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Self-similar pattern in coupled parabolic systems as
non-equilibrium steady states

Alexander Mielke, Stefanie Schindler

Abstract

We consider reaction-diffusion systems and other related dissipative systems on unbounded
domains which would have a Liapunov function (and gradient structure) when posed on a finite
domain. In this situation, the system may reach local equilibrium on a rather fast time scale but the
infinite amount of mass or energy leads to persistent mass or energy flow for all times. In suitably
rescaled variables the system converges to a steady state that corresponds to asymptotically
self-similar behavior in the original system.

1 Introduction

Self-similar behavior is a well-studied phenomenon in extended systems. However, often the view is
restricted to simple scalar problems like the porous medium equation. Moreover, solutions are consid-
ered with trivial behavior at infinity, in particular, in the case of finite mass or energy.

Here we want to show that a similar behavior occurs in systems of equations but there we have a richer
structure, because pattern may be imposed at infinity. Rather than looking at systems with traveling
pulses or fronts, we focus on the situation where the local behavior is dominated by a fast trend towards
a unique local equilibrium and the question then arises how the global solution is evolving through
the family of local equilibria. Such phenomena were studied in [CoE90, CoE92, vSH92, EcS02] in
the Ginzburg-Landau equation and the Swift-Hohenberg equation. This work is close to the idea of
“diffusive mixing” as introduced in [GaM98] for solutions mixing different stable role patterns for x →
−∞ and x→ +∞.

As the systems under consideration have a “local gradient structure”, we can also interpret the self-
similar pattern as a non-equilibrium steady state and identify the corresponding fluxes of mass or
energy. In particular, we discuss situations where the scaling leads to a local equilibration of algebraic
type that enforces certain Lagrange multipliers in the diffusive system. In such cases the Lagrange
multipliers can be identified with necessary fluxes that are needed to understand the mass balances.

2 The porous medium equation

As an introduction, we consider the porous medium equation (PME) on the real line:

ut = (um)xx, t > 0, x ∈ R1. (2.1)

It is well-known that PME has many different self-similar solutions of the form

u(t, x) = (1+t)−αΦ
(
x/(1+t)β

)
.
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A. Mielke, S. Schindler 2

2.1 The finite-mass case

The most famous self-similar solution is the Barenblatt solution [Bar79] with

α = β =
1

m+1
, W (y) = max{0, N − cmy2}1/(m−1),

for m > 1 and W (y) = Ne−y
2/2 for m = 1, where N ≥ 0 can be chosen arbitrary, e.g. to achieve

the desired total mass M =
∫
RW (y) dy. This solution can be described as a (non-equilibrium)

steady state when transforming (2.1) into similarity coordinates. Indeed, setting τ = log(1+t), y =
x/(1+t)β , and w = (1+t)αu we find the equation

wτ = (wm)yy + βywy + αw =
(
(wm)y +

1

m+1
yw
)
y
. (2.2)

Clearly, W (y) = max{N−cmy2, 0}1/(m−1) is a steady state, and in [Váz07] there is an extensive
study about its global stability.
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Figure 2.1: The left figure shows the Barenblatt profilesW form = 1.25 (green),m = 2, andm = 3
(blue). The right picture shows the corresponding self-similar flux pattern Q.

To emphasize that W is a non-equilibrium steady state (NESS), we look at the mass fluxes. In (2.1)
we have the diffusive flux q(t, x) = −(um)x and the total mass M =

∫
R u(t, x)dx is preserved for

solutions u. Indeed, the flux q = −(um)x takes the form q(t, x) = (1+t)−mα−βQ(x/(1+t)β) with
similarity profile

Q(y) = −
(
Wm

)
y
(y) = −mW (y)m−1W ′(y).

2.2 Diffusive mixing and infiltration

We may also consider PME with boundary conditions u(t,±∞) = U± with different concentrations
U− and U+. Again a self-similar profile develops but now the scaling is different as u cannot be scaled
by a prefactor, because of the boundary conditions. The boundary conditions provide reservoirs with
an infinite amount of mass at x = +∞ and x = −∞. The diffusive mixing describes how the mass
is flowing from one reservoir to the other.

In particular, we have to choose α = 0 and are then forced to take β = 1/2, which is the parabolic
scaling. The corresponding equation in the parabolic similarity coordinates reads

wτ = (wm)yy +
y

2
wy, w(τ,±∞) = U±. (2.3)
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Self-similar pattern in coupled parabolic systems as non-equilibrium steady states 3

Of course steady states W are again exact self-similar solutions to (2.3). The existence and unique-
ness of stationary profiles W with W (±∞) = U± are studied in [MiS23]. The profiles are monotone
and converge to their limits U± faster than exponential. For U− > U+ the flux is nonnegative and has
its maximum at y = 0, see Figure 2.2. The diffusive flux q = −(um)x scales differently from before,
but the self-similar profile Q has the same expression as before:

q(t, x) = −(1+t)−1/2Q
(
x/(1+t)1/2

)
with

Q(y) = −
(
Wm

)′
(y) = −mW (y)m−1W ′(y).
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Figure 2.2: The left figure shows the self-similar infiltration profiles with U+ = 0 and W (0) = 1 for
m = 1.25 (green), m = 2, and m = 3 (blue). The right picture shows the corresponding flux Q.

The case U+ = 0 is called the case of filtration, where mass is flowing into the area x � 1 where
initially the concentration is 0. For all m > 1 the front propagates like t1/2 and the infiltrated mass
given by M≥(t) =

∫∞
0
u(t, x) dx satisfies Ṁ≥(t) = q(t, 0) = (1+t)−1/2Q(0), i.e. we have

M≥(t) = M≥(0)(1+t)1/2.

3 A model motivated by turbulence

Kolmogorov’s two-equation model [Kol42, Spa91, BuM19] considered on all of Rd has a rich scaling
structure and hence allows for self-similar solutions, see Sec. 3 in [MiN22]. In [Mie22] a simplified
model is studied, where ṽ(t, x) is a scalar shear velocity and k̃(t, x) is the mean turbulent kinetic
energy:

ṽt = div
(
η k̃β∇v

)
,

k̃t = div
(
κ k̃β∇k̃

)
+ ηk̃α|∇ṽ|2,

where η, κ, β are positive parameters. Note that the system contains the PME with m = β + 1, if we
look at the case ṽ ≡ 0.

The system has the total linear momentum P(ṽ) =
∫
Rd ṽ(x) dx and the total energy E(ṽ, k) =∫

Rd

(
1
2
ṽ2 + k̃

)
dx as conserved quantities. The kinetic energy that is dissipated via shear viscosity

(depending on k̃) is fully fed into the turbulent kinetic energy, which leads to the energy conservation.

In fact, the system can be written as a gradient-flow equation with respect to entropyS(k̃) =
∫
Rd k̃

θ dx

for any θ ∈ (0, 1), hence it is expected that k̃ has to become constant. For bounded domains with
no-flux boundary conditions, it can be shown that solutions converge exponentially to the unique equi-
librium state with constant ṽ and k̃ such that the conserved quantities match, see Sec. 2 in [Mie22].
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A. Mielke, S. Schindler 4

On the unbounded domain Rd, solutions with finite momentum P and finite energy E are expected to
disperse and converge uniformly to 0. In Sec. 6 of [Mie22] it is argued that ṽ and k̃ behave asymptot-
ically self-similar, but with different exponents because of 1

2
ṽ2 in the energy and ṽ in the momentum.

The conjecture is that k̃ develops, for large t, a self-similar pattern of Barenblatt type, namely

K(y) = max{0, N − cβ+1|y|2}1/β (3.1)

with total mass E = E(v(0), k(0)), which means that all macroscopic kinetic energy is converted
into turbulent kinetic energy. Moreover, ṽ develops, for large t, a self-similar pattern that is a Barenblatt
solution raised to the power κ/η, i.e.

V (y) = ṽ
(
K(y)

)κ/η
with ṽ such that P(V ) = P(v(0)).

More precisely, with γ = 1/(2+βd) we rescale the variables via

τ = log(1+t), y = x/(1+t)γ, k = (1+t)γdk̃, v = (1+t)γdṽ

and obtain a non-autonomous coupled system

vτ = div
(
γvy + η kβ∇v

)
,

kτ = div
(
γky + κ kβ∇k

)
+ e−γdτ ηkβ|∇v|2,

where now div and ∇ are taken with respect to y. Thus, we see that the equation for k behaves, for
τ � 1, like the PME and has the Barenblatt profiles from (3.1) as asymptotic steady states. Inserting
such a Barenblatt solution K , one can show that the linear equation for V has the steady states
ṽKκ/η. For η � κ, this means that V will have large gradients near the boundary of the support of
K .

As for the PME equation there are also solutions with infinite momentum or energy, because there
are nontrivial limits at x → ±∞. In one such case it is possible to write down an exact self-similar
solution, namely for α = β = 1 and κ = η, where we set η = 1 for simplicity. With y = x/

√
1+t

and arbitraryA > 0 it can be checked that v(t, x) = V (y) and k(t, x) = K(y) are explicit solutions,
if we choose (

V (y), K(y)
)

=


(
A/
√

2, 0
)

for y ≥ A,(
y/
√

2, (A2−y2)/4
)

for |y| ≤ A,(
− A/

√
2, 0
)

for y ≤ −A.

For this solution, the energy density e(t, x) = 1
2
v(t, x)2 + k(t, x) is indeed equal to the constant

A2/4, which means that the solutions have infinite total energy. Nevertheless there are nontrivial
fluxes, namely for the linear momentum and the turbulent kinetic energy:

Qlin.mom(y) = −K(y)V ′(y) = −K(y)/
√

2,

Qtur.kin(y) = −K(y)K ′(y), and

Stur.kin(y) = K(y)V ′(y)2 = K(y)/2 ≥ 0,

where the last term is the source of turbulent kinetic energy stemming from the dissipation in the
momentum equation.

DOI 10.20347/WIAS.PREPRINT.2992 Berlin 2023



Self-similar pattern in coupled parabolic systems as non-equilibrium steady states 5

4 Diffusive mixing in reaction-diffusion systems

Here we consider systems of equations which describe the concentrations cj of species Xj that
diffuse with a diffusion constant dj and that undergo reactions according to the mass-action law.
Our main assumption is that there is a continuous family of equilibria to the reaction equation ċ =
R(c), where c = (c1, ..., ci∗) ∈ C := [0,∞[i∗ is the vector of concentration. We consider the
reaction-diffusion system (RDS) on the real line R1 and impose boundaries conditions at infinity which
represent reservoirs of infinite mass. The prescribed limit statesC− andC+ at x = ±∞ are assumed
to be in equilibrium, i.e.R(C±) = 0. Thus, our RDS takes the form

c̃t = D c̃xx +R(c̃), c̃(t,±∞) = C±, (4.1)

whereD is the diagonal matrix diag(d1, ..., di∗).

To study self-similar behavior, we use the parabolic scaling variables τ = log(1+t) and y = x/
√

1+t
again and find for c(τ, y) = c̃(t, x) the scaled equations

cτ = Dcyy +
y

2
c+ eτ R(c), c(τ,±∞) = C±, (4.2)

where the prefactor eτ appears because the reactions do not scale in a similar way as the derivatives
∂τ and ∂2

y .

Hence, for large τ the reaction becomes stronger and stronger and will lead to a local equilibration of
the reactions. Of course, this is only an effect of the scaling, but it says that on long time scales we first
see that the reactions act on their natural time scale while the diffusive mixing may take much longer
and will actually never stop because of the boundary conditions at ±∞.

4.1 The diffusive large-time limit and reduced systems

We can formally go to the limit τ � 1 in (4.2) as follows. Clearly, the reaction has to become equili-
brated, i.e.R(c(τ, y)) = 0 for all τ and y. However, the product eτR(c) should then be treated as a
limit of the type “∞ · 0”, taking the value λ(τ, y) ∈ Ri∗ . This term can be understood as a rescaled
version of a small reaction flux, because the reaction c will only be equilibrated up to order e−τ such
thatR(c) may still contain a term e−τλ.

The models resulting from (4.1) and (4.2) are the following constrained RDS

c̃τ = D c̃xx + λ̃, R(c̃) = 0, c̃(t,±∞) = C±, (4.3a)

cτ = Dcyy +
y

2
cy + λ, R(c) = 0, c(τ,±∞) = C±. (4.3b)

The important point is that λ is restricted to lie in the linear subspace span
{

DR(c)v
∣∣ R(c) =

0, v ∈ Ri∗
}

, such that λ plays the role of a Lagrange multiplier to the constraintR(c) = 0.

We restrict to the case of mass-action kinetics, where the reaction is in detailed balance. Then, there
exists a surjective linear stoichiometric mapping Q : Ri∗ → Rj∗ giving the conserved molecular
masses and a nonlinear map Ψ : U := QC→ C such that

QR(c) = 0 for all c ∈ C, QΨ(u) = u for all u ∈ U,

and
{
c ∈ C

∣∣R(c) = 0
}

=
{
ψ(u) ∈ C

∣∣ u ∈ U
}
,

DOI 10.20347/WIAS.PREPRINT.2992 Berlin 2023



A. Mielke, S. Schindler 6

i.e. Ψ parametrizes the set of equilibria ofR. We refer to [MPS21, MiS22] for more details.

Setting ũ(t, x) = Qc̃(t, x), u(τ, y) = Qc(τ, y), and U± = QC±, the constrained RDS (4.3) in
unscaled and scaled form reduce to the simple diffusion systems

ũt =
(
A(ũ)

)
xx
, u(t,±∞) = U± and (4.4a)

uτ =
(
A(u)

)
yy

+
y

2
uy, u(τ,±∞) = U± (4.4b)

withA(u) = QDΨ(u). Note thatQλ ≡ 0 by construction.

4.2 Vector-valued profile equations

Under the assumption thatA : Rj∗ → Rj∗ is (strongly) monotone, the vector-valued profile equation

0 =
(
A(U)

)
yy

+
y

2
Uy, U(±∞) = U± (4.5)

has a unique similarity profile U : R → Rj∗ . We refer to [GaM98] for the scalar-valued case and to
[MiS23] for the more general vector-valued case.

A profile U solving (4.5) is a classical steady state solution for the scaled diffusion system (4.4b).
Hence, setting ũ(t, x) = U

(
x/
√

1+t
)

provides an exact self-similar solution to (4.4a).

Clearly, defining C(y) = Ψ(U(y)) we obtain a solution C : R → Ri∗ for the constrained profile
equation

0 = DCyy +
y

2
Cy + λ, R(C) = 0,

Qλ = 0, C(±∞) = Ψ(U±).
(4.6)

The similarity profile C is a steady state for the scaled constrained RDS (4.3b), and c̃(t, x) =
C
(
x/
√

1+t
)

is an exact self-similar solution for (4.3a).

In the following three subsections, we consider a few special cases, where we highlight the role of the
reaction flux(es) λ in particular.

4.3 One reaction for two species

In [GaS22, MiS22] the following system of two equations is studied in detail:(
ċ1

ċ2

)
=

(
d1 ∂

2
xc1

d2 ∂2
xc2

)
+ κ
(
cβ2−c

γ
1

)( γ

−β

)
for t > 0 and x ∈ R.

The two concentrations c1, c2 ≥ 0 for the species X1, X2 diffusive with diffusion constants dj and
undergo the reversible mass-action reaction pair γX1 
 βX2.

The scaled and constraint system (4.3b) takes the form

∂τ

(
c1

c2

)
=

(
d1 ∂

2
yc1

d2 ∂2
yc2

)
+
y

2
∂y

(
c1

c2

)
+ Λ

(
γ

−β

)
, Λ ∈ R, cγ1 = cβ2 .

Here λ = Λ(γ,−β)> ∈ R2 contains only one scalar reaction flux Λ ∈ R, because there is only one
reaction pair.
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The set of equilibria forR is the one-parameter family{
c ∈ C

∣∣R(c) = 0
}

=
{

(Aβ, Aγ)
∣∣ A ≥ 0

}
.

The linear stoichiometric mapping is Q =
(
β γ

)
∈ R1×2 defining u = Qc = βc1+γc2 ≥ 0, and

Ψ : [0,∞[ = U→ C is defined via

c = Ψ(u) =

(
ψ1(u)

ψ2(u)

)
⇐⇒

{
u = Qc = βc1+γc2

and cγ1 = cβ2

The case γ = β leads to the simple relation Ψ(u) = 1
β+γ

(
u
u

)
. If β 6= γ we may assume β < γ

without loss of generality, see (4.8) for a nontrivial example.

ForAΨ(u) := QDΨ(u) =
(
βd1
γd2

)
·Ψ(u) one obtains 0 < ψ′1(u) ≤ ψ′1(0) = 1/β and 0 < ψ′2(u) ≤

ψ′2(∞) = 1/γ. This yields

D∗ = min{d1, d2} ≤ A′Ψ(u) ≤ D∗ = max{d1, d2}

as well as A′Ψ(u)→ d1 for u→ 0+ and A′Ψ(u)→ d2 for u→∞.

Thus, the existence theory for similarity profiles in [GaM98, MiS23] provides a unique and smooth
solution U of the profile equation(

AΨ(U)
)′′

+
y

2
U ′ = 0 on R, U(±∞) = U±.

Assuming U− < U+, this solution is strictly increasing and converges to its two limits like the error
function. In addition to U− < U(y) < U+ the estimate

0 < U ′(y) ≤ e−y
2/(4D∗)

√
D∗

8D2
∗

(
U+ − U−

)
for all y ∈ R (4.7)

holds, even in the caseU− = 0, where asymptotically the concentrations vanish, viz.C− = Ψ(U−) =(
0
0

)
, because the effective diffusion is still bounded from below by D∗ > 0.

Such a profile U : R → [U−, U+] for the reduced equation leads to a smooth concentration profile
C : R→ C ⊂ R2 given byC(y) = Ψ(U(y)) and satisfying the profile equation

0 =

(
d1 0
0 d2

)
C ′′ +

y

2
C ′ + Λ

(
γ

−β

)
, Cγ

1 = Cβ
2 ,

C(y)→ Ψ(U±) for y → ±∞.

Hence, the reaction flux Λ can be written as

Λ(y) := −1

γ

(
d1C

′′
1 (y) +

y

2
C ′1(y)

)
=

1

β

(
d2C

′′
2 (y) +

y

2
C ′2(y)

)
.

In general, Λ will be nontrivial, this can already be seen in the simple case β = γ, which implies
C1 ≡ C2, ψj(u) = u/(β+γ), and hence AΨ(u) = d1+d2

2
u. Denoting by E : R→ ]0, 1[ the unique

solution of E′′ + yE′ = 0, E(−∞) = 0, and E(∞) = 1 and recalling U± = 2γC±, we obtain the
unique profiles

U(y) = 2γC− + 2γ(C+−C−)E
(
y/(d1+d2)

)
,

C1(y) = C2(y) =
1

2γ
U(y).

DOI 10.20347/WIAS.PREPRINT.2992 Berlin 2023
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y

C1 = C2

Qdiff
1

Qdiff
2

Λreact

Figure 4.1: For the case β = γ = 1 the similarity profileC1 = C2 is shown together with the diffusive
fluxes Qreact

j and the reaction flux Λreact.

This provide the explicit formula (for β = γ only), namely

Λ(y) =
2(d1−d2)

(d1+d2)2

(
C+ − C−

)
E′′
(
y/(d1+d2)

)
,

i.e. only for d1 = d2 we have Λ ≡ 0.

In Figure 4.1 we display, for C− = 0.2 < C+ = 1.2, β = γ = 1, and d1 = 1 > d2 = 0.5, the profile
C1 = C2, the associated diffusion fluxes Qdiff

j = −djC ′j(y) for j = 1, 2, and the reaction flux Λreact.
Because of the d1 > d2 the diffusive fluxes satisfy |Qdiff

1 | > |Qdiff
2 |, so one would expect the profile C1

to be flatter than C2. However, C1 = C2 is realized by the reaction X1 
 X2, which pushes missing
or excessive mass from X1 into X2.

We also consider the case β = 1 and γ = 2 which corresponds to the nonlinear reaction pair
X1 
 2X2. Now, the profiles are no longer identical and there is no symmetry y ↔ −y. We find

Ψ(u) =

( 1
4

(√
1+8u− 1

)
1
8

(
1 + 4u−

√
1+8u

)), (4.8)

and can calculate all fluxes for C− = Ψ(1) =
(

1/2
1/4

)
and C− = Ψ(6) =

(
3/2
9/4

)
, now choosing d1 = 1

and d2 = 1 which gives AΨ(u) = u and makes the calculation simple. We refer to Figure 4.2 for the
corresponding profiles and diffusion and reaction fluxes.

y

yC1

C2

Qdiff
1

Qdiff
2

Λreact

Figure 4.2: For the case β = 1 < γ = 2 and d1 = d2 = 1 the similarity profile C1 and C2 are
shown (left picture) and the associated diffusion fluxes and reaction flux (right picture).

DOI 10.20347/WIAS.PREPRINT.2992 Berlin 2023



Self-similar pattern in coupled parabolic systems as non-equilibrium steady states 9

4.4 One reaction for three species

For the typical binary reaction X3 
 X1+X2 we obtain the scaled constrained RDS

∂τc = D∂2
yc+

y

2
∂yc+ Λ

 1
1
−1

, c1c2 = c3

withD = diag(d1, d2, d3). The profile equation reads

0 = DC ′′ +
y

2
C ′ + Λ

 1
1
−1

, C1C2 = C3 and C(±∞) = Ψ(U±). (4.9)

The set of equilibria forR is a two-parameter family:{
c ∈ C

∣∣R(c) = 0
}

=
{

(A,B,AB)
∣∣ A,B ≥ 0

}
.

We can choose the stoichiometric matrix

Q =

(
1 0 1
0 1 1

)
∈ R2×3

and obtain u =
(
u1
u2

)
= Qc ∈ U := [0,∞[2. The reduction function Ψ : U → C can be calculated

explicitly in the form

Ψ(u1, u2) =
1

2

u1−u2−1 + s(u)
u2−u1−1 + s(u)
u1+u2+1− s(u)

 withs(u) =
√

(1+u1+u2)2 − 4u1u2.

To extend s to a function s : R2 → R we simply set s(u1, u2) = 1 + u1 + u2 whenever u1 ≤ 0
or u2 ≤ 0 and observe that s is globally Lipschitz continuous. Moreover, sj(u) = ∂ujs(u) satisfies
s1(u) ≤ 1, s2(u) ≤ 1 and s1(u) + s2(u) ≥ 0 for all u ∈ R2.

From this we can calculate the functionA(u) = QDΨ(u):

A(u) =
1

2

(
(d1+d3)u1 + (d3−d1)(1+u2−s(u))

(d2+d3)u2 + (d3−d2)(1+u1−s(u))

)
.

To show monotonicity of A : R2 → R2 we observe that for general C1 functions A we have the
equivalence

∀u, ũ : 〈A(u)−A(ũ),u−ũ〉 ≥ alo|u−ũ|2

⇐⇒ ∀u :
1

2

(
DA(u)+DA(u)>

)
≥ aloIm×m.

Using this, it is shown in [MiS23] thatA is monotone if and only if

(3−
√

8 )d3 < dj < (3+
√

8 )d3 for j = 1, 2.

Hence, the vector-valued version of the existence theorem for similarity profiles can be applied and for
all limits U− and U+ there exists a unique similarity profile U : R → R2 connecting U− and U+.
These solutions give rise to similarity profilesC = Ψ◦U connecting Ψ(U−) and Ψ(U+) if and only
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if U(y) ∈ U = [0,∞[2 for all y ∈ R, thus providing C(y) = Ψ(U(y)) ∈ C = [0,∞[3. In general,
it seems to be difficult to guarantee this condition, but defining u(±) : R→ R2 via

u(±)(y) = U± for ± y > 0 and u(±)(0) =
1

2
(U−+U+),

one can show the uniform estimate∣∣U(y)− u(±)(y)
∣∣ ≤ C∗|U+−U−|,

where C∗ only depends on d1, d2, and d3, but not on U±. Thus, we obtain valid similarity profiles if
|U+−U−| is sufficiently small compared to the distance of U+ and U− from the boundary of U. In
that case, similarity profilesC : R→ R3 solving (4.9) exist and are unique.

In the present example we obtain nonmonotone profiles C : R → C ⊂ R3. For this, consider the
case d1 = d2 and the limits

C− = (A,B,AB)> and C+ = (B,A,AB)> with A 6= B.

Our uniqueness result and the reflection symmetries x→ −x and (c1, c2)→ (c2, c1) imply that the
stationary profileC satisfies C1(y) = C2(−y) and C3(y) = C3(−y). Using C1(y)C2(y) = C3(y)
for all y ∈ R we see that C3 cannot be constant, hence it must be nonmonotone. Figure 4.3 shows a
corresponding example.

-10 -5 5 10

1

2

3

4

5C1(y) C2(y)

C3(y)

Figure 4.3: Solution C = (C1(y), C2(y), C3(y)) of (4.9) for d1 = d2 = 2 and d3 = 10 with limiting
values C− ≈ (5.3, 0.3, 1.6) and C+ ≈ (0.3, 5.3, 1.6). This symmetric solution was obtained by
starting withC(0) = (1.5, 1.5, 2.25) andC ′(y) = (−1, 1, 0).

An interesting question is whether there is a stationary profileC connecting the limiting cases

C− = Ψ(1, 0) = (1, 0, 0)> and C− = Ψ(0, 1) = (0, 1, 0)>.

The profile would see only one of the species X1 or X2 in the reservoirs at ±∞, however in the
middle region all three species must be present to allow the generation of the other species.

4.5 Two reactions for three species

Consider the two reactions 2X1 � X2 and X2 � X3 giving

∂τc = D∂2
yc− k1

(
c2

1 − c2

) 2
−1
0

− k2

(
c2 − c3

) 0
1
−1

. (4.10)
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The set of equilibria is the one-parameter family given by{
c ∈ C

∣∣R(c) = 0
}

=
{

(A,A2, A2)
∣∣ A ≥ 0

}
.

Note that the RDS system has invariant regions of the form Σ := [b, B] × [b2, B2] × [b2, B2] for
arbitrary 0 ≤ b < B < ∞. This means that any solution satisfying c(0, x) ∈ Σ for all x ∈ R also
satisfies c(t, x) ∈ Σ for all t > 0 and x ∈ R, see [Smo94] for the theory of invariant regions for RDS.
Thus, a similarity profile connecting C− = (b, b2, b2) and C+ = (B,B2, B2) is expected to lie in the
invariant region Σ.

The stoichiometric matrix isQ = (1 2 2) ∈ R1×3 and

u = Qc = c1+2c2+2c3 yields Ψ(u) =

 σ(u)
(u−σ(u))/4
(u−σ(u))/4


with σ(u) = (

√
1+16u− 1)/8. With σ′(u) = 1/

√
1+16u ∈ [0, 1] we easily see that all mappings

u 7→ Ψj(u) are strictly increasing such that A(u) = QDΨ(u) satisfies

A(u) = d2+d3
2

u+
(
d1−d2+d3

2

)
σ(u) and

min
{
d1,

d2+d3
2

}
≤ A′(u) ≤ max

{
d1,

d2+d3
2

}
.

Thus, the scalar existence theory provides for 0 ≤ U− ≤ U+ < ∞ a unique similarity profile
U ∈ C∞(R; [U−, U+]) that is strictly increasing.

As a consequence, the profile equation

DC ′′ +
y

2
C ′ + Λ1

 2
−1
0

+ Λ2

 0
1
−1

= 0,

C2
1 = C2 = C3 and C(±∞) =

B±B2
±

B2
±

 (4.11)

has for all B− ≤ B+ a unique solution C and each component Cj is strictly increasing, and hence
lying in the invariant region Σ = [B−, B+]× [B2

−, B
2
+]× [B2

−, B
2
+].

In this example we have the three diffusion fluxes Qdiff
j (y) = −djC ′j(y) for the three species Xj and

two reaction fluxes Λreact
1 and Λreact

2 for the reactions 2X1 � X2 and X2 � X3, respectively.

5 Diffusive mixing of roll pattern

For a complex-valued amplitude A(t, x) ∈ C the real Ginzburg-Landau equation (i.e. the coefficients
are real)

Ȧ = Axx + A− |A|2A (5.1)

is an important model in bifurcation theory and pattern formation. The equation appears as amplitude
or envelope equation in many partial differential equations[KSM92, Eck93, Sch94, Mie02, Mie15] as
well as delay equations with large delay[WY∗10, YL∗15].

It has an explicit two-parameter family of steady state pattern in form of the role solutions A(x) =
Uη,ϕ(x) :=

√
1−η2 ei(ηx+ϕ) with wave number η ∈ [−1, 1] and phase ϕ ∈ [0, 2π].
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Starting from [BrK92, CoE92], it was shown in [GaM98] that asymptotically self-similar profiles exist
that connect two different role solutions Uη−,ϕ− at x → −∞ and Uη+,ϕ+ at x → ∞. Indeed, the
monotone operator approach for showing the existence of self-similar profiles was initiated there, see
Theorem 3.1 in [GaM98] and further developed in [MiS23].

Writing A = reiu and assuming r(t, x) > 0 the real Ginzburg-Landau equation can be rewritten as
the coupled system ṙ = rxx + r

(
1−r2−u2

x

)
and u̇ = uxx + 2rxux/r.

Following Sec. 2 in [GaM98] we transform the system into scaling variables via t = eτ , x = eτ/2y,

ψ(τ, y) = e−τ/2u(eτ , eτ/2y), and ρ(τ, y) = r(eτ , eτ/2y).

Note that u and ψ are related with an additional factor eτ/2, which is necessary to match the linear
behavior u(t, x) ≈ c±+η±x for x→ ±∞. With this definition we still haveψ(τ, y) ≈ c±e−τ/2+η±y
for y → ±∞.

The transformed system reads

ψτ = ψyy +
y

2
ψy −

1

2
ψ + 2

ρy
ρ
ψy,

ρτ = ρyy +
y

2
ρy + eτ ρ (1−ρ2−ψ2

y

)
.

Thus, we see that for τ � 1 we have the relation ρ2 + ψ2
y ≈ 1. Inserting the constraint ρ =(

1−ψ2
y

)1/2
we obtain the scaled phase-diffusion equation

ψτ =
(
Φ(ψy)

)
y

+
y

2
ψy −

1

2
ψ with Φ′(η) =

1−3η2

1−η2
. (5.2)

Moreover, the limiting equation for ρ reads

ρτ = ρyy +
y

2
ρy + Λ, ρ2 + ψ2

y = 1,

where in principle it is possible to determine the Lagrange multiplier Λ from the constraint ρ2 +ψ2
y = 1

and (5.2).

Using η(τ, y) and differentiation once we obtain a scaled diffusion equation like the PME:

ητ =
(
Φ(η)

)
yy

+
y

2
ηy =

(
Φ′(η)ηy

)
y

+
y

2
ηy, (5.3)

which shows that the equation is well-posed only for Φ′(η) > 0, i.e. |η| < 1/
√

3, where |η| > 1/
√

3
leads to the celebrated Eckhaus instability [Eck65, EGW95, Mie97].

For all η−, η+ ∈ ]−1/
√

3, 1/
√

3[ there exists a unique steady profile η for (5.3) and via

ψ(y) = η−y +

∫ y

−∞
η(s)−η−ds = η+y −

∫ ∞
y

η(s)−η+ ds

we obtain the steady profile ψ for (5.2) with the correct asymptotics for x→ ±∞.

In Figure 5.1 we sketch the self-similar behavior of the solution A(t, x) for three different times for
0 < η0 = 0.3 < η+ = 0.45. The diffusive mixing leads to a motion of the zeros of Re A(t, x) to the
left. The speed v(t, x) of the zeros located at x at time t follows a self-similar profile, namely

v(t, x) =
1√
1+t

V
(
x/
√

1+t
)

with V (y) =
y

2
− ψ(y)

2ψ
′
(y)

.
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t = 50

t = 200

t = 800

Figure 5.1: The three graphs display Re A(t, x) for t = 50, 200, 800 for the case η− = 0.45 and
η+ = 0.3. The vertical connections between the graphs show the motion of the zeros. It is very slow
for large |x| (red lines) and is larger for |x| smaller (orange lines).

Here V can be calculated by observing that a zero placed at x0 for time t = 0 corresponds to the
phase u0 = ψ(x0). As the phase evolves like u(t, x) =

√
1+t ψ

(
x/
√

1+t
)
, the position of the

chosen zero has the form x(t) =
√

1+t H
(
ψ(x0)/

√
1+t

)
, where H is the inverse mapping of ψ.

Taking the time derivative and transforming back, provides the result.

6 Conclusion

In the previous sections we have shown that there are three different types of self-similar behavior for
evolution equations on Rd:

(1) The classical self-similar solutions u(t, x) = (1+t)−αU
(
x/(1+t)β

)
solve the underlying system

exactly. As examples we considered the Barenblatt solutions for the PME (2.1) or the exact solutions
constructed via E for reaction-diffusion system in Section 4.3 in the special case d1 = d2 and β = γ.

(2) A slightly more general occurrence of asymptotically self-similar behavior appears in Section 3
where the scaled equation is nonautonomous with a term e−γdτ that vanishes for τ → ∞. In such
situations one can establish existence of profiles by neglecting the term involving the decaying factor
e−γdτ , determining the arising steady states (which are hopefully stable), and finally applying a per-
turbation argument to obtain the convergence to the desired steady state. This then shows that the
solutions behave asymptotically self-similar.

However, we emphasize that even in the case treated in Section 3 there is a subtle interplay between
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the conserved quantities. Only by the help of the term involving e−γdτ it is possible to show that all the
initial energy E(v(0), k(0)) is finally turned into turbulent kinetic energy.

(3) The most challenging situation occurs in the cases where the asymptotic behavior is obtained by a
constraint arising from an exponentially growing factor eτ that forces the system into a local equilibrium
state. In that case the natural limit problem is a constrained system like in the RDS case in Section 4
and in the Ginzburg-Landau case in Section 5. The term eτR(c) is of the limiting type “∞ · 0” and
needs to be replaced by a Lagrange multiplier (possibly vector-valued, see Section 4.5).

In the cases (2) and (3) there remains to study the important question whether or not the formally
obtained self-similar profiles are indeed stable. This task is not addressed here, but first results are
obtained in [vaP77, GaM98, Váz07, GaS22, MiS22].

The description of asymptotically self-similar behavior via the corresponding similarity profiles in the
scaled variables leads to a natural interpretation of this behavior as a steady state in the sense of non-
equilibrium steady states, because the stationarity of the system is only induced by the renormalization
of the time-dependent scaling variables. Hence, there are nontrivial fluxes that balance the masses
or energies in a suitable way. The major observation is that the appearing Lagrange multipliers are
exactly the missing fluxes that are still relevant despite the fact that the system is locally equilibrated.
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