
WeierstraB-lnstitut 
fiir Angewandte Analysis und Stochastik 

im Forschungsverbund Berlin e.V. 

Any set of irregular points has full Hausdorff 
dimension and full topological entropy 

Luis Barreira1 , Jorg Schmeling2 

submitted: 17th December 1996 

1 Departamento de Matematica 
Instituto Superior Tecnico 
1096 Lisboa 
Portugal 
e-mail: barreira@math.ist. utl. pt 

2 Weierstrass Institute 
for A pp lied Analysis 
and Stochastics 
MohrenstraBe 39 
D - 10117 Berlin 
Germany 
e-mail: schmeling@wias-berlin.de 

Preprint No. 299 
Berlin 1996 

1991 Mathematics Subject Classification. Primary 58F15, 58Fll. 
Key words and phrases. Birkhoff averages, irregular points, local entropies, Lyapunov exponents, 
pointwise Q.imensions. 

This paper was written while L.B. and J. S. were visiting Penn State. L.B. was partially supported 
by the NSF grant #DMS9403723. J. S. was supported by the Leopoldina-Forderpreis. 



Edited by 
WeierstraB-Institut fiir Angewandte Analysis und Stochastik (WIAS) 
MohrenstraBe 39 
D- 10117 Berlin 
Germany 

Fax: + 49 30 2044975 
e-mail (X.400): c=de;a-d400-gw;p= WIAS-BERLIN ;s=preprint 
e-mail (Internet): preprint@wias-berlin.de 



ANY SET OF IRREGULAR POINTS HAS FULL DIMENSION AND ENTROPY 1 

ABSTRACT. We prove, for subshifts of finite type, conformal repellers, and two-
dimensional horseshoes, that the set of points where both the pointwise dimen-
sion, local entropy, Lyapunov exponents, and Birkhoff averages do not exist carries 
full topological entropy and full Hausdorff dimension. This follows from a much 
stronger statement formulated for a class of symbolic dynamical systems which in-
cludes subshifts with the specification property. Our proofs strongly rely on the 
multifractal analysis of dynamical systems and constitute the first mathematical 
application of this theory. 

1. INTRODUCTION 

1.1. Typical points and non-typical points. In the numerical study of dynamical 
systems we are naturally interested in the asymptotic behavior of typical points, with 
respect to some invariant measure. This study gives important information about the 
observable properties of a dynamical system, from the point of view of that measure. 
Moreover, typical points with respect to different measures (for example, measure of 
maximal entropy and measure of maximal dimension) give complementary informa-
tion. We believe that this information can be put together in order to reconstruct 
the dynamical system (see (4, 5]). However, we may need a huge number of typical 
points, each corresponding to a different measure, to effect this reconstruction. 

In this paper, we show that surprisingly all the information about the dynamical 
system is hidden in the set of non-typical points. In particular, this set carries full 
topological entropy and full Hausdorff dimension. Since the non-typical points belong 
to zero measure sets with respect to every invariant measure, the random choice of 
points privileges those which are typical. Thus, our result would be of little interest 
in applications without an algorithm to find non-typical points. We provide such an 
algorithm; namely, choosing two typical points with respect to two different ergodic 
invariant measures, we combine their symbolic representations to produce a non-
typical point. 

1.2. Multifractal analysis of dynamical systems. The existence of different er-
godic invariant measures strongly relies on the multifractal analysis of dynamical 
systems. Its main constituent component - dimension spectra - capture infor-
mation about various dimensions associated with the dynamics. Among them are 
Hausdorff dimension, correlation dimension, and information dimension of invariant 
measures. The typical orbit distribution observed by a computer is non-uniform, and 
clearly depicts hots and cold spots where the density of points of the orbit is higher 
or lower, respectively, than the average. Those spectra are new powerful tools which 
give a mathematical description of this phenomenon. 

Dimension spectra are examples of more general multifractal spectra introduced by 
Pesin and the authors in [4] (see also [5]). They provide information on the distribu-
tion of pointwise dimensions, local entropies, Lyapunov exponents, etc. Namely, we 
consider the level sets of functions other then the pointwise dimension (for example, 
the local entropy or the Lyapunov exponents) - called multifractal decompositions, 
and then compute the Hausdorff dimension, topological entropy, etc, of each level sets 
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- obtained the so-called multifractal spectra. This gives rise to dimension spectra 
and entropy spe~tra, respectively, of pointwise dimensions, local entropies, Lyapunov 
exponents, etc. 

Furthermore, we can construct families of ergodic invariant measures, one for each 
level set, of full Hausdorff dimension, full topological entropy, etc. These full measures 
contain all the information about the multifra~tal spectra and their use seems to be 
the most effective way of studying multifractal decompositions. Our proofs strongly 
rely on the existence of full measures and to the best of our knowledge constitute the 
first mathematical application of the multifractal analysis of dynamical systems. 

1.3. Sets of irregular points. We now illustrate the type of results obtained in 
this paper (see Sections 4, 5, and 6 for definitions and more details). We say that a 
set Z c X has full Hausdorff dimension if dimH Z = dimH X. 

Theorem 1.1. For a subshift of finite type a, the set of points x for which the limit 
n-1 

lim .!. L g ( (J'k x) 
n-+oo n 

k=O 
(1) 

does not exist for some continuous function g, has full Hausdorff dimension. 

Theorem 1.2. For a repeller of a conformal ci+e expanding map f, if the measure 
of maximal entropy and the measure of maximal dimension are distinct, then the set 
of points x for which the limit 

(2) 

does not exist, has full Hausdorff dimension. 

Theorem 1.3. For a locally maximal hyperbolic set A of a Cl+e surface diffeomor-
phism, ifµ is an equilibrium measure other than the measure of maximal dimension, 
then the set of points x for which the limit 

1. logµ(B(x, r)) 
Im-----

r-tO logr (3) 

does not exist, has full Hausdorff dimension. 

These are special cases of our results. Notice that the limits in (1), (2), and (3) 
(when they exist), define the Birkhoff average of g, the (upper) Lyapunov exponent 
of f, and the pointwise dimension of µ, respectively. The three theorems above indi-
cate that even though the "negligible" sets of zero measure composed of the points 
where the Birkhoff Ergodic Theorem, Oseledets Multiplicative Ergodic Theorem (or 
simply Kingman Sub-Additive Ergodic Theorem in this case), and the affirmative so-
lution of the Eckmann-Ruelle conjecture (see [3]), respectively, does not hold, in fact 
carries full Hausdorff dimension. Similar statements can be proved for the Shannon-
McMillan-Breiman Theorem. 
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We emphasize that the above results are only special cases of much stronger results. 
In particular, these results extend (with natural non-avoidable exceptions) to inter-
section of sets where both Birkhoff averages, Lyapunov exponents, local entropies, 
pointwise dimension, etc, do not exist. Moreover, besides the Hausdorff dimension 
we consider the topological entropy and prove that all those sets have also full topo-
logical entropy. We refer to the sections below for a precise formulation of the results. 

An important element of unification in our approach is the use of Caratheodory 
dimension characteristics. These were introduced by Pesin (see [11] for a comprehen-
sive description). We introduce a new Caratheodory dimension characteristic, the 
so-called u-dimension for each positive Holder continuous function u (see Section 2.2 
below). This allows us to treat simultaneously all the results mentioned above for 
each class of maps. Moreover, we provide a new description of Bowen's pressure 
formula based on the notion of u-dimension. We believe that our results and tech-
niques are well adapted to obtain obtain proof that sets of irregular points are full 
with respect to other natural quantities such as the topological pressure of a fixed 
potential. 

Acknowledgement. It is a great pleasure to thank Professor Yakov Pesin for many 
helpful conversations and for many suggestions which substantially improved our pa-
per. We also would like to thank for the hospitality of the Department of Mathematics 
of The Pennsylvania State University where this paper was written. 

2. SETS OF IRREGULAR POINTS 

2.1. Definitions. Let S be a finite set, and a: SN -+ SN the shift map given by 
O"( ii i 2 • • • ) = ( i2i3 • • ·). We fix a number /3 > 1 and define a metric on SN by 

00 

d(iii2 ... ,jd2 ... ) = L/3-klik - jkl· (4) 
k=i 

We consider a subshift :E c SN, i.e., a closed O"-invariant subset of SN (i.e., O":E = :E), 
and assume that O"l:E is topologically transitive. Let Z'E be the family of cylinder sets 

c = { (jd2 ... ) E :E : U1 ... jk) = (ii ... ik)} 

for ii, ... , ik E S. We call the integer k the length of C and denote it by ICI. 
We denote by CC' the cylinder set corresponding to the juxtaposition of the tuples 
specifying the cylinder sets C and C', in this order. Let Cn ( x) E Z'E denote the 
cylinder set of length n which contains the point x E :E. 

Given sequences of functions pi = {!~: :E-+ R+}neN for i = 1, ... , m, we define 
the set 

j(P1 , ... , pm)= {x E :E: lim f!(x) < lim f!(x) fork= 1, ... , m}, 
n-+oo n-+oo 

and call it a set of irregular points. Clearly, for every 1 ~ k < m, 

j(P1, .· .. , pm)= j(P1, ... , pk) n j(pk+i, ... , pm). 
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We use the hat in J- and in any other set to indicate that they are subsets of .E. 
We will show that, under general natural assumptions, that any set of irregular 

points carries full topological entropy. 
We now describe several natural examples of such sets. Let C(.E) be the space of 

continuous functions on .E. For each function g E C(.E), set 

§(g) = J- ({~Sng} ) = {x E .E: lim ~Sng(x) does not exist}. 
n nEN n~oo n 

where Sng(x) = I:~:~ g(akx) and, for each probability measureµ on .E, and each 
continuous function u : .E -+ JR+, 

- -({ fn } ) { . logµ(Cn(x)) . } JC(µ; u) = 3=' -8 . = x E .E : hm. - S ( ) does not exist , nU nEN n~oo nU X . 
(5) 

where fn(x) = - log µ(Cn(x)) for each n. We write 
m 

Jc(µ)= Jc(µ; 1) and Jc(µi, ... 'µm; u) = n Jc(µi; u). 
i=l 

The sets § (g) and Jc(µ; u) are a-invariant but may not be compact. 
We also define the set 

§ = {x E .E: lim ~Sng(x) does not exist for some g E C(.E)}. (6) 
n~oo n 

Note that 

§ = u §(g). 
gEC(E) 

For each measureµ on .E, we define the set of typical points forµ by 

S(µ) = {x E .E: lim ~Sng(x) = r gdµ for every g E C(.E)}. 
n~oo n }E 

Clearly, § c .E \ LJµ §(µ). If x E .E \§,then the map 

g ~ lim ~Sng(x) 
n~oo n. 

defines a a-invariant bounded linear functional on C(.E), and, by the Riesz Represen-
tation Theorem, x E §(µ) for some invariant measureµ. Hence, § = .E \ uµEM §(µ), 
where Mis the set of a-invariant Borel probability measures on .E. It is not hard to 
see that if Mergodic CM is the subset of ergodic measures, then 

~ = .E \ u 9 (µ). 
µEMergodic 

Remarks. 
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1. Ifµ is O"-invariant, then µ(B) = 0 (by the Birkhoff Ergodic Theorem and the 
separability of C(E)), and µ(5i(µ)) = 0 (by the Shannon-McMillan-Breiman 
Theorem). 

2. If 91 and 92 are cohomologous, i.e., 91 - 92 = 'lj; - 'lj; o O" + c, where 'lj; is some 
continuous function and c some constant, then §(91) = §(92 ). 

3. Ifµ is a Gibbs measure, then there is a cohomology class of functions in C(E) 
such that 5i(µ) = § (9) if and only if 9 belongs to this cohomology class. 

4. If O"IE is uniquely ergodic, then the set § is empty. 
5. Let µ be a O"-invariant measure of maximal entropy; ifµ is a Gibbs measure (in 

particular, when O"IE is a topologically mixing subshift, this holds for subshifts 
of finite type, sofic subshifts; i.e., factors of subshifts of finite type, and, more 
generally, subshifts with the specification property), then 5i(µ) is empty. 

2.2. The notion of u-dimension. Let u: E --+ R+ be a Holder continuous function. 
For every set Z C E, we define 

mu(Z, a)= lim inf L sup exp(-Smiu(x)a), 
n--+oo U . xEGm· 

i i 

where the infimum is taken over all finite or countable covers U of Z by cylinder sets 
Cmi such that I Cmi I = mi ~ n for each i. Since u is Holder continuous, there is a 
constant L > 0 such that ISmu(x) - Smu(y)j ::; L whenever y E Cm(x). 

By the general theory of Caratheodory dimension characteristics (see [11]), there 
is a unique critical value a = dimu Z at which mu(Z, ·)jumps from +oo to 0. We 
call dimu Z the u-dimension of Z. For every probability measureµ on Z, we define 

dimu µ = inf{dimu Z: µ(Z) = 1} 
and call dimu µ the u-dimension of µ. 

We formulate here some preliminary results. 

Proposition 2.,1. If µ1 and µ2 .are probability measures on E, and u: E --+ R+ zs 
Holder continuous, then, for every 8 > 0, 

({ 
. log µ2(Cn(x)) . }) 

µ1 X: !!!, Snu(x) > d1mu µ1 - 8 > 0. (7) 

Proof. If (7) does not hold, then the set 

{ 
. logµ2(Cn(x)) . } 

f 8 = x E E : hm S ( ) ::; d1mu µ1 - 8 
n--+oo nU X 

(8) 

has full µ1-measure. For each x E f 5, let {nk(x)}kEN be an increasing sequence of 
positive integers such that 

logµ2(Cnk(x)(x)) < d' ~ lmuµl - u 
Snk(x)u(x) -

for each k. Observe that two cylinder sets are either disjoint, or one is contained in 
the other. Hence, for each L > 0 there is a finite or countable cover { Cmi (xi) : i E N} 
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of rd formed by disjoint cylinders sets, for some points Xi E rd and integers mi E 
{nk(xi) : k EN} such that mi> L for each i EN. We obtain 

00 

i=l 
00 

i=l 
00 

where c( B) is a constant depending only on the Holder exponent of u. Hence, 
dimu µ1 -8 ~ dimu rd~ dimu µ1 , because µl(rd) = 1. This contradiction implies the 
desired result. D 

Corollary 2.2. Let µ 1 and µ 2 be two probability measures on E, and u: E--+ R+ is 
Holder continuous. If µ 1 is an ergodic u-invariant measure, then 

( { 
. log µ2 ( Cn ( x)) . } ) 

µ1 XE E: }~~ - Snu(x) ~ d1muµ1 = l. 

Proof. For each 8 > 0, the set rd defined by (8) is u-invariant. By Proposition 2.1, 
µ1(E \rd)= 1 for every c > 0, and hence, the set 

n(~ \ r) = { E ~. 1. _ logµ2(Cn(x)) > d' }. 
L.J d x L.J • Im S u(x) _ lIDu µ1 

d>O n-+oo n 

has also full µ1-measure. D 

The follow:ing is an immediate consequence of Birkhoff Ergodic Theorem, Shannon-
McMillan-Breiman Theorem, and Theorem 4.1 in [11]. 

Proposition 2.3. Ifµ is an ergodic u-invariant probability measure on E, and the 
function u: E--+ R+ is Holder continuous, then, for µ-almost every x EE, 

1. logµ(Cn(x)) _ hµ(u) _ d' 
Im - - - Imuµ. 

n-+oo Snu(x) J'£ u dµ 
(9) 

We define the lower and upper u-pointwise dimensions ofµ at the point x by 

d ( ) = 1. _logµ(Cn(x)) - ( ) - logµ(Cn(x)) 
x im ) and dµ u x = lim ( ) -µ,u n-+oo Snu(x ' n-+oo Snu X 

If these two numbers coincide, i.e., if the limit in (9) exists, we call the common value 
the u-pointwise dimension of µ at the point x, and denote it by dµ,u ( x). . 

Let g be a continuous function, and Z E E a not necessarily compact or invariant 
set. For each real number (3, we set 

p9 (Z, (3) = lim inf L sup exp(-mif3 + Smig(x)), 
n-+oo 'U · xECm. 

i i 
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where the infimum is taken over all finite or countable covers U of Z by cylinder sets 
Cmi such that mi 2:: n for each i. The pressure of g on the set Z (see [11]) is the 
unique critical value /3 = Pz(g) at which p9 (Z, /3) jumps from +oo to O. 

Proposition 2.4 (Bowen's pressure formula). We have dimu Z =a, where a is the 
unique root of the equation Pz(-au) = 0. 

Proof. Set g =-au. Then p9 (Z, 0) = mu(Z, a) and we obtain the desired result. D 

Bowen's pressure formula was introduced by Bowen in [8] in the context of quasi-
circles. In [15], Ruelle considered the same equation in the context of real analytic 
maps. 

We are now able to prove the next proposition. 

Proposition 2.5. The following property holds: 

dimu LJ §(µ) =sup{ dimu µ: µ E Mergodic}· (10) 
µ 

We note that the union in (10) is in general not countable; otherwise, Proposi-
tion 2.5 would follow immediately from the general theory of Charatheodory dimen-
sion characteristics (see [11]). 

Proof. By the variational principle for the topological pressure [12], 

Puµ§(µ)(-au) = sup (hµ(a) - a { udµ). 
µEMergodic } :E 

By Proposition 2.4, if a= dimuLJµ§(µ), then SUPµEMergodic (hµ(a)- aJ:Eudµ) = 0. 
Moreover, by Proposition 2.3, for any ergodic measureµ, hµ(a) -1 J:E udµ < 0 for 
all / > dimu µ. This shows that ~::::; SUPµEMergodic dimu µ. 

On the other hand, we can prove that dimu § (µ) 2:: dimu µfor every ergodic measure 
µ. This completes the proof. D 

Examples. We will consider mainly two expressions for the function u. 
1. u = 1 then the u-dimension of a set Z E E is simply the topological entropy of 

this set. 
2. u = log a where a is defined as the lift to E of the norm of the derivative of 

an expanding conformal map .. Then the u-dimension of a lifted set equals the 
Hausdorff dimension of this set (see Section 5). · 

3. MAIN RESULT 

Consider a non-decreasing sequence '1! = { ~n}neN of positive numbers such that 
~n/n -t 0 as n--+ oo. Define the subset Ew C E of points x EE such that for each 
n EN and cc z:E with ICI < ~n satisfying CCn(x) E z:E, given c E z:E there exists 
C E Z:E such that 

CCn(x)CC E z:E and ICI ::::; ICCn(x)I + ~ICCn(x)I· 
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We note that ~'11 C 0"~'1f, but presumably ~'11 need not be u-invariant in general. 
For each measureµ on the subshift ~ we consider the following property: 

There exists a sequence w such that µ(~'11) > 0. (11) 

This holds, for example, for u-invariant measures on subshifts of finite type, sofic 
subshifts, and, more generally, subshifts with the specification property; in each of 
these cases ~'11 = ~ for some constant sequence w. 
Definition 3.1. A system of measures µi, ... , µk is called distinguishing for F 1, ... , 
pm if for every 1 :::; i :::; m, there exist distinct integers i1 = j 1 ( i), j 2 = i2 ( i) E [1, k] 
and numbers a}1 =!= a}2 such that 

lim f~(x) = a;1 for µii-almost all x, 
n-+oo 

lim f~(x) = a;2 for µh-almost all x. 
n-+oo 

We can always assume that k :::; 2m in the definition. For example, let µ1 and µ2 be 
two distinct ergodic u-invariant probability measures on~. Then, there is a function 
g E C(~) such that f "£ g dµ1 =!= f "£ g dµ2 , and, by the Birkhoff Ergodic Theorem, the 
measures µ1, µ2 are distinguishing for { ~ Sng }neN. 

The following is our main result. It gives lower bounds for the u-dimension of sets 
of irregular points. 

Theorem 3.2. Let µ1 , ... , µk be a distinguishing system of ergodic measures for 
F 1 , ... , pm such that the condition ( 11) holds for each measure µi with respect to 
some sequence wi. Then, for any Holder continuous function u: ~ -+ R+ we have 

dimu ~(F1 , ... , Fm) 2:: min{ dimu µ1, ... , dimu µk}· 

Proof. For the sake of clarity we first present the proof in the case m = 1. The 
general case is discussed at the end. 

When m = 1, we write fn = f~ for each n EN, and, without loss of generality, we 
may assume that µ1, µ2 is a distinguishing system of measures for F = {fn}neN (see 
Definition 3.1); we write a] = ai for j = 1, 2. We may also assume that ai =!= 0 for 
j = 1, 2. Otherwise we can consider the sequence of functions F +a= {fn + a}neN, 
where a is a non-zero constant, since ~(F +a) , ~(F). Without loss of generality 
we assume that dimu µ1 2:: dimu µ2 • Choose a positive number 8 such that 

(12) 

We consider the sequence W ={max{ 'lj;~, 'lj;~} }neN, where wi = { 'lj;~}neN for i = 1, 2. 
For each integer k 2:: 1, we set 

{
1 if k is odd 

Pk = 2 if k is even· 
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For each integer f, 2:: 1, let ff C ~'ll be the set of points x E ~'ll such that for all 
m 2:: f, and i = 1, 2, we have 

(13) 

For each f, 2:: 1, let f~ C ~'ll be the set of points x E ~'ll such that for all m 2:: £, 

lfm(x) - a21<8 and logµ2 (Cm(x)) d' ~ - Smu(x) > lmu µ2 - u. (14) 

Clearly f ~+i ~ r~ for each f, 2:: 1, and i = 1, 2. 
Let v1 and v2 be the normalized measures obtained from the restrictions of µ1 and 

µ2 to the set ~'ll • Fix c E ( 0, 1), and for each integer k 2:: 1 set 

f,k =min ( { f, EN: VPk(r;J > 1- c/2k+l} u {lk-1})' (15) 

where £0 = oo. We note that lk 2:: lk-l· By Corollary 2.2 and Proposition 2.3, we 
have f,k < oo for every k 2:: 1. 

For j = 1, 2, since µi is invariant, the set of points x E ~ such that 

lim fn(x) = lim fn(amx) 
n--700 n--roo 

for every m EN has full µrmeasure. For these points we can define the number 

Dn,m(x) = y.~~·x { J 
1J:7;r J. J l:~~~) J}' 

and by Lusin's Theorem, for each j = 1, 2, and 8 > 0 there is an integer ri(n, 8) 2:: n 
such that Dn,m(x) < 1 + 8 for all m > ri(n, 8) and all x outside a set Yjn(c) of 
µrmeasure at least 1 - 8. 

For each k 2:: 1, we define inductively the increasing sequences of positive integers 
{nkheN and {mkheN by m1 = nl = £1, and, for every k 2:: 2, by 

mk = rPk(nk-1 + L~nk_ 1 J,c/2k+l) +lk+l! and nk = nk-1 + L~nk_ 1 J +mk + 1. 
(16) 

We set 
flk = flk n Y.nk-1 (c/2k+l) Pk Pk Pk ' 

Then vPk(r~~) > 1- c/2k. For each k 2:: 1, we define a family of cylinder sets by 

~k = {Cmk(x): x Er;~}; 

moreover, we set 1)1 = ~1, and 

1)k ={CCC E Z'E: CE 1)k-1, CE ~k, and CE Z'E is minimal}. 

Here, minimality refers to the order < in Z'E defined by: if C, C' E Z'E are distinct, 
we write C < C' if ICI < IC'j, or if ICI = jC'I but C is smaller than C' in the 
lexicographical order. 
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We now prove that for each CCC E i)k with C E i)k-l and C E Q:k, we have 
!Cl :S nk-l and !Cl < 7/Jnk-l for each k 2: 2. Fork= 2 this is clear because n1 = m1 . 

Using (16) and induction on k > 2, we obtain 

!CCCI :S nk-1 + 7/Jnk-l + mk < nk 

and hence, IC'! ::; 7/Jnk for each C'C'C' E i)k+l with C' E i)k and C' E Q:k+l, because 
W is non-decreasing. 

Set 

A= n LJ C. 

We define a measure µ on A by µ( C) = v1 ( C) if C E i)1 , and by 

µ(CCC)= µ(C)vPk(C) 

if CCC E i)k for some k > 1. We extend µ to ~ by µ(A) = µ(A n A) for each 
measurable set Ac ~. For each k 2: 1 and every CE i)k_1, it follows from (15) that 

µ (_ u C n c) 2: µ( C) ( 1 - ;k) , 
cenk 

and hence, 
00 

µ(A) 2: II ( 1 - ;k) > 0 
k=l 

for all sufficiently small c. 
Observe that mk ::; IC! ::; nk for each k > 1. Let now x E C E i)k· Then 

O"ICl-mkx E f!~. By (13) and (14), we obtain 

If ( ) I f1c1(x) If ( ICl-mk ) I .ICI x - aPk ::; f ( IGl-mk ) X mk O" x - aPk mk (]' X 

+ j1 f1c1(x) I x la I - f mk(O"ICl-mkx) Pk 
::; D1c1-mk,mk (x) X lfmk (O"ICl-mkx) - aPk I 
+ (D1c1-mk,mk (x) - 1) X laPk I· 

Hence, for all sufficiently large k and every x E CE i)k, we have 

lf1c1(x) - aPkl < 28. 
It follows from (12) and (17) that 

J'(F) -::J A. 

Lemma 3.3. If x E A, then 

1. logµ(Cn(x)) > d" 2 ~ 
Im - S ( ) _ Imu µ2 - u. 

n-+oo nU X 

(17) 

(18) 
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Proof of the lemma. Let x E A. We prove that for all sufficiently large integer q, 
there exists 8' == 8' ( q) E ( 8, 28) such that 

logµ(Cq(x)) d" ~' 
- Sq U ( X) ~ Imu µ2 - u . 

First, observe that by (13) there exists an integer q0 == q0(x) :S m1 such that for each 
integer q E [q0 , m1], we have µ(Cq(x)) == v1(Cq(x)) :S µ1(Cq(x)), and 

logµ(Cq(x)) > 
Squ(x) -

We now proceed by induction on q ~ qo. For each q EN, choose an integer kq such 
that ICkql :Sq< ICkq+ll, where 

f'kq+l 3 Ckq+l C Cq(x) C Ckq E f'kq· 

Assume that 

(19) 

We have 

Squ(x) 8 1ckql+'l/J10kq 1+lkq+1 u(x) _ '1f11ckql + .ekq+l maxxEE u(x) 
< () -1+ !kl x. ()' S1ckq1u(x) - S1ckq1U x c q mmxEE u x 

and the last fraction approaches zero as q---+ oo. 
Using induction and the positivity of u, we obtain 

_ logµ(Cq(x)) > 
Squ(x) -

log µ(Ckq) 
Squ(x) 

logµ(Ckq) S1ckq 1u(x) ---- x ___;_____;_. __ 
S1ckq 1u(x) Squ(x) 

(20) > 

for all q ~ q1 , some integer q1 ~ qo, and some 8' == 8'(q) E (8, 28). Hence, when 
(19) holds, the desired result follows from (20). 

Assume now that (19) does not hold. In this case, we have 

where Cq(x) == CkqCC and the cylinder set C contains an element of <rkq+l; moreover, 
!Cl < '1f1ickql and !Cl > .ekq+l· Thus 

q :S ICkq I+ 1fi1ckql +IC!. 
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Therefore, by induction, the definition of r!:::~, and the positivity of u, 

logµ(Cq(x)) 1 ( k - ) 
- Squ(x) ~ Squ(x) - logµ(C q) - log µPkq+i (C) 

B1ckq 1u(x) + S101u(x) . 
~ Squ(x) (d1mu µ2 - 81) 
2:: dimu µ2 - 82, 

for all q 2:: q2, some integer q2 2:: qi, and some 81 = 81(q), 82 = 82(q) E (8, 28). This 
completes the proof of the lemma. D 

By Theorem 3.1 in [11], and Lemma 3.3, we obtain 

dimu A 2:: dimu(µIA) ~ dimu µ2 - 28. 
Since 8 is arbitrary, 

dimu A 2:: dimu µ2. 

Thus, by (18), dimu ~(F) 2:: dimu µ2. Since dimu µ1 ~ dimu µ2, this completes the 
proof of the theorem in the case m = 1. 

We now briefly discuss how to deal with the case m > 1. We consider the sequence 
w ={max{~~' ... '~~} }neN, where wi = { ~~}neN for i = 1, ... ' k. For each integer 
s ~ 1, we set p s = s (mod k) + 1. 

Without loss of generality, we may assume that dimu µii(i) :::; dimu µh(i) for all 
1 :::; i :::; m, and dimu µj 2:: dimu µk for all 1 :::; j :::; k. For each integer f, ~ 1, let 
f;i(i) C ~q, be the set of points x E ~q, such that for all m ~ f, and t = 1, j2(i), we 
have 

IJ,:.(x) - ail< 8 and - log;:~:~x)) > dimu µt - 8. 

For each f, ~ 1, let r;
2
(i) C ~q, be the set of points x E ~q, such that for all m ~ /!,, 

lfmi (x) - a21 < ~ and I logµi1(i)(Cm(x)) d. I < r 
u - Smu(x) - Imu µj1(i) u. 

Clearly ff+l ~ f~ for each /!, ~ 1, and i = 1, 2. D 

The following result is a simple application of Theorem 3.2, illustrating the power 
of this theorem. 

Corollary 3.4. Let µ1, ... , µ1. be ergodic measures such that the condition (11) holds 
for each measure µi with re:spect to some sequence wi. If not all the numbers dimu µ1 , 

... , dimu µ1. are equal, then, for any Holder continuous function u: ~--+JR+ we have 

dimu 5i(µ1, ... , µ1.; u) 2:: min{ dimu µi, ... , dirr{u µ1.}. 

Proof. D 

In fact, one can proof the following apparently stronger statement. 
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Corollary 3.5. Under the assumption of Theorem 3.2 and Corollary 3.4, we have 

dimu ( ic(µ1 ... , µl; u) n J'(P1, ... , pm)) 2:: min{ dimu µ1, ... , dimu µ£}. 

Proof. D 

We now obtain entropy lower bounds for the sets of irregular points ~ and ic(µ). 
Since these sets may not be compact we need the notion of topological entropy for 
non-compact sets introduced independently by Bowen in [6], and by Pesin and Pitskel' 
in [12]. 

Corollary 3.6. Let µ1 and µ2 be two distinct ergodic a-invariant probability mea-
sures on~ for which (11) holds for some sequences '111 and '112 , respectively. Then: 

1. h( a!'.B) 2:: min{hµ1 (a), hµ2 (a)}; 
2. if hµ1 (a) > hµ2 (a), then h( alic(µ2) n ~) 2:: hµ2 (a). 

Proof. Since µ1 and µ2 are distinct, there is a continuous function g on ~ such that 

l gdµ1 i= l gdµ2. 

By Birkhoff Ergodic Theorem, the measures µ1, µ2 compose a distinguishing system 
for ~{ Sng }nEN· Hence, setting u . 1, Theorem 3.2 implies the first inequality. 

If, in addition, hµ1 (a) > hµ2 (a) then, by Proposition 2.1, the same system µ1, µ2 

is also distinguishing for ~{Sn9}nEN, {f~}nEN, where f~ = -~ logµ2(Cn(x)) for each 
n EN. Theorem 3.2 implies the second statement of the corollary. D 

By the statement 1 in Corollary 3.6, we have 

h(a!'.B) 2:: sup{hµ(f): hµ(f) =I- h(a), µis ergodic, and (11) holds} 
= sup{hµ(f): hµ(f) =/:- h(a) and (11) holds}, 

with the convention that h(al0) =sup 0 = 0. 

4. APPLICATIONS TO SUBSHIFTS OF FINITE TYPE 

(21) 

In this and the following sections we present several applications of Theorem 3.2. 
Among others, we consider the sets of irregular points where the local entropy, the 
pointwise dimension, and the Birkhoff average do not exist, both for subshifts of 
finite type, for repellers of conformal expanding maps, and for horseshoes, and show 
that these carries carry full topological entropy (with some natural exceptions). In 
each case, we choose appropriate sequences of functions pi. and u, and a system 
of distinguishing measures, and apply Theorem 3.2. The choice of the system of 
measures is based on the theory multifractal analysis. To our best knowledge this 
constitutes the first mathematical application of that theory. 
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4.1. Multifractal analysis and sets of irregular points. We now present effect 
a complete multifractal analysis for the u-dimension. For every real number a such 
that Ka= {x: dµ,u.(x) =a}-:/= 0, we write 

'Du.( a) = dimu. K 0 • 

The function a r-+ 'Du.(a) is called the u-dimension spectrum for u-pointwise dimen-
sions (with respect to the measure µ). Let <.p be a continuous function on :E. For 
every real number q, we define the function 

'Pq = -Tu.(q)u + qcp, 
where the number Tu.(q) is chosen such that P( cpq) = 0. We denote by vq and mu, 
respectively, the equilibrium measures of <.pq and - dimu :E · u with respect to a. 

The following is a complete multifractal analysis of the spectrum 'Du for subshifts 
of finite type. It follows from a combination of the results in [13, 4, 16] for subshifts 
of finite and repellers of conformal expanding maps (see Section 5 for the definition; 
some care is necessary when we transfer results originally formulated for repellers to 
results formulated in terms of the underlying symbolic dynamics). 

Theorem 4.1. Let a: :E --+ :E be a subshift of finite type, u and <.p Holder continuous 
functions on :E, such that u is positive and P( <.p) = 0, andµ the equilibrium measure 
of <.p with respect to a. Then, the following properties hold: 

1. For µ-almost every x E :E, the u-pointwise dimension ofµ at x exists and 

JIJ <.pdµ 
dµ,u.(x) = JIJudµ' 

2. The function q r-+ Tu.(q) is real analytic on JR, and satisfies T~(q) :::; 0 and 
T: ( q) 2:: 0 for every q E JR. Moreover, Tu. ( 0) = dimu. :E and Tu. ( 1) = 0. 

3. The domain of the function a r-+ 'Du(a) is a closed interval in [O, +oo) and 
coincides with the range of the function au.(q) = -T~(q). For every q E JR, we 
have 

and 

( ) _ JIJ cpdvq 
auq-J d. 

IJ u liq 

4. Ifµ -:/= mu, then 'Du and Tu are analytic strictly convex functions, and hence, 
('Du, Tu) is a Legendre pair with respect to the variables a, q. 

5. Ifµ= mu., then 'Du. is the delta function 

'Dn(a) = {d
0

imu. :E if a= dimu. :E 
if a-:/= dimu. :E 

6. For every q E JR, we have vq(K0 ) = 1 and 
dvq,u.(x) = Tu.(q) + qau.(q) 
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for v q-almost all x E Ka. Moreover, '.Du (au ( q)) = dimu v q for every q E JR. 

We call mu the measure of maximal u-dimension, and liq the full measure for 
the spectrum '.Du at the point au(q). We note that when u = 1, the spectrum 
'.Du coincides with the entropy spectrum for local entropies introduced in [4], and 
that when u = log a for some Holder continuous function a we recover the dimension 
spectrum for pointwise dimensions on a repeller of a Cl+c conformal expanding map f 
such that a( x) = II dx f 11 (expressed in terms of its underlying symbolic representation 
by a subshift of finite type). See [4] for details. 

Theorem 4.2. Let cp1 , ... , 'Pn be Holder continuous potentials on E, g = 1 or 
g = log a, and u = 1 or u = log a with 'Pi not cohomologous to g for i = 1, ... , n. 
Then, for any c > 0 there is a distinguishing system of measures µ1 , ... ,µ2n for the 
sequences of functions { 88k'fl heN, ... , { 88k'Pn }keN such that 

k9 k9 

min { dimu µi, . . . , dimu µ2n} > dimu E - c. 

Proof. Without loss of generality we may assume that P( 'Pi) = O; i = 0, ... , n. The 
proof consists of three cases. 

Case 1. g = u. Fix c > 0. Since no function 'Pi is cohomologous to g = u their 
corresponding equilibrium states vi = vlpi have a non-trivial spectrum with respect to 
the function g. In the case of g = u = 1 this spectrum is the entropy spectrum of the 
local entropies and in case of g = u = log a this spectrum is the dimension spectrum 
of the pointwise dimension (see [4]). The non-triviality of these spectra implies that 
for each 1 ::; i ::; n we can find two measures vf = Vq1 and v[ = vq2 for some q1 , 

q2 > 1 such that 

min { dimu vJ, dimu vJ} > dimu E 

and it exist 
S cp·(x) · · 

lim ; i( ) = ai for vf-almost every x 
n-too n9 X 

and a} =/. ar. We the set µ 2i-i = vf and µ2i = v[. This system is a distinguishing 
one. 

Case 2. u = 1 and g = log a. This case is different from the previous one since we 
do not have a sufficient description of the entropy spectrum of pointwise dimensions. 
But as in the above case it is enough to find for each i two measures of different 
Hausdorff dimension but large enough metric entropy. Let i and c be fixed, µE be 
the measure of maximal entropy which is a Gibbs measure for a constant potential. 

We consider a neighborhood of cp = -h(o-IE) in the space Ce(E) of Holder contin-
uous functions on E with Holder exponent (). For each function cp E Ce(E) we define 
its norm ll'Plle by 

ll'Plle = sup{lcp(x)I : x EE}+ inf{K: cp E Ce,K(E)}, 
where 

Ce,K(E) = { cp E C(E) : lcp(x) - cp(y)I ::; Kd(x, y) 9 for every x, y E E}. 
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The entropy of a Gibbs measure with potential 'ljJ with P( 'ljJ) = 0 is given by 

hµ~ ( u) = ! P(ti/;) [t=l = 11/; dµ.µ. 

This implies the analytic dependence of the entropy on the potentials. Let us now 
assume that we cannot find a potential close enough to a constant such that the 
pointwise dimension of the corresponding Gibbs measure is different from that of the 
measure of maximal entropy. This means that for all potentials ry in a certain small 
C8 (~)-neighborhood U of the constant potential -h(al~) the equality 

d ( ( ) ) I IE 'Pi dµry IE 'Pi dµE -d P -T11 t log a + 'Pi + try t=l = - J 1 d = J 1 d = C t E og a µ11 E og a µE 
holds, where T11 (t) is chosen such that P(-T11 (t) loga+cpi+try) = 0. By the analitycity 
of the pressure functional we have for all Gibbs statesµ on ~ 

l <p; dµ =Cl logadµ. 

But this implies that 'Pi rv log a what contradicts the assumptions. Hence in every 
neighborhood, and in particular in a neighborhood small enough to have entropy 
of all its Gibbs states larger than h(aj~) - e, of the potential -h(aj~) there is a 
potential ry such that 

1. Sn'Pi(x) 1 c l Im = a. 1or µ11-a most every x n-+oo Sng(x) i 

and 

1. Sn'Pi(x) 2 -1- 1 c 1 Im S ( ) = ai 1 ai 1or µE-a most every x. n-+oo ng X · 

We set µ2i_1· = µ11 and µ2i = µE. By the above arguments this gives rise to a system 
of distinguishing measures. 

Case 3. g = 1 and u = log a. The proof in this case is analog to the proof in case 2. 
The only change is to consider the measure of maximal dimension µD which is the 
Gibbs measure for - dim10g a ~log a instead of the measure of maximal entropy. D 

4.2. Sets of irregular points for local entropies and Birkhoff averages. We 
start with a preliminary result. 

Proposition 4.3. If al~ is a topologically mixing subshift of finite type, then 

~ = {x E Jc(µ) : µ is a Gibbs measure}. (22) 

Proof. Observe that Jc(µ) C ~ whenever µ is a Gibbs measure (if µ is a Gibbs 
measure for the continuous potential cp, one considers the function g = PcrlE( cp) - cp 
in (6)). Hence, if AC ~is the set defined by the right-hand side of (22), then AC ~-

Let x EA. Then the limit 
' 1 

lim -Sncp(x) n-+oo n 
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exists for every Holder continuous function cp on ~. For a given continuous function 9 
on ~ let { 'Pm}mEN be a sequence of Holder continuous functions on ~ such that 
supxEEl9(x) - 'Pm(x)I--+ 0 as m--+ oo. This implies that 

0:::; lim .!.sn9(x) - lim ~Sn9(x) 
n-+oo n n-+oo n 

:::; lim ,]:Sn'Pm(x)- lim .!.sn'Pm(x) + 2supl9(x) - 'Pm(x)I 
n-+oo n n-+oo n xEE 

= 2 supl9(x) - 'Pm(x)I--+ 0 
xEE 

as m--+ oo, and hence, x E §. This implies that§ c A, and hence, A=§. D 

Theorem 4.4. Let al~ be a mixing subshift of finite type. If 91 , ... , 9k are Holder 
continuous functions on~ non-cohomologous to 0, then 

h(al§(91) n · · · n §(9k)) = h(a). 

Proof. Choose 2k measures µ}, µt for i = 1, ... , k such that JE 9i dµ} # JE 9i dµt 
for each i. Their existence follows easily from the multifractal analysis of the en-
tropy spectrum for pointwise entropies, with respect to the Gibbs measures with 
potentials 91 , ... , 9k (see Theorem 4.1). These measures are distinguishing for the 
sequences {~Sn9dnEN, ... , {~Sn9k}nEN, and the desired result follows from Theo-
rems 3.2 and 3.4. D 

For a mixing subshift of finite type, it follows from Theorem 4.4 that 

h(al§) = h(a). 

The following result shows that, in the case of subshifts of finite type, the set § as 
well as the sets Jc(µ) carry all the topological entropy. 

Theorem 4.5. If al~ is a subshift of finite type, then the following properties hold: 
1. h(al§) = h(a); 
2. ifµ is a Gibbs measure on~ which is not a measure of maximal entropy, then 

Jc(µ) C § and h(alJc(µ)) = h(a). 

Proof. Both statements are trivial when h(a) = 0, and hence, we may assume that 
h(a) > 0 without loss of generality. 

Since ~ is of finite type there are always two distinct Gibbs measures with entropy 
arbitrary close to the topological entropy of~. Namely, by Theorems 4.4 and 5.4 
in [4] (the entropy spectrum for local entropies is analytic and has a family of full 
measures, and hence), for each c > 0 there exist Gibbs measures µ1 and µ2 such that: 

1. hµ1 (a) > hµ2 (a) > h(a) - c; 
2. for µ 1-almost every x E ~' 

lim -~logµ(Cn(x)) = hµ1 (a); 
n-+oo n 
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3. for µralmost every x E :E, 

lim _.!_logµ(Cn(x)) = hµ2 (a). 
n-+oo n 

Moreover, we have that Jc(µ) C ~since hµ'P (a)= limn-+oo -~Sncp(x) for µcp-almost 
every x for any Gibbs measure µcp corresponding to a Holder continuous potential cp 
and Theorem 4.2 immediately implies the remainder of the statements. D 

Statement 1 in Theorem 4.5 was first established by Pesin and Pitskel' in [12] in the 
special case of the Bernoulli shift on two symbols (their proof immediately generalizes 
to any Bernoulli shift). 

Remarks. 
1. All the statements in the former section remain true when we substitute SN by 

the two-sided space sz. 
2. It follows from the special type of metric introduced in ( 4) that for any subset 

Z C :E, we have h(alZ) = dimH Z · logjJ. Hence, by Theorem 4.5, for a subshift 
of finite type al:E, and a Gibbs measure µ on :E which is not the measure of 
maximal entropy, we have 

5. APPLICATIONS TO REPELLERS 

Let f: M -+ M be a C1 map of a smooth manifold, and J a compact subset of M. 
We say that f is expanding and J is a repeller off if: 

1. There are constants C > 0 and JJ > 1 such that lldxfnVll 2:: CJJnllVll for all 
x E J, V E TxM, and n 2:: 1; 

2. J = nn~O 1-nv for some open neighborhood V of J. 
One can easily show that f J = J. 

We recall that a finite cover {R1, ... , Rp} ofM by closed sets is called a Markov 
partition of J (with respect to f) if: 

1. int ~ = ~ for each i = 1, ... , p; 
2. int~ n int Ri = 0 if i # j; 
3. each f Ri is a union of sets Ri. 

It is well known that repellers admit Markov partitions of arbitrarily small diameter. 
Let J be a repeller of an expanding map f, and {R1 , ... , Rp} a Markov partition 

of J. We define a p x p transfer matrix A= (aii) by 

ai. = { 1 if Ri n t·""1 Ri # 0 . 
J 0 otherwise 

(23) 

setting Consider the associated one-sided subshift of finite type aj:E. For each w = 
( ioi1 · · ·) E :E, the set 

x(w) = { x EX: fkx E Rik for every k 2:: 0} 
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consists of a single point in J. We obtain a coding map x: ~ --+ J for the repeller, 
which is continuous, onto, and satisfies fox= x o a. 

A smooth map f: M --+ M is called conformal if dxf is a multiple of an isometry at 
every point x EM. Well-known examples of conformal expanding maps include one-
dimensional Markov maps and holomorphic maps. We write a(x) = lldxfll for each 
x E M. The equilibrium measure mn of - dimH J ·log a on J is called the measure of 
maximal dimension (for a conformal ci+s expanding map, it is the unique !-invariant 
measureµ such that dimH µ = dimH J). We denote by mE the measure of maximal 
entropy. 

Set '.B = x(~) and X(µ) = x(X(µ)). We observe that 

'.B = {x E J: lim ~Sng(x) does not exist for some g E C(J)}. 
n~oo n 

We also define the sets 

£ = {x E J: lim ~ loglldxfnll does not exist} 
n~oo n 

and, for each probability measureµ on J, 

( ) { 
. logµ(B(x,r)) . } 'D µ = x E J : hm 

1 
does not exist . 

r~O ogr 

By Kingman's Subadditive Ergodic Theorem, we haveµ(£) = 0 for any !-invariant 
probability measure µ on J. 

We now enumerate several sets of irregular points which carry full topological 
entropy and full Hausdorff dimension. The proofs are based on Theorems 3.2 and 4.2. 

Theorem 5.1. If J is a repeller of a conformal ci+s expanding map f, for some 
c > 0, then the fallowing properties holq: 

1. h(f l'.B) = h(f IJ) and dimH '.B = dimH J; 
2. if mn i= mE, then h(f 1£ n '.B) = h(f IJ) and dimH(£ n '.B) = dimH J; 
3. ifµ is an equilibrium measure on J andµ-::/= mn, then h(f l'D(µ) n '.B) = h(f IJ) 

and dimH('D(µ) n.'.B) = dimH J; 
4. ifµ is an equilibrium measure on J andµ-::/= mE, then h(!IX(µ) n '.B) = h(!IJ) 

and dimH(X(µ) n '.B) = dimH J; 
5. ifµ is an equilibrium measure on J, µ i= mn, andµ i= mE, then h(f l'D(µ) n 

X(µ) n '.B) = h(f IJ) and dimH('D(µ) n X(µ) n '.B) = dimH J; 
6. ifµ is an equilibrium measure on J, and the three measuresµ, mn, and mE are 

distinct, then h(f l'D(µ) n X(µ) n £ n '.B) = h(f IJ) and dimH('D(µ) n X(µ) n £ n 
'.B) = dimH J. 

Proof. We proceed the proof in pointing out the appropriate sets (ff, ... , ff:) of 
functions, the function u and corresponding sets of distinguishing measure in order 
to apply Theorem 3.2. Theorem 4.2 will help us to find these measures. 

1. The first equality is contained in Theorem 4.5 by observing that the repeller J 
is coded by ~. The second is a corollary of the main Theorem 3.2 by setting u = log a 
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and choosing two distinct measures with Hausdorff dimension arbitrary close to the 
Hausdorff dimension of the repeller. 

2. Choose for c > 0 two distinct Gibbs measures µcp and µ1/J from the entropy 
(dimension spectrum) of the Lyapunov exponents having metric entropy (respectively, 
Hausdorff dimension) not less than h(J) - c (respectively, dimh J - c). This can be 
done since mn =!= mE. Then these measures are distinguishing for the set of functions 
({~Sn loga}neN, {Snf}neN) where f is some function with J f dµcp =/= J f dµ'l/J. Then 
Theorem 3.2 concludes the proof with u = 1 ( u = log a) and c tending to zero. 

3. Both equalities follow immediately from Theorems 3.2 and 4.2 by setting 11 = 
S

8
1k'P and u = 1 or u = log a, respectively, where <.p is a potential with zero pressure 

k oga 
forµ. 

4. Both equalities follow immediately from Theorems 3.2 and 4.2 by setting ff = 
iSk<.p and u = 1 or u =log a, respectively, where <.p is a potential with zero pressure 
forµ. 

5. The proof is the same as for statements 3 and 4 by setting 11 = iSk<.p, R = 
s:t

0
'g a and u = 1 or u = log a, respectively, where <.p is a potential with zero pressure 

forµ. 
6. The proof follows by setting ff = !Sk<.p, R = s:to'ia, f2 = ~Sk log a and u _ 1 

or u =log a. 0 

We emphasize that the sets of irregular points enumerated in Theorem 5.1 are 
important but nevertheless only special cases of many examples that one can obtain 
using Theorems 3.2 and 4.2. 

6. APPLICATIONS TO HORSESHOES 

Let f : M -+ M be a C1 diffeomorphism of a smooth manifold M, and A c M a 
compact locally maximal hyperbolic set for f. Then, there is a continuous splitting 
of the tangent bundle TAM= Es EBE''-', and constants C > 0 and,,\ E (0, 1) such that 
for each x E A: · 

1. dxf E~ = Eix and dxf E; = E/x; 
2. lldxfnvll ~ C..\nllvll for all v EE~ and n ~ O; 
3. lldxf-nvll ~ CAnllvll for all v E E; and n ~ 0. 

For each point x E A there exist local stable and unstable manifolds W 8 (x) and 
Wu(x), with TxW8 (x) = E~ and TxWu(x) = E;. Moreover, there exists 8 > 0 such 
that for all x, y E A with p(x, y) < 8, the set W 8 (x) n wu(y) consists of a single 
point, which we denote by [x, y], and the map 

[·, ·]: {(x, y) EA x A: p(x, y) < 8}-+ A 

is continuous. For each x E M, we write 

au(x) . lldflEu(x)ll and a5 (x) = lldflEs(x)ll· 
The functions a8 and au satisfy au(x) > 1 and a8 (x) < 1 for every x EA, and if f is 
of class Cl+e, then they . are Holder continuous. 
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A non-empty closed set R C M is called a rectangle if diam R < 8, R = int R, and 
[x, y] ER whenever x, y ER. For each x ER, we write W 8 (x, R) = W 8 (x) n Rand 
wu(x, R) = wu(x) n R. A finite cover {R1 , ... , RP} of A by rectangles is called a 
Markov partition of A (with respect to f) if: 

1. Ri n Ri c 8Ri n 8Ri for any i =I= j; 
2. for each x E int Ri n 1-1 int Ri, we have 

JWU(x, Ri) ~ wu(fx, Rj) and fW 8 (x, Ri) c W 8 (fx, Rj). 
Locally maximal hyperbolic sets have Markov partitions of arbitrarily small diameter. 

Let A be a compact locally maximal hyperbolic set for f, and {R1 , ... , Rp} a 
Markov partition of J. We define a p x p transfer matrix A= (aii) by (23). Consider 
the associated two-sided subshift of finite type ajE. For each w = (· · · i_1i 0i 1 · · ·) E E, 
the set 

x(w) ~ {x EX: fkx E Rik for every k E Z} 
consists of a single point in A. We obtain the coding map x: E --+ A for the hyperbolic 
set, which is continuous, onto, and satisfies fox= x o a. For each point w E E, and 
each non-negative integers n, m, we define the cylinder set 

c::i = c::i(w) = {(· · · j_ijoj1 .. ·) EE: jk = ik for i = -m, ... , n}. 
When we pass from a one-sided to a two-sided shift (coding a hyperbolic set), 

there is an asymmetry which apparently was never mentioned in the literature. Thsi 
problem occurs only for non-compact or non-invariant subsets of E. Namely, with 
the definition of topological entropy introduced in [6] and [12], h(ajZ) and h(a-1 jE) 
may not coincide; however if Z is compact and a-invariant, then h(ajZ) = h(a-1 jE}. 
This asymmetry is due to the fact that h(alZ) takes only into account the complexity 
in the "future". 

We introfude a new notion of topological entropy which takes into account the 
"complexity" both in the "future" and in the "past". For every set Z c E and real 
number a, we set 

where the infimum is taken over all finite or countable covers U of Z by cylinder sets 
C;:fi such that mi ~ m and ni ~ n for each i. Then there is a unique critical value 
a= h*(ajZ) at which m(Z, ·)jumps from +oo to 0. It is easy to see that for every 
subset ZEE, we have 

h*(ajZ) = min{h(ajZ), h(a-1 jZ) }, 
the minimum of the contributions from the "future" and from the "past", respectively. 
Clearly, h*(ajZ) = h*(a-1 jZ). We propose to call h*(ajZ) (instead of h(alZ)) the 
topological entropy of a on the set Z. See [11] for a similar discussions see also . 

In order to obtain results for horseshoes similar to those for repellers in the previous 
section, our strategy is to deal separately with the stable and unstable manifolds, and 
deduce the corresponding statement using Theorem 5.1. 
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The following result enumerates sets of irregular points which carry full topological 
entropy and full Hausdorff dimension. Let Mv be the set of !-invariant measures µ 
such that dimH µ = dimH A. Note that this set may be empty. 

Theorem 6.1. Let f be a topologically mixing ci+e: surface diffeomorphism, for 
some c > 0, and A a compact locally maximal saddle-type hyperbolic set off. Then 
the following properties hold: 

1. h(f j23) = h(fjA) and dimH 23 = dimH A; 
2. if mE rj. Mv, then h(f 1£.i n 23) = h(JIA) and dimH(,C n 23) = dimH A; 
3. ifµ is an equilibrium measure on A andµ rj. Mv, then h(f l'.D(µ) n 23) = h(f IA) 

and dimH('.D(µ) n 23) = dimH A; 
4. ifµ is an equilibrium measure on A andµ =f mE, then h(f l'H(µ) n 23) = h(f IA) 

and dimH('H(µ) n 23) = dimH A; 
5. ifµ is an equilibrium measure on A, µ rJ. Mv, andµ =f mE, then h(f j'.D(µ) n 

'H(µ) n 23) = h(f IA) and dimH('.D(µ) n 'H(µ) n 23) = dimH A; 
6. ifµ =f mE is an equilibrium measure on A, andµ, mE rj. Mv, then h(f l'.D(µ) n 

'H(µ) n £.in 23) = h(f IA) and dimH('.D(µ) n 'H(µ) n £.in 23) = dimH A. 

Proof. We present the proof of statement 3. The other statements of the above theo-
rem are similar with the obvious changes of the set of functions and the distinguishing 
system of measures. The idea is to decompose the invariant hyperbolic set into local 
stable and unstable manifolds. For this we use the following fact. For a given Gibbs 
measure µ on :E and any point x E A we can define two conditional measures µ~ and 
µ~on the local stable and unstable manifold of x, respectively. There is a constant C 
such that c-1µ < µ~ o x-1 x µ~ o x-1 < Cµ on the rectangle R(x) and the measure 
µ~ (µ~) is a Gibbs measure with some potential cp~ ( cp~) on :E. Since µ =f µv the con-
ditional measuresµ~ andµ~ cannot both be equivalent to the measures of maximal 

·dimension on the unstable or stable manifold of x. Without loss of generality let us 
assume thatµ~ =f µ[J x· 

Let '.D~ (µ) be the ~et of points in wu ( x) such that the pointwise dimension of µ~ 
does not exist. This set is the image under x of the set of points 'Y.. E :E for whose the 
limit of 8 S~cp~ u does not exist. 

n oga 
If f is a Holder continuous functions on the .two-sided subshift :E, then there is 

a function f' cohomologous to f and depending only on the "future" coordinates 
(see [7]): 

if Xi = x~ for i ~ 0. This allows us to identify f' with a function on :E which has the 
same irregular set tB(f) on :E1 as well as 23(!) on A as the function f itself. We set 
23~ = x('B). As in the proof of Theorem 5.1 we have 

h+(Jl'.D~(µ) n 23~) = h+(JIA n wu(x)) 

= h (~ ({ Sncp~ } , {]:_Snf} ) ) 
Sn log a"" nEN n nEN 
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and 
dimH(TI~(µ) n ~~) = dimH(A n Wu(x)) 

= dim1ogau.§:' ({ S S~cp~ u} , {!..snf} ) . 
n oga nEN n nEN 

Now we consider the measure of maximal stable dimensionµ~ on W 8 (x). We have 
that µ~-almost every y E W 8 (x) does not belong to TI~(µ) and~~ (where TI~(µ) 
and ~ ~ are the corresponding sets defined for the restriction of f to W s ( x) and the 
measure µ~.). Hence for y E ws(x) out of a set Gb,x of full µb,x measure the sets 
TI~(µ) n ~ ~ are contained in TI n ~. Let us now consider the set U EGs Tiu(µ) n 

y D,:i; y 
~ ~. Then this set has full stable and unstable dimension and hence the dimension 
assertion is proved. To show the assertion about the topological entropy we observe 
that the set LJyEG'.E,:i; TI~(µ) n ~~ - which is defined by means of µE,x instead of µb,x 
- has full topological entropy for f and 1-1 at the same time. Hence, 

h(TI n ~)=min { h+(TI n ~), h-(TI n ~)} 

~min {h+( LJ TI~(µ) n ~~), h-( LJ TI~(µ) n ~~)} 
yEG~ yEG~ , 

= h(A). 

This completes the proof of the theorem. D 

Remark. The conclusions of Theorem 6.1 also hold for diffeomorphisms on mani-
folds of arbitrary dimension provided that dflEu(x) a~d dflE8 (x) are multiples of 
isometries for each x E A, i.e., when the dynamics in the stable and unstable mani-
folds is conformal. 

In [3] (see also [2]), we proved that µ(TI(µ)) = 0 for any hyperbolic measure µ 
invariant under a ci+e diff eomorphism. 

It was established by Shereshevsky in [17] that dimH TI(µ) > 0, and TI(µ) :J A for 
a generic C 2 surface diffeomorphism possessing a locally maximal hyperbolic set A, 
and a generic Holder continuous potential, with respect to the c0 topology, with 
Gibbs measure µ. 

7. FURTHER APPLICATIONS 

We have seen in the previous sections that sets of irregular points are quite "large" 
in numerous situations. Namely, they have the same topological entropy and Haus-
dorff dimension as the set of all typical points. In the case of two-dimensional horse-
shoes this is even worse. It is well-known that "typical" two-dimensional horseshoes 
(for maps out of an open dense set in the space of all horseshoe maps) do not have 
an invariant measure of maximal dimension (see [10]). Moreover the dimension of 
any invariant measure is uniformly bounded away from the Hausdorff dimension of 
the horseshoe. 
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For each measure v on a manifold M, let S(v) be the set of points x EM such that 
limn-+oo ~Sng(x) = JMgdv for every continuous function g on M. The following is a 
simple consequence of the above discussion, and Proposition 2.5 and Theorem 6.1. 

Theorem 7 .1. For a generic C2 surface diffeomorphism possessing a locally maximal 
hyperbolic set, and any Gibbs measure µ #- mE which is not a measure of maximal 
dimension, we have 

dimH(2)(µ) n X(µ) n £ n ~) > dimH LJ S(v). 
v 

Since a locally maximal hyperbolic set admits a coding by a subshift of finite type, 
metric properties such as topological entropy are preserved under the coding map. 
Together with Theorem 4.5, this immediately implies the following statement .. 

Theorem 7.2. If A is a locally maximal hyperbolic set of a C1 diffeomorphism f of 
a compact manifold, then the following properties hold: 

1. h(f I~) = h(f); 
2. ifµ is a Gibbs measure an A which is not a measure of maximal entropy, then 

X(µ) c ~ and h(f IX(µ)) = h(f). 

We note that this result is also valid for Axiom~ homeomorphisms (see [l]). 
In [9], Katok proved that for an ergodic hyperbolic measure v (i.e., an ergodic 

measure with non-zero Lyapunov exponents), invariant under a ci+e: diffeomorphism 
f: M -+ M, given 8 > 0 there exists a closed /-invariant hyperbolic set r c M 
such that the restriction off tor is topologically conjugate to a topological Markov 
chain with topological entropy h(f Ir) ;::: hv(f) - 8. In other words, the entropy of 
a hyperbolic measure can be approximated by the topological entropies of invariant 
hyperbolic sets. Using this approximation result one can prove the following. 

Theorem 7.3. If f is a c 1+e: surface diffeomorphism, for some c > 0, and the 
Lyapunov exponents are not constant everywhere, then 

dimH(£ n~);::: supdimH µ~ + supdimH µ~ 
µ µ 

and 

h(~ n £) = h(f). 

Let M bead-dimensional Riemannian manifold. Then there are d matrix-cocycles 
on the exterior forms of M whose determinants generate the Lyapunov exponents 
on a set of total measure one [14]. Again one can approximate the set of typical 
points of any hyperbolic measure together with its topological entropy by measures 
on hyperbolic horseshoes. In this way we get a sequence of subshifts of finite type 
coding those horseshoes approximating the sets of typical points. It is not hard to see 
that the assumptions of Theorem 6.1 are fulfilled for all approximation steps when 
none of the cocycles above are cohomologous to a constant one. In this situation we 
say that the Lyapunov spectrum is not constant everywhere. 
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Theorem 7.4. If f is a Cl+e diffeomorphism, for some c > 0, of a compact manifold 
with not everywhere constant Lyapunov spectrum, then 

h( £ n '.B) 2:: sup{ hµ (!) : µ E Mergodic}. 

We emphasize that the results in Theorem 7.2 and 7.4 hold for manifolds of arbi-
trary (finite) dimension. 
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