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Non-equilibrium steady states as saddle points and
EDP-convergence for slow-fast gradient systems

Alexander Mielke

Abstract

The theory of slow-fast gradient systems leads in a natural way to non-equilibrium steady
states, because on the slow time scale the fast subsystem stays in steady states that are driven
by the interaction with the slow system. Using the theory of convergence of gradient systems in
the sense of the energy-dissipation principle shows that there is a natural characterization of these
non-equilibrium steady states as saddle points of a Lagrangian where the slow variables are fixed.
We give applications to slow-fast reaction-diffusion systems based on the so-called cosh-type
gradient structure for reactions. It is shown that two binary reaction give rise to a ternary reaction
with a state-dependent reaction coefficient. Moreover, we show that a reaction-diffusion equation
with a thin membrane-like layer convergences to a transmission condition, where the formerly
quadratic dissipation potential for diffusion convergences to a cosh-type dissipation potential for
the transmission in the membrane limit.

1 Introduction

A gradient system (GS) is a triple (M, E ,R) where M is the state space, which is either a smooth
manifold or a convex subset of a Banach space X such that the tangent spaces TuM and cotangent
spaces T∗uM are well defined for u ∈ M . For notational simplicity we restrict to the case that M is
equal to a reflexive Banach space X such that TuM = X and T∗uM = X∗.

The energy functional E : X → R∞ =: ]−∞,∞] is assumed to be differentiable in a suitable subset
dom(DE). The function R : TM = X×X → [0,∞] denotes the dissipation potential, which
means that for all u ∈ X , the function R(u, ·) : TuX → [0,∞] is lower semi-continuous, convex
and satisfies R(u, 0) = 0. By R∗ : T∗M = X×X∗ → [0,∞] we denote the dual dissipation
potential which is defined via

R∗(u, ξ) := sup
{
〈ξ, v〉 − R(u, v)

∣∣ v ∈ X }.
The gradient-flow equation associated with the GS (X, E ,R) can be written in two equivalent forms,
namely

(I) 0 ∈ ∂vR(u, u̇) + DE(u) ⇐⇒ (II) u̇ ∈ ∂ξR∗
(
u,−DE(u)

)
,

where ∂vR and ∂ξR∗ denote the subdifferentials of the convex functions R(u, ·) and R∗(u, ·), re-
spectively, see [Mie16] and the references therein.

Under suitable technical assumptions (such as the validity of a suitable abstract chain rule) there is
a third equivalent formulation according to the energy-dissipation principle (EDP). If u : [0, T ] → X

satisfies
∫ T

0

[
R(u, u̇)+R∗(u,−DE(u)

)]
dt < ∞, then (I) and (II) hold a.e. in [0, T ] if and only if

the energy-dissipation inequality (EDI) holds, namely

E(u(T )) +

∫ T

0

(
R(u, u̇)+R∗

(
u,−DE(u)

))
dt ≤ E(u(0)). (1.1)
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A. Mielke 2

If we now have a family (X, Eε,Rε)ε>0 of GS with a small parameter ε > 0, we say that this family
converges in the sense of the EDP to the limit (X, Eeff ,Reff) if we have the following Γ-convergences

Eε
Γ→ Eeff in X and Dε

Γ→ D0 in L2([0, T ];X), (1.2)

where the dissipation functionals Dε : L2([0, T ];X → [0,∞] are defined as follows:

Dε

(
u(·)

)
:=

∫ T

0

(
Rε(u, u̇)+R∗ε

(
u,−DEε(u)

))
dt for ε > 0,

D0

(
u(·)

)
:=

∫ T

0

(
Reff(u, u̇)+R∗eff

(
u,−DEeff(u)

))
dt for ε = 0.

We refer to [LM∗17] for the first discussion of this concept, to [MMP21] for refinements, and to [DFM19,
Fre19, MPS21, FrL21, PeS22] for various applications of this approach.

We emphasize two important properties of EDP-convergence: The first simply states that if uε are
solutions to (X, Eε,Rε) and we have convergence uε(t)→ u(t) in a suitable way and we have well-
prepared initial conditions, i.e. Eε(uε(0)) → Eeff(u(0)), then u is a solution of the effective gradient
system (X, Eeff ,Reff). The second property states that Reff can be different a potentially existing

Γ-limitR0, i.e.Rε
Γ→ R0. The point is that Dε involves a nonlinear construction for the pair (Eε,Rε),

which allows to transfer microscopic information of the energy (encoded in Eε−Eeff ) into the dissipa-
tion Reff . We will see this below in Section 5.3 where R∗ε(u, ·) is quadratic and has a quadratic limit
R∗0 butR∗eff contains a cosh-type membrane part for the transmission through the membrane.

The slow-fast GS under consider are assumed to be of the following form

X = Xslow×Xfast, Eε(U,w) = E(U) + ε e(w), R∗ε(U,w; Ξ, ξ) = R∗
(
U,w; Ξ, 1

ε ξ
)
,

which provides only one class of GS where slow-fast effects can be studied (see [MiS20, MPS21] for
other scalings). The associated gradient-flow equation reads(

U̇

εẇ

)
= ∂Ξ,ζR

∗(
U,w;−DE(U),−De(w)

)
,

which shows nicely the slow-fast structure, because ε only appears once, namely in front of the time
derivative ẇ of the fast variable w ∈ Xfast.

To pass to the EDP limit we observe that Dε takes the simple form

Dε

(
U,w

)
:=

∫ T

0

(
R(U,w; U̇ , ε ẇ)+R∗

(
U,w;−DE(U),−De(w)

))
dt

and it is tempting to drop the term εẇ and minimize the integrand for each t ∈ [0, T ] with respect
to the w. However, we will see that this approach is not correct because we have to find the correct
non-equilibrium steady states which create a nontrivial flux as a limit of εẇ.

We follow the approach in [LM∗17] and estimateR from below via

R(U,w; U̇ , ε ẇ) ≥
〈(Ξ

ζ

)
,

(
U̇

εẇ

)〉
−R∗(U,w; Ξ, ζ),

where (Ξ, ζ) : [0, T ]→ X∗slow×X∗fast are smooth test functions. Thus, we have

Dε(U,w) ≥
∫ T

0

(〈(Ξ

ζ

)
,

(
U̇

εẇ

)〉
−LE,R(U,w; Ξ, ζ)

)
dt

with LE,R(U,w; Ξ, ζ) = R∗(U,w; Ξ, ζ)−R∗
(
U,w;−DE(U),−De(w)

)
.
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Non-equilibrium steady states and EDP convergence 3

It turns our that we can now pass to the limit ε → 0 by omitting the term ε ẇ. Then, we can then
maximize with respect to ζ and minimize with respect to w for each t ∈ [0, T ]. Hence, in terms of the
Lagrangian LE,R we are lead to the following sup-inf problem:

Lred(U,Ξ) := sup
w∈Xfast

inf
ζ∈X∗fast

LE,R(U,w; Ξ, ζ). (1.3)

We say that the reduced Lagrangian Lred has a duality structure if there existsReff : Xslow×Xslow →
[0,∞] such that it can be written as

Leff(U,Ξ) = Reff(U,Ξ)−R∗eff

(
U,−DE(U)

)
. (1.4)

Using the EDP backwards, we see that the effective GS (Xslow, E,Reff) with the gradient-flow equa-
tion

U̇ = ∂ΞR∗eff

(
U,−DE(U)

)
indeed describes the limiting dynamics.

Thus, the main point in applying this theory successfully is to show the existence of the duality structure
(E,Reff) for the reduced Lagrangian Lred. And it is here were the theory of NESS comes into play.
The definition of NESS in the above context means that we fix U ∈ Xslow and want to find the NESS
w ∈ Xfast such that(

0

0

)
=

(
DΞR

∗(
U,w;−DE(U),−De(w)

)
DζR

∗(
U,w;−DE(U),−De(w)

))+

(
V

0

)
, U = U ∈ Xslow, V ∈ Xslow. (1.5)

We refer to (2.10) for the general case involving port mappings P : X → Y and P ◦ : X∗ → Y ∗,
which in (1.5) take the simple form Y = Xslow, P (U,w) = U , and P ◦(Ξ, ζ) = Ξ. We observe that
fixing U = U artificially generates a flux V which is generated by the NESS w associated with U .

The first major link between the theory of NESS and the above saddle-point reduction for Lagrangians
is the fact that NESS w solving (1.5) give rise to a global null-saddle (w, ζ) =

(
w,−De(w)

)
for

LE,R
(
U, ·;−DE(U), ·

)
, i.e.

∀ (w, ζ) ∈ Xfast×X∗fast : LE,R
(
U,w;−DE(U),−De(w)

)
≤ LE,R

(
U,w;−DE(U),−De(w)

)
= 0 ≤ LE,R

(
U,w;−DE(U), ζ

)
.

Proposition 2.7 provides conditions under which null-saddles automatically have the form(
w,−De(w)

)
, where w is NESS solving (1.5). There seem to exist a number of different variational

characterizations (also called extremum principles) of NESS, but to the best of the author’s knowl-
edge the saddle-point formulation given here is new. We refer to [ASGB95, StW98, DD∗12], [DeM84,
Cha. V], and [Tsc00, Ch. 30, pp. 213-215]. In particular, [StW98] has the appealing title “Maximum of
the Local Entropy Production Becomes Minimal in Stationary Processes”.

The second important link arises from the fact that the existence of null-saddles implies
Lred

(
U,−DE(U)

)
= 0 with Lred from (1.3). However, Proposition 2.14 shows that this condi-

tion (for all U ∈ Xslow) is exactly the crucial condition for the existence of a duality structure in the
sense of (1.4). Theorem 2.15 provides the main result giving the explicit construction of Rred, which
involves a nontrivial series of duality arguments. In particular, the convexity of ζ 7→ Lred(w, ζ) needs
a special argument.

Section 3 gives a more detailed account of the reduction of slow-fast gradient systems as discussed
above. On particular, Section 3.2 it also treats the case where the slow component U ∈ Xslow and the
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A. Mielke 4

fast component w ∈ Xfast only interact by a constraint PslowU = Pfastw, where Pslow : Xslow → Y
and Pfast : Xfast → Y are the port mappings. In that case the effective dual dissipation potential is
the sum

R∗eff(U,Ξ) = R∗slow(U,Ξ) + R∗Y
(
PslowU, P

◦
slowΞ

)
,

i.e. RY encodes all the information on the NESS in Xfast.

Section 4 provides two ODE examples, the first being that of a general quadratic dissipation potential
and quadratic energiesE and e. Everything can be explicitly calculated such that this case is helpful to
obtain guidance when the abstract theory may be overwhelming. The second example treat a reaction-
rate equation for four species A, B, C , and D undergoing two binary reaction pairs A + B 
 D
and A+D 
 C . Starting with constant reaction coefficients κ1,2 for the two reaction and assuming
that the vector of equilibrium densities is (a∗, b∗, c∗, dε) with dε = εwε the transformation d(t) =
εw(t) provides exactly a slow-fast GS as above, where the energies E and e are relative Boltzmann
entropies andR∗ is of cosh-type. Applying the above reduction method via NESS we find an effective
GS of cosh-type for the density vector (a, b, c) that corresponds to the ternary reaction pair 2A+B 

C . The interesting point is that, in contrast to the result in [MPS21], the cosh-type gradient structure is
preserved, but now the effective reaction coefficient depends o the density a.

Section 5 revisits the results obtained in [LM∗17] but now from a more general perspective. Moreover,
the results are generalized by allowing for a reaction term which models sorption into and desorption
from the background. The model starts from a one-dimensional diffusion on an interval, where the dif-
fusion coefficient in the central membrane region ]−ε, ε[ is scaled by ε. Using Otto’s gradient structure
(see [Ott96, Ott98, JKO98, Ott01]) we start again from relative Boltzmann entropiesE and e and from
quadratic dual dissipation potentialsR∗(U,w; · , · ). In the limit ε→ 0 the membrane part collapses
to an interface generating transmission conditions. Our methods shows that RY is of cosh-type, which
shows that it has inherited properties from the Boltzmann entropy e. Indeed, the Boltzmann function
λB(z) = z log z − z + 1 with λ′B(z) = log z generates by the saddle-point problem the cosh-type
function C∗(ζ) = 4 cosh(ζ/2) − 4. Theorem 5.1 contains a much shorter derivation of Reff than in
[LM∗17, PeS22], and Theorem 5.2 generalizes the result to the case including a reaction term that
scales like 1/ε in the membrane region ]−ε, ε[.
Finally, Appendix A provides classical result on global saddle points as discussed in [EkT74]. For the
readers convenience, we include a full proof for the existence of saddle points for convex-concave
Lagrangians.

2 Constrained saddle points

We first collect some basic facts about unconstrained saddle points, then introduce the notion of
constrained saddle points using the port mappings P : X → Y and P ◦ : X∗ → Y ∗ and show that
under a suitable additional condition that these constrained saddle points are indeed NESS solving
(1.5) if they are null-saddles. Section 2.3 shows a further characterization if NESS as null-minimizers.
Section 2.4 provides the main result concerning the duality structure for reduced Lagrangians Lred if
the associated NESS are null-saddles.
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Non-equilibrium steady states and EDP convergence 5

2.1 Classical saddle points

For a gradient system (X, E ,R) we consider the Lagrange functional

LE,R(u, ξ) = R∗(u, ξ)−R∗(u,−DE(u)), (2.1)

which is defined on X×X∗. It will be the source of a series of results concerning NESS. We will
simply write L in place of LE,R if the relevant GS (X, E ,R) is clear.

Remark 2.1 (Slope dissipation term) In the definition of LE,R, we use the formulaR∗(u,−DE(u))
to denote the so-called slope dissipation, which should properly be defined by its weak lower semi-
continuous hull, namely

S(u) := inf
{

lim inf
n→∞

R∗(un,−DE(un))
∣∣∣ un ⇀ u, un ∈ dom(DE)

}
. (2.2)

For example the linear diffusion equation u̇ = ∆u with no-flux boundary conditions is the gradient-flow
equation associated with the Otto gradient system (P(Ω), EBz,R∗Otto) with EBz(u) =

∫
Ω
λB(u) dx,

andR∗Otto(u, ξ) =
∫

Ω
1
2
|∇ξ|2udx. We obtain the Fisher information S(u) =

∫
Ω

2|∇
√
u|2 dx, which

is well defined even when u = 0 in a set of positive measure, whereas u ∈ dom(DE) needs u > 0
a.e.

Subsequently, we will still writeR∗(u,−DE(u)) to emphasize the structure of the problem, but when-
ever analysis is done, we replace this term by S .

Obviously, for all u ∈ X the functions L (u, ·) : X∗ → R are convex, and in some cases we have
concavity of L (·, ξ) for all ξ ∈ X∗. In the case of quadratic energy E(u) = 1

2
〈Au, u〉 − 〈`, u〉 and

a quadratic dual dissipation potentialR∗(u, ξ) = 1
2
〈ξ,Kξ〉 we obtain the simple quadratic Lagrange

functional

Lquadr(u, ξ) =
1

2
〈ξ,Kξ〉 − 1

2

〈
Au−`,K(Au−`)

〉
. (2.3)

which has the above-mentioned concave-convex property on X×X∗.

Definition 2.2 (Global saddle points) Given two Banach spaces X and Y and a functional L :
X×Y → R, we call a point (x, y) ∈ X×Y a (global) saddle point for L if

∀x ∈ X, y ∈ Y : L (x, y) ≤ L (x, y) ≤ L (x, y).

Thus, we are in the situation of classical saddle-point theory, see [EkT74] and Appendix A that collects
the most important facts. In particular, we will use the the fact that the infimum over ξ ∈ X and the
supremum over u ∈ X can be interchanged if a saddle point exists, see Lemma A.1:

(a) SIL := sup
u∈X

inf
ξ∈X∗

L (u, ξ) ≤ inf
ξ∈X∗

sup
u∈X

L (u, ξ) := ISL (2.4a)

(b) saddle point (u, ξ) exists =⇒ SIL = ISL = L (u, ξ). (2.4b)

For Lquadr in (2.3) with invertible A we see that (u, ξ) is a saddle point if and only if ξ = 0 (use
K > 0) and DE(u) = Au−` = 0, viz. u = A−1`. We then have L (u, 0) = 0. If A is not invertible,
we have multiple saddle points, namely all u minimizing u 7→ 1

2

〈
Au−`,K(Au−`)

〉
. Then, one has

L (u, 0) = −min
{

1
2
〈Au−`,K(Au−`)〉

∣∣ u ∈ X }.
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A. Mielke 6

As a second example we consider

X = Ri∗ , E(u) =
1

2
〈Au, u〉, and R(v) =

i∗∑
i=1

(
σ|vi|+

ν

2
|vi|2

)
= σ|v|1 +

ν

2
|v|22. (2.5)

Now we have R∗(ξ) =
∑i∗

i1
1
2ν

(
max{|ξi|−σ, 0}

)2
, which means R∗(u, ξ) = 0 for |ξ|∞ ≤ σ.

Hence, we have many saddle points (u, ξ), namely all pairs with |ξ|∞ ≤ σ and |Au|∞ ≤ σ. Again
all saddle points satisfy L (u, ξ) = 0.

A general characterization is the following. We also complement the result with a discussion of critical
points (ũ, ξ̃) of L is they happen to be of the form ξ̃ = −DE(ũ).

Theorem 2.3 (Unconstrained saddle points) Consider a GS (X, E ,R) and set L = LE,R as in
(2.1).

(a) A pair (u, ξ) is a (global) saddle point of L if and only if

R∗(u, ξ) = 0 and R∗(u,−DE(u)) = min
u∈X
R∗(u,−DE(u)).

(b) If there exists ueq ∈ X with DE(ueq) = 0, then all saddle points satisfy R∗
(
u,−DE(u)

)
= 0,

and hence L (u, ξ) = 0.

(c) If in addition to the condition in (b), the dual dissipation potentialsR∗(u, ·) : X∗ → R are strictly
convex, then all saddle points (u, ξ) satisfy ξ = 0 and DE(u) = 0.

Proof. Part (a). Minimizing L with respect to ξ ∈ X∗ and using use 0 = R∗(u, 0) ≤ R∗(u, ξ)
yields

SIL = sup
u∈X

(
−R∗(u,−DE(u))

)
=: S ≤ 0.

Moreover, choosing ξ = 0 we obtain an upper bound for ISL , namely ISL ≤ S. Thus, with (2.4a)
we conclude SIL = ISL = S.

Hence, we conclude that a saddle point (u, olξ) must satisfyR∗(u,−DE(u)) = −S andR∗(u, ξ) =
0, which is the desired result (a).

Part (b). We obtain S = 0 and the result follows.

Part (c). This is an immediate consequence of the implication R∗(u, ξ) = 0 ⇒ ξ = 0 and of Part
(b).

The following result will not be used in the sequel, but it gives a first insight why the saddle-point theory
for LE,R is useful. The point is that there is a certain redundancy in the Euler-Lagrange equation for

critical points (ũ, ξ̃) of LE,R, when the critical point satisfies ξ̃ = −DE(ũ).

Lemma 2.4 (Euler-Lagrange equations if ξ̃ = −DE(ũ)) The (ũ, ξ̃) = (ũ,−DE(ũ)) ∈ X×X∗ is
a critical point of L = LE,R if and only if ∂ξR∗(ũ,−DE(ũ)) = 0 ∈ X , i.e. ũ is a steady state for
the gradient system (X, E ,R).

Proof. We have DξL (u, ξ)[ξ̃] = DξR∗(u, ξ)[ξ̃] and

DuL (u, ξ)[ũ] = DuR∗(u, ξ)[ũ]−DuR∗(u,−DE(u))[ũ] + DξR∗(u,−DE(u))
[
D2E(u)[ũ]

]
.
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Non-equilibrium steady states and EDP convergence 7

Inserting (u, ξ) = (ũ−DE(ũ) we see a cancellation and the two equations for a critical point reduce
to

0 = DξL (u∗, ξ∗)[ξ̃] = DξR∗(u∗, ξ∗)[ξ̃], 0 = DuL (u∗, ξ∗)[ũ] = DξR∗(u∗, ξ∗)
[
D2E(u∗)[ũ]

]
.

Thus, we see that it is necessary and sufficient to satisfy ∂ξR∗(u∗, ξ∗) = 0.

Remark 2.5 (NESS in perturbed gradient systems) If a the gradient-flow equation of a GS (X, E , E)
is perturbed by a general vector field V in the form

u̇ = V (u) + ∂ξR∗(u,−DE(u)), (2.6)

then steady states can still be obtained as stationary points of a Lagrangian L̃ , namely

L̃ (u, ξ) = R∗(u, ξ)− 〈ξ, V (u)〉 − R∗(u,−DE(u))− 〈DE(u), V (u)〉. (2.7)

Assume that u∗ is a steady state for (2.6), namely

0 = V (u∗) + ∂ξR∗(u∗,−DE(u∗)), (2.8)

then (u, ξ) = (u∗,−DE(u∗)) is a stationary point for L̃ and obviously the critical value is 0, i.e.

L̃ (u∗,−DE(u∗)) = 0.

To see the stationarity we observe DξL̃ (u, ξ) = DξR∗(u, ξ) − V (q), and (2.8) yields

DξL̃ (u∗,−DE(u∗)) = 0 as desired. For the derivative with respect to u we have

DuL̃ (u, ξ)[w] = DuR∗(u, ξ)[w]− 〈ξ,DV (u)[w]〉 −DuR∗(u,−DE(u))[w]

−DξR∗(u,−DE(u))[−D2E(u)[w, ·]〉 −D2E(u)[w, V (u)]−DE(u)
[
DV (u)[w]

]
.

Inserting ξ = −DE(q) the first term cancels the third, and the second term cancels the last. Moreover,

the forth and the fifth terms cancel if we additionally use (2.8). Hence, DuL̃ (u∗,−DE(u∗)) = 0, and

(u∗,−DE(u∗)) is indeed a stationary point for L̃ .

2.2 Constrained saddle points

Hence, we now study the constrained case, where the port mappings P : X → Y and P ◦ : X∗ →
Y ∗ are used to drive the GS (X, E ,R). We start by introducing a constrained saddle-point problem
and then relate the existence of constrained saddle points to the existence of NESS.

Problem 2.6 (Constrained saddle-point problem (CSPP)) Given the GS (X, E ,R) with Lagrangian
LE,R and the port mapping P ◦ : X∗ → Y ∗, the constrained saddle-point problem for η ∈ Y ∗ con-
sists in finding a saddle point (uη, ξη) ∈ X×X∗ for

∀ u ∈ X with P ◦DE(u) = η ∀ ξ ∈ X∗ with P ◦ξ = −η :

LE,R(u, ξη) ≤ LE,R(uη, ξη) ≤ LE,R(uη, ξ).
(2.9)

The saddle point (uη, ξη) ∈ X×X∗ is called a null-saddle if LE,R(uη, ξη) = 0.

If for some η 6= 0 we find a saddle-point (uη,−DE(uη)), then uη is called a Non-Equilibrium Steady
State (NESS) corresponding to the constraint η ∈ Y ∗.
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A. Mielke 8

In light of our theory, it will be important to conclude that a constrained saddle point is actually a NESS.
Under natural assumption this can be concluded for null saddle points.

Proposition 2.7 (Null-saddles and NESS) If a constrained saddle point (uη, ξη) ∈ X×X∗ is a
NESS, then it is a null-saddle.

If R∗(uη, ·) : X∗ is strictly convex and (uη, ξη) ∈ X×X∗ is a null-saddle, then it is a NESS, i.e.

ξ = −DE(u).

Proof. The first statement follows directly from L (u,−DE(u)) = 0 for all u ∈ X .

For the opposite implication we start from a general null-saddle (u, ξ). From 0 = L (u, ξ) ≤ L (u, ξ)
for all ξ with P ◦ξ = η we see that ξ = ξ and ξ = −DE(u) are global minimizers. By strict convexity
the minimizer is unique, which proves the assertion.

We recall the example in (2.5) whereR∗ is not strictly convex, because ofR∗(ξ) = 0 for |ξ|∞ ≤ σ.
The saddle points (u, ξ) are characterized by |Au|∞ ≤ σ and |ξ|∞ ≤ σ and all of them are null-
saddles. However, only the ones satisfying additionally ξ = −Au are NESS. This shows that the
result does not hold without a further condition like our strict convexity.

The next result shows that a NESS obtained from as a constrained saddle point satisfy the desired
Euler-Lagrange equation (1.5), where port mapping P ◦ features twice, namely first as constraint on
the state and secondly to insert the Lagrange multiplier v ∈ Y , which denotes the necessary fluxes
to support the NESS u induced by the constraint P ◦DE(u) = −η.

Proposition 2.8 (Euler-Lagrange equations for NESS) If the saddle point in the CSPP (2.6) has
the form (u, ξ) = (u,−DE(u)), then the corresponding Euler-Lagrange equations for NESS reads

0 = DξR∗(u,−DE(u))− P ◦∗v, P ◦DE(u) = −η ∈ Y ∗, v ∈ Y. (2.10)

Proof. In (2.9) we may consider variations ξ̂ and û with P ◦ξ̂ = 0 and P ◦D2E(u)[û] = 0. Thus, we
obtain

0 = DξL (u, ξ)[ξ̂] = DξR∗(u, ξ)[ξ̂] = 〈ξ̂,DξR∗(u, ξ)〉X ,
0 = DuL (u, ξ)[û] = DuR∗(u, ξ)[û]−DuR∗(u,−DE(u))[û] + DξR∗(u,−DE(u))

[
D2E(u)[û]

]
.

Inserting ξ = −DE(u) we obtain a cancellation in the second line leading to

0 = 〈ξ̂,DξR∗(u,−DE(u))〉X and 0 = 〈D2E(u)[û],DξR∗(u, ξ)〉X .

However, by the choice of admissible variations, we see that the second relation follows from the first.
Hence we have DξR∗(u,−DE(u)) ∈

(
ker(P ◦)

)⊥
.

To conclude, we simply use Fredholm’s alternative (theorem):(
ker(P ◦)

)⊥
:=
{
x ∈ X

∣∣ P ◦ξ = 0 ⇒ 〈ξ, x〉X = 0
}

= ran(P ◦∗) :=
{
P ◦∗y

∣∣ y ∈ Y }.
With this we have DξR∗(u,−DE(u)) ∈

{
P ◦∗y

∣∣ y ∈ Y
}

, which gives y ∈ Y such that (2.10)
holds.

DOI 10.20347/WIAS.PREPRINT.2998 Berlin 2023



Non-equilibrium steady states and EDP convergence 9

Under the assumption that for all η ∈ Y ∗ there exists a unique NESS uη of (2.10) with Lagrange
parameter v = vη, we can define the port relation

P : Y ∗ → Y ; η 7→ vη.

It is this port relation which will play a crucial role in the sequel. As a first result we observe, that in
the case that R is independent of the state, the port relation can be obtained easily from R, it is
independent of the energy E , and it is given as the differential of an effective potential RP. We refer to
Section 4.1 to a simple and explicit case.

Proposition 2.9 (Port relation for state-independent dissipation) If R : X → [0,∞] is a state-
independent dissipation potential, then the port relation P is given by

v = P(η) = ∂R∗Y (v) with RY (v) = R(P ◦∗v).

Equivalently, R∗Y is characterized via R∗Y (η) := infξ:P ◦ξ=ηR∗(ξ).

Proof. By Fenchel’s equivalence we have ξ ∈ ∂Ψ(v) ⇐⇒ v ∈ ∂Ψ∗(ξ). Hence, the NESS equation
(2.10) can be rewritten as

DR
(
P ◦∗v

)
= −DE(u), P ◦DE(u) = −η, v ∈ Y,

where we used that R∗, and hence also R, are independent of u. Hence, we have the relation η =
P ◦DR

(
P ◦∗v

)
= DvRY (v), which is independent of u. Applying Fenchel’s equivalence once again

we obtain the assertion v = DηR
∗
Y (η).

The second characterization of R∗Y follows by an application of Lemma 2.12.

Looking into the proof of the above theorem, we can see that the inverse port relation P−1 : Y → Y ∗

in the state-dependent case has the more general form

η = P ◦DR
(
u(v); v

)
,

where u(v) is the NESS associated with the flux v ∈ Y . It is surprising that also in such cases one
can show that P−1(v) = DRred(v) for a reduced dissipation potential Rred that is now depending
onR and E , see Section 3.

We now provide a general existence result for constrained saddle points and for NESS. For this we
use the following major assumptions on L = LE,R and B : X∗ → Z .

∀u ∈ X, ξ ∈ X∗ : L (u, ·) : X∗ → R and −L (·, ξ) : X → R are

lower semi-continuous, strictly convex, and coercive;

}
(2.11a)

∀ η ∈ Y ∗ :
{
u ∈ X

∣∣ P ◦DE(u) = η
}

is closed and convex. (2.11b)

Theorem 2.10 (Existence of constrained saddle points) Assume that (X, E ,R) and P ◦ : X∗ →
Y ∗ satisfy (2.11). Then, for each η ∈ Y ∗ there exists a unique constrained saddle point (uη, ξη) for
L (in the sense of (2.9)).

If additionally the mappingX 3 u 7→ DE(u) ∈ X∗ is surjective, then these saddles points are NESS
satisfying ξη = −DE(uη) and (2.10).
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Proof. The existence follows by applying Proposition A.2 with U =
{
ξ ∈ X∗

∣∣ P ◦ξ = −η
}

and

Ṽ =
{
u ∈ X

∣∣P ◦DE(u) = η
}

, where we extend L by−∞ outside of Ṽ if it is not a linear space.

Thus, we find a unique constrained saddle point (uη, ξη) with P ◦DE(uη) = η and P ◦ξη = −η.

Using Proposition 2.7 it is sufficient to show that (uη, ξη) is a null-saddle. Because we already have a
saddle point, it is sufficient to show SIL ≤ 0 ≤ ISL .

For the lower estimate we simply use infξ∈U L (u, ξ) ≤ L (u,−DE(u)) = 0. Taking the supremum

over u ∈ Ṽ we find SIL ≤ 0.

For the upper estimate we start from a general ξ ∈ U such that the surjectivity of DE provides a
uξ ∈ V with ξ = −DE(uξ). With this we have supu∈V L (u, ξ) ≥ L (uξ, ξ) = 0. Now taking the
infimum over ξ ∈ U yields ISL ≥ 0 as desired.

2.3 NESS as minimizers

The main observation of the last section is that the equation (2.10) does not have a simple variational
structure. Its characterization via the above saddle-point theory provides some kind of variational
structure, but needs a doubling of variables. Moreover, in nonlinear problems (non-quadratic L ) the
saddle-point theory for solving infinite-dimensional problem like PDEs is technically very demanding.

The naive way of treating the CSPP (2.9) would be to minimize first with respect to ξ providing ξ =
ΞB(z, u) and such that it remains to study the minimization problem

u 7→ R(u,−DE(u))−R∗(u,ΞB(z, u)) subject to BDE(u) = z.

This approach is doable but has the disadvantage that it is difficult to keep enough control on the
mapping u 7→ ΞB(z, u) to tackle the final minimization problem.

The following result shows that the saddle point can be turned into a minimization problem by applying
a suitable Legendre transformation with respect to the constrained variable ξ, but keeping a dual
parameter Λ ∈ Z∗. Thus, the minimization formulation stays explicit in terms of the constituents of
the GS (X, E ,R). Moreover, it is more directly related to the Euler-Lagrange equations (2.10).

Proposition 2.11 (NESS as minimizers) For all η ∈ Y ∗ any global minimizer (u, y) ∈ X×Y of the
constrained minimization problem

minimize R(u, P ◦∗y) +R∗(u,−DE(u)) + 〈η, y〉Y
over (u, y) ∈ X×Y subject to P ◦DE(u) = η

(2.12)

gives rise to a constrained saddle points (u, ξ) ∈ X×X∗ for (2.9) where we can choose any ξ =
Argmin

{
R∗(u, ξ)

∣∣ P ◦ξ = −η
}

. Vice versa, if (u, ξ) is a constrained saddle point for (2.9), then
(u, y) with y ∈ Argmax

{
〈η, y〉 − R(u, P ◦ ∗y)

∣∣ y ∈ Y } is a global minimizer for (2.12).

Moreover, if (u, y) is a null-minimizer, then (y, ξ) is a null-saddle, and under the additional assumption
of strict convexity ofR∗(u, ·) it defines a NESS solving (2.10).

Proof. We define the auxiliary dissipation potentials Ψu : Y → R∞; y 7→ R(u, P ◦∗y) and can now
apply Lemma 2.12 below. This gives

inf
ξ:P ◦ξ=−η

R∗(u, ξ) = Ψ∗u(−z) = sup
y∈Y

(
−〈η, y〉Y−R(u, P ◦∗y)

)
. (2.13)
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With this we obtain the following chain of identities:

sup
u∈X

P◦DE(u)=η

inf
ξ∈X∗
P◦ξ=−η

LE,R(u, ξ) = sup
u∈X

P◦DE(u)=η

([
inf
ξ∈X∗
P◦ξ=−η

R∗(u, ξ)
]
−R∗(u,−DE(u))

)
(2.13)
= sup

u∈X
P◦DE(u)=η

( [
sup
y∈Y

(
−〈η, y〉Y −R(u, P ◦∗y)

)]
−R∗(u,−DE(u))

)
= − inf

u:P◦DE(u)=η
y∈Y

(
R(u, P ◦∗y) + 〈η, y〉Y +R∗(u,−DE(u))

)
.

This shows that the minimization problem (2.12) is equivalent to the CSSP (2.9) if we choose ξ = ξ ∈
X∗ in (2.13) optimally, i.e. ξ = Argmin

{
R∗(u, ξ)

∣∣ P ◦ξ = −η
}

.

Moreover, the values are the same up to a minus sign. Hence, null-minimizers (u, y) ∈ X×Y cor-
respond to null-saddles (u, ξ) ∈ X×X∗, and the remaining statement follows from Proposition 2.7.

In the above proof the relation in (2.13) relies on the following result.

Lemma 2.12 For a lower semi-continuous and convex Ψ : X → R∞ and linear bounded operator
B : X∗ → Z we have

inf
ξ∈X∗: Bξ=z

Ψ∗(ξ) = sup
Λ∈Z∗

(
〈Λ, z〉Z −Ψ(B∗Λ)

)
.

Proof. Consider a dissipation potential Ψ : X → [0,∞] and a bounded linear mapping A : Y → X

and define the dissipation potential Ψ̃ : Y → [0,∞]; y 7→ Ψ(Ay). In [MaM20, Prop. 6.1] the identity(
Ψ̃
)∗(η) = inf

{
Ψ∗(ξ)

∣∣A∗ξ = η
}

is established. Applying this with Y = Z∗ andA = B∗ : Z∗ →
X the assertion follows.

2.4 Constrained Lagrangians, duality structure, and NESS

When doing reduction or Γ-limits of Lagrangians, we may end up with a general functionK : Y×Y ∗ →
R and may then ask the question whether this function can be written as a Lagrangian LE,R.

Definition 2.13 (Duality structure) We say that a functionK : Y×Y ∗ → R has the duality structure
(E,R), if (Y,E,R) is a gradient system and

K = LE,R, namely ∀ (y, η) ∈ Y×Y ∗ : K(y, η) = R∗(y, η)− R∗(y,−DE(y)).

We observe that for a givenK the dissipation functional R and its dual R∗ are uniquely determined by
R∗(y, η) = K(y, η) − K(y, 0). Hence, we have the following necessary and sufficient conditions of
a duality structure.

Proposition 2.14 (Conditions for duality structure) Given an energy E : Y → R, the function
K : Y×Y ∗ → R has a duality structure (E,R) if and only if

∀ (y, η) ∈ Y×Y ∗ : K(y, η) ≥ K(y, 0), (2.14a)

∀ y ∈ Y : K(y, ·) : Y ∗ → R is convex, (2.14b)

∀ y ∈ Y : K(y,−DE(y)) = 0. (2.14c)

Then, R is given by R∗(y, η) = K(y, η)−K(y, 0).
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Proof. It is obvious that K satisfies (2.14) if it has the duality structure (E,R).

To show the opposite, we observe that R∗K : (y, η) 7→ K(y, η) − K(y, 0) is a dual dissipation
potential because of (2.14a) and (2.14b). Inserting the formula for R∗K into the condition 0 = K(y, η)−
R∗(y, η) + R∗(y,−DE(y)) for the duality structure, we obtain

0 = K(y, η)− R∗K(y, η) + R∗K(y,−DE(y))

= K(y, η)−
(
K(y, η)−K(y, 0)

)
+
(
K(y,−DE(y))−K(y, 0)

)
= K(y,−DE(y)).

Hence, (2.14c) guarantees that this (E,RK) is the desired duality structure.

We return to our constrained saddle point problems by generalizing it in a crucial way. For this we use
the second port function P : X → Y which allows us to impose direct conditions Pu = y on the
state variable, whereas P ◦DE(u) = η does this indirectly. Nevertheless, we always assume there is
an energy E : Y → R, such that

Pu = y =⇒ P ◦DE(u) = DE(y). (2.15)

An important point for understanding of the induced kinetic relation generated by the gradient system
(X, E ,R) with port (P, P ◦) is to study the reduced Lagrangian Lred : Y×Y ∗ → R defined via

Lred(y, η) := sup
u∈X
Pu=y

inf
ξ∈X∗
P◦ξ=η

LE,R(u, ξ). (2.16)

In contrast to the previous analysis, we are now using to independent constraints y ∈ Y and η ∈ Y ∗,
whereas in Section 2.2 we always assumed the compatibility η = −DE(y), cf. (2.15). However,
assuming there are null-saddles under these constraints means that Lred(y,−DE(y)) = 0 holds,
i.e. the necessary (2.14c) holds. Hence, the major part of the following proof goes into showing that
η 7→ Lred(y, η) is convex and attains its minimum value at η = 0. The convexity in η is nontrivial,
because convexity is preserved by taking suprema (over u with Pu = y) but not by taking infima (over
ξ with P ◦ξ = η).

Theorem 2.15 (Duality structure for Lred) Consider a gradient system (X, E ,R) with port map-
pings P : X → Y and P ◦ : X∗ → Y ∗ and a compatible energy E as in (2.15). Assume
that for all y ∈ Y the CSSP (2.9) with η = −DE(y) = −P ◦DE(u) has a null-saddle. Then,
the reduced Lagrangian Lred defined in (2.16) has the duality structure (R,E) with R∗(y, η) =
Lred(y, η)−Lred(y, 0), namely

Lred(y, η) = R∗(y, η)− R∗
(
y,−DE(y)

)
. (2.17)

Proof. The proof relies on the following auxiliary functionals:

M∗ : X×Y ∗ → R∞, M∗(u, η) := inf
ξ∈X∗
P◦ξ=η

(
R∗(u, ξ)−R∗

(
u,−DE(u)

))
,

M : X×Y → R∞, M(u, v) := sup
η∈Y ∗

(
〈η, v〉 −M∗(u, η)

)
N : Y×Y → R∞, N (y, v) := inf

u∈X
Pu=y

M(u, v).

Clearly, we have Lred(y, η) = sup
{
M∗(u, η)

∣∣ Pu = y
}

.
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Step (a):M(u, v) = R∗
(
u,−DE(u)

)
+R(u, P ◦∗v).

To show this, we simply use the definitions and obtain

M(u, v) = sup
η∈Y ∗

(
〈η, v〉 −M∗(u, η)

)
= sup

η∈Y ∗

(
〈η, v〉 − inf

ξ:P ◦ξ=η

(
R∗(u, ξ)−R∗(u,−DE(u))

))
= R∗(u,−DE(u)) + sup

η∈Y ∗
ξ:P◦ξ=η

(
〈η, v〉 − R∗(u, ξ)

)
= R∗(u,−DE(u)) + sup

ξ∈X∗

(
〈P ◦ξ, v〉 − R∗(u, ξ)

)
= R∗(u,−DE(u)) +R(u, P ◦∗v).

Thus, the desired result of part (a) is established.

Step (b): Defining R(y, v) = N (y, v)−N (y, 0) and R(y, ·) =
(
R(y, ·)

)∗∗
we have to show

N (y, v) = R(y, v) + R∗
(
y,−DE(y)

)
. (2.18)

By the definition of R, it it is sufficient to derive the identity N (y, 0) = R∗
(
y,−DE(y)

)
. Since R is

the convexification of R with respect to v for fixed y, we can use the identity R∗(y, ·) =
(
R(y, ·)

)∗
.

Using the abbreviation η̂ := −DE(y) ∈ Y ∗ we find

R∗
(
y, η̂
)
−N (y, 0) = sup

v∈Y

(〈
η̂, v
〉
−
(
N (y, v)−N (y, 0)

)︸ ︷︷ ︸
=R(y,v)

)
−N (y, 0)

= sup
v∈Y

(
〈η̂, v〉 − N (y, v)

)
= sup

v∈Y

(
〈η̂, v〉 − inf

u:Pu=y
M(u, v)

)
(a)
= sup

v∈Y

(
〈η̂, v〉 − inf

u:Pu=y

(
R∗(u,−DE(u)) +R(u, P ◦∗v)

))
= sup

u:Pu=y

(
−R∗(u,−DE(u)) + sup

v∈Y

(
〈η̂, v〉 − R(u, P ◦∗v)

))
Lem. 2.12

= sup
u:Pu=y

(
−R∗(u,−DE(u)) + inf

ξ:P ◦ξ=η̂
R∗(u, ξ)

)
= sup
Pu=y

inf
P ◦ξ=η̂

LE,R(u, ξ) = 0.

For the last identity we used η̂ = −DE(y) and that we arrived exactly at the desired CSSP for L
with compatible constraints, which has a null-saddle by assumption. Hence, (2.18) is established.

Step (c): We establish (2.17) by simple manipulations:

Lred(y, η) = sup
u:Pu=y

M∗(u, η) = sup
u:Pu=y

(
sup
v∈Y

(
〈η, v〉 −M(u, v)

))
= sup

v∈Y

(
〈η, v〉 − inf

u:Pu=y
M(u, v)

)
= sup

v∈Y

(
〈η, v〉 − N (y, v)

)
(b)
= sup

y∈Y

(
〈η, y〉 − R(y, v)− R∗

(
y,−DE(y)

))
= R∗(y, η)− R∗

(
y,−DE(y)

)
,

which is the desired result.

Step (d): It remains to show that R∗ is a dissipation potential. From R∗(y, ·) =
(
R(y, ·)

)∗
we see that

R∗(y, ·) is lower semi-continuous and convex.

The formula forM in (a) showsM(u, v) ≥ M(u, 0). Hence, taking the infimum over u satisfying
Pu = y, we haveN (y, v) ≥ N (y, 0), i.e. R(y, v) ≥ 0. By definition of R we also have R(y, 0) = 0,
which allows us to conclude R∗(y, 0) = 0 and R∗(y, η) ≥ 0. Hence, R∗(y, ·) : Y ∗ → [0,∞] is a
dual dissipation potential.
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3 EDP-convergence for slow-fast GSs via NESS

We consider a family of gradient systems (X, Eε,Rε) where ε > 0 is the small parameter modeling
the ratio between fast and slow relaxation times.

We consider two cases distinguished cases: in the first the state space can be decomposed in the
form u = (U,w) ∈ Xslow×Xfast = X and in the second we have

X =
{
u = (U,w) ∈ Xslow×Xfast

∣∣ P(U,w) := PslowU − Pfastw = 0
}

where Pslow : Xslow → Y and Pfast : Xfast → Y are suitable port mappings. Here we consider
U ∈ Xslow as the slow macroscopic part of the state variables, whilew ∈ Xfast is the fast microscopic
part, that one wants to eliminate in the limit ε→ 0.

In both setting we assume that the scaling in ε is very particular, but nevertheless we are able to treat
a number of prototypical cases. In particular, we assume Eε(U,w) = E(U) + ε e(w).

3.1 Case 1: product space X = Xfast×Xslow

The precise assumptions on the scaling with ε > 0 are the following:

Eε(U,w) = E(U) + ε e(w) additive split of energy, (3.1a)

R∗ε(U,w; Ξ, µ) = R∗(U,w; Ξ, 1
εµ
)

fast relaxation of w, (3.1b)

whereR∗ : X×X∗ → [0,∞] is a general dual dissipation potential.

The associated gradient-flow equation takes a simple form, because the appearance of ε is chosen in
a particular way.

U̇ = DΞR
∗(
U,w;−DE(U),−De(w)

)
, (3.2a)

εẇ = DµR
∗(
U,w;−DE(U),−De(w)

)
. (3.2b)

Thus, on the formal level, we can drop the term εẇ, because w relaxes into a NESS on the time
scale ε which is much faster than the evolution of U which happens on time scales of order 1. The
microscopic variable w moves into the NESS w = ŵ(U) satisfying

0 = DµR
∗(
U,w;−DE(U),−De(w)

)
. (3.3)

Note that µ 7→ R(U,w; Ξ, µ) is not a dual dissipation potential, but after doing a linear correction we
see that Ψ∗(U,w; Ξ, ·) : Xfast → [0,∞] defined via

Ψ∗(U,w; Ξ, µ) := R∗(U,w; Ξ, µ)−R∗(U,w; Ξ, 0)−
〈
µ,DµR

∗
(U,w; Ξ, µ)

〉
is a dual dissipation potential. Rewriting (3.3) in terms of Ψ∗ we obtain

0 = DµΨ∗
(
U,w;−DE(U),−De(w)

)
+R∗((U,w;−DE(U), 0),

which is indeed an equation for a NESS in the sense on (2.10).

Inserting the limiting relation w = ŵ(U) into the first equation of (3.2a) we obtain the reduced macro-
scopic problem

U̇ = DΞR
∗(
U, ŵ(U);−DE(U),−De(ŵ(U))

)
. (3.4)
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The disadvantage of the above approach is that we lose control over the gradient structures. As we
have started with the GSs (X, Eε,Rε), it is natural to ask whether the effective equation (3.4) has a
natural gradient structure inherited from E, e, andR.

This question can be answered by the notion of EDP-convergence, which provides a tool to stay on the
level of gradient systems. We follow here the approach developed in [LM∗17] which forms the basis
of the further developments of EDP-convergence in [DFM19, MMP21]. The abbreviation “EDP” stand
for the energy-dissipation principle (cf. [Mie16, Thm. 3.3.1]) that shows that under suitable technical
assumptions a curve uε = (Uε, wε) : [0, T ] → X is a solution of the gradient-flow equation (3.2) if
and only if it satisfies the energy-dissipation inequality

Eε(uε(T )) +

∫ T

0

(
Rε

(
uε; u̇ε

)
+R∗ε

(
uε;−DEε(uε)

))
dt ≤ Eε(uε(0)).

The idea in [LM∗17, MaM20] is to replace the primal dissipationRε(u, u̇) by the lower bound 〈ξ, u̇〉−
R∗ε(u, ξ) for an arbitrary test function ξ : [0, T ]→ X∗. Then, the limit ε→ 0 is performed and finally
one maximizes with respect to ξ to recover the limiting energy-dissipation balance again.

Thus, for a general smooth function ξ : [0, T ]→ X∗ we have

Eε(uε(T )) +

∫ T

0

(〈
ξ, u̇ε

〉
−R∗ε

(
uε; ξ

)
+R∗ε

(
uε;−DEε(uε)

))
dt ≤ Eε(uε(0)).

Using the explicit ε-dependence of Eε and R∗ε imposed in (3.1) and choosing ξ = (Ξ, εζ) we arrive
at

Eε(uε(T ))+

∫ T

0

(〈
(Ξ, εζ), u̇ε

〉
−R∗

(
uε; Ξ, ζ

)
+R∗

(
uε;−DE(Uε),−De(wε)

))
dt ≤ Eε(uε(0)).

Now passing to the limit ε → 0 the term 〈εζ, ẇε〉 and the terms εe(wε(t)) vanish. Assuming
(Uε, wε)→ (U,w) we are left with the inequality

E(U(T )) +

∫ T

0

(〈
Ξ, U̇

〉
−LE,R(U,w; Ξ, ζ)

)
dt ≤ E(U(0)) for all (Ξ, ζ) ∈ L∞([0, T ];X∗),

where E(U,w) = E(U)+e(w) and hence

LE,R(U,w; Ξ, ζ) = R∗
(
U,w; Ξ, ζ

)
−R∗

(
U,w;−DE(U),−De(w)

)
.

Since w appear in the integral only via w(t), but not with a derivative ẇ(t) we can eliminate w(t) by
a pointwise infimum. Similar, we can eliminate ζ by a pointwise supremum. Hence, defining Lred :
Xslow×X∗slow → R via

Lred(U,Ξ) := sup
w∈Xfast

inf
ζ∈X∗fast

LE,R(U,w; Ξ, ζ). (3.5)

we obtain the inequality

E(U(T )) +

∫ T

0

(〈
Ξ, U̇

〉
−Lred(U,Ξ)

)
dt ≤ E(U(0)). (3.6)

Now it remains to show that Lred has a duality structure (E,R`) in the sense of Definition 2.13, i.e.
it has the form

Lred(U,Ξ) = R∗eff(U ; Ξ)−R∗eff(U ;−DE(U)), i.e. Lred = LE,Reff
(3.7)
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A. Mielke 16

for a suitable effective dissipation potentialReff .

If this is the case, we can insert this into (3.6) and reverse the Legendre transform to obtain the
energy-dissipation inequality

E(U(T )) +

∫ T

0

(
Reff(U ; U̇) +R∗eff

(
U ;−DE(U)

))
dt ≤ E(U(0)). (3.8)

Applying the energy-dissipation principle once again, we see that U is a solution of the gradient-flow
equation

U̇ = DR∗eff(U,−DE(U))

for the reduced gradient system (Xslow, E,Reff). Clearly, this equation must equal (3.4), but now we
have a much cleaner structure.

To achieve this goal it remains to establish the duality structure (3.7). The following result is the ana-
logue of Theorem 2.15.

Theorem 3.1 (Leff has duality structure) For a GS (Xslow×Xfast, E ,R) with E = E⊗e define
Lred : Xslow×X∗slow → R as in (3.5). If for all U ∈ Xslow we have that

Leff(U,−DE(U)) := sup
w∈Xfast

inf
X∗fast

LE,R(U,w;−DE(U), ζ)

is a null-saddle (i.e. Lred

(
U,−DE(U)

)
= 0), then Lred has the duality structure (E,Reff) where

Reff is given viaR∗eff(U,Ξ) = Lred(U,Ξ)−Lred(U, 0).

Proof. The result follows directly from Theorem 2.15 if we use the port mappings

P (U,w) = U ∈ Xslow and P ◦(Ξ, ζ) = Ξ ∈ X∗slow.

Note that E = E⊗e satisfies DE(U,w) =
(
DE(U),De(w)

)
, hence, E : Xslow → R is a compati-

ble energy in the sense of (2.15).

3.2 Case 2: factored product space X = (Xfast×Xslow)
/
kerP

In some cases it is not easy to decompose the state space X into a product Xslow×Xfast, but it is
possible to decompose the state with some overlay or joint traces on an interface, namely

X =
{
u = (U,w) ∈ Xslow×Xfast

∣∣ P(U,w) := PslowU − Pfastw = 0
}

where Pslow : Xslow → Y , Pfast : Xfast → Y , P ◦slow : X∗slow → Y ∗, and P ◦fast : X∗fast → Y ∗ are
suitable port mappings. Below we will show that the chosen ansatz applies diffusion problems, where
Pslow and Pfast are used to define traces from two different sides of an interface, see (5.3) in Section
5.1.

The precise assumptions are the following:

Eε(U,w) = E(U) + εe(w) additive split of energy, (3.9a)

R∗ε(U,w; Ξ, ξ) = R̃∗(U,w; Ξ, 1
εξ
)

fast relaxation of w, (3.9b)

R̃∗(U,w; Ξ, ζ) = R∗slow(U ; Ξ) +R∗fast(w; ζ)

+ δ{0}
(
P ◦fastζ−P ◦slowΞ) interaction through Y ∗. (3.9c)
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Non-equilibrium steady states and EDP convergence 17

In principle, we could allow the more general case R∗fast(U,w; ζ) in place of R∗fast(w; ζ), but refrain
from doing so, because the restricted version better highlights the fact that the U and w can only
interact through the ports via Y .

Here δ{0} : Y → [0,∞] is the convex function with δ{0}(0) = 0 and∞ otherwise. This function im-
plements the constraint P ∗fastζ = P ∗slowΞ giving the interaction condition P ∗fastDe(w) = P ∗slowDE(U).
The subdifferential of δ{0} at η = 0 is given by ∂δ{0}(0) = Y , i.e. the hard constraint can transmit
the fluxes (−P ◦∗slowv, P

◦∗
fastv) for arbitrary v ∈ Y .

We first observe that the gradient-flow equation takes a simple form, because the appearance of ε is
chosen in a particular way.(

U̇

εẇ

)
∈ ∂R∗

(
U,w;−DE(U),−De(w)

)
⇐⇒(

U̇

εẇ

)
=

(
DΞR∗slow

(
U,−DE(U)

)
DζR∗fast

(
w,−De(w)

) )+

(
P ◦∗slowv

−P ◦∗fastv

)
with

{
PslowU = Pfastw

and v ∈ Y.

Thus, on the formal level, we can drop the term εẇ, because w relaxes into a NESS on the time
scale ε which is much faster than the evolution of U which happens on time scales of order 1. The
microscopic variable w moves along the family of NESS w = ŵ(U, v) generated by the flux v ∈ Y
from

0 = DζR∗fast

(
U,w;−De(w)

)
+ P ◦∗fastv.

As in the previous subsection, we can now involve the energy-dissipation principle to show EDP-
convergence, where nowR∗ is replaced by R̃∗ containing the constraint P ◦slowΞ = P ◦fastζ . We again
arrive at the reduced energy inequality (3.6), where now Lslow takes a special form because of the
additive splitting of R̃∗ in (3.9c):

Leff(U,Ξ) = sup
w∈Xfast

inf
ζ∈X∗fast

LE,R(U,w; Ξ, ζ) = LE,Rslow
(U,Ξ) + Lred(U,Ξ)

with Lred(U,Ξ) := sup
w∈Xfast

Pfastw=PslowU

inf
ζ∈X∗

fast
P◦

fast
ζ=P◦

slow
Ξ

Le,Rfast
(w, ζ) (3.10)

Thus, we see that Lred is exactly obtained as in Section 2.4. Hence, we know that Lred has a duality
structure if for all η ∈ Y CSSP (2.9) for Le,Rfast

with constraint P ◦De(w) = η has a null-saddle. In
that case we have the duality structure (EY ,RY ) such that

Leff(U,Ξ) = LE,Reff
(U,Ξ) withReff(U,Ξ) = R∗Y

(
PslowU, P

◦
slowΞ

)
.

We see that Lred depends on (U,Ξ) only through the port values
(
PslowU, P

◦
slowΞ

)
∈ Y×Y ∗.

Returning to Leff = LE,Rslow
+ Lred we obtain

Leff = LE,Reff
withR∗eff(U,Ξ) = Rslow(U,Ξ) + RY

(
PslowU, P

◦
slowΞ

)
.

Moreover, we see that (Xslow, E,Reff) is the EDP limit of (X, Eε,Rε) and the effective gradient-flow
equation reads

U̇ = DΞR∗eff

(
U,−DE(U)

)
= DΞR∗slow

(
U,−DE(U)

)
+ P ◦∗slowDηRY

(
PslowU, P

◦
slowΞ

)
,

which clearly shows that the non-equilibrium flux is given by

P ◦∗slowv with v = DηRY
(
PslowU, P

◦
slowΞ

)
∈ Y.
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4 EDP-convergence for two ODE examples

We first treat the linear case as given in (2.3) and with a suitable scaling in ε > 0. Secondly, we
consider a nonlinear reaction systems with four species and two binary reactions A + B 
 D and
A+D 
 C and show that the limiting system gives the single ternary reaction 2A+B 
 C .

4.1 Simple quadratic energy and dissipation

On the Hilbert space X = Xslow×Xfast with u = (U,w) we consider the family (X, Eε,Rε) of GSs
given by Eε(U,w) = E(U) + εe(w) with

E(U) =
1

2
〈AsU − µs, U〉Xslow

and e(w) =
1

2
〈Afw − µf , w〉Xfast

and

Rε(Ξ, ξ) =
1

2

〈(Ξ
1
ε
ξ

)
,

(
Kss Ksf

Kfs Kff

)(
Ξ
1
ε
ξ

)〉
= R∗

(
Ξ,

1

ε
ξ
)
.

Hence, we have the situation treated in Section 3.1.

The linear gradient-flow equations and their limit for ε→ 0 take the form(
U̇ε
εẇε

)
= −

(
Kss Ksf

Kfs Kff

)(
AsUε − µs

Afwε − µf

)
and

(
U̇

0

)
= −

(
Kss Ksf

Kfs Kff

)(
AsU − µs

Afw − µf

)
.

With the port mappings P (U,w) = U ∈ Y := Xslow and P ◦(Ξ, ζ) → Ξ ∈ Xfast we obtain the
determining equation (2.10) for the NESS(

0

0

)
= −

(
Kss Ksf

Kfs Kff

)(
DE(U)

De(w)

)
+

(
V

0

)
, DE(U) = −Ξ ∈ Xslow, V ∈ Xslow.

As Ξ is given, and the upper equation is always true for a suitable V , we find the NESS

Afw−µf = De(w) = K−1
ff KfsΞ.

The resulting port mapping P : X∗slow → Xslow; Ξ 7→ V takes the explicit form

V = PΞ = KeffΞ with Keff = Kss −KsfK−1
ff Kfs.

In particular, P is independent of the energy E , as predicted by Proposition 2.9.

We also want to show that P = DR∗eff can be obtained by the saddle-point reduction of the La-
grangian

LE,R(U,w; Ξ, ζ) = R∗(Ξ, ζ)−R∗
(
µs−AsU, µf−Afw

)
.

Assuming that K > 0 and As > 0, a simple calculation gives

Lred(U,Ξ) = sup
w∈Xfast

inf
ζ∈X∗fast

LE,R(U,w; Ξ, ζ) = inf
ζ∈X∗fast

R∗(Ξ, ζ)− sup
w∈Xfast

R∗
(
µs−AsU, µf−Afw

)
=

1

2
〈Ξ,KeffΞ〉 − 1

2
〈µs−AsU,Keff(µs−AsU)〉 = LE,Reff

(U,Ξ)

withReff(Ξ) = 1
2
〈Ξ,KeffΞ〉.
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4.2 Two binary reaction generate one ternary reaction

We consider four chemical species A, B, C , and D with associated concentrations a, b, c, d ∈
[0,∞[. The undergo the two binary reversible reaction pairs A + B 
 D and A + D 
 C ac-
cording to the mass action law. We assume that species D is very unstable and either react fast with
an A to create C or decay fast into A and B. In particular, the equilibrium concentrations for D will
be dε := εw∗, while the equilibrium densities a∗, b∗, c∗ are positive and independent of ε.

The associated reaction rate equation is the ODE system
ȧ

ḃ
ċ

ḋ

 = κ1

( d
dε
− ab

a∗b∗

)
1
1
0
−1

+ κ2

( c
c∗
− ad

a∗dε

)
1
0
−1
1

 , (4.1)

where κ1 and κ2 are positive reaction coefficients that may depend on a, b, c, d, but make them
constant for simplicity.

As above one may replace d by εw and such that the right-hand side becomes independent of ε.
Dropping the term εw on the left-hand side leads to the algebraic-differential system

ȧ

ḃ
ċ
0

 = κ1

( w
w∗
− ab

a∗b∗

)
1
1
0
−1

+ κ2

( c
c∗
− aw

a∗w∗

)
1
0
−1
1

 , (4.2)

Solving the last equation for w and inserting the result into the first three equations leads to the
reduced ODE  ȧ

ḃ
ċ

 = κeff(a)
( c
c∗
− a2b

a2
∗b∗

) 2
1
−1

 with κeff(a) :=
κ1κ2a∗

κ1a∗+κ2a
(4.3)

which is the reaction-rate equation for the ternary reaction 2A + B 
 C with an effective reaction
coefficient κeff(a) ∈ ]0, κ2[.

The original system has the entropic cosh-gradient structure as derived in [MP∗17] and further studied
in [MiS20, MPS21]. In our specific case, the reaction-rate equation (4.1) is the gradient-flow equation
for the GS (R4, Eε,Rε) given by (where u = (a, b, c, d))

Eε(u) = λB(a/a∗)a∗ + λB(b/b∗)b∗ + λB(c/c∗)c∗ + λB(d/dε)dε and

R∗ε(u; ξ) = κ1

( abd

a∗b∗dε

)1/2
C∗
(
ξ1+ξ2−ξ4

)
+ κ2

( acd

a∗c∗dε

)1/2
C∗
(
ξ1−ξ3+ξ4

)
,

where λB(z) = z log z − z + 1 is the Boltzmann function and C∗(ζ) = 4 cosh(ζ/2)− 4.

Doing our standard scaling for the slow and fast variables gives

u = (U, εw), U = (a, b, c) ∈ Xslow, Eε(u) = E(U) + εe(w) with e(w) = λB(w/w∗)w∗.

Moreover, with Ξ = (ξ1, ξ2, ξ3) ∈ X∗slow we have R̃ε(U, εw; Ξ, µ) = R
(
U,w; Ξ, 1

ε
µ
)

with

R∗
(
U,w; Ξ, ζ

)
= κ1

( abw

a∗b∗w∗

)1/2
C∗
(
ξ1+ξ2−ζ

)
+ κ2

( acw

a∗c∗w∗

)1/2
C∗
(
ξ1−ξ3+ζ

)
,
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Thus, we can apply the theory of Section 3.1 and define Lred as in (3.5), namely

Lred(U,Ξ) := sup
w>0

inf
ζ∈R

LE,R(U,w; Ξ, ζ).

The sup-inf can be calculated explicitly as is explained in [LM∗17, Sec. 3.3.2]. Indeed using the formula

inf
ζ∈R

(
gC∗(ζ)+hC∗(ρ−ζ)

)
= 4W (g, h, ρ)−4(g+h) with W (g, h, ρ) =

(
(g+h)2 +

gh

2
C∗(ρ)

)1/2
,

where ρ = 2ξ1+ξ2−ξ3, g = κ1

(
abw

a∗b∗w∗

)1/2
, and h = κ2

(
acw

a∗c∗w∗

)1/2
, a lengthy calculation yields

Lred(U,Ξ) := sup
w>0

(
4W (g, h, ρ)− 2κ1

( ab
a∗b∗

+
w

w∗

)
− 2κ2

( c
c∗

+
aw

a∗w∗

))
Noting that g and h are proportional to

√
w, we see that also W (g, h, ρ) is exactly proportional to√

w. Hence, the maximum with respect to w can be determined and another lengthy calculation gives
the explicit expression

Lred(U,Ξ) = κeff(a)
( a2 b c

a2
∗b∗c∗

)1/2
C∗
(
2ξ1+ξ2−ξ3

)
− κeff(a) 2

(( a2 b

a2
∗b∗

)1/2 −
( c
c∗

)1/2
)2

with κeff(a) from (4.3). Now, it can easily be checked that we have the duality structure Lred(U,Ξ) =
R∗eff(U,Ξ)−R∗eff(U,−DE(U)).

It seems that the above theory can be generalized to an arbitrary number of species with a density
vector c = (c1, ..., ci∗) ∈ Ri∗ and an arbitrary number r∗ of reactions following the mass-action
law, as long as we have the detailed-balance condition, i.e. there exists a positive steady state c∗ε =
(c∗1, ..., cj∗ , εw

∗
j+1, ..., εw

∗
i∗). If this is so, then the interesting question is how the reaction coefficients

of the limiting system depend on the reaction coefficients of the original system. Note that even in our
simple case, we can start with constant coefficients κ1 and κ2 but then find κeff(a) which depends on
the state.

In particular, we want to highlight that the effective system has again the expected entropic cosh-
gradient structure for the ternary reaction 2A + B 
 C . We emphasize that this is not automatic,
because in [MPS21, Sec. 4.3] an example of a reaction-rate equation is studied where the EDP-limit
of the entropy cosh-gradient structure leads to an effective GS (R4,E,R) where E is no longer a
Boltzmann entropy and the reaction does no longer follow the mass-action law.

5 Linear diffusion through a membrane

The example in this section is well studied from the context of PDEs and singular limits. We are
looking at a diffusion system of i∗ mass densities ρ = (ρ1, ..., ρi∗) that diffuse along an interval on
the real line, where in the small interval ]−ε, ε[ representing a membrane the mobility is also of order
ε, whereas it is of order 1 outside the membrane.
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5.1 The PDE model and its limiting equation

We consider the intervals Ωε = ]−1−ε, 1+ε[ and define the piecewise affine maps ψε and φε
between Ωε and Ω := Ω1 = ]−2, 2[:

ψε(x) =


x+ε−1 for x ≥ 1,

ε x for |x| ≤ 1,

x−ε+1 for y ≤ −1;

and φε(y) =


y−ε+1 for y ≥ ε,

y/ε for |y| ≤ ε,

y+ε−1 for y ≤ −ε.
(5.1)

The original diffusion problem is defined on Ωε and we assume that the mobility is given in the form

Kε(y) =
1

φ′ε(y)
K
(
φε(y)

)
with K ∈ PC0

(
[−2,−1]∪[−1, 1]∪[1, 2];Ri∗×i∗

sym

)
, (5.2)

which means that K is piecewise continuous and has continuous extensions on the three closed
intervals [−2,−1], [−1, 1], and [1, 2], such that the one-sided limits

K± := K
(
± (1+0)

)
= lim

δ→0+
K
(
± (1+δ)

)
and k± := K

(
± (1−0)

)
= lim

δ→0+
K
(
± (1−δ)

)
but may be different. Moreover, we assume thatK is positive definite, i.e. there exists κ > 0 such that
a ·K(x)a ≥ κ|a|2 for all x ∈ [−2, 2] and a ∈ Ri∗ . Hence, y 7→ Kε(y) is discontinuous at y = ±ε,
because it jumps by a factor of ε.

We define a second positive definite function A ∈ PC0
(
[−2,−1]∪[−1, 1]∪[1, 2];Ri∗×i∗

sym

)
which

determines the energy functional

Ẽε(ρ) :=

∫
Ωε

1

2
ρ(y) · A(φε(y))ρ(y)dy on the space Xε = L2(Ωε;Ri∗).

Moreover, we define the dual dissipation potentialRε via

R̃ε(µ) =

∫
Ω

1

2
∂yµ(y) ·Kε(y)∂yµ(y)dy.

The gradient-flow equation for the GS (Xε, Ẽε, R̃ε) is the linear parabolic system

ρ̇ = ∂y

(
Kε(y) ∂y

(
Aε(y)ρ(t, y)

))
for t > 0, y ∈ Ωε, ∂y

(
Aε(y)φ(t, y)

)∣∣
y=±(1+ε)

= 0.

Note that M(t) =
∫

Ωε
ρ(t, y)dy is independent of t because of the divergence form and the no-flux

boundary conditions.

To study the limit ε→ 0 it is advantageous to transform the PDE to the fixed interval Ω via φε(Ωε) =
Ω. For x ∈ Ω we set

u(t, x) =
1

ψ′ε(x)
ρ(t, ψε(x)) and Eε(u) = Ẽε

(
1
φ′ε
u◦φε

)
=

∫
Ω

1

2
u · Auψ′ε dx.

The transformed dissipation potential takes the form

Rε(ξ) =

∫
Ω

1

2
∂x
( 1

ψ′ε
ξ
)
·K ∂x

( 1

ψ′ε
ξ
)

dx,

where we used the scaling φ′ε(y)Kε(y) = K(x) to cancel the powers of ψ′ε.
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The transformed linear diffusion equation reads

ψ′ε(x) u̇(t, x) = ∂x

(
K(x) ∂x

(
A(x)u(t, x)

))
, ∂x

(
A(x)u(t, x)

)∣∣
x=±2

= 0.

Of course, in the above development we have anticipated the scalings in such a way that in the
last equation ε only occurs once, namely in the prefactor ψ′ε, namely ψ′ε(x) = ε for |x| < 1 and
ψ′ε(x) = 1 for 1 < |x| < 2. Thus, we are exactly in the situation of a slow-fast gradient system as
studied in Section 3.

We make the splitting and the corresponding port mappings explicit. We are in “Case 2” where the
product space X = Xslow×Xfast needs a factorization along the boundary of the membrane, now
placed at x = ±1. We set

Ωfast = [−1, 1], Ωslow = ]−2,−1] ∪ [1, 2[, Xfast = L2(Ωfast;Ri∗), Xslow = L2(Ωslow;Ri∗).

We introduce the variable U = u|Ωslow
∈ Xslow and w = u|Ωfast

∈ Xfast. With this we find the
transformed energy

Eε(U,w) = E(U) + ε e(w) with E(U) =

∫
Ωslow

1

2
U · AU dx and e(w) =

∫
Ωfast

1

2
w · Awdx.

If we similarly write ξ = (Ξ, ζ) with Ξ = ξ|Ωslow
∈ X∗slow and ζ = 1

ε
ξ|Ωfast

∈ X∗fast we obtain

R∗(Ξ, ζ) = R∗slow(X) +R∗fast(ζ) + δ{0}
(
P ◦slowΞ−P ◦fastζ

)
whereR∗slow(Ξ) =

∫
Ωslow

1

2
∂xΞ ·K∂xΞdx andR∗fast(ζ) =

∫
Ωfast

1

2
∂xζ ·K∂xζ dx.

(5.3)

Here the compatibility condition P ◦slowΞ = P ◦fastζ are crucial. We define Y = Ri∗×Ri∗ and the port
mappings

Pslow : Xslow → Y ;U 7→ (U(−1−), U(1+)) and Pfast : Xfast → Y ;w 7→ (w(−1+), w(1−)),

and similarly P ◦slow : X∗slow → Y ∗ and P ◦fast. Here f(x+) and f(x−) denote the limit from the right
and from the left, respectively.

The limiting equation for ε = 0 takes the form

U̇ = ∂x
(
K ∂x(AU)

)
for x ∈ ]1, 2[, ∂x(AU)|x=2,

0 = ∂x
(
K ∂x(Aw)

)
for x ∈ ]−1, 1[, U(1+) = w(1−), ∂x(AU)|x=1+ = ∂x(Aw)|x=1−

U̇ = ∂x
(
K ∂x(AU)

)
for x ∈ ]−2,−1[, U(−1−) = w(−1+), ∂x(AU)|x=−2,

∂x(AU)|x=−1−= ∂x(Aw)|x=−1+ .

The static equation on Ωfast = [−1, 1] can be solved explicitly and we obtain the corresponding
transmission conditions

K∂x(AU)
∣∣
x=±1

= HK

(
A(1)U(1)− A(−1)U(−1)

)
, where HK =

(∫ 1

−1

K(x)−1 dx
)−1

.
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5.2 Lagrangian EDP-convergence for the quadratic case

To understand the origin of the transmission conditions, we want to use our Lagrangian EDP-convergence
as described in Section 3.2. Thus, we want to construct

Lred(U,Ξ) = sup inf LE,R(U,w; Ξ, ζ) = LE,Rslow
(U,Ξ) + Lred(U,Ξ)

We are in the case whereR is independent of the state, such thatRred has the form

R∗red(Ξ) = R∗Y (P ◦Ξ) with R∗Y (η) := inf
Ξ: P ◦Ξ=η

R∗fast(Ξ).

These relations are not the port relations P : Y ∗ → Y , as these relations must be independent of
the energy E = E ⊗ e, which is given in terms of A. A direct calculation shows that P is given in
terms of

R∗red(Ξ) = R∗Y (P ◦Ξ) with RY (η(−1), η(1)) =
1

2

(
η(1)−η(−1)

)
·HK

(
η(1)−η(−1)

)
which shows P(η(1), η(−1)) =

(
HK(η(1)−η(−1)) , HK(η(−1)−η(1))

)
. Indeed, Rred can

easily be obtained by minimizingRfast(ζ) over the constraints P ◦fastζ = P ◦Ξ.

5.3 EDP-convergence in the Otto gradient structure

We reconsider the above linear equation, but now we strict to the one-dimensional case i∗ = 1, viz.
u(t, x) ∈ [0,∞[ ∈ R1. The linear equation can then be interpreted as a Fokker-Planck equation.
Our aim is now to redo the EDP-limit ε → 0 as in the previous subsection, but now for the so-called
Otto gradient structure, also called gradient-flow in the Wasserstein space. The the gradient system is
the triple (Prob(Ωε), EB

ε ,ROtto
ε ), where the function space is

Prob(Ωε) :=
{
u ∈ L1(Ωε)

∣∣ u ≥ 0,

∫
Ωε

udy = 1
}
,

the energy is Boltzmann’s relative entropy

EB
ε (u) =

∫
Ωε

λB

(
Aε(y)u(y)

) dy

Aε(y)
,

and the dual dissipation functional reads

ROtto
ε (u, ξ) =

∫
Ωε

Kε(y)

2
|∂yξ(y)|2u(y)dy =

1

2

〈
KOtto
ε (u)ξ, ξ〉,

which is quadratic in ξ and dependent on the state u ∈ Prob(Ωε). Here KOtto
ε (u) can be understood

as the self-adjoint nonnegative differential operator

KOtto
ε (u) ξ = −∂y

(
Kεu∂yξ

)
with Kεu∂yξ

∣∣
y=±(1+ε)

= 0.

The associated gradient-flow equation is the Fokker-Planck equation

u̇ = ∂y
(
Kεu∂y(Aεu)

)
= ∂y

(
Kε(∂yu+ uV ′ε )

)
,
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if we define the driving potential Vε by Vε(y) = logAε(y). We refer to [Ott96, JKO97, Ott98, JKO98,
Ott01] for the first work treating the Fokker-Planck equation as an gradient-flow equation with respect
to this gradient structure.

We now want to do the EDP-limit in this gradient structure, where the new feature is the dependence
on the state in R∗ε. As a result the limit gradient structure will be quite different. First it will depend in
properties of A which shows that R∗slow cannot be calculated from R∗ε alone. Secondly, we will see
that R∗eff = R∗slow +R∗red will no longer be quadratic in ξ, namely R∗red, which is obtained from the
NESS problem of the rescaled membrane, will have a cosh-type behavior given through C∗.

We will not give the analysis in detail, as the result is well-established see [LM∗17, Sec. 4], [Fre19,
Sec. 4], [PeS22, FrM21]. However, we will give the main formal steps to put the results into the per-
spective of Section 3.2.

We first transform the problem as in Section with ψε and ψε from (5.1). With the notion from the
previous subsection we have E(U,w) = E(U) + e(w) with

E(U) =

∫
Ωslow

λB

(
A(x)u(x)

) 1

A(x)
dx and e(w) =

∫
Ωfast

λB

(
A(x)w(x)

) 1

A(x)
dx

and the rescaled dual dissipation potential R∗(U,w; Ξ, ζ) = R∗slow(U,Ξ) + R∗fast(w, ζ) +
δ{0}

(
P ◦slowΞ−P ◦fastζ

)
with

R∗slow(U,Ξ) =

∫
Ωslow

K(Y )

2
|∂xΞ(x)|2U(x)dx and R∗fast(w, ζ) =

∫
Ωfast

K(Y )

2
|∂xζ(x)|2w(x)dx.

The reduced dissipation potentialRred is now obtained by the saddle-point reduction, namely

LE,Rred
(U,Ξ) = sup

w:Pfastw=PslowU
inf

ζ:P ◦fastζ=P
◦
slowΞ

Le,Rfast
(w, ζ),

where Le,Rfast
(w, ζ) : Xfast×X∗fast → R takes the explicit form (using De(w) = log(Aw))

Le,Rfast
(w, ζ) = R∗fast(w, ζ)−R∗fast

(
w,−De(w)

)
=

∫ 1

−1

1

2

(
K w

∣∣∂xζ|2 − K w

(Aw)2

∣∣∂x(Aw)
∣∣2)dx.

It is surprising that the sup-inf of Le,Rfast
under given boundary conditions can be evaluated explicitly,

see [LM∗17, App. A] and also [PeS22, Sec. 1.3]. Here we provide a new and much shorter way of
obtaining the desired result.

Theorem 5.1 (Membrane reduction) Let K, A ∈ L∞([−1, 1]) be given and bounded from below
by a positive constant. Then

J (w−, w+; ζ−, ζ+) := sup
w(1)=w+
w(−1)=w−

inf
ζ(1)=ζ+
ζ(−1)=ζ−

Le,Rfast
(w, ζ)

has the explicit form

J (w−, w+; ζ−, ζ+) = Keff
√
a−w− a+w+ C∗

(
ζ+−ζ−

)
−Keff 2

(√
a+w+ −

√
a−w−

)2
(5.4)

where Keff =
(∫ 1

−1
A(x)/K(x) dx

)−1

and a± = A(±(1−0)).
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Proof. Clearly, Le,Rfast
is strictly concave-convex and thus has at most one saddle point which is also

the only critical point. Hence solving DLe,Rfast
= 0 gives the solution.

However, it is advantageous to do a transformation first. We set

w = v/A, ζ = log(v/η2), and I(v, η) = Le,Rfast

(
v/A, log(v/η2)

)
.

An elementary calculation shows that I has a much simpler form, namely

I(v, η) = −2

∫ 1

−1

κ η′
(v
η

)′
dx, where κ(x) = K(x)/A(x).

It will be particularly useful, that I is linear in v.

If (w∗, ζ∗) is a critical point for Le,Rfast
, then the transformed point (v∗, ζ∗) is a critical point for I , and

vice versa. Moreover, the boundary values between the two pairs can be calculated easily. Hence, we
have to determine the critical points of I and observe that

DvI(v, η) = −2

η

(
κ η′
)′
.

As the prefactor 2/η is irrelevant, we see that η∗ is uniquely determined by its boundary values η−
and η+. In particular, we know that κη′∗ must be constant, namely

κ(x)η′∗(x) = Keff

(
η+−η−

)
for all x ∈ [−1, 1].

Because of DvI(v, η∗) = 0, this is enough to evaluate I(v, η∗) explicitly by only knowing the bound-
ary values v− and v∗ of v∗:

I(u∗, η∗) = −2

∫ 1

−1

κ η′︸︷︷︸
=const.

(v
η

)′
dx = 2Keff

(
η+−η−

) (v+

η+

− v−
η−

)
.

Inserting the boundary conditions v± = a±w± and η± =
(
A±w±

)1/2
e−ζ±/2 gives

Le,Rfast
(w∗, ζ∗) = −2Keff

(
a+w+ −

√
a+w+a−w−

(
e(ζ+−ζ−)/2 + e(ζ−−ζ+)/2

)
+ a−w−

)
,

which yields the desired formula (5.4).

Using the port conditionsPfastw = PslowU andP ◦fastζ = P ◦slowΞ, the above result leads to the desired
duality structure

J (U−, U+; Ξ−,Ξ+) = R∗Y (U−, U+; Ξ−,Ξ+)− R∗y
(
U−, U+; log(A−U−), log(A+U+)

)
,

where A± = A(±(1+0)).

In summary, we obtain the effective gradient system (Xslow, E,Reff) with

R∗eff(U,Ξ) = R∗slow(U,Ξ) +Keff

√
A−U(−1)A+U(1)C∗

(
Ξ(1)−Ξ(−1)

)
.

We clearly see that the effective contribution of the membrane is of cosh-type, and in particular it
is not quadratic. Moreover, Ry depends on A which is information that stems from Eε, which was
not present in R∗ε. Of course, also the cosh-type function C∗ is inherited from Eε, namely from the
Boltzmann function λB. Observe that µ = λ′B(r) = log r has the inversion r = eµ. Using this for the
forward and for the backward fluxes it is no longer surprising to obtain C∗.
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5.4 Linear reaction-diffusion equation

Before going into the one-dimensional equation with membrane scaling, we note that the general struc-
ture of reaction-diffusion systems with detailed balance condition has the following gradient structure.
On X = L1(Ω;Ri∗) we consider

E(c) = H(c|c∗) =

∫
Ω

λB(ci/c
∗
i )c
∗
i dx and

R∗(c; ξ) =

∫
Ω

( i∗∑
i=1

Kici
2
|∇ξi|2 +

r∗∑
r=1

µr
(
cα

r

cβ
r)1/2

C∗
(
ξ·(αr−βr)

))
dx,

where Ki ≥ 0 is the diffusion constants of species Xi, while µr > 0 is the reaction coefficient of
the rth reaction having stoichiometric vectors αr, βr ∈ Ni∗

0 . The associated gradient-flow equation
is the following system of i∗ equations:

ċi = div
(
Ki

(
∇ci −

ci
c∗i
∇c∗i

))
−

r∗∑
r=1

µr

((cβr∗
cα

r

∗

)1/2
cα

r −
(cαr∗
cβ

r

∗

)1/2
cβ

r
)(
αri − βri

)
.

In the same spirit as in the previous section we study again a linear PDE, but now it has diffusion
and reaction with the background, i.e. A � ∅. Again we assume that the material parameters Kε for
diffusion and Bε for reaction scale like ε in a the membrane region ]−ε, ε[. With Ωε = ]−1−ε, 1+ε[,
the gradient system is given given via X = L1(Ωε),

Eε(u) = H(u|1/Aε) =

∫
Ωε

λB(Aεu)
1

Aε
dy and

R∗(u, ξ) =

∫
Ωε

(Kεu

2
|ξ′|2 +Bε

√
uC∗(ξ)

)
dy.

Using φε : Ωε → Ω := [−2, 2] and ψε = φ−1
ε : Ω→ Ωε from (5.1) we assume that Aε, Bε, and Kε

are given in the form

Aε(y) = A(ψε(y)), Bε(y) = φ′ε(y)B(φε(y)), Kε(y) =
1

φε(y)
K(φε(y)) (5.5)

for given functionsA, B, K ∈ PC0
(
[−2,−1]∪[−1, 1]∪[1, 2]). To make our theory work we assume

that A and K have a positive lower bound on Ω, whereas for B it is sufficient to have B(x) ≥ 0.

Transforming the system to the domain Ω as in the previous subsection, we obtain a slow-fast gradient
system (Xslow×Xfast, Eε,Rε) given by

Xslow = L1(Ωslow), Xfast = L1(Ωfast), Ωslow[−2,−1] ∪ [1, 2], Ωfast = [−1, 1],

Eε(U,w) = E(u) + εe(w), E(U) =

∫
Ωslow

λB(AU)
dx

A
, e(w) =

∫
Ωfast

λB(Aw)
dx

A
,

R∗ε(U,w; Ξ, ξ) = R∗
(
U,w; Ξ,

1

ε
ξ
)

with

R∗(U,w; Ξ, ζ) = R∗slow(U,Ξ) +R∗fast(w, ζ) + δ{0}(P
0
slowΞ−P ◦fastζ),

R∗slow(U,Ξ) =

∫
Ωslow

(K
2
|Ξ′|2U +B

√
U C∗(Ξ)

)
dx, and

R∗fast(w, ζ) =

∫
Ωfast

(K
2
|ζ ′|2w +B

√
w C∗(ζ)

)
dx.
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As in the previous subsection we obtain the effective gradient structure (Xslow, E,Reff) by solv-
ing the sup-inf problem for the Lagrangian LE,R in the form R∗eff = R∗slow + R∗red with R∗red =
R∗Y (Pslow·, P ◦slow), where we obtain an explicit formula for RY . To formulate the following result we
introduce the two auxiliary functions H+, H− : [−1, 1]→ R via

(K
A
H ′±
)′

=
B

A
1/2

H± in ]−1, 1[, H±(±1) = 1, H±(∓1) = 0. (5.6)

Simple ODE arguments show H±(x) ∈ [0, 1], H ′−(x) < 0, and H ′+(x) > 0 for all x ∈ [−1, 1].

Theorem 5.2 (Membrane with reaction and diffusion) For the fast gradient system (Xfast, e,R∗fast)
the reduced Lagrangian Lred has the duality structure (e,R∗Y ) with

R∗Y (w−, w+; ζ−, ζ+) = Meff

√
A(−1)w−A(1)w+ C∗(ζ+−ζ−) (5.7)

+M−

√
A(−1)w− C

∗(ζ−) +M+

√
A(1)w+ C∗(ζ+),

where Meff = K(1)|H ′−(1)|/A(1) = K(−1)H ′+(−1)/A(−1) and M± =
∫ 1

−1
BH±/A

1/2
dx.

In the case of constant coefficients we have

Meff =
B

A

σ cosh(2σ)

sinh(2σ)
and M+ = M− =

B

A
1/2

sinh(σ)

σ cosh(σ)
.

Proof. As in Theorem 5.1 we do a transformation to characterize the unique saddle point (w∗, ζ∗).
With w = v/A and ζ = log(Aw/η2), the Lagrangian Le,Rfast

gives

I(v, η) := Le,Rfast

(
v/A, log(v/η2)

)
=

∫ 1

−1

(
−2κη′

(v
η

)′
+ 2β

1−η
η

(v−η)
)

dy, (5.8)

where κ = K/A and β = B/A1/2. Here we used the specific interaction of C∗ and log = λ′B,

namely C∗(logα) =
(
α1/4−α−1/4

)2
. Of course, the construction is such that η ≡ 1 leads to

I(v, 1) = 0.

The surprising and helpful fact is that I is affine in v which allows us to evaluate Le,Rfast
(w∗, ζ∗) =

I(v∗, η∗) at the unique critical point. In particular, we have

0 = DvI(v, η) =
2

η

((
κη′
)′ − β η + β

)
,

such that the critical point (v∗, η∗) satisfies the linear ODE −(κη′)′ + βη = β. Hence,

Le,Rfast
(w∗, ζ∗) = I(v∗, η∗) =

∫ 1

−1

(
−2κη′∗

(v∗
η∗

)′
+ 2β

1−η∗
η

(v∗−η∗)
)

dy

=
[
−2κη′∗

v∗
η∗

]1

x=−1
+

∫ 1

−1

( 2

η∗

(
(κη′∗)

′ + β(1−η∗)︸ ︷︷ ︸
=0

)
+ 2 β(η∗−1)︸ ︷︷ ︸

=(κη′∗)
′

)
dx

= 2κ−η
′
∗(−1)

(v−
η−
− 1
)

+ 2κ+η
′
∗(1)

(
1− v+

η+

)
,

where κ± = κ(±1), v± = v∗(±1), and η± = η∗(±1).
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Using the auxiliary functionsH± we have η∗ = 1+(η−−1)H−+(η+−1)H+ which gives η′∗(±1) =
(η−−1)H ′−(±1) + (η+−1)H ′+(±1). Abbreviating b± :=

√
v± and E± := eζ±/2 and using η± =

√
v±e−ζ±/2 = b±E

−1
± we obtain

Le,Rfast
(w∗, ζ∗) = 2κ+H

′
+(1)

(
b+(E++E−1

+ )−b2
−−1

)
− 2κ−H

′
−(−1)

(
b−(E−+E−1

− )−b2
−−1

)
+ 2κ−H

′
+(−1)(b+E

−1
+ −1)(b−E−−1)− 2κ+H

′
−(1)(b−E

−1
− −1)(b+E+−1).

To simplify this expression, we use that the Wronski determinant κH ′+H− − κH ′−H+ is constant
on [−1, 1], and we call this constant Meff > 0. Using the boundary conditions of H± we have
Meff = κ−H

′
+(−1) = −κ+H

′
−(1). Moreover, integrating the ODE (5.6) yields

±κ±H ′±(±1) = ±κ∓H ′±(∓1) +

∫ 1

−1

κH±dx = Meff +M±.

With this we arrive at

Le,Rfast
(w∗, ζ∗) = 2M−

(
b−(E−+E−1

− −2)− (b−−1)2
)

+ 2M+

(
b+(E++E−1

+ −2)− (b+−1)2
)

+ 2Meff

(
b+b−(E+E

−1
− +E−1

+ E−−2)− (b+−b−)2
)
.

Inserting E± = e−ζ±/2 and b± =
√
v± =

√
a±w± yields Le,Rfast

(w∗, ζ∗) =

Le,Rfast
(w∗, ζ∗) = M−

(√
a−w− C

∗(ζ−)− 2(
√
a−w−−1)2

)
+M+

(√
a+w+ C∗(ζ+)− 2(

√
a+w+−1)2

)
+Meff

(√
a+w+a−w− C

∗(ζ+−ζ−)− 2(
√
a+w+−

√
a−w−)2

)
= R∗Y (w−, w+; ζ−, ζ+)− R∗Y

(
w−, w+; log(a−w−), log(a+w+)

)
,

which is the desired general formula (5.7).

The special formula for constant coefficients follows by setting σ2 = A
1/2
B/K and observing

H±(x) = sinh(σ ± σx)/ sinh(2σ).

A Classical existence theory for saddle points

We recollect the basic result from saddle point theory as contained in [EkT74, Cha. VI] (La dualité par
les minimax).

We consider a Lagrangian functional L : U×V → R = [−∞,∞], where we now want to minimize
with respect to x ∈ U and maximize with respect to y ∈ V . This means that for applying the theory
below to the Lagrangians used above we have to set U = X , V = X∗, and L(u, ξ) = −L (u, ξ).
Now, a point (x∗, y∗) is called a saddle point of L if

∀x ∈ U , y ∈ V : L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗).

Thus, we minimize with respect to x ∈ U , and we maximize with respect to y.

The aim is to find a saddle point from general principles. For this one looks at supy∈V infx∈U L(x, y)
and infx∈U supy∈V L(x, y). We obviously always have a one-sided estimate, and the major question
in constructing saddle points is when we have equality.
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Lemma A.1 (Simple facts on saddles points)

(a) SIL := sup
y∈V

inf
x∈U

L(x, y) ≤ inf
x∈U

sup
y∈V

L(x, y) := ISL (A.1)

(b) saddle point (x∗, y∗) exists =⇒ SIL = ISL. (A.2)

In the latter case, we have L(x∗, y∗) = SIL = ISL.

Proof. To show (a), we start from L(x, y) ≤ supy L(x, y). Taking the infimum over x we obtain
infx L(x, y) ≤ ISL. Now taking the supremum over y in the left-hand side leads to the desired
estimate SIL ≤ ISL.

To show (b) simply note that the saddle-point property implies

inf
x∈U

L(x, y∗) = L(x∗, y∗) = sup
y∈V

L(x∗, y).

Thus, we find SIL ≥ L(x∗, y∗) ≥ ISL. With (a) this implies the desired equality.

The quantity δL = ISL − SIL ≥ 0 is called the duality gap. The function L(x, y) = tanh(x−y) on
R×R shows that δL can be positive. Indeed, SItanh = −1 and IStanh = +1 such that δtanh = 2.

The opposite implication in (A.2) is not valid. To see this consider U = V = R and L(x, y) =
ex − e−y. Clearly, infx L(x, y) = −e−y and hence, SIL = 0 and similarly ISL = 0. However, no
saddle-point exists. Even in cases where no saddle-point exists it is an interesting question under what
conditions the duality gap is 0, see e.g. [EkT74, Ch. III, Prop. 2.3].

If two saddle points (xj, yj) with j = 1, 2 exist, we have

L(x1, y2) ≤ L(x1, y1) ≤ L(x2, y1) ≤ L(x2, y2) ≤ L(x1, y2),

which means that all four points have the same value. If each L(·, yj) is convex and each L(xj, ·)
concave, then we conclude L(x, y) = L(x1, y1) for all x = (1−s)x1 +sx2 and y = (1−r)y1 + ry2

with arbitrary r, s ∈ [0, 1].

A standard existence result for saddle points can be found in [EkT74, Ch. VI, Prop. 2.1]. We provide a
variant that is adjusted to our purposes.

Proposition A.2 (Existence of saddle points) Consider reflexive Banach spacesU and V and as-
sume that the following conditions hold:

∀ y ∈ V : x 7→ L(x, y) is convex and lsc, (A.3a)

∀x ∈ U : y 7→ −L(x, y) is convex and lsc, (A.3b)

∃ y0 ∈ V : L( · , y0) is coercive, (A.3c)

∃x0 ∈ U : −L(x0, · ) is coercive. (A.3d)

Then, a saddle point (x∗, y∗) exists and

L(x∗, y∗) = min
x∈U

sup
y∈V

L(x, y) = max
y∈V

inf
x∈U

L(x, y).

If moreover, in (A.3a) and (A.3b) we have strict convexity, then the saddle point is unique.
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Proof. Step 1: Saddle points on balls using strict convexity. We additionally impose that

∀ y ∈ V : L( · , y) : U → R is strictly convex. (A.4)

For R ≥ R0 := max{‖x0‖U , ‖y0‖V } we consider the closed and convex balls UR = {x ∈
U | ‖x‖U ≤ R } and similarly VR.

For all R we obtain a saddle point (xR, yR) as follows. For all y ∈ VR the direct method of the
calculus of variations provides a minimizer x = x̂R(y) ∈ UR for L(·, y)|UR , i.e. L(x̂R(y), y) =
minx∈UR L(x, y) =: λR(y). By the strict convexity in (A.4) x̂R(y) is uniquely determined.

We first observe that −λR : VR → R is convex and lsc, as it is the supremum of the convex and lsc
functions −L(x, ·). Moreover, by (A.3d) the function −λR is bounded from below by the proper, lsc,
convex function −L(x0, ·). Hence, λR attains its maximum in a point yR ∈ VR.

Our aim is now to show that (x̂R(yR), yR) is a saddle point of L on UR×VR. For this we choose
arbitrary y ∈ VR and θ ∈ [0, 1] and set xθ(y) := x̂R((1−θ)yR+θy) and obtain

λR(yR) ≥ λR
(
(1−θ)yR+θy

)
= L

(
xθ(y), (1−θ)yR+θy

)
−L(xθ(y),·) cvx

≥ (1−θ)L(xθ, y
R) + θL(xθ(y), y) ≥ (1−θ)λR(yR) + θL(xθ(y), y).

In particular, for θ ∈ ]0, 1] and all y ∈ VR we conclude

λR(yR) = L(x̂R(yR)) ≥ L(xθ(y), y) for all y ∈ VR. (A.5)

Choosing θ = 1/k for k ∈ N, we obtain xk := x1/k(y) ∈ VR and may select a weakly convergent
subsequence (not relabeled) with xk ⇀ xR. We claim that xR = x̂R(yR) and hence is independent
of y. Indeed, for our fixed y ∈ VR and arbitrary x̃ ∈ UR we have

L(xR, yR)
(A.3a),lsc
≤ lim inf

k→∞
L(xk, y

R)

(A.3b),cvx
≤ lim sup

k→∞

1

1− 1
k

(
L(xk, (1− 1

k
)yR+ 1

k
y)− 1

k
L(xk, y)

)
def.λR, x̂R
≤ lim sup

k→∞

( k

k−1
L(x̃, (1− 1

k
)yR+ 1

k
y)− 1

k−1
λR(y)

)
λR(y)<∞
≤ lim sup

k→∞
L(x̃, (1− 1

k
)yR+ 1

k
y)

(A.3b),lsc
≤ L(x̃, yR),

where we used (1− 1
k
)yR+ 1

k
y → yR in the last step. Since x̃ ∈ UR was arbitrary we obtain

λR(yR) ≤ L(xR, yR) ≤ minx̃∈UR L(x̃, yR) = λR(yR). Hence, UR is a minimizer of L(·, yR)
and hence coincides with x̂R(yR) because of the strict convexity (A.4).

Because of the uniqueness of the limit we conclude that for all y ∈ VR we have xθ(y) ⇀ xR =
x̂R(yR) for θ → 0+. Thus, taking the limit θ → 0+ in (A.5) and exploiting the lsc from (A.3a) we
obtain

∀ y ∈ VR ∀ x̃ ∈ UR : L(xR, y) ≤ λR(yR) = L(xR, yR) ≤ L(x̃, yR).

This shows that (xR, yR) is a saddle point for L restricted toUR×VR.

Step 2: Saddle points on balls without strict convexity. If we only have convexity we consider

Lε(x, y) = L(x, y) + ε‖x‖2 with ε > 0,
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where we can choose a strictly convex norm ‖ · ‖ on the reflexive space U . By Step 1 we obtain a
saddle point (xRε , y

R
ε ) ∈ UR×VR. Hence, we have

∀ y ∈ VR ∀x ∈ UR : L(xRε , y) + ε‖xRε ‖2 ≤ L(xRε , y
R
ε ) + ε‖xRε ‖2 ≤ L(x, yRε ) + ε‖x‖2. (A.6)

We may choose a subsequence (not relabeled) with (xRε , y
R
ε ) ⇀ (xR, yR) in U×V . Dropping the

middle term in (A.6) we can pass to the limit using the lsc in (A.3a) and (A.3b) and arrive at

∀ y ∈ VR ∀x ∈ UR : L(xR, y) ≤ L(x, yR).

Thus, (xR, yR) is indeed a saddle point for L restricted to restricted toUR×VR.

Step 3: Unbounded case. We now consider the limitR→∞. Using the coercivities (A.3c) and (A.3d).
For R ≥ R0 the saddle points (xR, yR) from Step 2 satisfy

L(xR, y0) ≤ L(xR, yR) ≤ L(x0, y
R). (A.7)

Since L(·, y0) and −L(x0, ·) are lsc and coercive (cf. (A.3c) and (A.3d)), they are bounded from
below:

∃M > 0 ∀x ∈ U ∀ y ∈ V : L(x, y0) ≥ −M and L(x0, y) ≤M.

Combining this with (A.7), we have

∀R ≥ R0 : (i) L(xR, y0) ≥ −M and (ii) L(x0, y
R) ≤M.

With (A.7) we obtain |L(xR, yR)| ≤ M . Using the coercivity (A.3c) and (ii) we find ‖yR‖ ≤ CV ,
and similarly (A.3d) and (i) give ‖xR‖ ≤ CU . Thus, using the reflexivity of U and V we find a
subsequence (xR, yR) (not relabeled) such that

L(xR, yR)→ λ∗, xR ⇀ x∗ inU , yR ⇀ y∗ in V .

For arbitrary x ∈ U we choose R > max{R0, ‖x‖} and obtain L(x, yR) ≥ L(xR, yR). Taking the
limit R→∞ (along the subsequence) and using the lsc of −L(x, ·) we arrive at

L(x, y∗) ≥ lim sup
R→∞

L(x, yR) ≥ lim sup
R→∞

L(xR, yR) = λ∗,

where x ∈ U was arbitrary. Similarly, we obtain L(x∗, y) ≤ λ∗ which gives the desired saddle-point
property for (x∗, y∗) ∈ U×V :

∀x ∈ U , y ∈ V : λ(x∗, y) ≤ λ∗ = λ(x∗, y∗) ≤ L(x, y∗).

Step 4: Uniqueness under strict convexity. This was shown already in Step 1.

This completes the proof of Proposition A.2.
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