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ON THE CONVERGENCE OF ALGEBRAICALLY DEFINED
MULTIGRID METHODS

JURGEN FUHRMANN

Abstract. Based on the theory for multigrid methods with nonnested spaces and noninherited
quadratic forms, a V-cycle convergence proof for an algebraically defined multigrid method using
the approximation and smoothing property from the theory of algebraic multigrid is given. The
estimation of the approximation property is carried out by means of strengthened Cauchy inequalities.

Further, a method is suggested which allows to construct multigrid algorithms for special non-
symmetric problems.

The ideas of the paper are illustrated by some examples of multigrid methods for problems with
strongly varying coefficients in two- and three-dimensional rectangular domains.

1. INTRODUCTION

This paper contains a multigrid V-cycle convergence proof which combines the con-
vergence theory of Bramble, Pasciak and Xu ([BP87), [BPX91]) which has historical
connections to that of Braess and Hackbusch (BH83], with the algebraically defined
approximation and smoothing assumptions of Ruge and Stiiben [RS87] which can
be estimated numerically. Here, the estimation of this approximation assumption in
terms of cosines of angles between some subspaces has been done using techniques
of Haase, Langer and Meyer (HLM91a],[HLM91b]. The language of this paper is al-
gebraic, using features developed by Axelsson and Vassilevski [AV90], Dahmen and
Elsner []jESQ] and others. The connection of this language with that of Ruge and
Stliben one can find in the paper of Popa [Pop91], too.

The aim of the presented theory is the ability to prove the convergence of multi-
grid methods for diffusion and convection diffusion problems with strongly varying
coeflicients discretized by inverse averaging and exponential fitting schemes, respec-
tively, where the usual finite element estimates cannot be used. The main features
of these methods are operator dependent intergrid transfer operators and harmoni-
cal means to define the coarse grid operator coefficients. Such methods have been
presented in [ABDJP81], [DJI87], [Kuz90], [Sto91] and others and by the author in
[FG91b], [FG91a).

Section 2 contains an algebraic framework for the definition of such multigrid
methods, based on that in [BPX91].

The convergence result is obtained in section 3. Together with the estimation
of the approximation property in section 4 and 5 it comes out that the multigrid
convergence rate depends on a number of reasonable factors:

e some spectral equivalences in the space obtained by the fine grid nodes, which
can be expected to be O(1),

e the cosine of the angle between the fine grid space and the coarse grid space
in the energy scalar product, which can be estimated locally on each coarse
grid cell,

e the spectral equivalence of the coarse grid operator and the Galerkin coarse
grid operator,

e the smoothing property of the smoothers which for a properly chosen reference
norm holds for a large class of matrices.

In section 6 one can find a proposal to carry over the theory to a class of non-
symmetric problems by means of the change of the scalar product.
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In section 7 the formulation of the multigrid method described in [FG91b], [FG91a]
in the language developed in this paper is given.

Finally, section 8 consists of some numerical examples for two- and threedimen-
sional multigrid preconditioners..

The appendix contains some remarks on base changes and the notations used in
this paper. Further, a short collection of basic results on preconditioning is provided.

2. AN ALGEBRAICALLY DEFINED MULTIGRID METHOD

The aim of this section is the algebraic definition of a multigrid method using the
terminology of Bramble, Pasciak and Xu [BPX91] together with the Schur complement
formulations of Axelsson and Vassilevski [AV90] who consider algebraically defined
multilevel preconditioners or Dahmen and Elsner [DE89]. The basic parameter of the
method are the interpolations between the level spaces and the operators in the level
spaces which are assumed to be given.

2.1. The spaces and the scalar products. So let
Mo, ... M;
be a sequence of finite dimensional Euclidean vector spaces with the scalar products
() )e: Mg x M =R
and the symmetric, positive definite with respect to them operators
Ap : My — M,
which define the energy scalar products
ak () = (Ars e
on Mg.

2.2. The problem. The following problem will be considered: For f € M; find
u € M; with

Aju=f (2.1)
which is equivalent to the finite dimensional variational problem: find u € M; with
aj(u,v) = (f,v); YveM; (2.2)

2.3. The prolongation operators. For k = 1,...,j, assume that there exists
a "nodal embedding”

ep : Mi_1 — Mg
and a splitting
My = MP o mP
where

MPB =1m e
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is isomorphic to Mj_; which thus can be viewed as a subspace of Mj. So one can

assume a block partition
Ap11 Agne >
Ap = ' ' .
k ( Ap21 Ag22

[ Fy Gy
w=(% 7)
with F and G} having full rank be the transformation matrix to an approximate

harmonical basis [HLM91a]. The terminology of the following lemma is described in
the appendix (subsection A.2).

Let

LeMMaA 2.1
Ay =UT ( Akglqup"] Sf_kl ) Uk = UJ Ay Us
with
Ap = F7T(Ag12 — Ap,11Fy'Gy)

and

Se-1 = Spo1+ATALY (p A (2.3)

= Apa— A FU'Gy - GLF T Apn + GT Av )G (2.4)

where

Sto1= Az — Ag,21(Ak,11) Ak 12 (2.5)

s the Schur complement from the block factorization

. AL 0 n
AkZUE( B ) k

0 Sk-1
with
~ A A
0, = ( 16,11 1;12 )
Proof. Straightforward calculations. a
It follows that
A Agan O ) ~_T
A =T ( ' A U
k k 0 Sk—ll k
and that
N ~-1/(0 0 s =T
T, = I-U; <0 glc_—l1)Uk Ag

—A7l A & "y
- I- ( k,lIl k.12 >5k_11( —Aradpyy 1) A

can be interpreted as a coarse grid correction error propagation operator which con-
sists in projecting the error onto UkM 1. Then, viewing Uy as an approximation to
Uk, define the prolongation operator

I = ( _Fk; G ) : My_y — M. (2.6)
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2.4. The Galerkin and the approximate Galerkin coarse grid corrector.
After all, the operator

T8 =I1-U;t ( g 5;?11 ) U T A (2.7)

could be described as an coarse grid corrector which has been derived from T; by
some perturbation of ﬁk. A further perturbation consisting of in using A;_; instead
of S;_1 leads to the definition of T} which will serve as the actual coarse grid corrector
for the multigrid method defined in the next section.

0 0 _
T} ;:I—U;I(O 4 )U,c T A (2.8)
-1

LEMMA 2.2 The operator TS in the approzimate harmonical basis has the represen-
tation

G _ I 0
Tk[U,.] - ("‘Sk——llAf 0 (2'9)

and is an A-orthoprojector. The operator T}, in the approzimate harmonical basis has
the representation

I 0
= . .10
Tow = (_afhar 1o st ) (210
If
XAr-1 < Sp-1 < Ag-1,
then

0 < ap(Teu, w) < xar(Tu,u) + (1 — x)ar(u,u) Vu € My.

Proof. One according to subsection A.2 has to calculate

0 0

Tiwy = B TRU; = U U — ( 0 A7l ) U Ta U

Using Sk instead of Ax_; gives the formula for T;. Now, let

I 0
"k'(s;_aAz z)

be the basis transformation matrix which arises from the block LDU factorization
of Ak[U;.]- Then ca.lculating Ak[V;.U;‘] = Vk_TAk[Uk]Vk_l and Tle[V,.U,.] = Vka[Uh]Vk_l
leads to

A - AS;HAT 0
Ak[V;.U;.] — ( k,11[F%] o EQp_15% Sy >,
I 0
G —
Tiviva = (o 0)
I 0
Teviva = ( 0 I— Al Sk s )
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vFrom this, the orthoprojector properties of TE (definition in subsection A.4) are
obvious.
To prove the last inequality, we have to show that

AT < xARTE + (1 - x) A

We do this in the the Vj-basis, using theorem A.1:

A 11(p) — DS AT 0
Ak[V).U).]Tk[V;.U).] = ( 1[ h] 0 k-1 k Sk_l _ Sk_lAk__]'lSk_l

_ Ap e — AeSp AT 0
- 0 0
+ 0 0

0 Sk-1—Sk-14;51,Sk-1
< Ak[V,‘U;.]Tlffv,,U,,]

0 0
1—

+ (1-x) ( 0 S, )

Ak[VkUh] TkG[Vl‘U).]

+ (1- X)(Ak[VhUh] - Ak[-VkU;.]Tk.CEV;.U;.])

The fact that T, > 0 comes from A, 11[F] — Dk Sy 1AT > 0 as a Schur complement

and Sp_1 — Si_ 1A,c 1Sk-1>0 because of Sp_1 < Ag_;. a
LEMMA 2.3

ak(Iku,,Ik'u) = (S'k_lu,v) Yu,v € Mp_y (2.11)
Proof. Straightforward calculations. a

So the perturbed Schur complement S; is the Galerkin coarse grid operator for the
given choice of the interpolation.

2.5. The restriction operators. The following operators are defined in [BPX91]
in a variational way. Py_; : Mg — Mj_; is defined by

ak—1(Pr-1ur, uk—_1) = ar(uk, Iyup—1) Vug_1 € My_q,
and P,?_l : My — My is defined by
(Po_ 1k, ub—1)k—1 = (ug, Teup_1)r  Vug_1 € My_1.

For our purposes, we define yet another restriction: PE | : My — Mj_; is defined
by

(Sk—1Pyl yuk, uk_1) = ap(ur, Tyup_1) Yur_1 € My_y,
LEMMA 2.4 In the algebraic language,
P =(-GfF;T 1), (2.12)

PE =S P (A= ( Se1AaTF I+S51a7G:). (2.13)
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and
Poa=A70 P A= (AL ATF T+ AL ATGY ). (2.14)
Further, for T}, one has
T =1—IxPe_y,
and TE satisfies
TS =1 - L, PE .

Proof. Straightforward calculations. a

2.6. The multigrid operator. Assume to be given the smoothing precondi-
tioners Ry : My — My, k= 1...5 and define for I > 0

i _J Re , 1 odd
R"_{RZ‘ , | even.

Let K = I — R A, and define

Zm) (Ki Ki)™? , ™ even
k (KiK)m V2K m odd

Here, K} = A;IKZ'Ak is the adjoint to K in the Ag- scalar product.
Now, let m(k) and p be positive integers. Define after [BPX91] the multigrid
operators By : M — My recursively by:

Bo = Agl
I-ByAr = (R™NY(Ty + L(I = Byo1Ap_1)P Po_y) K™D
For m(k) = m and p = 1,2 one has the usual multigrid V- and W-cycles with m
pre- and m post-smoothing steps. One has to mention that the so defined Bj is
symmetric according to the special choice of the combination of the smoothers and
their transposed which allows to use it as a preconditioner for conjugate gradients
[BPX91]. A similar choice has been taken in [JLM*89] where all post-smoothings are

transposed to the pre-smoothings, but not all the features of the convergence proof
stated below would go through.

3. CONVERGENCE

3.1. The assumptions. The first assumption which has been made in [BPX91]
is the contraction property of the smoothers:

spec Ky K C [0,1) (3.1)

Further, the following spectral equivalences are assumed which actually measure
the perturbation of the Galerkin property: There exists a constant x such that

XAy < Sp < Ap, k=0,...,5—1 (3.2)

independent of k. This includes condition (A.2) of [BPX91] which consists in the right
part of the inequalities and leads to the nonnegativity of T} and I — By Ay.
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Third, in difference to the paper [BPX91], we will use the combined smoothing
and approximation property which has been used by Ruge and Stiiben [RS87]. Usu-
ally, it is splitted by means of a reference norm into two separate assumptions: a
smoothing property which concerns the smoothers Ry, and a regularity and approxi-
mation property which concerns coarse grid correctors Ty = I — I} Py_;. We will, in a
further difference to [BPX91)], demand this property for the Galerkin coarse grid op-
erator TS = I — I, PE |, only, as it has been done in [RS87], too. The approximation
and smoothing assumption in the form used in [RS87] is the following: There exists
a constant M > 1 so that independently of k,

ar(Kru, Kpu) < ap(u,u) — %ak(TkGKku, TEKpu) Yu € My (3.3)
To obtain compatibility to [BPX91], obtain the equivalent formulation
ar(T¢ Kru, TE Kyu) < Mag((I — Kz Ki)u,u) Vu € M,
and, due to the fact that the TkG are A-orthoprojectors,
ap (T Kru, Kxu) < Mag((I — K Ki)u,u) Vu € M. (3.4)

We only remark that the combined smoothing and approximation property of
[BPX91] would be

a,k(TkK;,u, Kku) < Mak((I—- K;Kk)u, u) Yu € My, (3.5)

which should have a worse constant than (3.4) because it hides in itself the perturba-
tion of the Galerkin property.

It comes out that our assumption covers only the ” H2-regular” case, but in-
tentions of this paper is the understanding of the algebraic nature of the multigrid
algorithm, and the incorporation of lower regularity assumptions, which might be
possible, would result in a loss of clarity of the situation.

3.2. The convergence theorem. The contraction property of the multigrid
operator will be expressed by the following:
THEOREM 3.1 Assume (3.1), (3.2) and the combined approzimation and smoothing
assumption (3.4) hold. Letp > 1 and m(k) =m. Then fork=0...j

ak((I — BkAk)'Ll,, u) < 6kak(u, u) Yu € M, (3.6)
holds with
6y =1 ! (3.7)
X+ Hy '

Proof. The proof follows the scheme in [BP87] and [BPXQI]. For k = 0, (3.6) is
obvious. Assume that (3.6) holds for k£ — 1. Let for u € My, @ = I~{£m)u. One has,

using 6’;_1 < k-1,
ah((I - BkAk)u, u) =
= ap(Ted, ) + ar—1((I — Br—1Ar—1)Pr—1, Py_11)
< ak(Tkﬁ, ﬁ) + 5z_lak(IkPk_1‘L7,, 17,)
< (1 - 5k_1)ak(Tkﬁ,, 17,) + 6r—1ax (i, ’ﬁ,)
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< (1= 6k—1)xar (TG, @) + (6x—1 + (1 — x)(1 — 8—1))ar(d, &) after lemma 2.2
< (1—=6- 1)XMG.)¢((I - I_{k)K;Tu,u)
+(bp—1 + (1 = x)(1 = b6k—1))ar(d, @) after (3.4)
< (1-é- 1)X—ak((I—K Ju, u)
F(Or-1+ (1 = x)(1 = bp—-1))ar (KT u, u) (3.8)
M
= I + 37 ok (u, u)
x(1 + ;) -1
Wak(u, u)

In inequality (3.8),

=~ | KiKy , m even
Kk—{ KK, , m odd.

Further, from [BP87] we used

,_.

ar((I — Kp)KPu,u) < ar((I — K¢)Kiu,u)

1=0

ar((I — K7)u,u)

3|~ Fr

due to (3.1). O
The result coincides with that in [BPX91], in the case of full H2- regularity and x = 1
where an improvement of the convergence rate for p > 1 takes place only in the case
of lower regularity. The case x < 1 in [BPX91] is covered by the approximation
property constant which should become worse in this case. Further results concerning
variable V-cycles and the preconditioning properties of By could be obtained, too,
but the focus of this paper lies in the discussion of the smoothing and approximation
property.

4. DISCUSSION OF THE COMBINED APPROXIMATION AND SMOOTHING
ASSUMPTION
The ideas of this section come from [RS87], [MMB87] and others.

4.1. The splitting of the combined approximation and smoothing as-
sumption.
LEMMA 4.1 Let E} be positive definite operators in My. Define the bilinear form

ex(u,v) = (B; ' Agu, Apv)r  Vu,v € My
Then the Ey - approzimation assumption
ar (T u, TEuw) < Ber(u,u) Vu € My (4.1)
and the Ep - smoothing assumption
ger(u,u) < ap((I — Kx Ki)u,u) VYu € My (4.2)

imply the combined approzimation and smoothing assumption (3.4) with M = B/o
Proof. The proof is obvious. a



4.2. The );- approximation and smoothing assumptions. In [BP87] and
[BPX91], the splitting of the approximation and smoothing assumption has been done
by Ei = ArI where A is the largest eigenvalue of A;. The arising smoothing property
is equivalent to the fact that the smoother converges better than a Richardson method
with some relaxation parameter w € (0, 2).

The Ax- approximation property can be, derived for H2-regular problems dis-
cretized by conforming finite elements on quasi-uniform triangular meshes with bounded
growth of the mesh size as k tends to zero [BP87],[BD81].

4.3. The D;- approximation and smoothing assumptions. Let B, = Dy =
diag Ax. The arising smoothing- and approximation assumptions have been used by
Ruge and Stiiben [RS87].

The Dy- smoothing assumption holds uniformly for a reasonable class of matrices.
THEOREM 4.1 Let Ay be a symmetric M-matriz. Then for Ey = Dy, (4.1) holds with
o =1 for the Gauf-Seidel tteration and with o = p(TElXS for the Jacobi iteration
with parameter w = m‘a_l—A).

Proof. See [RS87)]. 0

In [RS87], the Dg- approximation assumption is subject of numerical estimates
which are used to develop the coarsening strategy for AMG. Our objective is its
derivation from a strengthened Cauchy inequality which is the contents of the next
section.

5. A DERIVATION OF THE Di- APPROXIMATION ASSUMPTION BY A
STRENGTHENED CAUCHY INEQUALITY

Let k from 1...j be given and M = M. In the following calculations all subscripts
will be omitted.

5.1. The approximation factor of 7¢ with respect to the approximate
harmonical basis. The following theorem gives the D-approximation factor of T in
terms of the spectral equivalence between D;; and A7 in M(1) and the strengthened
Cauchy inequality in the approximate harmonical basis.

THEOREM 5.1 Assume

D11 SUJAH (51)

and let yy be the cosine of the angle between the subspaces UM and UM in the
A- energy scalar product. Then the approzimation factor of the Galerkin coarse grid
corrector T can be estimated by

w
(1-w)*
Proof. From theorem A.2 it follows that

All[F] 0 1
( 0 S Sl—‘rUA[U]'

B< (5.2)

Further,

0 < A ~ ASTHAT < Ay



as a Schur complement of Afy). It has to be shown that
(T6)YT AT® < BAD'A

which is equivalent to

(Tig))" AT < BAw (D™ ) -71Aw)-

One has
G \T G _ A (r — AS AT o
(T[U]) A[U]T[U] = ( 0
An(r
< ("7 3)
< w All[F]FDI_IFTAn[F] 0
- 0 0
- W All[p] 0 FDI_IFT 0
- 0 S 0 0
w FDT'FT 0
< e (T 0 ) 4w
w D—l 0 T
= (1—7?)2‘4‘”][’( 0 O)U“‘“’]
< w

— AU
(=) ( o oy

w -
= T Am(P w-m 4w

COROLLARY 5.1 The approzimation factor of T is p(A7}! D11).

Proof. Indeed, v = 0.

Aj1(F)
0

-1
D] 0 > UT Ay

0
S

)

a

O

5.2. The approximation factor of T¢ with respect to the nodal basis.
The following theorem in the case of G = A, establishes a connection between vy
and 7, the cosine of the angle between M(1) and M(?) in the A- energy scalar product
which can be calculated locally on each coarse grid cell [Sch86]. They are connected

based on a factor which expresses how close F is to A1;.
THEOREM 5.2 Assume G = A,3, so that

_( F An
7=(¢F)

Let
_ -1
6p = |I-F"Aul,,
and
A
y = sup 1(Aus, ug) |
0#u; EM(1),0#uze M(3) llull 4 H“ZHA

Then

2
S
IA

PR
1+ 55
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Proof. Equation (5.3) means that
(I - AuF TYAn(I - F~14y,) < 62 Ay,
This is equivalent to
(I = FTAn)A NI - AuF~') < 6347
and implies
Aoi(I— F T An)AT (I - AnF YA, < 5 A2 AT AL

which by the definition of A and G = A4;; leads to

ATATA < 62AnA7 A
< 637%Ax
2
2 7 &
S 61"' 1— 72 S’

using theorem A.2 twice. The following is essentially lemma 4.2 from [HLM91a). Let

,),2

1—72

p= 6%
Then adding in the last inequality y.ATA;llA at both sides yields
(1+ N)ATAﬁlA < “(5' + ATAﬁlA)
which by the definition of S is equivalent to
ATA7IA< 2 5
us s,
Theorem A.2 gives then that

2k
WET
Inserting the definition of y yields the desired result. a
COROLLARY 5.2 Ifép < 1, then vy < 7.
O
COROLLARY 5.3 Under the conditions of theorem 5.2,
A2 2.2
B<w (1-7%) + &%
(1=72) +87/(1 - 72) + &7
) m}

Again, the case of F = A;; yields 8 < w.

6. MULTIGRID METHODS FOR OPERATORS SYMMETRIZABLE BY
DIAGONAL TRANSFORMATION
An important class of partial differential equations are the convection-diffusion equa-
tions. If the convection vector field is independent of the solution and is a gradient
11



of some potential, there exists a variable transformation which results in a selfad-
joint elliptic boundary value problem. Box discretizations with exponential fitting
and some kinds of mixed finite element methods carry over this property to the dis-
cretized equation ([BMP87] [FG91b] [FG91a]). This fact leads to a recipe to design
iterative methods for the class of convection - diffusion equations with convection po-
tential based on the theory of preconditioned iterative methods for selfadjoint prob-
lems [Gé&r90]. Especially, this can be carried out for multigrid methods within the
framework described above.

DEFINITION 6.1 An operator A : M — M?* is called symmetrizable (by right diag-
onal transformation) if there ezists a diagonal matriz E such that A = CE with C
symmetric and positive definite in the Euclidian scalar product.

Sometimes it is not possible to do calculations in the transformed variables because
of the bad condition number of C. So, introduce the scalar product

((w,v)) = (Bu,v).

LEMMA 6.1 If A is symmetrizable in the sense of the previous definition, then A is
selfadjoint with respect to the scalar product ((-,-)).
Proof.

((u, Av)) = (Eu, CEv) = (ECEu,v) = ((Au,v)).

a

Now one can construct multigrid preconditioners as above for symmetrizable op-

erators. For this, one has to mention that the scalar products (-, ); can be understood

as "parameters” of the multigrid method. So assume to be given E; in Mj, define
recursively

T
Ek—l = € Ekek

and substitute (-, -)x by (Ek-,-)r = ((*, ), whenever it occurs. This, especially, affects
the symmetry of the operators, which is replaced by the selfadjointness with respect
to the new scalar products. So, for instance, the exact coarse grid correction will look
as

R 1 0 0 -
T =1- E;'U; L Ex ( 0 BEt )UC’fAk,

where ﬁc,k and gc,k—1 are derived from C = A E;l in the same manner as in (2.5).
One has to mention that Ek_lﬁk"lEk and U7 are adjoint one to another with respect
to the scalar product ((-,-)), and that the coarse grid operator Sy_1E,_1 is of the
same type as Ag, that is, selfadjoint in the Ej_;-scalar product.

The same procedure can be used to derive a multigrid method for symmetrizable
problems from a given one for symmetric problems in the case, when Ucr # ﬁc,k

This leads to the fact that all results of the previous sections carry over to this
case, if the basic assumptions hold with respect to the new scalar product.

Multigrid algorithms based on coarse grid corrections of this type can be used
solely or as preconditioners in a conjugate gradient method in the Ej-scalar product.
Both possibilities have been successfully tested by the author. In section 8 numerical
experiments show exactly the same behaviour of the base method for the symmetric
problem and the derived method for the nonsymmetric one.
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7. ALGEBRAICALLY DEFINED MULTIGRID ON RECTANGULAR GRIDS

In the following, the indices k are omitted again. The matrix A is assumed to be a
symmetric, irreducibly diagonally dominant with nonnegative main diagonal entries
and nonpositive off diagonal entries. Then A4 is a Stieltjes matrix, and thus positive
definite, so it meets our basic demands. The terminus "grid” will mean the graph
I'(4) = (V(A), E(4)) of this matrix in the sense of [Var62] which can be assumed to
be non-directed, as A4 is symmetric.

What follows, are examples of multigrid methods in the two- and three- dimen-
sional case will be given which use 5-point or 7-point stencils on each grid and fit into
the framework described in the previous sections. The following suggestion, which
should be regarded in a another paper, is assumed in all cases: w and v from section
5 can be estimated independently of k, locally on each coarse grid cell if the grids are
not too coarse. In [Sch86] and [Szi91] ways are proposed to verify this.

In section 8, the performance of these methods is described.

7.1. The matrix partition in the two-dimensional case. For a two- dimen-
sional, rectangular grid, one has a partition of the vertex set

V(A) =VrUVEUVy

into the sets of coarse grid face midpoints, coarse grid edge midpoints and coarse grid
node points, respectively. This in the 5-point case implies the matrix partitioning

Bgr Ar Bgn
0 Byg An

Ar Bpg 0
Brr Agp Bgn
(0 Byg ) AN
A Agp
A A2
where the off diagonal blocks are (element by element) nonpositive and the diagonal
blocks

A

Ar = Arg+ Mp
Ag = Agr+ Agnv+ Mg
Ay = Ang+ My

are positive diagonal matrices which consist of the sum of the off diagonal row entries
and a nonnegative "mass” term. The assumptions made on A imply that at least one
entry of the M, is positive. '

Under these conditions, the operator e : Mj_; — My is the straight injection
of the coarse grid node values corresponding to Vy.

7.1.1. Multigrid: method A;p. Choose

F:(AF Brg

0 AE ) and G:Alz.
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Then ér < 1 because Aj; = F — (A11 — F) is a regular splitting. One has after some
calculations using (2.6)

_ A—IBFEA_IBEN >
—-F i¥e! F £ E
k= ( I ) = ( ~Ag'Ben
I

which results in a three stage prolongation: First perform a straight injection into the
coarse grid nodes, then by means of —A;JlBEN interpolate the edge midpoint values,
and at last, use —Az'Brg to get the face midpoint values from the edge midpoint
values. The Galerkin coarse grid operator after (2.4) is
S = Ay — 2BNEAEIBEN + BNEAEI(AE — BEFA;lBFE)Ag;lBEN

= Ay — BNEAEIBEN — BNEAE]'BEFAE-IBFEAEIBEN

< Ay — BypAg'Ben
where the last inequality is fulfilled because of Ar > 0. So one can take

Ay_1=Ax — BypAg'Ben

as the actual coarse grid operator. It is the Schur complement of the positive definite

matrix ( Az Bay ) and has the same properties as A. The perturbed Galerkin
By An

property (3.2) in one direction is fulfilled, so that the whole coarse grid correction
operator is nonnegative definite. The lower spectral equivalence constant x seems to
be very low, so that the algorithm should converge, but slowly.

7.1.2. Multigrid: method B;p. The following method is exactly the two-
dimensional case of the method described in [FG91b],[FG91a]. Let

Ap = Agn + Mg
Choose

_( Ar Brg _
F—( 0 fiE ) and G-—-Alg.

One has after some calculations using (2.6)

_F-ig ( AE‘IBf'f’{Li}_-JlBEN )
Iy = I = — Az Ben
I

which results in a similar three stage prolongation as in method A;p: First perform a
straight injection into the coarse grid nodes, then by means of —A;JIBE ~ interpolate
the edge midpoint values, and at last, use —Az'Brg to get the face midpoint values
from the edge midpoint values. The Galerkin coarse grid operator after (2.4) is
S = Ay -2BygA5'Ben + ByeAg'(As — BerAr'Bre)Az' Ben

= An-— BNEJ&EIBEN + BNEJ‘ZE'I(AEF — BgrAp'Brp)Agz'Ben.
The last term in the second equation is the projection of a "skew Laplacian” with
varying coefficients residing on the coarse grid edge midpoints onto the coarse grid.
So the suggestion

BneAg'(Agr — BerAp'Bre)Ag'Ben ~ An — BneAg'Ben

14



for coefficients varying not too strongly is not too far away. So one might take
Ak-1= k(AN — BvgAR'Bgy)

with & = 2 as the actual coarse grid operator. It is twice the Schur complement
Agn + Mg Bgy

Byg AN
as A. The spectral bounds of Ax_; with respect to Sk_; seem to be better than
for algorithm A,p. This suggestion and the evaluation of 6r are outstanding. The
experiments show a very good convergence rates for this algorithm.

of the positive definite matrix ) and has the same properties

7.2. The matrix partition in the three-dimensional case. For a three-
dimensional, rectangular grid, one has a partition of the vertex set

V(A):VcUVpUVEUVN

into the sets of coarse grid cell midpoints, coarse grid cell face midpoints, coarse grid
cell edge midpoints and coarse grid node points, respectively. This in the 7-point case
implies the matrix partitioning

Ac Ber 0 0
A4 = Brc Ar Brgp 0
0 Bgr Ar Bgwy
0 0 Byg An
Ac  Bgr 0 0
_ Br¢ Ar Brg 0
- 0 Bgr Ag Ben
( 0 0 Byg ) AN
_ ( A A >
- A1 Ap

where the off diagonal blocks are (element by element) nonpositive and the diagonal

blocks :
Ac Acr + Mc
Ar = Apc+ Arg + Mg
Ag = Agr+ Apn+ Mg
AN = Ane+ My

are positive diagonal matrices which consist of the sum of the off diagonal row entries
and a nonnegative "mass” term. The assumptions made on A imply that at least one

entry of the M, is positive.

Then the operator e; : Mj_; — M, is the straight injection of the coarse grid

node values.

7.2.1. Multigrid: method A3p. Choose

Ac Ber 0
F = 0 Ar Brg and G = Aj,.
0 0 Agp

15



Then 6r < 1 because A;; = F — (A11 — F) is a regular splitting. One has after some
calculations using (2.6)

—~AG'BorAz'BreAg'Ben
I, = -F-1@ _ AF_'IBF_EIAEIBEN
I —Ap Ben
I

which results in a four stage prolongation: First perform a straight injection into the
coarse grid nodes, then by means of —ABIBE;N interpolate the edge midpoint values,
then, use —A;.lBFE to get the face midpoint values from the edge midpoint values
and, at last, take —AEIBcF to get the cell midpoint values. Let

Sp = Ar — Brc Ap'Bor
The Galerkin coarse grid operator after (2.4) is then
S

AN —2BNpAR'Ben + BypAg'(As — BerS7'Bre)Ag' Bey
= Anx — BnpAp'Ben - BvgAg'BerSy'BreAy'Ben
< AN - BypAg'Ben

where the last inequality is fulfilled because of Sp > 0 as a Schur complement of the
Ac  Bcer

. So one can take
Brc Ar )

nonnegative definite matrix <

Ag-1= An — BngAg'Ben

as the actual coarse grid operator. It is the Schur complement of the positive definite
Ag Bgwn
Bye AN
property (3.2) in one direction is fulfilled, so that the whole coarse grid correction
operator is nonnegative definite and the algorithm should converge. The lower spectral
equivalence constant x, however, seems to be very low, so that the convergence rate
may be not very good. This conjecture is covered by the results of the experiments.

7.2.2. Multigrid: method Bzp. The following method is exactly the three-
dimensional case of the method described in [FG91b],[FG91a]. Let

matrix ) and has the same properties as A. The perturbed Galerkin

Ap = Arg+ Mp,
Agp = Agn+ Mg.
Choose
Ac Ber O
F = 0 AF BFE and G= A12~
0 0 fiE

One has after some calculations using (2.6)

~Ag'BorAp'BreAg' Bon
. ( -F-l@ ) _ Ap'BrpAg'Bpy
k= I - —x&;JIBEN
I

16



which results in a similar four stage prolongation as in method Ajsp: First perform a
straight injection into the coarse grid nodes, then by means of —AEIBEN interpolate
the edge midpoint values, then, use —A;,IBFE to get the face midpoint values from
the edge midpoint values and, at last, take —-AEIBCF to get the cell midpoint values.
Let

Sg = Ap—2BgrA;'Brp + BerAz'(Ap — BrcAG'Bor)AR'Brg
= Ap - BgrA;'Brp + BgrAp'(Arc — BrcAg'Bor)Ap!Brg

The Galerkin coarse grid operator after (2.4) is then

S = AN —2BypAz'Bpny + BNEA;;lgEfiElBEN
= (An - BNEfi;JlBEN) + BNEAEI(AEF -~ BEFA}?-lBFE)AEIBEN
+BNpAg'BerAp (Arc — BFCAEIBCF)AEIBF'EAEIBEN-

The second term in the second equation is the projection of some "skew Laplacians”
residing on the coarse grid hyperplanes which thus possibly can be estimates by
2(An — BNEA;JIBEN), the third term resides on the coarse grid face midpoints
and should be smaller than (AN — Byg AEIBEN) This corresponds to the numerical
experiments which suggest that

S~ 4(An — BypAp'Bgy)
for coefficients varying not too strongly. So one might take
Ar-1 = k(AN — BygAg'Bgy)

with £ = 4 as the actual coarse grid operator. It is four times the Schur complement
Agn + Mg Bgny

Byg AN
as A. The spectral bounds of A;_; with respect to Si_; seem to be better then
for algorithm Azp. This suggestion and the evaluation of 6 are outstanding. The
experiments show nearly the same convergence rates for this algorithm as for algorithm
Byp.

of the positive definite matrix ) and has the same properties

8. NUMERICAL EXPERIMENTS

The algorithms described in the previous section have been implemented within a
multigrid program written in ANSI-C which works under UNIX, VMS and MS-DOS
systems. It is capable to solve both symmetric and symmetrizable in the sense of
section 6 problems in two- or threedimensional rectangular domains using multigrid
solely or as a preconditioner within conjugate gradient or GMRES methods. Accord-
ing to the described algorithm, the generation of the coarse grid problems and the
intergrid transfer operators are performed in an algebraic manner, so that that only
the size of the finest grid and the matrix diagonals have to be given as input. This,
especially, implies that the fine grids needn’t to be the results of any coarse grid re-
finement by stepsize halving. This way, curvilinear discretizations resulting in 5- or 7-
point stencils, are covered, too. The method uses ILU smoothing and preconditioned
conjugate gradients as a coarse grid solver.
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All calculations have been done on a CONVEX-C220 with one processor. In all
the tables, the contraction stated is the average contraction per step or per work
unit which results from iterating until a residual contraction of 1071, or a residual
explosion of 1/¢.,., or maximally 2000 work units, where one work unit is the time
for one vector jacobi step which had a speed of about 9.5 MFLOPS.

8.1. A test problem. The following problem will be considered here in a sym-
metric and a nonsymmetric version: Let Q = [0, 1] x [0, 1] x [0.1]. Let % : @ — [—1, 10]
be a given potential function as shown in figure 1. The symmetric version of the prob-

F1e. 1. ¢ for x = 0.5, y = 0.5 or z = 0.5, respectively
lem is
— Ve Vu = f. (8.1)
The nonsymmetric version of the problem is
- V(Vu—-uVy) = f. (8.2)
The following Dirichlet boundary conditions are given:

= 100 on 0x[0,1]x [0,1]
= 0 on 1x][0,1]x][0,1].

On all other parts of the boundary, homogeneous Neumann boundary conditions are
assumed. The twodimensional test problem consists of the data for z = 0.5. Iis
solutions are shown in figure 2.

Problem (8.2) occurs in the field of semiconductor device simulation as the elec-
tron transport equation Its discretization is carried out by a Scharfetter - Gummel
exponential fitting scheme using a box method. The discretization of problem (8.1) is
exactly the discrete symmetrization according to section (6). It results in a harmonical
averaging of the diffusion coefficient along the grid lines assuming ¥ to be linear. This
method can be interpreted as a mixed finite element scheme using piecewise bilinear
(trilinear) u, piecewise constant fluxes on domains along the element edges for u, and
piecewise bilinear (trilinear) 9 together with a special quadrature rule for integrals
over the flux domains [FG91b]. The conjugate gradient method for the nonsymmetric
problems uses the scalar product from section 6.
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F16. 2. Solutions of problem (8.1) and problem (8.2) for z = 0.5

The performance of the multigrid methods is shown in table 1 and table 2. The
grid size means the number of grid lines in each direction. The coarse grid size is 8

in all cases. The suggestions of the previous section about the bad performance of

gl‘id size Azp BgD A3D BSD
Symm. | nons. | symm. | nons. | symm. | nons. | symm. | nons.
16 0.978 | 0.975 | 0.087 | 0.088 | 0.988 | 0.988 | 0.086 | 0.085
32 0.975 | 0.974 | 0.086 | 0.083 | 0.984 | 0.984 | 0.094 | 0.093
64 0.972 | 0.970 | 0.086 | 0.084 | 0.979 | 0.979 | 0.114 | 0.113

TABLE 1
Average contraction per iteration step for the multigrid iteration to solve problems (8.1) and (8.2)

grid size AgD BzD A3D BgD
Symm. | nons. | symm. | nons. | symm. | nons. | symm. | nons.
16 0.270 | 0.278 | 0.040 | 0.049 | 0.581 | 0.579 | 0.052 | 0.049
32 0.511 | 0.532 | 0.047 | 0.046 | 0.757 | 0.759 | 0.049 | 0.052
64 0.970 | 0.708 | 0.065 | 0.064 | 0.875 | 0.877 | 0.081 | 0.080

TABLE 2
Average contraction per iteration step for the multigrid preconditioned conjugate gradient iteration

to solve problem (8.1) and (8.2)

the A-methods and of the good performance of the B- methods are verified.

Figure 3 shows that no scaling of the coarse grid operator seems to be able to
correct the bad performance of the A- methods. F igure 4 verifies the conjectures from
the previous sections about the values of x = 2 in the twodimensional case and k = 4
in the threedimensional case for both preconditioned simple and conjugate gradient

iteration.

8.2. The IAAS logo. Another interesting test problem which shows the limits
of the proposed methods has been the design of the logo of the Institut fiir Angewandte
Analysis und Stochastik which has been founded based on the applied departments
of the former Karl-Weierstraf-Institut fiir Mathematik.
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F1G. 3. Average contraction per step in dependence of the coarse grid operator scaling by K for
methods Ayp and Azp

So consider problem 8.1 in two dimensions with homogeneous Dirichlet boundary
conditions. Let Q = [0,200] x [0, 100] Choose the potential function 9 : 2 — [1,10]
according to figure 5. The right hand side f : @ — [~3.5-10%,12.2 - 10%] (see figure
5) has been experimentally chosen so, that the heights of the letters are nearly the
same. Behind this, an interesting parameter identification problem is hidden. The
solution (see figure 6) is obtained on a 48 x 64 grid. The performance of different
iteration schemes to solve the problem one finds in table 3. It comes out that the

preconditioner simple iteration conjugate gradients
cont/step | cont/WU | cont/step | cont/WU
mg,W-cycle, 4 coarse levels | 2.118-101° | 1.408 1.0067 1.00009
mg,W-cycle, 3 coarse levels | 4.395-10% | 1.112 1.001 1.00002
mg,W-cycle, 2 coarse levels | 5.120-10% | 1.08 1.004 1.00003
mg,W-cycle, 1 coarse level | 0.422 0.9984 0.154 0.996
mg,V-cycle, 4 coarse levels | 2.167 102 1.358 0.397 0.951
mg,V-cycle, 3 coarse levels | 2.146.10% | 1.25 0.431 0.967
mg,V-cycle, 2 coarse levels | 2.167.10% | 1.12 0.456 0.984
mg,V-cycle, 1 coarse level 0.422 0.997 0.154 0.994
ilu 0.9995 0.9998 0.856 0.973
TABLE 3 ‘

Average contraction per iteration step and per work unit (1 vector jacobi) for different iteration
schemes for the solution of the IAAS logo problem

fastest method are conjugate gradients preconditioned with multigrid V cycles with
the maximum number of coarse levels. This multigrid method doesn’t converge solely,
an example for the theoretical prediction in [BPX91] that the violation of Si < A
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Fic. 4. Average contraction per step in dependence of the coarse grid operator scaling by x for
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on the coarse grids need not to destroy the preconditioning properties.
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F1a. 5. The right hand side and the diffusion coefficient for the IAAS logo
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A. APPENDIX: BASIC RESULTS AND NOTATIONS

In the appendix there will be listed well known results and definitions which are used
in this paper. Let M be a finite dimensional Euclidean vector space with the scalar
product (-, ) and the basis ( er ey - ey )

A.1. Behaviour of vectors under base change. Let U € GL (M) be any
nonsingular matrix. Then to U corresponds a basis transformation which consists in

expressing the vectors of the old basis through the vectors ( 7 oo fY)of
the new one as the columns of U :
(er e2 - en)=(fA fH - f)U

Then for any

31
n Ug
z:Ze,u,:(el €s en) . :(e1 es en)ueM
1—=1
1 "

e=(f fF - £ 0u=(f7 £ - 57 )um,

A.2. Behaviour of matrices under base change. Let A be the symmetric
positive semidefinite operator corresponding to an energy pairing a(:,-) in the basis
( er e -+ e, ). Then it describes a linear mapping 4 : M — M®* into the space
dual to M. The representation Ay of A in the basis defined by U € GL (M) behaves
as

v-Tavu-?,

Ay
' (A w-7).

(Aw))”

Indeed,
a(z,z) = (Au,uv) = (U TAUU«, Uu) = (Apjuw) v) »
Let X : M — M be a linear mapping into M itself. Then one has
X :=UXU"!,

This has to be used for operators of the type X = I— B~14, both A and B symmetric
and positive definite.

A.3. Invariance of matrix inequalities under base changes.
DEFINITION A.1 For any two symmetric matrices A,B, there shall be said A < B if
B — A is positive semidefinite. '
LEMMA A.1 If A< B then Ay} < By VYU € GL(M).
Proof. Let U € GL(M). Then

(dv,u) < (Bu,u) VueM = (Appp)up) < (Buyuwpup) YueM
=4 (A[U]v,v) < (B[U]v,v) Vv € M.

The following fact is used extensively.
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LEMMA A.2 For A symmetric, positive semidefinite and X € M (M) being any square
matriz, XT AX is positive semidefinite and

Xl = (AXu, Xu) = (XT AXu,u).
a

A.4. Orthoprojectors. Let M be a finite dimensional Euclidean vector space

with the scalar product (-, ).
DEFINITION A.2 (see i.e./[KM86]) Let A be symmetric and positive definite. A linear
operator P : M — M 1s called an A-orthoprojector if

e P2=p

e PTA = AP, i.e. P is selfadjoint with respect to (4-,-).
COROLLARY A.l1 If P is an A-orthoprojector, then Hu,||f1 = ||Pull} + ||(I - P)u||2A
and ||P||, < 1.

A.5. The contraction number of the preconditioned Richardson itera-
tion.
THEOREM A.l Let A be a symmetric, positive definite operator and B be symmetric
satisfying

A_B< A< A, B.
Then

|7 —wB'lAHA < 6(w) = max{|l —wA_|, |1 —wAs|}

oy

o

- 2 . - .
Forw = 5—457, 6(w) reaches its minimum

M

+
Proof. i.e. [D’j89). o

>

A.6. The angle between subspaces in the energy scalar product and
block diagonal preconditioning. The following theorem is a collection of well
known results:

THEOREM A.2 Let M = M; ® M, and

A Agn
A = ,
( A1 A2 )
_ Aqyq 0
Da = ( 0 Az )
S = Ay - AnAlAn.

Then the following inequalities are valid (i.e. [D’j89],[Man90]):

(1-7)Da< A <(1+7)Da,
(1—9%)422< § < An.

Here, v is the cosine of angle between M; and My in the A-energy scalar product
and can be calculated in the following ways:

Y =gt sup | (Aug, uz) |
N 0ur€Mi,0#uzeMs [[Uall 4 [luz2]l 4
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[ABDJP81]

[AV90]

[Axe82]

(BDS81]
(BHS83)

[BMP87]

[BP87]

[(BPX91]

[DEs9]

[DIs7]

[D’j89]
[FG91a]

[FG91b]
[Gar9o]

[HLM91a]

[HLM91b]

[HT91]

[JLM* 89]

[KM86]

[Kuz90]

2(}1U1,UQ)
sup —
O#u; EM;,0#uzEM; HUIHA + H'U'ZHA
(A21 A7 Arzuz, up)
sup
0#uzeM;  (A2zuz, up)

[Axe82]

= p(Azy A2 AT Arg) [HLM91a]

REFERENCES.

R. ALCOUFFPE, A. BRANDT, J. DENDY JR, AND J. PAINTER, The multi-grid method
for the diffusion equation with sirongly discontinuous coefficients, SIAM J. Sci.
Stat. Comput., 1 (1981), 430-454.

O. AXBLSSON AND P. S. VASSILEVSKI, Algebraic multilevel preconditioning meth-
ods, III, tech. rep., Cath. Univ. Dept. of Math., Nijmegen, 1990. Report 9045.
O. AXELSSON, On multigrid methods of the two-level type, in Multigrid Methods,
Proceedings Kdln-Porz, November 1981, W. Hackbusch and U. Trottenberg, eds.,
vol. 960 of Lecture Notes in Mathematics, Berlin, 1982, Springer Verlag, 352-367.
R. BANK AND T. DUPONT, An optimal order process for solving finite element
equations, Mathematics of Computation, 36 (1981), 35-51.

D. BrAess AND W. HACKBUSCH, A new convergence proof for the multigrid
method including the V-cycle, SIAM J. Num. Anal., 20 (1983), 967-975.

F. Brezz1, L. MARINI, AND P. PIETRA, Two-dimensional ezponential fitting and
applications to semiconductor device equations, preprint, IANCR, Pavia, 1987.
Pubblicazioni N.597.

J. BRAMBLE AND J. PASCIAK, New convergence estimates for multigrid algorithma,
Mathematics of Computation, 49 (1987) 180, 311-331.

J. BRAMBLE, J. PAsCIAK, AND J. XU, The analysis of multigrid algorithms with
nonnested spaces or noniherited quadratic forms, Mathematics of Computation,
56 (1991), 1-34.

W. DAHMEN AND L. ELSNER, Algebraic multigrid methods and the Schur com-
plement, in Robust Multigrid-Methods, W. Hackbusch, ed., vol. 23 of Notes on
numerical fluid mechanics, Vieweg, Braunschweig, 1989, 58-69.

J. DENDY JR., Two multigrid methods for three-dimensional problems with dis-
continuous and anisotropic coefficients, SIAM J. Sci. Stat. Comput., 8 (1987) 2,
673-685. '

E. D’JAKONOV, Minimizacija vyéislitelnoj raboty, Nauka, Moskva, 1989.

J. FUHRMANN AND K. GARTNER, Incomplete factorizations and linear multigrid
algorithms for the semiconductor device equations, in Proccedings of the IMACS
international symposium on iterative methods in linear algebra, R. Beauwens and
P. de Groen, eds., Amsterdam, 1991, Elsevier. to appear.

y A multigrid method for the solution of a convection - diffusion equation
with rapidly varying coefficients, in Hackbusch and Trottenberg [HT91].

K. GARTNER, [terative Algorithmen fir die 3D-Bauelementesimulation, in 4.
Tagung Schaltkreisentwurf, Dresden, 1990.

G. Haasg, U. LANGER, AND A. MEYER, The approzimate Dirichlet domain de-
composition method. part I: An algebraic approach, Computing, 47 (1991), 137-
151.

y The approzimate Dirichlet domain decomposition method. part II: Appls-
cations to 2nd-order elliptic B.V.P.s, Computing, 47 (1991), 153-167.

W. HACKBUSCH AND U. TROTTENBERG, eds., Proceedings of the Third European
Multigrid Conference, October 1 - 4,1990, Bonn, Germany, vol. 98 of ISNM,
Basel, 1991, Birkhauser Verlag.

M. June, U. LaNGER, A. MEYER, W. QUECK, AND M. SCHNEIDER, Multigrid
preconditioners and their applications, in Third Multigrid Seminar, Biesenthal,
May 2-6,1988, G. Telschow, ed., Karl-Weierstrafl-Institut fiir Mathematik, Berlin,
1989. Report R-MATH-03/89.

A. KOSTRIKIN AND J. MANIN, Linejnaja algebra i geometrija, Nauka, Moskva,
1986.

J. KuzNecov, Multigrid domain decomposition methods, in Proceedings of the
Third International Symposium on Domain Decomposition Methods for Partial

25



[Mang0]
[McC87]
[MMB87]
[Pop91]
[RS87]

[Schss]

[Sto91]

[Szi91]

[Var62]

Differential Equations, Houston, Texas, March 20-22,1989, T. Chan, R. Glowinski,
J. Periaux, and W. O.B., eds., Philadelphia, 1990, STAM, 290-313.

J. MANDEL, On block diagonal and Schur complement preconditioning, Numer.
Math., 58 (1990), 79-93.

S. McCoRMICK, ed., Multigrid methods, vol. 4 of Frontiers in Applied Mathemat-
ics, SIAM, Philadelphia, 1987.

J. MANDEL, S. MCCORMICK, AND R. BANK, Variational multigrid theory, in Mc-
Cormick [McC87], ch. 5, 131-177.

C. Pora, ILU decomposition for coarse grid correction step on algebraic multi-
grid, in Hackbusch and Trottenberg [HT91].

J. Ruce AND K. STUBEN, Algebraic multigrid, in McCormick [McC87], ch. 4,
73-130.

N. SCHIEWECK, A multigrid convergence proof by a strengthened Cauchy inequal-
tty for symmetric elliptic boundary value problems, in Second Multigrid Seminar,
Garzau, November 5-8,1985, G. Telschow, ed., Karl-Weierstraf-Institut fiir Math-
ematik, Berlin, 1986, 49-62. Report R-MATH-08/86.

G. STOYAN, 1991. Lecture held at the Sixth Multigrid Seminar, Clausnitz, April
29 - May 3.

H. Sz1LLAT, Multigridkonvergenzabschdtzungen bei Verwendung eines "falschen”
Grobgitteroperators, preprint, Karl-Weierstraf-Institut fiir Mathematik, 1991. P-
MATH-12/91.

R. VARGA, Matriz iterative analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.

26



Veréffentlichungen des Instituts fiir Angewandte Analysis
und Stochastik

Preprints 1992

1. D.A. Dawson and J. Gértner: Multilevel large deviations.

2. H. Gajewski: On uniqueness of solutions to the drift-diffusion-model of semiconductor
devices.






