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Multi-channel ALOHA and CSMA medium-access protocols:

Markovian description and large deviations
Wolfgang König, Helia Shafigh

Abstract

We consider a multi-channel communication system under ALOHA and CSMA protocols, resepc-

tively, in continuous time. We derive probabilistic formulas for the most important quantities: the numbers

of sending attempts and the number of successfully delivered messages in a given time interval. We

derive (1) explicit formulas for the large-time limiting throughput, (2) introduce an explicit and ergodic

Markov chain for a deeper probabilistic analysis, and use this to (3) derive exponential asymptotics for

rare events for these quantities in the limit of large time, via large-deviation principles.

1 Introduction and main results

Protocols for medium access control (MAC) are fundamental and ubiquitous in any telecommunication sys-
tem. Here we are particularly interested in multi-channel systems, where a fixed number of channels is
available. Our goal is to develop a probabilistic model for the ALOHA and the CSMA protocol, which can be
easily realised on a computer and be mathematically analysed in explicit terms. We will describe the stochas-
tic process of arrival times of incoming and successfully delivered messages and the times that elapse in
between in terms of a Markov renewal process that is explicit and has very good ergodic properties.

1.1 Medium access protocols; our goals

We consider the ALOHA protocol, where no infrastructure is given and collisions are possible, and the Carrier
Sense Multiple Access (CSMA) protocol, where a message is delivered only if there is an idle channel at
the time when the message arrives. We work in continuous time and assume that the messages arrive at
random times that are given by a Poisson point process (PPP). To keep things simple, we assume that the
service times (delivery times) are all equal to one.

We are interested in a multi–channel system, i.e., we assume that at most κ messages can be processed
at any given time, where κ ∈ N is a parameter. We think of two interpretations of this restriction: Either there
are κ channels available in our system that can be used independently all the time, or there are interference
constraints that make it impossible that more than κmessages can be transmitted at the same time, and any
additional message is refused from the system.

Our interest lies on important quantities like the total number of messages in the system, the number of
incoming messages and the number of successfully delivered messages in a given fixed time interval. We
strive to calculate expected values (in the limit of large time intervals), which follows elementary ideas, but
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W. König, H. Shafigh 2

also to analyse more detailed questions, like probabilities of certain events, which needs a deeper under-
standing of the communication system.

To this sake, as one of our main novelties, we develop a description in terms of an explicit Markov chain
(in discrete time) that admits a description of the mentioned quantities as functionals of this chain in terms
of a kind of a Markov renewal process. To the best of our knowledge, such a Markov chain was not yet
known in comparable situations, even though there are a number of ansatzes with queues and the related
theory; however these stochastic processes are not able to give information about the real time, but only
about certain quantities (i.e., number of messages in the system) at the (random) arrival times or the (ran-
dom) delivery times of the messages. Our Markov chain makes the application of a number of well-known
probabilistic tools available, like invariant initial distributions, ergodic theory and large deviations theory. We
give explicit formulas for the transition probabilities and prove that this chain is uniformly ergodic, hence this
Markov chain is also useful for making computer simulations.

Our Markov chain in particular opens the possibility to describe (the probabilities of) rare events, which is
for example helpful if one wants to understand ubiquitous situations in which the system underachieves by
producing a smaller throughput than is expected over a long time stretch. The probabilistic theory of large
deviations provides mathematical tools for deriving formulas for the exponential decay of the probability, and
it provides also tools for characterising the most likely behaviour of the system in this unlikely situation. For
the application of this theory, one needs a powerful description and a high degree or ergodicity, and this is
provided by our Markov chain. Unfortunately, our description does not allow for the determination of sharp
exponential lower bounds for the probabilities of large deviations, but only exponential upper bounds. But we
believe it is the exponential upper bounds that shows the value of the large-deviation theory for understanding
such communication system.

The most important parameters in the system will be the number of channels, κ ∈ N, and the density
parameter of the incoming messages, λ ∈ (0,∞). We assume that the arrival times follow a standard
Poisson point process with parameter λ. We will conceive the situation from the user’s perspective and will
discuss the optimal value of λ for achieving a maximal throughput. The idea behind this is that each user
has the knowledge about the number of users in a vicinity of the κ channels and assumes that each of
them makes message sending attempts at a certain rate that amounts to the total rate λ of all the message
attempts. Under these assumptions, the optimal value of λ, divided by the number of users, should then be
the probability parameter for making sending attempts.

In the CSMA setting, it will be clear that the throughput is an increasing function of λ, and the optimisation
is trivial (ignoring a potential trade-off coming from a huge number of unsuccessful messages). However,
for the ALOHA setting, it will be interesting to identify the optimal density λ (depending on κ) for having a
maximal throughput; this will be one of our results.

Summarizing, the main contributions of this paper are the following.

� An explicit probabilistic description (in terms of a Markov renewal process) of the number of messages
and the number of successfully delivered messages and more quantities at a deterministic time,

� explicit formulas for limiting expected values of these quantities and optimal values of parameters,

� a large-deviations analysis of rare events involving these quantities.
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Markovian description of multi-channel ALOHA and CSMA 3

1.2 Description of the models

We consider a system with a steady flow of incoming messages that require access to the system at random
times. The time lags between any two subsequent arrivals of two messages are independent exponentially
distributed times with density parameter λ ∈ (0,∞). That is, the sequence of arrival times forms a standard
Poisson point process (PPP) with parameter λ. Any successful message transmission has a duration of
precisely one time unit; i.e., each service time is equal to one.

We assume that κ channels are available. On arrival, each message asks for access to some of them.
Now we consider two different algorithms (medium access protocols) according to which this request is
handled:

• ALOHA: For the message, one of the κ channels is picked uniformly at random. All these channel
choices are independent over all messages.

� If the channel is already busy i.e., if the transmission of another message in this channel is still
running, then the new incoming message collides with the old one, causing the cancellation of
both messages.

� If the channel is idle, the new message is admitted immediately. If not cancelled by another
message that arrives later during the delivery time, it will be successfully delivered after one
time unit.

• CSMA: The message is admitted to the system only if there is an empty channel; then it will be
successfully delivered via one of these channels after one time unit. Otherwise, the message attempt
is canceled.

In the case of a successful delivery after one time unit, we say that the message has gained access to the
medium.

Advantages of pure ALOHA are that it does not need any infrastructure and is therefore cheap to install
and run. However, a drawback is that on each arrival of a message might destroy another message that has
been already admitted to the system. In turn, this means that each message can be sure to be successfully
delivered only one time unit after it has picked an empty channel, namely if has not itself been killed by a
later arriving message during its delivery. This means that too large a number of incoming messages (i.e.,
too large a large value of λ) decreases on an average the amount of successful deliveries in the system on a
long time. We will specify this in terms of a law of large numbers and will see that only a certain percentage
of all the channels are typically busy in order to achieve an optimal throughput in this protocol, and we will
identify this value.

In CSMA, every admitted message will definitely be successfully delivered after its delivery time. However,
in contrast with the ALOHA protocol, some extra information (namely the information about free channels)
needs to be constantly provided. Hence, increasing the message density λ increases the number of busy
channels on an average and hence the throughput (which we quantify below), but also the average number
of refused messages (which we neglect in this paper).
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1.3 Our results

Introduce A(t) as the number of sending attempts in the time interval [0, t] and S(t) as the number of suc-
cessful transmissions during this time interval. Then (A(t))t∈[0,∞) is the counting process for the PPP(λ),
but (S(t))t∈[0,∞) is highly non-trivial and is the main objective. We formulate our results on the limiting
expectation in Section 1.3.1, on a crucial Markov chain in Section 1.3.2 and on the probabilities of large
deviations in Section 1.3.3.

1.3.1 Limiting expectation

Let us calculate the limiting expectation of the number of successfully delivered messages:

Lemma 1.1 (Expected throughput). For both models, ∗ ∈ {ALOHA,CSMA}, and for any λ ∈ (0,∞)

and κ ∈ N,

s∗(λ, κ) = lim
t→∞

1

t
S(t) (1.1)

exists and is equal to

sCSMA(λ, κ) = λ

∑κ−1
n=0

λn

n!∑κ
n=0

λn

n!

= λ
Poiλ([0, κ− 1])

Poiλ([0, κ])
, (1.2)

sALOHA(λ, κ) = λe−
κ+1
κ
λ

κ−1∑
n=0

λn

n!

κ− n
κ

= λe−
λ
κ e−λ

[ κ−1∑
n=0

λn

n!
− λ

κ

κ−2∑
n=0

λn

n!

]
(1.3)

= λe−
λ
κ

[
Poiλ([0, κ− 1])− λ

κ
Poiλ([0, κ− 2])

]
. (1.4)

We wrote Poiλ for the Poisson-distribution with parameter λ on N0. The proof of Lemma 1.1 is in Sec-
tion 2.2 for the ALOHA case and in Section 2.1 for the CSMA case.

In contrast with CSMA, for the ALOHA protocol the question for the optimal value of λ for maximizing
sALOHA(λ, κ) is interesting. An explicit calculation does not seem possible for general κ. However, using the
exponential series approximation for the two sums, we see that for κ→∞ the throughput is asymptotically
equivalent to

lim
λ,κ→∞,λ

κ
→x

1

κ
sALOHA(λ, κ) = x(1− x)e−x, x ∈ [0,∞),

which is easily seen to have a unique maximum for x = 3−
√

5
2
≈ 0.38 by considering the derivatives. Hence,

the optimal throughput is roughly supλ sALOHA(λ, κ) ≈ 0.38κ for large κ. Simulations show that for κ = 2

resp. κ = 3 we already have an optimum value for λ ≈ 0.43κ resp. λ ≈ 0.41κ; the above approximation
seems to converge extremely fast.

1.3.2 A crucial Markov chain

We are going to introduce now the main object of our ansatz, a certain Markov chain in discrete time that
is able to describe the main quantities A(t) and S(t). This Markov chain is not only suitable for describing
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Markovian description of multi-channel ALOHA and CSMA 5

large-deviation events and their probabilities (see Section 1.3.3), but can generally also be used to derive
explicit computer simulations for the entire process of messages and their deliveries.

In both models, we denote by 0 < T̃1 < T̃2 < T̃3 < . . . all the times at which a message is admitted to
a channel. For i ∈ N put

σi = T̃i − T̃i−1 and Ai = #{j : Tj ∈ (T̃i−1, T̃i]}.

In words, σi is the length of the time lag between the (i − 1)st and ith admittance of a message to some
channel, and Ai − 1 is the number of refused messages during that time interval. Recall that, for CSMA,
T̃i is the time of the beginning of the i-th successful message transmission, but for ALOHA this is only the
time of the start of some message transmission attempt; whether or not it will be successful will turn out
only at time T̃i + 1. Nevertheless, we will show that the sequence (Ai, σi)i∈N is suitable to derive precise
information about our quantities of interest, (A(t), S(t)).

As our first main result, we identify the distribution of the sequence as a kind of Markov renewal process:

Proposition 1.2 (Markovian structure of (Ai, σi)i∈N). In both models, ALOHA and CSMA, the sequence
(Ai, σi)i∈N is a (κ−1)-Markov chain with kernelWCSMA andWALOHA, respectively, from [N×(0,∞)]κ−1

to N× (0,∞) defined by

WCSMA

(
(a, t), (k, ds)

)
=

γk−1

(k − 1)!
λke−λs1l[γ,∞)(s) ds, (1.5)

WALOHA

(
(a, t), (k, ds)

)
=

(
γ + B(s)

κ

)k−1

(k − 1)!

(
1− β(s)

κ

)
λke−λs1l[γ,∞)(s) ds, (1.6)

for (a, t) =
(
(a1, t1), · · · , (aκ−1, tκ−1)

)
, where γ := [1−

∑κ−1
i=1 ti]+, and, for the ALOHA case,

β(s) := max
{
m ∈ N : s+

m−2∑
j=0

tκ−1−j ≤ 1
}
∧ κ ∈ {0, 1, . . . , κ} and B(s) =

∫ s

0

β(r) dr.

Both (κ− 1)-Markov chains are uniformly ergodic in the sense that Condition (U) holds (see (3.5)).

The proofs are in Section 3.1 for the CSMA case and in Section 3.2 for the ALOHA case.

Remark 1.3 (Interpretation of the ALOHA kernel). In the kernelWALOHA, the parameter β(s) plays the role
of the number of busy channels at time T̃i + s, conditioned on the process of message arrivals before time
T̃i. Therefore 1 − β(s)

κ
is the probability that a message that arrives at that time picks an idle channel. The

remaining terms on the right of (1.6) express the probability that all the messages arriving during [T̃i, T̃i+γ)

and during [T̃i+γ, T̃i+s) pick a busy channel and are therefore not admitted to the system. We will specify
this in the proof. ♦

Remark 1.4 (Markov renewal process). We see that in both cases (σi)i∈N is autonomously a (κ−1)-Markov
chain (with a kernel that can easily be deduced from (1.5) and (1.6), respectively), and Ai is a random func-
tion of σi−1, σi−2, . . . , σi−κ+1. More precisely, given the sequence (σi)i∈N, the variables Ai are indepen-
dent over i and are Poisson-distributed with a certain parameter depending on σi−1, σi−2, . . . , σi−κ+1. Be-
cause of this Markovian structure, (Ai, σi)i∈N (more precisely, (Ai, (σi−1, . . . , σi−κ+1))i∈N) is often called
a Markov renewal process. ♦
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Remark 1.5 (Deriving S(t) and A(t)). In the CSMA case, t 7→ S(t) is nothing but the time-inverse of the
partial sum sequence of the σi via the formula

S(t) = sup
{
m ∈ N :

m∑
i=1

σi ≤ t
}

(1.7)

and can therefore be fully described in terms of (σi)i∈N. A similar assertion applies to A(t); see (4.14).
However, in the ALOHA case one needs additionally (Ai)i∈N for the description of S(t) (see (4.15)). Cer-
tainly, one can also describe other interesting quantities as functionals of the Markov chain, for example the
number of unsuccessful messages or (in the ALOHA case) the number of messages that are admitted to
some channel, but are canceled later during the service time. ♦

1.3.3 Large deviations

Now we turn to our results concerning the large deviations for (A(t), S(t)) in the limit t → ∞. Our goal is
to quantify the exponential decay rate of the probability of rare events of the form {1

t
(A(t), S(t)) ∈ B} for

many sets B ⊂ (0,∞)2.

Let us recall the notion of a large-deviation principle (LDP). Indeed, a sequence (Xn)n∈N of X -valued
random variables (where X is a Polish space) is said to satisfy an LDP with lower semicontinuous rate
function I : X → [0,∞] if for any closed set F ⊂ X and any open set G ⊂ X ,

lim sup
n→∞

1

n
logP(Xn ∈ F ) ≤ − inf

F
I and lim inf

n→∞

1

n
logP(Xn ∈ G) ≥ − inf

G
I.

The first statement is called the large-deviations upper bound (or LDP upper bound), the latter the large-
deviations lower bound. These together can be very roughly summarized by saying that P(Xn ≈ x) ≈
e−nI(x) for any x ∈ X as n → ∞. However, topological subtleties are always present in an LDP. See
[DZ10] for an account on LDP theory.

Indeed, with the help of the Markov renewal process (Ai, σi)i∈N we are in an excellent position to find
and prove such an LDP and to identify the rate functions for the two cases; indeed there are very obvious
candidates, which are based on the sequence of empirical pair measures of (Ai, σi)i∈N. However, there is
a problem that we could not overcome, and hence we are only able to derive the LDP upper bound. This
problem does not seem to be only technical; it is the fact that (A(t), S(t)) is not a continuous functional of
the empirical measure. This makes it impossible to use standard arguments, and we found no way around it;
hence we state only the LDP upper bound below. It is not clear to us whether or not the corresponding lower
bound holds as well.

The rate functions will be identified in terms of certain entropies, which are well-known in the LDP-theory
for Markov chains. Indeed, we writeH(µ | ν) =

∫
dµ log dµ

dν
for the relative entropy of a probability measure

µwith respect to another one, ν (if the density exists, otherwiseH(µ | ν) =∞). Furthermore, for a measure
µ on X κ, we write µ(κ−1) for the projection of µ on the vector of the first κ − 1 components, and we say
that µ lies inM(s)

1 (X κ) if µ is a probability measure on X κ whose projection on the vector of the first κ− 1

components is equal to its projection on the vector of the last κ− 1 components. We abbreviate Σ := N×
(0,∞) and define the projections π1 : Σκ → N and π2 : Σκ → (0,∞) by π1((a1, r1), . . . , (aκ, rκ)) = aκ
and π2((a1, r1), . . . , (aκ, rκ)) = rκ. We write 〈f, µ〉 for the integral of a function f with respect to a
measure µ.
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Markovian description of multi-channel ALOHA and CSMA 7

Our main asymptotic large-deviation results as t→∞ are as follows.

Theorem 1.6 (Large-deviation upper bound for (A(t), S(t))). In both cases, ALOHA and CSMA, as t→∞,
the pair 1

t
(A(t), S(t)) satisfies an LDP upper bound on (0,∞)2, i.e., for any closed set F ⊆ (0,∞)2 we

have

lim sup
t→∞

1

t
logP

(1

t

(
S(t), A(t)

)
∈ F

)
≤ − inf

F
I∗,

where, for a, s ∈ [0,∞),

ICSMA(a, s) = sup
A∈R,B∈(−∞,λ)

inf
µ∈M(s)

1 (Σκ)

[
A (a− s 〈π1, µ〉)+B (1− s 〈π2, µ〉)+H(µ | µ(κ−1)⊗WCSMA)

]
for the CSMA protocol and

IALOHA(a, s) = sup
A∈R,B∈(−∞,λ)

inf
µ∈M(s)

1 (Σκ)

[
A
(
a− a+s

2
〈π1, µ〉

)
+B

(
1− a+s

2
〈π2, µ〉

)
+H(µ | µ(κ−1) ⊗WALOHA)

]
in the case of ALOHA protocol. Both rate functions have precisely one minimizer and are convex on
(0,∞)2 and are good (i.e., their level sets {(a, s) : I∗(a, s) ≤ C} are compact for any C). The family
(1
t
(A(t), S(t)))t>0 is exponentially tight (i.e., for anyM > 0 there is aK > 0 such that P(1

t
(A(t), S(t)) /∈

[0, K]2) ≤ e−tM for any t).

The proof is in Section 4. By the well-known contraction principle (saying that LDPs are obtained under
continuous images and gives an explicit formula for the rate function), we obtain without work:

Corollary 1.7 (LDP upper bound for number of successfully delivered messages). As t → ∞, 1
t
S(t)

satisfies an LDP upper bound with rate function

ISCSMA(s) = sup
B∈(−∞,λ)

inf
µ∈M(s)

1 (Σκ)

{B (1− s 〈π2, µ〉) +H(µ | µ(κ−1) ⊗WCSMA)} (1.8)

for the CSMA protocol resp.

ISALOHA(s) = sup
B∈(−∞,λ)

inf
µ∈M(s)

1 (Σκ)

{
B

(
1− 〈π2, µ〉 s

2− 〈π1, µ〉

)
+H(µ | µ(κ−1) ⊗WALOHA)

}
(1.9)

for the ALOHA protocol.

The proof of Corollary 1.7 is immediate from the contraction principle, noting that the canonical projection
N× (0,∞)→ N is continuous.

Remark 1.8 (Expected throughput and rate function). Let us mention that the expected throughput s∗(λ, κ)

that we identified in Lemma 1.1 can also be characterized in a standard way as the minimizer of the rate
function IS∗ for ∗ ∈ {ALOHA,CSMA}. However, it is rather difficult to identify it from this reasoning since
we have no closed formula for the invariant distribution of the Markov chain (Ai, σi)i∈N, such that we do not
have any results in this respect. ♦

DOI 10.20347/WIAS.PREPRINT.2985 Berlin 2022



W. König, H. Shafigh 8

Remark 1.9 (Contracting to A(t)). Instead of contracting the pair (A(t), S(t)) to S(t), we could do this
also with A(t) and obtain an analogue of Corollary 1.7. However, since A(t) is nothing but the PPP, one
can derive an LDP for 1

t
A(t) also with much simpler means and obtains the rate function IA∗ (a) = λ− a+

a log a
λ

. ♦

Remark 1.10 (An application). We think that exponential estimates for the probabilities of rare events like in
Corollary 1.7 are very relevant for the understanding of the strengths and shortcomes of such telecommu-
nication systems. Indeed, they give us not only extremely good estimates for such probabilities, but also an
analytic starting point for getting more information about the most likely situation that governs the rare event:
the variational formula for the rate function.

As an example, the probability of the event {S(t) ≤ t[s∗(λ, κ) − ε]} that the number of success-
fully delivered messages in the time interval [0, t] is not larger than t[s∗(λ, κ) − ε] is upper bounded by
exp{−t infs∈[0,s∗(λ,κ)−ε] I

S
∗ (s)} as t → ∞, for any ε > 0. This means that this probability decays expo-

nentially fast with rate at least inf [0,s∗(λ,κ)−ε] I
S
∗ = IS∗ (s∗(λ, κ)− ε) > 0. ♦

Remark 1.11 (Why not a full LDP?). It would be rather desirable to have a full LDP for (A(t), S(t)) with
rate function I∗, but there is an obstacle that we could not overcome: the lack of continuity of the map µ 7→
〈π2, µ〉, since π2 is unbounded. This makes an application of the crucial Gärtner–Ellis theorem impossible,
since it prevents us from proving that I∗ is strictly convex, and therefore from proving that its Legendre
transform is differentiable. It also prevents us from using the contraction principle, since (A(t), S(t)) is not
a continuous functional of the empirical measures of (Ai, σi)i∈N (see Section 4). With a lot of more work,
we would be able to derive LDP lower bounds that are severely restricted, and the restriction would not be
easy to understand, so we abstained from formulating any lower bound. ♦

1.4 Related literature

In [B48] and [K53] the CSMA model in continuous time is modeled with the help of a queue that expresses the
number of messages that are present in the κ channels as a function of the time parameter. Both restricted to
the case of exponential distributed service times, which lead to a Markov model, whose invariant distribution
can be calculated easily and explicitly. More general results involving arbitrary service time distributions can
be found in [B76]. Here the process (Qn)n∈N of the numbers Qn of messages in the channels at the time
of the arrival of the n-th message is considered and its limiting distribution is calculated explicitly depending
on the arrival and service time distributions. This and additional ad-hoc methods make it possible to obtain
information about the number of successes at a late time, e.g., a law of large numbers. Unfortunately, the
process (Qn)n∈N does not have the Markov property, but an infinitely long memory. Hence, probabilistic
formulas could not be derived, and large deviations for the throughput of the system could not be considered.

In [RS90] one finds the throughput of the single-channel continuous time CSMA, which is λ
λ+1

and coin-
cides with our formula for sCSMA(λ, 1) in the case κ = 1. Another version of CSMA, namely slotted (single
channel) CSMA, has been studied more intensively than the continuous time model (see [RS90], [GD11],
[WLZ10] and [LST19]), and provides also the same limiting throughput as the continuous time model in the
single channel case. Let us mention that an analogous large-deviation analysis of multi-channel discrete-time
versions of ALOHA and slotted ALOHA and CSMA is carried out in [KK22].

Since [A77], the single-channel pure ALOHA has been studied intensely (for a general overview see
[LST19], [RS90] and [SBBB08]). The throughput is identified there as λe−2λ, which also coincides with our
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Markovian description of multi-channel ALOHA and CSMA 9

result for sALOHA(λ, 1) in the special case κ = 1. In [SW95], [LST19], [RS90] and [SBBB08] one can also
read about another, more popular and better known, single channel version of ALOHA, namely the slotted
ALOHA, with the higher throughput λe−λ. The multichannel case of this model has also been studied, e.g.,
in [SL12], where the throughput λe−

λ
κ has been calculated. See [KK22] for a derivation of this value via a

large-deviation analysis with explicit rate functions. To the best of our knowledge, there are no similar results
for the multichannel model in continuous time in the literature yet, hence we think that our Lemma 1.1 is
novel.

2 Expectation of the throughput

Let us derive formulas for the expected throughput in the two protocols, i.e., formulas for the expectation of
the large-t limit of 1

t
S(t). In Section 2.1 and Section 2.2, respectively, we consider CSMA and ALOHA. This

section has nothing to do with the Markov chains introduced in Section 1.3.2.

2.1 CSMA

We borrow some knowledge that was gained in [B76]. We pointed out in Section 1.4 that the CSMA system
was analysed in [B76] with the help of a stochastic process Q = (Qn)n∈N, where Qn denotes the number
of messages in the κ channels (the number of busy channels) at the arrival time of the n-th message. The
limiting distribution νQ of Qn, as n goes to infinity, has been calculated there as

νQ(i) =
λi

i!∑κ
k=0

λk

k!

= Poiλ|[0,κ](i), i ∈ {0, 1, . . . , κ},

where we wrote Poiλ|[0,κ] for the Poisson distribution with parameter λ, conditioned on being ≤ κ. It was
also proved there that the limiting distribution of Qn as n→∞ coincides with the limiting distribution of the
number of busy channels at a deterministic time t as t→∞. Using this result, we obtain

sCSMA(λ, κ) = λ

∑κ−1
n=0

λn

n!∑κ
n=0

λn

n!

= λ
Poiλ([0, κ− 1])

Poiλ([0, κ])
, (2.1)

since the average number of the number of successes is equal to the arrival rate λ, multiplied by the suc-
cess probability, which is given by the second factor, as every new arriving message can only be delivered
successfully, if there are at most κ− 1 busy channels.

In (2.1) one sees that sCSMA(λ, κ) is increasing in λ and converges to κ as λ →∞, which is intuitively
clear, because most of the channels are likely to be busy if the arrival rate is high. Therefore, there is no
interesting optimisation task over λ, since the throughput get always better if the density of message is
increased. Taking into account also the number of unsuccessful messages (which explodes as λ → ∞)
makes this issue more interesting, but we do not strive on this here.

Let us finally mention that in the special case κ = 1 our expression (2.1) yields sCSMA(λ, 1) = λ
λ+1

,
which was formerly known (see e.g., [RS90]).

DOI 10.20347/WIAS.PREPRINT.2985 Berlin 2022



W. König, H. Shafigh 10

2.2 ALOHA

Let us calculate the expected limiting throughput in the ALOHA protocol by hand. The expression that we
obtain is good enough for also finding the optimal value of the density λ, at least for large κ.

Since we are looking at the limit of late times, we need to analyse the ALOHA process in equilibrium. This
can be realised by extending the PPP from [0,∞) to R and to consider its Palm measure given that one
message arrives at time 0. Write A([a, b)) for the number of incoming messages during the time interval
[a, b). Fortunately, the number of busy channels at time 0 depends only on the PPP during the time interval
[−1, 0), i.e., on A([−1, 0)). Indeed, the probability of having at least one available channel and taking one
of those is equal to

κ−1∑
n=0

P (A([−1, 0)) = n) ·
(

1− n

κ

)
=

κ−1∑
n=0

λn

n!
e−λ

κ− n
κ

. (2.2)

Note that the PPP has the property that A([−1, 0)) does not depend on the incoming messages after time
0; these are the only ones that might influence the transmission success of the message that arrived at
time 0. Hence, for the success probability we have to multiply the term in (2.2) with the probability that the
message that arrived at time 0 does not get destroyed afterwards during its service time (0, 1], which is
equal to

∞∑
n=0

P (A((0, 1]) = n)

(
κ− 1

κ

)n
=
∞∑
n=0

λn

n!
e−λ

(
κ− 1

κ

)n
= eλ(

κ−1
κ )−λ = e−

λ
κ .

Hence,

sALOHA(λ, κ) = λe−
κ+1
κ
λ

κ−1∑
n=0

λn

n!

κ− n
κ

= λe−
λ
κ e−λ

[ κ−1∑
n=0

λn

n!
− λ

κ

κ−2∑
n=0

λn

n!

]
. (2.3)

In the case κ = 1 this is equal to λe−2λ, which was already known; see Section 1.4. This is optimized at
λ = 1

2
with value s1/2,1 = 1

2e
≈ .18.

3 Markov approach

In this section, we introduce suitable Markov chains for both protocols, CSMA and ALOHA, that are able to
describe the number of successful and unsuccessful sending attempts by time t. Again, we keep λ ∈ (0,∞)

and κ ∈ N fixed.

3.1 Markov approach to CSMA

Let us model the CSMA protocol in terms of a stochastic process in discrete time. Recall that 0 < T1 <

T2 < T3 < . . . denotes all the times at which a message comes in and asks for being admitted to one of
the κ channels. According to our assumptions, (Ti)i∈N is a standard Poisson point process (PPP) in [0,∞)

with parameter λ, and we denote τi = Ti − Ti−1. It is convenient to introduce the counting process N
defined by N (I) = #{i ∈ N : Ti ∈ I} (the number of sending attempts during the time interval I) for
intervals I . Then A(t) = N ([0, t]) is the number of attempts by time t.
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By (T̃i)i∈N we denote the subsequence (Tk(i))i∈N of (Ti)i∈N of all those times Tj at which the incoming
message is admitted to a channel (i.e., at which not all the κ channels are busy); then the delivery takes
place during the time interval [Tk(i), Tk(i) + 1], and at time Tk(i) + 1 the message is successfully delivered.

We introduce the counting process N (s) defined by N (s)(I) = #{j ∈ N : T̃j ∈ I} for measurable sets
I ⊂ [0,∞). Then S(t) = N (s)([0, t]) is the number of successfully delivered messages during the time
interval [0, t]. We put σi = T̃i − T̃i−1, and we register the number

Ai = #{attempts during (T̃i−1, T̃i]} =
∑
j∈N

1l{Tj ∈ (T̃i−1, T̃i]} = N
(
(T̃i−1, T̃i]

)
∈ N

of sending attempts in the time interval (T̃i−1, T̃i]. Then we have, for any k ∈ N and t ∈ [0,∞),

on the event {T̃k ≤ t < T̃k+1}, S(t) = k and
k∑
i=1

Ai ≤ A(t) <
k+1∑
i=1

Ai. (3.1)

Hence, we are able to express the main quantities, A(t) and S(t), in terms of the sequence (Ai, σi)i∈N
whose state space is equal to

Σ = N× (0,∞).

Therefore, we want to describe its distribution. It turns out that it is in general not a Markov chain, but a
(κ− 1)-Markov chain, i.e., a stochastic process with a memory of length ≤ κ− 1:

Lemma 3.1 (Markovian structure of (Ai, σi)i∈N in CSMA case). The sequence (Ai, σi)i∈N is a time-
homogeneous (κ− 1)-Markov chain with kernel WCSMA from Σκ−1 to Σ defined by

WCSMA

((
(a1, t1), · · · , (aκ−1, tκ−1)

)
, (k, ds)

)
=

(λγ)k−1

(k − 1)!
λe−λs1l[γ,∞)(s) ds,

where γ = [1−
∑κ−1

k=1 tk]+.

Proof. Let us fix i ∈ N and identify the conditional distribution of (Ai+1, σi+1) given (Aj, σj)j≤i. This will
turn out to be the same as the conditional distribution given the (κ − 1)-past (Aj, σj)j∈{i−κ+2,...,i}, and
WCSMA will turn out to be a version of this conditional distribution; this will finish the proof of the lemma.

Conditioning on (Aj, σj)j≤i includes conditioning on (T̃j)j≤i = (Tk(j))j≤i. The next arrival time Tj with

an idle channel after time T̃i is the first Tj after T̃i such that no more than κ − 1 messages are in the κ
channels at this time. Since all the messages that are currently in the system have arrived in the last time
unit before, we can say that this next Tj is the first Tj after T̃i such that in the time interval (Tj − 1, Tj) the
number of the T̃k is smaller than κ. In formulas,

T̃i+1 = Tk(i+1) = inf{Tj : j > k(i),N (s)((Tj − 1, Tj)) < κ}
= inf{Tj : j > k(i), Tj − T̃i−κ+1 > 1}.

In terms of the time differences, we see that σi+1 = τk(i)+1 + τk(i)+2 + · · ·+ τk(i+1) with

k(i+ 1) = inf
{
j > k(i) : τk(i)+1 + τk(i)+2 + · · ·+ τj > γi

}
, where γi =

[
1−

κ−2∑
k=0

σi−k

]
+
.
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In other words, given (σj)j≤i, the conditional distribution of σi+1 is equal to the first point of a PPP(λ)

after time γi. Using the well-known memoryless property of the PPP, we see that this distribution is the
distribution of γi +X , where X is an independent Exp(λ)-distributed random variable. This distribution has
the density s 7→ λe−(s−γi)λ1l[γi,∞)(s).

We also see that Ai+1 − 1, the number of unsuccessful sending attempts in the time interval (T̃i, T̃i+1],
has the conditional distribution equal to the one of N ((0, γi]), the Poisson distribution with parameter λγi.

Hence, the conditional probability that Ai+1 = k is equal to Poiλγi(k − 1) = e−λγi (λγi)
k−1

(k−1)!
.

Summarizing, we see that (Ai+1, σi+1) given (Aj, σj)j≤i depends only on the (κ − 1)-past, i.e., on
(Aj, σj)j∈{i−κ+2,...,i} and that

P
(
(Ai+1, σi+1) ∈ d(k, s) | (Ai, σi) = (a1, t1), · · · , (Ai−κ+2, σi−κ+2) = (aκ−1, tκ−1)

)
=

(λγ)k−1

(k − 1)!
λe−λs1l[γ,∞)(s) ds,

(3.2)

where γ = [1−
∑κ−1

k=1 tk]+. Hence, (Ai, σi)i∈N is a (κ− 1)-Markov chain with the kernel given in (1.5). �

The fact that (Ai, σi)i∈N is a (κ − 1)-Markov chain can obviously also be rephrased in terms of the
sequence of subsequent (κ− 1)-vectors:

Corollary 3.2. Equivalently, one can formulate Lemma 3.1 by saying that the vectors

R(CSMA)

i :=
(
(Ai, σi), · · · , (Ai+κ−2, σi+κ−2)

)
∈ Σκ−1 (3.3)

form a time-homogeneous Markov chain (R(CSMA)

i )i∈N on the state space Σκ−1 with the transition kernel
PCSMA defined by

PCSMA

((
(a1, t1), · · · , (aκ−1, tκ−1)

)
, d
(
(b1, s1), · · · , (bκ−1, sκ−1)

))
=

κ−2⊗
i=1

δ(ai+1,ti+1)(d(bi, si)) ⊗WCSMA

((
(a1, t1), · · · , (aκ−1, tκ−1)

)
, d(bκ−1, sκ−1)

)
.

(3.4)

In Section 4 we will need the following strong ergodicity property of the Markov chain (R(CSMA)

i )i∈N. By
P i we denote the i-th power of P (in the sense of ‘matrix’ multiplication), i.e., the i-step transition kernel, for
i ∈ N.

Condition (U).We say, a Markov chain in a Polish space Σ with transition kernel P satisfies (U) if there exist
`,N ∈ N satisfying ` ≤ N and a constant M ∈ [1,∞) such that

P `(σ, ·) ≤ M

N

N∑
i=1

P i(τ, ·), σ, τ ∈ Σ. (3.5)

Condition (U) is a kind of uniform ergodicity property. It implies that the Markov chain has a unique invariant

measure [DZ10, Ex. 6.5.8].

Lemma 3.3 (Uniform ergodicity of (R(CSMA)

i )i∈N). For any λ ∈ (0,∞) and κ ∈ N, the Markov chain
(R(CSMA)

i )i∈N introduced in Corollary 3.2 satisfies (U).
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Proof. Instead of the transition kernel PCSMA, it will be sufficient to work with the kernel WCSMA. We write
W (i)

CSMA for the i-th power of the kernel WCSMA. We will show the existence of a constant M̃ such that

W (κ+1)

CSMA

(
(a, t), (k, ds)

)
/ds ≤ M̃ W (κ+1)

CSMA

(
(ã, t̃), (k, ds)

)
/ds (3.6)

for a, ã ∈ Nκ−1, t, t̃ ∈ (0,∞)κ−1, k ∈ N, s ∈ (0,∞). It is clear that (U) follows from that assertion with
` = N = κ+ 1 and M = M̃(κ+ 1).

From (1.5) we see that actually both sides of (3.6) do not depend on a nor on ã. We write both sides of
(3.6) in terms of random variables, more precisely in terms of a (κ− 1)-Markov chain (σi)i∈{−κ+2,−κ+3,... }
using the notation Et(·) = E(·|σ−κ+i+1 = ti∀i ∈ [κ− 1]), and then we have

W (κ+1)

CSMA

(
(a, t), (k, ds)

)
/ds =

λk

(k − 1)!
e−λsEt

[
γk−11l[0,s](γ)

]
, where γ =

(
1−

κ∑
i=2

σi

)
+
.

Hence, (3.6) is equivalent to

Et
[
γk−11l[0,s](γ)

]
≤MEt̃

[
γk−11l[0,s](γ)

]
, t, t̃ ∈ (0,∞)κ−1, k ∈ N, s ∈ (0,∞). (3.7)

We are going to find a lower bound for the expectation on the right by restricting to the event {σ1 > 1},
on which σ2, . . . , σκ are independent Expλ-distributed variables (this reflects the fact that, if for more than
one time unit no new message arrives, then all channels are empty and the next κ incoming messages will
find a free channel). Furthermore, we will derive an upper bound for the left-hand side in terms of a multiple
integral involving such random variables.

Note that

Et
[
γk−11l[0,s](γ)

]
=

∫ 1

(1−s)+
dx (1− x)k−1Pt

( κ∑
i=2

σi ∈ dx
)/

dx.

Introduce the probability density fγ(s) = λe−λ(s−γ)1l[γ,∞)(s) on [0,∞). Then a density of
∑κ

i=2 σi under
E(t2,t3,...,tκ−1,s1) is the map

(0,∞) 3 x 7→
∫

(0,∞)κ−1

ds2 . . . dsκ 1l
{ κ∑

i=2

si = x
} κ−1∏
i=1

fγi(si), with γi =
(

1−
i−1∑

j=−κ+2+i

sj

)
+
,

where we put s−κ+j = tj . Now we estimate fγ(s) ≤ eλf0(s), then the above density is upper-bounded by

eλ(κ−1)f
?(κ−1)
0 (x), where f ?(κ−1)

0 is the (κ− 1)-fold convolution of f0. This implies that

Et
[
γk−11l[0,s](γ)

]
≤ eλ(κ−1)

∫ 1

(1−s)+
dx (1− x)k−1f

?(κ−1)
0 (x).

On the other hand, we may estimate

Et̃
[
γk−11l[0,s](γ)

]
≥ Et̃

[
1l{σ1 > 1}γk−11l[0,s](γ)

]
= Pt̃(σ1 > 1)

∫ 1

(1−s)+
dx (1− x)k−1Pt

( κ∑
i=2

σi ∈ dx
)/

dx

≥ e−λ
∫ 1

(1−s)+
dx (1− x)k−1f

?(κ−1)
0 (x).

The last two displays together imply our goal, (3.7), and hence (3.6). �
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3.2 Markov approach for the ALOHA protocol

Now we turn to a similar treatment of the ALOHA protocol. We adopt all the notation from Section 3.1; that
is, we fix λ ∈ (0,∞) and κ ∈ N and assume that (Ti)i∈N is a standard PPP(λ) (the sequence of times
at which a message comes in and requires a channel for being transmitted) andN ((a, b]) is the number of
Poisson points in the time interval (a, b] for any a < b.

Recall that, in the ALOHA protocol, each incoming message jumps into a randomly picked one of the κ
channels, regardless whether it is idle or busy. If it is busy, then it destroys the message that is currently
in the channel and itself as well. As a consequence, the new message is rejected immediately, i.e., it does
not get access to the system, while the old one first remains in the channel until its service time is over and
leaves after one time unit without having been successfully delivered. However, if the channel is idle, then
the new message is only potentially successful, since it can still be destroyed during the service time by a
new arriving one that picks this channel. This uncertain situation remains until one time unit after the entry
into the channel; then the message is successfully delivered if it has not been cancelled by then.

We consider the sequence (T̃i)i∈N of all the times at which an incoming message picks an idle channel,
a subsequence of (Ti)i∈N. We again put σi = T̃i − T̃i−1 and Ai = A((T̃i−1, T̃i]), which is 1+ the number
of incoming messages that jump into some busy channel and therefore destroy the message therein. Recall
that Σ = N× (0,∞).

Lemma 3.4 (Markovian structure of (Ai, σi)i∈N in ALOHA case). The sequence (Ai, σi)i∈N is a (κ − 1)-
Markov chain with kernel WALOHA from Σκ−1 to Σ defined by

WALOHA

((
(a1, t1), · · · , (aκ−1, tκ−1)

)
, (k, ds)

)
=

(
γ + B(s)

κ

)k−1

(k − 1)!

(
1− β(s)

κ

)
λke−λs1l[γi,∞)(s) ds,

where we wrote γ := [1−
∑κ−1

k=1 tk]+ and

β(s) := max
{
m ∈ N : s+

m−2∑
j=0

tκ−1−j ≤ 1
}
∧ κ ∈ {0, 1, . . . , κ} and B(s) =

∫ s

0

β(r) dr

(3.8)
for the number of busy channels s time unit after the last successful arrival and its primitive.

Proof. We keep i ∈ N fixed, condition on (Aj, σj)j≤i and examine the distribution of (Ai+1, σi+1). Let us
first examine the density of the probability of the event {σi+1 = s}. At time T̃i+1 there is at least one free
channel in order for the arriving message to access the system. Hence, T̃i+1 must be after time T̃i + γi ,
where γi := [1 −

∑i
n=i−κ+2 σn]+, like in the CSMA model, that is, σi+1 > γi. However, this time T̃i+1 is

not necessarily the first point of the PPP after T̃i + γi, but the first Poisson point after T̃i + γi at which an
idle channel is picked. Hence, we have to calculate the probability of picking a free channel at an Poisson
time point. For this, we need to know the number of free channels at any arbitrary time after T̃i + γi.

So let T̃i + s, s > γi, be this arbitrary time. If s > 1, at least one time unit has passed without new
incoming messages after T̃i, which means that all channels are idle again at T̃i + s. If s ≤ 1, at least one
channel is busy at time T̃i+s, as there is at least one message, namely the one arrived at T̃i, whose service
time is not over yet. Of course, there could be more messages still remaining in the system, depending on s,
and we have to determine this relation. It is clear, that if additionally s+ σi ≤ 1, then the messages arrived
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at T̃i−1 is also still in the system, so there are at least two busy channels at time T̃i + s. Analogously, there
must be at least 3 occupied channels, if s+ σi + σi−1 ≤ 1 additionally, as the service time of the message
arrived at T̃i−2 is also not over yet. We see step by step, that if s+

∑κ−3
k=0 σi−k ≤ 1, we have at least κ− 1

busy channels and if s +
∑κ−2

k=0 σi−k ≤ 1, all k channels must be busy, as the delivery of all the last k
messages is still remaining. Hence, the number of busy channels at time T̃i + s is given, for s > γi, by

β(s) := 1l{s≤1}+ 1l{s+σi≤1}+ · · ·+ 1l{s+∑κ−2
k=0 σi−k≤1} = max

{
m ∈ N : s+

m−2∑
k=0

σi−k ≤ 1
}
∧κ. (3.9)

Then it is clear that the probability of picking randomly a busy respectively free channel at time T̃i + s is
equal to β(s)

κ
respectively 1− β(s)

κ
. So the first point of the PPP after T̃i + γi coincides only with probability

1− β(s)
κ

with T̃i+1 (on the event {σi+1 = s}). This yields the density

s 7→
(

1− β(s)

κ

)
λe−λ(s−γi)1l[γi,∞)(s)

for the probability that the first message after time T̃i + γi picks a free channel.

Now we consider, for any n ∈ N, the event that T̃i+1 = T̃i+ s is the n-th point of the PPP after T̃i+γi at
which for the first time an idle channel is picked. On the event that there are precisely n− 1 Poisson points
in the interval (T̃i + γi, T̃i+1) and another one at T̃i+1 = T̃i + s, the density of these n Poisson points is
equal to

(s1, . . . , sn−1, s) 7→ 1l{γi<s1<s2<···<sn−1<s}λ
ne−λ(s−γi) ds1 · · · dsn−1ds.

On this event, the probability that the first n− 1 of them pick a busy channel and the last one an idle one is
equal to

(
1− β(s)

κ

) n−1∏
k=1

β(sk)

κ
.

In order to obtain the density of σi+1, we need to integrate over all these s1, . . . , sn−1 and have to sum on
n ∈ N. Hence, the conditional distribution of σi+1 is given as

P(σi+1 ∈ ds | (Aj, σj)j≤i)

=
∞∑
n=1

[ ∫
γi<s1<s2<···<sn−1<s

( n−1∏
k=1

β(sk)

κ

)
ds1ds2 . . . , dsn−1

] (
1− β(s)

κ

)
λne−λ(s−γi) ds

=
∞∑
n=1

1

(n− 1)!

[ ∫ s

0

β(r)

κ
dr
]n−1

(
1− β(s)

κ

)
λne−λ(s−γi)1l[γi,∞)(s) ds

= eλB(s)/κ

(
1− β(s)

κ

)
λe−λ(s−γi)1l[γi,∞)(s) ds,

where we used the exponential series and remind on (3.8), now with γi instead of γ (observe that β(s) = 0

on [0, γi]).

Now, we look at the intersection of {σi+1 = s} with the event {Ai+1 = k} for k ∈ N. Here we have k−1

unsuccessful attempts during (T̃i, T̃i+1]; indeed these are all the Poisson points in the interval (T̃i, T̃i + γi]

DOI 10.20347/WIAS.PREPRINT.2985 Berlin 2022



W. König, H. Shafigh 16

plus the ones in the interval (T̃i + γi, T̃i+1) that failed to pick an idle channel, and these two numbers are
independent by the properties of the PPP. The number of the first ones have a Poisson distribution with
parameter λγi, and the one of the latter ones has been examined above. Hence, the conditional distribution
of Ai+1 is the convolution of these two:

P
(
Ai+1 = k, σi+1 ∈ ds | (Aj, σj)j≤i

)
=

k∑
n=1

(λγi)
k−n

(k − n)!
e−λγi

(
1− β(s)

κ

)
B(s)n−1/(n− 1)!

κn−1
λne−λ(s−γi)1l[γi,∞)(s) ds

= γk−1
i

k∑
n=1

(B(s)/γiκ)n−1

(k − n)!(n− 1)!

(
1− β(s)

κ

)
λke−λs1l[γi,∞)(s) ds

=
γk−1
i

(k − 1)!

(
1 +

B(s)

γiκ

)k−1
(

1− β(s)

κ

)
λke−λs1l[γi,∞)(s) ds

= WALOHA

((
(a1, t1), · · · , (aκ−1, tκ−1)

)
, (k, ds)

))
,

where we used the binomial theorem. In particular, we see that we have again a (κ − 1)-Markov chain, as
the transition probaility depends only on σi, . . . , σi−κ+2 (and by the way, not at all on the Aj ’s). �

Analogously to the CSMA case in Section 3.1, the sequence of (κ − 1)-vectors R(ALOHA)

i of (Ai, σi)i∈N
defined as in (3.3) form a Markov chain on the state space Σκ−1 with a transition kernel PALOHA that is
defined analogously to (3.4). Also the analogue to Lemma 3.3 holds:

Lemma 3.5 (Uniform ergodicity of (R(ALOHA)

i )i∈N). For the ALOHA protocol, for any λ ∈ (0,∞) and κ ∈ N,
the Markov chain (R(ALOHA)

i )i∈N satisfies (U).

Proof. We use the same strategy as in the proof of Lemma 3.3 and will prove that (3.6) holds for some M̃ .
Again abbreviate Et(·) = E(·|σ−κ+i+1 = ti∀i ∈ [κ − 1]) for t = (t1, · · · , tκ−1) ∈ (0,∞)κ−1. Then,
using the notation γ = [1−

∑κ
i=2 σi]+ and

β(σ)(s) := 1l[γ,∞)(s) max
{
m : s+

m−2∑
i=0

σκ−i ≤ 1
}
∧ κ

we can write

W (κ+1)

ALOHA

(
(a, t), (k, ds)

)
/ds =

λk

(k − 1)!

(
1− β(s)

k

)
e−λsEt

[(
γ +

β(σ)(s)

κ

)k−1

1l[0,s](γ)

]
;

observe that β(σ)(s) and γ are also functions of the random variables σ2, · · · , σκ.

For our goal it is sufficient to show the existence of some M̃ > 0 such that, for each t, t̃ ∈ (0,∞)κ−1,
s > 0, k ∈ N and n ≤ k

Et
[
G(σ2, . . . , σκ)

]
≤ M̃Et̃

[
G(σ2, . . . , σκ)

]
, for G(σ2, . . . , σκ) =

(
γ +

β(σ)(s)

κ

)k−1

1l[0,s](γ).

We will show this even for any non-negative measurable function G (with the same constant M̃ ) by showing
the corresponding inequality for the respective densities of (σ2, . . . , σκ) under Pt and Pt̃.
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Recall the probability density fg(s) = λe−λ(s−g)1l[g,∞)(s) on s ∈ [0,∞) for any g ∈ [0,∞). Now, a
density of (σ2, . . . , σκ) under E(t2,t3,··· ,tκ−1,s1) is the map

(s2, . . . , sκ) 7→
κ−1∏
i=1

fγi(si), (3.10)

where we wrote s−κ+j = tj and γi := [1−
∑i−1

j=−κ+2+i sj]+. Since fg(s) ≤ eλf0(s) for any g, s ∈ [0,∞),

this density is upper bounded by eλ(κ−1)f
⊗(κ−1)
0 (s2, . . . , sκ), where f⊗(κ−1)

0 is the (κ − 1)-fold tensor
product of f0. Then we can upper bound the left-hand side as follows (the expectation after the first equality
is on σ1):

Et
[
G(σ2, . . . , σκ)

]
= Et

[ ∫
[0,∞)κ−1

G(s2, . . . , sκ)
κ−1∏
i=1

fγi(si)
]

≤ eλ(κ−1)Et
[ ∫

[0,∞)κ−1

G(s2, . . . , sκ) f
⊗(κ−1)
0 (s2, . . . , sκ)

]
= eλ(κ−1)

∫
[0,∞)κ−1

G(s2, . . . , sκ) f
⊗(κ−1)
0 (s2, . . . , sκ).

On the other hand, if we restrict to the event {σ1 > 1}, then σ2, . . . , σκ are again independent exponen-
tially distributed variables and independent of σ1, and we can estimate

Et̃
[
G(σ2, . . . , σκ)

]
≥ Et̃

[
1l{σ1>1}G(σ2, . . . , σκ)

]
= Pt̃(σ1 > 1)

∫
[0,∞)κ−1

G(s2, . . . , sκ) f
⊗(κ−1)
0 (s2, . . . , sκ) ds2, . . . , dsκ.

Since Pt̃(σ1 > 1) ≥ e−λ, this implies the assertion with M̃ = eλκ. �

4 Large deviations

In this section, we prove a large deviation upper bound for the pair 1
t
(S(t), A(t)) for both protocols. We

can make most of the steps jointly for both protocols. The basis of our large-deviation analysis is the em-
pirical pair measures and the empirical κ-string measures Lκn of the Markov chain that we introduced in
Section 1.3.2. The two LDPs for (Lκn)n∈N as n → ∞ are easily derived from general theory, and the main
object, (A(t), S(t)) is a kind of time-inverse of n 7→ (〈π1, L

κ
n〉, 〈π1, L

κ
n〉). However, there are two problems

left: The latter is a priori not a continuous functional ofLκn, and we need to make the step from an LDP for this
pair to the pair (A(t), S(t)). These two major steps will be done in Lemmas 4.3 and 4.4. However, we were
not able to overcome the lack of continuity of µ 7→ 〈π2, µ〉 and cannot derive a full LDP for (A(t), S(t)).

Let us abbreviate Σ = N × (0,∞) and let ∗ ∈ {CSMA,ALOHA}. We introduce the empirical pair
measure of the Markov chain (R∗i )i∈N0 defined in (3.3),

L(2)

n =
1

n

n∑
i=1

δ(R∗
i−1,R

∗
i ) ∈M1(Σκ−1 × Σκ−1).
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In this expression, we assume periodic boundary conditions, i.e., R∗0 = R∗n. Then L(2)
n satisfies the marginal

property: its two marginal measures are equal to each other. We denote byM(s)

1 (Σκ−1 × Σκ−1) the set of
probability measures ν on Σκ−1 × Σκ−1 that satisfy this marginal property and write ν for any of the two
marginal measures of ν. (The assumption R∗0 = R∗n is only of technical nature and can also be dropped
without any problem, but we will not elaborate on that minor point.)

Since (R∗i )i∈N0 satisfies the condition (U) by Lemmas 3.3 and 3.5, respectively, [DS89, Exercise 4.1.48]
says that there is an invariant distribution ν∗ of (R∗i )i∈N0 . Then, by [DS89, Lemma 4.1.45] the empirical pair
measures (L(2)

n )n∈N converges almost surely towards ν̄∗⊗P∗. Furthermore, we even get a good control on
the rate of this convergence: By [DZ10, Cor. 6.5.10 and Th. 6.5.12] the empirical pair measures (L(2)

n )n∈N
satisfies an LDP onM1(Σκ−1 × Σκ−1) with rate function

ν 7→ H(ν | ν ⊗ P∗) =

∫
Σ×Σ

ν(dR, dR′) log
ν(dR, dR′)

ν(dR)P∗(R, dR′)
, (4.1)

if ν ∈M(s)

1 (Σκ−1 × Σκ−1) is absolutely continuous with respect to ν ⊗ P∗, and∞ otherwise. The term in
(4.1) is called the relative entropy of ν with respect to ν ⊗ P∗.

The empirical pair measures L(2)
n stand in a simple one-to-one correspondence with the empirical κ-string

measures that we are going to introduce now; we would like to formulate our LDP in terms of these measures
instead. Consider the setM(s)

1 (Σκ) of probability measures µ on Σκ whose first marginal measure µ(κ−1)

on Σκ−1 (i.e., when projected on the first κ− 1 components) is equal to its second marginal measure (i.e.,
when projected on the last κ − 1 components). Then the above LDP for (L(2)

n )n∈N is equivalent to saying
that the empirical κ-string measure

Lκn =
1

n

n−1∑
i=0

δ((Ai+1,σi+1),...,(Ai+κ,σi+κ))

satisfies an LDP onM1(Σκ) with rate function

µ 7→ H(µ | µ(κ−1) ⊗W∗) =

∫
Σκ

dµ log
dµ

d(µ(κ−1) ⊗W∗)
, (4.2)

if µ ∈M(s)

1 (Σκ), and =∞ otherwise.

Let us first analyse the rate function. Recall the projections π1 : Σκ → N and π2 : Σκ → (0,∞) defined
by π1((a1, r1), . . . , (aκ, rκ)) = aκ and π2((a1, r1), . . . , (aκ, rκ)) = rκ. As a prestep, we analyse a
candidate for the rate function in an LDP for the pair (〈π1, L

κ
n〉, 〈π1, L

κ
n〉).

Lemma 4.1 (An auxiliary rate function). For ∗ ∈ {CSMA,ALOHA}, introduce J∗ : [0,∞)2 → [0,∞) as

J∗(x, y) = sup
A∈R,B∈(−∞,λ)

inf
µ∈M(s)

1 (Σκ)

[
A(x− 〈π1, µ〉) +B(y − 〈π2, µ〉) +H(µ | µ(κ−1) ⊗W∗)

]
. (4.3)

Then J∗ is convex and hence continuous and possesses precisely one minimizer (xmin, ymin) ∈ (0,∞)2.

Proof. By [DS89, Theorems 4.1.43 and Lemma 4.1.45], the map ν 7→ H(ν | ν ⊗ P∗) is convex and
possesses the unique minimizer ν∗⊗P∗, where ν∗ is the invariant distribution of (R∗i )i∈N0 , whose existence
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is implied by Condition (U). Hence, the map µ 7→ H(µ | µ(κ−1)⊗W∗) is also convex with the only minimizer
µ̃∗ := ν(κ−1)

∗ ⊗ W∗ ∈ M(s)

1 (Σκ). Hence, J∗ has a unique minimizer, which is equal to (xmin, ymin) =

(〈π1, µ̃∗〉, 〈π2, µ̃∗〉). It is an easy exercise to prove the convexity of J∗, using (4.3) (observe that it is the
Legendre transform of a function that is an supremum of linear functions). In particular, it is continuous in
(0,∞)2, and all the right- and the left partial derivatives exist in (0,∞)2. �

Recall from Theorem 1.6 the rate functions

ICSMA(a, s) = sup
A∈R,B∈(−∞,λ)

inf
µ∈M(s)

1 (Σκ)

[
A (a− s 〈π1, µ〉)+B (1− s 〈π2, µ〉)+H(µ | µ(κ−1)⊗WCSMA)

]
for the CSMA protocol and

IALOHA(a, s) = sup
A∈R,B∈(−∞,λ)

inf
µ∈M(s)

1 (Σκ)

[
A
(
a− a+s

2
〈π1, µ〉

)
+B

(
1− a+s

2
〈π2, µ〉

)
+H(µ | µ(κ−1) ⊗WALOHA)

]
in the case of ALOHA protocol, where a, s ∈ [0,∞).

Corollary 4.2 (Properties of ICSMA and IALOHA). For both ∗ ∈ {CSMA,ALOHA}, I∗ is convex and
hence continuous in (0,∞)2 and has precisely one minimizer (amin, smin) ∈ (0,∞)2 (given in (4.4) and
(4.5), respectively).

Proof. Observe that, for any a, s ∈ [0,∞),

ICSMA(a, s) = sJCSMA(a
s
, 1
s
) and IALOHA(a, s) = a+s

2
JALOHA( 2a

a+s
, 2
a+s

).

Using this, one easily sees that I∗ is uniquely minimized in the points

(amin, smin) =

(
xmin

ymin

,
1

ymin

)
=

(
〈π1, ν̃〉
〈π2, ν̃〉

,
1

〈π2, ν̃〉

)
(4.4)

in the CSMA case and

(amin, smin) =

(
xmin

ymin

,
2− xmin

ymin

)
=

(
〈π1, ν̃〉
〈π2, ν̃〉

,
2− 〈π1, ν̃〉
〈π2, ν̃〉

)
(4.5)

in the ALOHA case.

For showing the convexity of ICSMA we need to show that (a, s) 7→ sf(a
s
, 1
s
) is convex if f is convex. Fix

(a1, s1), (a2, s2) ∈ [0,∞)2, then we see that

f
(
a1+a2
s1+s2

, 1
s1+s2

)
= f

(
s1

s1+s2

(
a1
s1
, 1
s1

)
+ s2

s1+s2

(
a2
s2
, 1
s2

))
≤ s1

s1+s2
f
(
a1
s1
, 1
s1

)
+ s2

s1+s2
f
(
a2
s2
, 1
s2

)
.

Multiplying with 1
2
(s1 + s2) implies the convexity of (a, s) 7→ sf(a

s
, 1
s
). A similar proof shows the convexity

of IALOHA. Indeed, again assume that f is convex and pick (a1, s1), (a2, s2) ∈ [0,∞)2, then we see that

f
(

a1+a2
1
2

(a1+a2+s1+s2)
, 2

1
2

(a1+a2+s1+s2)

)
≤ a1 + s1

a1 + a2 + s1 + s2

f
(

a1
1
2

(a1+s1)
, 2

1
2

(a1+s1)

)
+

a2 + s2

a1 + a2 + s1 + s2

f
(

a2
1
2

(a2+s2)
, 2

1
2

(a2+s2)

)
.

Multyplying with 1
2
(a1 + a2 + s1 + s2) implies the convexity of (a, s) 7→ a+s

2
f( 2a

a+s
, 2
a+s

) and hence the
one of IALOHA. �
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Now we prove the large-deviation upper bound for (〈π1, L
κ
n〉, 〈π2, L

κ
n〉).

Lemma 4.3 (LDP upper bound for (〈π1, L
κ
n〉, 〈π2, L

κ
n〉)). For both ∗ ∈ {CSMA,ALOHA}, for any closed

set F ⊂ (0,∞)2,

lim sup
n→∞

1

n
logP

(
(〈π1, L

κ
n〉, 〈π2, L

κ
n〉) ∈ F

)
≤ − inf

F
J∗.

Proof. We are going to apply the Gärtner–Ellis theorem, which implies our assertion if the function Λ, defined
by

Λ(A,B) = lim
n→∞

1

n
logE

[
en(A〈π1,Lκn〉+B〈π2,Lκn〉)

]
, A ∈ R, B ∈ (−∞, λ), (4.6)

exists and is lower semi-continuous. In this case, the rate function (which is convex and lower semi-
continuous) is given by the Legendre transform of Λ, which we will identify as the function J∗ defined in
(4.3).

If Λ would be differentiable, then the Gärtner–Ellis theorem would provide also the corresponding lower
bound and hence a full LDP. However, in our case we do not know if this is true, due to the discontinuity
of the mappings µ 7→ 〈πi, µ〉 for i ∈ {1, 2} in the weak topology of probability measures, since πi is not
bounded.

So let us identify the limit in (4.6), which will be done with the help of the LDP for (Lκn)n∈N. Also here,
we are facing the serious problem of missing unboundedness of π1 and π2; but we found a way around this.
Indeed, we absorb the π2-part in the transition kernel and employ a cutting argument for the π1-part. We
write now E∗ = E(λ)

∗ for the expectation with respect to our Markov chain (stressing the arrival parameter
λ of the underlying PPP). The following trick absorbs the π2-integral into the transition kernel. For this, we
write W (λ)

∗ = W∗ to stress the parameter λ in the transition kernel of our Markov kernel, and we introduce
the transformed kernels

W (A,B,λ)

∗ ((a, t), (k, ds)) = eAk+BsW∗((a, t), (k, ds)), A ∈ R, B ∈ (−∞, λ), s ∈ (0,∞), k ∈ N.
(4.7)

Then we observe that

W (A,B,λ)

∗ = W (D,0,λ−B)

∗ , where D := A+ log
λ

λ−B
. (4.8)

As a consequence,

H(µ | µ(κ−1) ⊗W (λ−B)

∗ ) = log
λ

λ−B
〈π1, µ〉 −B 〈π2, µ〉+H(µ | µ(κ−1) ⊗W∗). (4.9)

We have from (4.8) that

Eλ∗
[
en(A〈π1,Lκn〉+B〈π2,Lκn〉)

]
= E(λ−B)

∗
[
enD〈π1,L

κ
n〉
]
, n ∈ N.

For definiteness, assume that D > 0; the opposite case is almost the same. Since we can lower bound
π ≥ π ∧ m and since µ 7→ 〈π1 ∧m,µ〉 is continuous and since (Lκn)n∈N satisfies an LDP with rate
function µ 7→ H(µ | µ(κ−1) ⊗W∗), Varadhan’s lemma tells us that

lim inf
n→∞

1

n
logE(λ−B)

∗
[
enD〈π1,L

κ
n〉
]
≥ lim

m→∞
sup
µ

[D 〈π1 ∧m,µ〉 −H(µ | µ(κ−1) ⊗W (λ−B)

∗ )] = M(A,B),

(4.10)
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where

M(A,B) = sup
µ

[
A 〈π1, µ〉+B 〈π2, µ〉 −H(µ | µ(κ−1) ⊗W∗)

]
, (4.11)

where we used (4.9). We will show in the following that also the complementary inequality to (4.10) holds,
which shows that (4.6) holds with Λ = M . This finishes the proof of the lemma, since it easily follows from
(4.11) that J∗ defined in (4.3) is the Legendre transform of M = Λ.

For estimating in the opposite direction, we need to employ a cutting argument as follows. For anym ∈ N
and δ > 0,

E(λ−B)

∗
[
enD〈π1,L

κ
n〉
]

= E(λ−B)

∗
[
enD〈π1,L

κ
n〉1l{D|〈π1−π1∧m,Lκn〉|≤δ} + enD〈π1,L

κ
n〉1l{D|〈π1−π1∧m,Lκn〉|>δ}

]
≤ eδnE(λ−B)

∗
[
enD〈π1∧m,L

κ
n〉
]

+ E(λ−B)

∗

[
enD〈π1,L

κ
n〉1l{D∑n

i=1(Ai−m)+>δn}
]
.

We need to show that the exponential large-n rate of the last term is arbitrarily small if m is picked large,
then the complementary inequality to (4.10) follows. From Lemmas 3.1 and 3.4, respectively, we know that,
given (σi)i∈N, under E(λ−B), the random variables A1, . . . , An are independent and have the distribution of
1+ a Poiλi-distributed random variable, where λi = (λ−B)γi in the CSMA-case and λi = (λ−B)(γi +

B(s)/κ) in the ALOHA-case, where γi = (1−
∑κ−1

j=1 σi−j)+. In any case, we have λi ≤ 2λ for any i and
can therefore estimate

P(λ−B)

∗
(
Ai = k

∣∣ (σj)j∈N) ≤ e2λPoi2λ(k − 1), k ∈ N.

Hence, we can estimate, writing E for expectation with respect to Poi2λ, using the exponential Chebyshev
inequality with some K > 0,

E(λ−B)

∗

[
enD〈π1,L

κ
n〉1l{D∑n

i=1(Ai−m)+>δn}
]
≤ e2λnE

[
enD〈π1,L

κ
n〉1l{D∑n

i=1(Ai−m)+>δn}
]

≤ e2λne−
Kδn
D E

[
eD

∑n
i=1 Ai eK

∑n
i=1(Ai−m)+

]
= exp

{
− n

[
− log(2λ) +K

δ

D
− logE

[
eDA1+K(A1−m)+

]]}
.

(4.12)
We need to show that the last term in the brackets can be made arbitrarily large as m → ∞ with an
appropriate choice of K = K(m). We estimate the last term as follows:

E
[
eDA1+K(A1−m)+

]
=

m∑
k=0

e−2λ (2λ)k

k!
eDk +

∑
k>m

e−2λ (2λ)k

k!
eDkeK(k−m)

≤ e2λ(eD−1) +
(2λeD)m

m!
e2λ(eD+K−1),

where we used an index shift and estimated 1
(k+m)!

≤ 1
k!

1
m!

. Now it is easy to see that one can pick
K = K(m)→∞ in such a way that the term in the brackets on the right of (4.12) diverges to∞ (take K
of order logm).

This finishes the proof of the complementary inequality to (4.10) and therefore finishes the proof of the
lemma.

�
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Now we can prove the main result of this section, the LDP upper bounds for 1
t
(A(t), S(t)). This finishes

the proof of Theorem 1.6.

Lemma 4.4. For ∗ ∈ {ALOHA,CSMA}, as t → ∞, the pair 1
t
(A(t), S(t)) satisfies the LDP upper

bound on (0,∞)2 with rate function I∗, i.e., for any closed set F ⊂ (0,∞)2 we have

lim sup
t→∞

1

t
logP

(1

t

(
S(t), A(t)

)
∈ F

)
≤ − inf

F
I∗

where I∗ is given before Lemma 4.2. Furthermore, in both cases (1
t
(A(t), S(t)))t>0 is exponentially tight,

i.e., for any M > 0 there is an K > 0 such that P(1
t
(A(t), S(t)) ∈ ([0, K]2)c) ≤ e−Mt for any large t.

Proof. Let us explain our proof strategy. As we already mentioned above, the sequence (L(2)
n )n∈N of empir-

ical pair measures of the Markov chain (R∗i )i∈N0 satisfies an LDP with rate function given in (4.1). Then it is
clear that the sequence (Lκn)n∈N of empirical κ-string measures satisfies an LDP with rate function given in
(4.2). It will turn out that (A(t), S(t)) can be expressed in terms of the partial sums

n∑
i=1

Ai = n〈π1, L
κ
n〉 and

n∑
i=1

σi = n〈π2, L
κ
n〉. (4.13)

We will derive the upper bound of the LDP for 1
t
(A(t), S(t)) from this, in combination with the upper bound

of Lemma 4.3 for the pair (〈π1, L
κ
n〉, 〈π2, L

κ
n〉). This derivation will be heuristically done in Step 1 of the

proof. Since (A(t), S(t)) is basically a pair of time-inverses, probabilities of events of one-sided inequalities
like {A(t) < a, S(t) > s} for a, s ∈ (0,∞) are relatively easy to handle, and this we will do in Step 2. The
LDP upper bound for 1

t
(A(t), S(t)) will be proved in Step 3, while the proof of the exponential tightness is

contained in Step 2.

Step 1: Heuristics. We assume that (〈π1, L
κ
n〉, 〈π2, L

κ
n〉) satisfies the LDP with rate function J∗ given in

(4.3) and derive heuristically the LDP for 1
t
(A(t), S(t)) from that. Let us first treat the CSMA protocol. Fix

a, s > 0. Using (4.13), we see (ignoring that at and st may be not integers) that, as t→∞,

P (S(t) ≈ st, A(t) ≈ at) = P
( st∑
i=1

σi ≈ t,

st∑
i=1

Ai ≈ at
)

= P
(
〈π2, L

κ
st〉 ≈

1

s
, 〈π1, L

κ
st〉 ≈

a

s

)
≈ exp

(
− stJCSMA(a/s, 1/s)

)
= exp

(
− tICSMA(a, s)

)
.

(4.14)
This finishes the heuristics for the CSMA case.

In the ALOHA case, let S̃(t) be number of potentially successful messages that arrive by time t, i.e., those
that pick a free channel at arrival. Since every time that a new arriving message picks a busy channel, the
old one that is already in this channel also gets lost, the number of successfully delivered messages by time
t is obtained by subtracting the number of new arriving messages taking a busy channel, from the number
of potentially successful messages. The former is equal to Ai − 1 in each interval (T̃i, T̃i+1]. Considering
S̃(t) potentially successful messages and therefore S̃(t) intervals, it means that we have

S(t) = S̃(t)−
S̃(t)∑
i=1

(Ai− 1) = S̃(t)−
(
− S̃(t) +

S̃(t)∑
i=1

Ai

)
= 2S̃(t)−

S̃(t)∑
i=1

Ai ≈ 2S̃(t)−A(t). (4.15)
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Furthermore,
∑S̃(t)

i=1 σi ≈ t, as we have already seen in the case of CSMA. Now, let s, a > 0, the we have,
as t→∞,

P(S(t) = st, A(t) = at) ≈ P
(
S̃(t) ≈ 1

2
(a+ s)t, A(t) = at

)
= P

( 1
2

(s+a)t∑
i=1

σi ≈ t,

1
2

(s+a)t∑
i=1

Ai ≈ at
)

≈ P
(〈
π2, L

κ
1
2

(s+a)t

〉
=

2

s+ a
,
〈
π1, L

κ
1
2

(s+a)t

〉
=

2a

s+ a

)
≈ exp

(
− ta+ s

2
JALOHA( 2a

a+s
, 2
a+s

)
)

= exp
(
− tIALOHA(a, s)

)
,

which finishes the heuristics.

Step 2: Exponential rates for quadrants. As we mentioned, one-sided inequalities for S(t) and A(t)

are relatively easily to handle. We demonstrate this by showing, as a first step, the exponential tightness of
(1
t
(A(t), S(t)))t>0. Indeed, for any K > 0,

P
(

1
t
(A(t), S(t)) ∈

(
[0, K]2

)c) ≤ P(A(t) > tK) + P(S(t) > tK).

It is easy to see that limK→∞ lim supt→∞
1
t

logP(A(t) > tK) = −∞, observing that A(t) is Poiλt-
distributed. Now, using the LDP for (Lκn)n∈N and again using the Gärtner–Ellis theorem we can derive an
LDP upper bound for (〈π2, L

κ
n〉) as in Lemma 4.3 with rate function

J̃(y) = sup
B∈(−∞,λ)

inf
µ∈M(s)

1 (Σκ−1)

[
B(y − 〈π2, µ〉) +H(µ | µ(κ)−1 ⊗W∗)

]
.

Then, using also (4.13), we estimate

P(S(t) > tK) = P
( tK∑
i=1

σi < t
)
≤ P

(
〈π2, L

κ
tK〉 ≤ 1

K

)
≤ e−tK inf(0,1/K] J̃eo(t),

. Then, it is easy to see that K inf(0,1/K] J̃ →∞ as K →∞, hence exponential tightness follows.

We further use the simple relation between the partial sum of the σi’s and (A(t), S(t)) for proving that,
for any (a, s) ∈ (0,∞)2,

∂aI(a, s) > 0, ∂sI(a, s) > 0 =⇒ lim sup
t→∞

1

t
logP

(
1
t
(A(t), S(t)

)
∈ [a,∞)×[s,∞)

)
≤ −I∗(a, s).

(4.16)
Analogous statements for all the other sign combinations of the partial derivatives with the respective quad-
rants are also true and are proved in the same manner; we omit these proofs. Since I∗ is continuous, we
can freely replace the closed set [a,∞)× [s,∞) by (a,∞)× (s,∞).

We prove now (4.16) for the CSMA case; the other one is similar and will be omitted. Fix (a, s) such that
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∂aI(a, s) and ∂sI(a, s) are both positive. For showing (4.16), we see that (again using (4.13))

P
(

1
t
(A(t), S(t)) ∈ [a,∞)× [s,∞)

)
= P

(
S(t) ≥ st, A(t) ≥ at

)
= P

(
〈π2, L

κ
ts〉 ≤

1

s
, 〈π1, L

κ
ts〉 ≥

a

s

)
≤ exp

(
− ts inf

[
a
s
,∞)× (−∞, 1

s
]
JCSMA

)
eo(t)

= exp
(
− t inf

[a,∞)×[s,∞)
ICSMA

)
eo(t) = exp

(
− tICSMA(a, s)

)
eo(t),

where in the estimate we used the upper bound in the LDP for Lκts and afterwards that ICSMA(a, s) =

sJCSMA(a
s
, 1
s
) and then that it is continuous and assumes its infimum over [a,∞)× [s,∞) in the corner of

this quadrant. The latter comes from the convexity of ICSMA and the positivity of the two partial derivatives.

For handling the case that one of the two partial derivatives is zero, we claim that

∂aI(a, s) = 0, ∂sI(a, s) > 0 =⇒ lim sup
t→∞

1

t
logP

(
1
t
(A(t), S(t)

)
∈ [a,∞)×[s,∞)

)
≤ −I∗(a, s).

(4.17)
The proof of this is similar to the proof of (4.16), but estimates against the half plane [0,∞) × [s,∞) and
uses that the infimum of I∗ over [0,∞) × [s,∞) is attained at (a, s) by convexity of ã 7→ I∗(ã, s) and
because of ∂aI(a, s) = 0. We omit the details.

Step 3: Proof of the upper bound. We use the fact that an exponentially tight sequence (Xt)t>0 of
random variables satisfies the LDP upper bound with rate function I on a Polish space X if

lim
ε↓0

lim
t→∞

1

t
logP(Xt ∈ Bε(x)) ≤ −I(x), x ∈ X . (4.18)

The proof of this fact is an elementary exercise using standard compactness arguments; we omit the proof.

We now check (4.18). Fix x = (a, s) ∈ (0,∞)2. Let us first consider the case that ∂aI(a, s) and
∂sI(a, s) are both not equal to zero. Let us assume, for definiteness, that ∂aI(a, s) > 0 and ∂sI(a, s) > 0.
Pick an ε > 0 such that the two partial derivatives are positive insideBε(a)×Bε(s). Then we can estimate
from above, as t→∞, according to (4.16),

P
(

1
t
(A(t), S(t)) ∈ Bε(a)×Bε(s)

)
≤ P

(
1
t
(A(t), S(t)) ∈ [a−ε,∞)×[s−ε,∞)

)
≤ e−tI∗(a−ε,s−ε)eo(t).

Since I∗ is continuous, we see that (4.18) is satisfied.

It remains to handle the case where one of the two partial derivatives is equal to zero. If both are, then
(a, s) is the unique minimal point (amin, smin) of I∗, and the exponential rate is equal to zero, which is
equal to I∗(amin, smin). The remaining case that precisely one of the two partial derivatives vanishes, can
be handled either by an approximation argument (using the continuity of I∗) or by appealing to (4.17); we
omit the details. �
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