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Proof. Applying Lemma 5.1 (with k = 1) and the scaling argument, we obtain for 
any u E Lq,2(1), n E JN and i 2: 2 

[µn] 
I ii f(x,y)u(y)dy- ~wif(x,xii)u(xiJhil 

:::; c1(l + [µn]t 1 h~llD;t(x,y)u(y);L1(Ii)ll 

:::; c2n-1jly2D;t(x,y)u(y);L1(Ji)ll-
Furthermore, the relation 

y2D;t(x,y)u(y) = L fr(x,y)yrDru(y) 
O~r9 

(5.7) 

holds, where fr(x,y) = y-1K,r(x/y) and the functions K,r satisfy the first condition 
of (Al). From (5.7) we obtain for all x EI and n 

j(K7rn -Kn)u(x)j ::=:; C2n-l L !a1 lfr(x,y)llyrDruldy 
o<r<2 o 

which implies the result by passing to Lq norms. D 

We are now in a position to prove stability of the Nystrom method in the weighted 
Sobolev spaces Lq,2(!). 
Theorem 5.3. Assume (Al) and (A34 ). Then the Nystrom method (5.5) is stable 
in Lq,2 (1), i.e. 

11(1 - Kn)u; Lq,2(I)ll 2: cilu; Lq,2(1)11, u E Lq,2(1), n 2: no, (5.8) 

where n 0 is sufficiently large and c does not depend on u and n. 

Pro of. Step 1. First we verify that the operators 1 - K 7r n a:re stable in Lq,2 (I). 
Lemma 4.2 implies the stability of these operators in Lq(I) since one has the matrix 
representation 

l _ K 7r ~ ( 7rn(l - K)7rn 0 ) 
n - -11"nK(l - 7rn) 1 

with respect to the direct sum Lq(I) = 11"n(Lq(I)) E9 (1 - 11"n)(Lq(I)). Moreover, for 
j = 1,2 

llxi Diu; Lq(I)ll:::; IJxi Di(l - K7rn)u; Lq(J)ll + llxi Di K7rnu; Lq(I)ll 
and by (A32 ) and the stability of 1 - K7rn in Lq(I) 

llxj Dj K7rnUi Lq(I)ll:::; tll7rnu; Lq(J)ll:::; cllu; Lq(J)ll:::; c1ll(l - K7rn)u; Lq(I)ll . 
These estimates obviously yield (5.8) with K7rn in place of Kn. 
Step 2. We show that for any n E JN, u E Lq,2(!) and j = 0, 1, 2 the estimate 

llxjDj(K7rn -Kn)u;Lq(I)ll:::; cn-1 llu;Lq,2(J)ll (5.9) 

holds. Then the stability of ( 5.5) follows from that of 1-K 7r n by small perturbation 
with respect to the Lq,2 operator norm. Note that Lemma 5.2 implies (5.9) if j = 0. 
For j = 1, 2, we use the fact that K(j) =xi Di K is the Mellin convolution operator 
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with kernel xJ DJ"' and that K~) = x3 D3 Kn is the approximate operator ( 5.4) 
corresponding to K(j). Since by ( A34 ) K(j) satisfies condition ( A32 ), it suffices to 
apply Lemma 5.2 to those operators. D 

Remark 5.4. Using the more traditional approach of showing that ll(K 11"n -

Kn)Knll 00 ---7 0 as n ---7 oo, one can also prove the stability of (5.5) in L 00 (I); 
cf. [9] in the case of the h-version of the Nystrom method. 

We are now ready to state our result jon exponential convergence of the Nystrom 
method. 

Theorem 5.5. Assume f E Bg(I), (} > 0, (Al), (A2"), (A4") and (A5°). Then 
the Nystrom method converges with the error bound ( 4.3), where Un denotes the 
solution of (5.5). 
Proof. Using the relation (1 - Kn)un = (1 - K)u and Theorem 5.3, we obtain 

Recall that condition (A5°) is stronger than (A34). Furthermore, by assumption 
and Theorem 2.1, we have u E Bg(I) so that it remains to apply Lemma 5.7 below 
to the operators xi DJ(K - Kn), j = 0, 1, 2. D 

Remark 5.6. Under the conditions of the preceding theorem, we obtain the expo-
nential convergence rate 

llu - Uni Lq,J(I)ll:::; ce-bn, c, b independent of n, 

for any j E JN. Indeed, if we apply the operators xJ DJ to the relation 

U - Un= Ku - Knun = (K - Kn)u + Kn(u- Un), 

we obtain with the notation in Step 2 of the proof of Theorem 5.3 

xJ DJ(u - un) = (K(j) - K!/l)u + K!/l(u - Un), (5.10) 

where the kernel of K(j) also satisfies the assumption (A5°). Lemma 5.7 below 
yields the exponential rate for the first term in (5.10). For the second term, this 
is a consequence of Theorem 5.5 and the uniform boundedness of K~J), the latter 
following from Lemma 5.2 applied to KU) and the continuity of KU) : L 2 (I) -
L2,k(I) for any j and k. 

Lemma 5.7. If the assumptions u E B:(I), (} > 0 and (A5°) are fulfilled, then 

( 5.11) 

where the constants c and b do not depend on n. 

Proof. We proceed similarly as in the proof of Theorem 3.4. First we have 

llK(l - ?rn)u; Lq(I)ll :=:; cll(l - ?rn)u; Lq(I)ll :=:; CO"(n-l)ellx-"u; Lq(J)ll :=:; CO"ne. 

Here and in the sequel c and b denote various constants which are independent of 
n. It remains to show the estimate 

(5.12) 
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Applying Lemma 5.1 (with k = [vn], m = [µn]) and the scaling argument, we 
obtain for all i ~ 2 and v E (0, µ) 

[µn] 

I j f(x,y)u(y)dy- Lwif(x,xij)u(xij)hd 
4 j=O 

:S c{c/(1 + [µn])}[zm]h~+[zm]llD~+[zm]f(x,y)u(y); Ll(Ji)ll · (5.13) 

:S c{c/(1 + [µn])}(zmlxf I Jyl+(zmJ-e D~+[zmlf(x, y )u(y ); Li(Ji)ll . 

Define the functions "-j and lj by 

y-1"-i(x/y) = fi(x,y) = yiDtt(x,y). (5.14) 

Recall that y-1K-(x/y) = f(x,y). Then 

100 x1fq-ll"-·(x)ldx < di+iJ·t J. = 0 1 · · · 
J ' - • ' ' ' l 0 ' 

(5.15) 

where dis independent of j. This follows easily from condition (A5°), using Lemma 
2.2 and the relations (xD)i = (Dx - l)i, 

(Dyy)if(x,y) = (-l)iy-1((xD)i"-)(x/y). 
Let now Kj be the Mellin conyolution operator with kernel function 

{c/(1 + [µn])}(zm]l"-il(x), 

and define the functions Vj by 

Vj = 0 on 11, vi(x) = xfjxi-eDiu(x)I on Ii, i ~ 2. 

Since u E Bg(I), we then have 

llvi; Lq(I)ll :S di+1jt, j = 0, 1 · · · . 

Furthermore, with the notation of (5.14) 

ym-en;t(x,y)u(y) = f (~)ti(x,y)ym-i-enm-iu(y) 
j=O J 

for any m, and combining the estimates (5.13) we can write 

l+[zm] (1 + [vn]) l(K7rn - Kn)u(x)I :S ?= . Kjv1+[zmJ-i(x), x EI. 
3=0 J 

Using (5.15) and (5.16), this implies 

II (K 11"n - Kn)u; Lq(I)ll 

:S l"t] c { c }(zm] (1 + _[vn]) di+l j!d2+(11n]-j(l + [vn] - j)! 
i=O 1 + [vn] J 

:S c{ c(l + [µn])}(zm](2 + [vn])! :Sc{ c(l + [vn])/(1 + [µn])}(zm] . 

Here we have used the estimate 

(2 + [vn])!/(1 + [vn])[zm] :S 2H(zm) . 
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As in the proof of Theorem 3.4, the last quantity in (5.17) can be estimated by 
cabn if v E (0, µ)is chosen sufficiently small. This completes the proof of (5.12). D 

Remark 5.8. All results of this section extend with the same proofs to the case 
when the collocation points Xij are defined by means of the Gauss-Legendre nodes 
~)"') on I, since the corresponding weights w)m) satisfy condition (5.2) again. 

Finally we note that the results on the Nystrom method remain valid if we choose 
a composite quadrature rule based on a linear degree distribution on the mesh 6n,o-
(i.e. a suitable interpolatory projection Qn onto s~,';.,µ is taken in (5.3)) and ifµ is 
sufficiently large. 
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