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Topology optimisation under uncertainties with neural networks
Martin Eigel Marvin Haase, Johannes Neumann

Abstract

Topology optimisation is a mathematical approach relevant to different engineering problems
where the distribution of material in a defined domain is distributed in some optimal way, subject to
a predefined cost function representing desired (e.g., mechanical) properties and constraints. The
computation of such an optimal distribution depends on the numerical solution of some physical
model (in our case linear elasticity) and robustness is achieved by introducing uncertainties into
the model data, namely the forces acting on the structure and variations of the material stiffness,
rendering the task high-dimensional and computationally expensive. To alleviate this computa-
tional burden, we develop two neural network architectures (NN) that are capable of predicting
the gradient step of the optimisation procedure. Since state-of-the-art methods use adaptive mesh
refinement, the neural networks are designed to use a sufficiently fine reference mesh such that
only one training phase of the neural network suffices. As a first architecture, a convolutional
neural network is adapted to the task. To include sequential information of the optimisation pro-
cess, a recurrent neural network is constructed as a second architecture. A common 2D bridge
benchmark is used to illustrate the performance of the proposed architectures. It is observed that
the NN prediction of the gradient step clearly outperforms the classical optimisation method, in
particular since larger iteration steps become viable.

1 Introduction

Structural topology optimisation is the (engineering oriented) process of designing a construction part
using optimisation algorithms under certain constraints. The resulting designs usually have a large in-
fluence on the subsequent production costs. The starting point of the process is a design domain that
represents the maximum space available for the optimised component to be developed. The outcome
is an information about which parts of the design space are occupied by material and which are void.
Often, the task is motivated by mechanical requirements, e.g., sufficient stiffness of the constructed
part with respect to assumed forces acting on it while certain predetermined points or surfaces should
connect to other parts. A typical physical model for this comes from linear elasticity, describing the
displacement field given material properties and forces. For the mathematical optimisation, it is re-
peatedly necessary to compute the stress distribution determined by the physical model in the design
domain (more precisely, in the parts of the domain with material). This potentially complex computa-
tional task usually relies on the finite element method (FEM), which is based on a discretisation of
the domain into elements. Most commonly, the domain is represented as mesh consisting of disjoint
simplices, i.e., triangles in 2D and tetrahedra in 3D.

Since the optimisation process easily requires several hundred evaluations of the state equation to
evolve the material distribution, it is of significant interest to develop techniques that reduce this com-
putational burden. This even becomes much more pronounced when uncertainties of the model data
should be considered in the computations. The treatment of uncertainties has been developed ex-
tensively from a theoretical and practical point of view in the last decade in the area of Uncertainty
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M. Eigel, M. Haase, J. Neumann 2

Quantification (UQ). A common way to describe uncertainties is by means of random fields, whose
(Karhunen-Loève) expansions depend on a possibly very large number of random variables. The pa-
rameter space spanned by these random variables leads to very high-dimensional state problems for
which derived optimisation problems are very difficult to solve.

This paper investigates the application of a trend in scientific computing for current topology optimisa-
tion methods, namely the use of modern machine learning techniques. More precisely, our objective
is to improve the efficiency of the structural topology optimisation problem by predicting gradient steps
based on generated training data. This efficiency gain directly transfers to our ability to compute much
more involved risk-averse stochastic topology optimisation problems with random data. In this case,
the topology is optimised with an adjusted cost functional including the CVaR (conditional value at
risk), by which unlikely events can be taken into account in contrast to just optimising with the mean
value of possible load scenarios. In addition to random loads, we also include random material prop-
erties which, e.g., can enter the model in terms of material errors or impurities. We emphasise that
risk-averse optimisation based on some risk measure is a timely topic, which plays a role in many
application areas. Despite its relevance, this type of problem has not been covered widely in the lit-
erature yet. In fact, the authors are not aware of any other machine learning assisted approach for
risk-averse topology optimisation. This might be due to the more involved mathematical framework
and the substantially higher computational complexity. To achieve performance benefits with topology
optimisation in this paper, we adapt concepts from the field of deep learning to approximate multiple
iterations of of the optimisation process and make the overall optimisation more efficient.

The goal of topology optimisation is to satisfy the technical requirements of a component (for instance
stiffness with respect to certain loading scenarios) with minimal use of material. There are different
approaches to describe the topology in a flexible way such that substantial changes are possible.
We follow our previous work in [10] and use a phase field model which describes the density of
material with a value in [0, 1]. The starting point is the definition of a physical design space available
for the component under consideration. This space is completely filled with a material in the sense of
an initial solution. Furthermore, all points at which loads act on the component, as well as the type
of the respective load, are prescribed. The optimisation aims to achieve a homogeneous, minimum
possible deformation at all optimised points of the component under the imposed (possibly continuous
and thus infinitely many) loading scenarios. Here, a minimum compliance corresponds to a maximum
stiffness. In general, even solving the underlying partial differential equation (PDE) of this problem for
deterministic coefficients of the PDE is already a complex task. Furthermore, PDE coefficients which
describe material and the loads have a strong influence on the resulting topology, i.e., even small
changes in these coefficients can lead to large differences in the resulting topology. This results in
considerable computational effort in the stochastic settings, since the solution has to be calculated
for sufficiently many data realisations to become reliable. Hence, the modelling of these stochastic
settings for example (with the most obvious approach) by a Monte Carlo (MC) simulation increases
the required iteration steps linearly in the number of simulations.

A method to numerically tackle topology optimisation uncertainty was presented in [9]. In this paper
we extend the previous work by introducing Deep Neuronal Networks (DNN) that are designed to pro-
vide a prediction of the next gradient step. Since topologies discretised with finite elements can be
represented as images, Convolutional Neural Networks (CNN) seem natural candidate architectures
for this task and there has already been some research on this approach for the deterministic setting.
An introduction is presented in [20] where the conventional topology optimisation algorithms is repli-
cated in a computationally inexpensive way. Furthermore, a CNN is used in [4] to approximate the last
iteration steps of a gradient method of a topology optimisation after a fixed number of steps to refine
a “fuzzy” solution. A CNN architecture is also used in [26] to solve a topology optimisation problem

DOI 10.20347/WIAS.PREPRINT.2982 Berlin 2022



NN topology optimisation 3

and trained with large amounts of data. The resulting NNs were able to solve problems with boundary
conditions different to their training data. In [23], the problem is stated as an image segmentation task
and an deep NN with encoder-decoder architecture is leveraged for pixel-wise labeling of the predicted
topology. Another encoding-decoding U-Net CNN architecture is presented in [24], providing up- and
down-sampling operators based on training with large datasets. In [25] a multilevel topology optimi-
sation is considered where the macroscale elastic structure is optimised subject to spatially varying
microscale metamaterials. Instead of density, the parameters of the micromaterial are optimised in the
iteration, using a single layer feedforward Gaussian basis function network as surrogate model for the
elastic response of the microscale material.

A discussion on solving PDEs with the help of Neural Networks (NN) for instance of the Poisson
equation and the steady NavierâĂŞStokes equations is provided in [7]. In a relatively new approach,
a combination of Deep Learning and conventional topology optimisation, the Solid Isotropic Material
with Penalisation (SIMP) was presented in [16], which could reduce the computational time compared
to the classical approach. The authors use a similar method as [4] except that the underlying optimi-
sation algorithm performs a mesh refinement after a fixed number of iterations. To improve this step,
separately trained NNs are applied to the respective mesh in order to approximate the last steps of the
optimisation on the corresponding mesh. The result then is projected to the next finer mesh and the
procedure is repeated a fixed number of times. A SIMP density field topology optimisation is directly
performed in [5]. The problem can be represented in terms of the NN activation function. Different
beam problems comparable to our experiments are depicted. Fully connected DNN are used in [6] to
represent implicit level set function describing the topology. For the optimisation, a system of param-
eterised ODEs is used. A two-stage NN architecture which by construction reduces the problem of
structural disconnections is developed in [3]. Deep generative models for topology optimisation prob-
lems with varying design constraints and data scenarios are explored in [17]. In [1], direct predictions
without any iteration scheme and also the nonlinear elastic setting are considered. Examples are only
shown for a coarse mesh discretisation of the design domain. In [13], an NN assisted design method
for topology optimisation is devised, which does not require any optimised data. A predictor NN pro-
vides the designs on the basis of boundary conditions and degree of filling as input data for which no
optimisation training data is required.

The main goal of this paper is to devise new NN architectures that lower the computational burden
of structural topology optimisation based on a continuous phase field description of the density in the
design domain. In particular, the approach should be able to cope with adaptive mesh refinements
during the optimisation process, which has shown to significantly improve the performance of the op-
timisation. Moreover, as a consequence of an efficient computation in a deterministic setting, a goal is
to transfer the developed techniques to the stochastic setting for the risk-averse topology optimisation
task. The general strategy is to combine conventional topology optimisation methods and NNs in or-
der to reduce the number of required iteration steps within the optimisation procedure, increasing the
overall performance.

The main achievements of this paper are two new NN architectures that are demonstrated to yield
state-of-the-art numerical results with a much lower number of iterations than with a classical op-
timisation. Moreover, in contrast to several other works that are solely founded on the image level
of topology, our architectures make use of a very versatile functional phase field description of the
material distribution, which we have not seen in the literature with NNs. This also holds true for the
stochastic risk-averse framework, which to our knowledge has not been considered with NN predic-
tions yet. Another novelty is the mixture of a fine reference mesh and adaptive iteration meshes during
optimisation.
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Inspired by the work of [26] and [16], as a first new NN architecture we develop a new CNN approach
and show that it can replicate the reference results of [9, 10]. In contrast to [16], we only have to train
one NN for the entire optimisation despite mesh refinement being carried out in the iterative procedure.
We subsequently extend this approach to the stochastic setting with risk-averse optimisation from
[9]. Based on the CNN, we further extend the optimisation with a Long Short-Term Memory (LSTM)
architecture as a second novel method. It encodes the change of the topology over several iteration
steps, thus resulting in a more accurate prediction of the next gradient step.

In the numerical experiments it can be observed that the two presented architectures perform equally
well as our reference implementation. However, fewer iteration steps are required (i.e., larger steps can
be used) since the gradient step predictions seem to be better than when computed with a classical
optimisation algorithm.

The structure of the paper is as follows. In Section 2, we introduce the underlying setting from [9,
10] and discuss the algorithms used for phase-field based topology optimisation. In this context, we
introduce the linear elasticity model and derive a state equation, the adjoint equation and a gradient
equation, whose joint solution constitutes the optimisation problem under consideration. In Section 3,
we present two different architectures of the NNs approximating multiple steps of the gradient equation.
We start with a CNN that is well suited for processing the discretised solutions of the equations from
Section 2. This is then extended to a long short-term memory NN, which is able to process a sequence
of these solutions at once and thus achieves a higher prediction quality. Since the data of the finite
element simulation does not directly match the required structure of NNs, we provide a discussion
of the data preparation for both architectures. Section 4 illustrates the practical performance of the
developed NN architectures with a standard benchmark (a 2D bridge problem). The work ends with a
summary and discussion of the results and some ideas for further research in Section 5. The appendix
provides some background on the used problem, in particular the standard benchmark problem in
Section A and the finite element discretisation in Section B. The implementation and codes for the
generation of graphics and data to reproduce this work are publicly available1.

2 Topology optimisation under uncertainties

We are concerned with the task of topology optimisation with respect to a state equation of linear
elasticity. This problem becomes more involved when stochastic data is assumed. In our case, this
concerns material properties and the forces acting on the designed structure. These translate into the
engineering world as material imperfections or fluctuations and natural forces such as wind or ocean
waves. Such random phenomena are modelled in terms of random fields that often are assumed to
be Gaussian with certain mean and covariance.

It is instructive to first present the deterministic topology optimisation task, which we discuss in the
following Section 2.1. Subsequently, in Section 2.2 we extend the model to exhibit random data, al-
lowing an extension of the cost functional to also include the fluctuations of the data in terms of a risk
measure. In our case, this is the so-called conditional value at risk (CVaR).

For the sake of a self-contained presentation, we provide all equations that lead to the actual optimisa-
tion problem, which is given in terms of a gradient that evolves a phase field. Thus, the entire problem
formulation can be understood and the required extensions to obtain the risk-averse formulation be-
come clear. However, in case that the reader is only interested in the proposed NN architectures, it

1https://github.com/MarvinHaa/DeepNNforTopoOptisation.
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might be sufficient to just gloss over the most important parts of the problem definition, for which we
provide a guideline as follows: The linear state equation in given in equation (2.1), leading to the weak
form in equation (2.2) that is used for the computation of finite element solutions. These are required in
the deterministic minimisation problem given in equation (2.4), which is solved iteratively by computing
the gradient step defined by equation (2.6). A similar problem formulation, extended by an approxima-
tion of the CVaR risk measure, can be obtained in case of the risk-averse optimisation. This is given
in equation (2.9) and can be solved iteratively with gradient steps defined by equation (2.11).

The presentation of this section is based on [9, 10] where the optimisation problem computes the
distribution of material in a given design domain described by a continuous phase field depending on
the realisation of the random parameters. The optimum of this problem maximises stiffness and at the
same time minimises the volume of the material for the given data.

2.1 Deterministic model formulation

The goal is to determine an optimal distribution of a material (with density or probability) m ∈ [0, 1] in
a compact design domain D ⊂ Rd, d ∈ N. We further assume that D satisfies sufficient regularity
assumptions such that the PDE state equation exhibits a unique solution. The desired optimality of
the task means that the resulting topology is as resilient (or stiff) as possible with respect to the
deformation caused by the expected forces acting on it, which are described by a differentiable vector
field u : D → Rd.

Definition 2.1. The distribution of a material m ∈ [0, 1] in D ⊂ Rd is represented by a phase field
ϕ : D → R with 0 ≤ ϕ(x) ≤ 1 for all x ∈ D, where ϕ(x) = 1 if there is material at position x
and ϕ(x) = 0 if there is no material at position x. At the phase transitions we allow 0 < ϕ(x) < 1 to
ensure sufficient smoothness for phase shift. We call the evaluation of ϕ topology.

Note that the actual topology is reconstructed in a post-processing step by choosing some threshold
in (0, 1) to fix the interface between material and void phase of the phase field.

Linear elasticity model The state equation corresponding to the above problem is described by the
standard linear elasticity model [22]. To define the material tensor, we first define the strain displace-
ment (or strain tensor) E : Rd → Rd×d by

E(x) :=
1

2
(∇u(x) +∇uT (x)),

which specifies the displacement of the medium in the vicinity of position x. Moreover, a so-called
blend function ω : R→ R is given by

ω(x) := max{x3, 0},

ensuring a smooth transition between the phases. According to Hooke’s law and by using the Lamé
coefficients µmat > 0 and λmat > 0, the isotopic material tensor σmat : Rd → Rd×d for the solid
phase is given by

σmat(x) := 2µmatE(x) + λmatTr(E(x))I.

This material tensor describes the acting forces between adjacent positions in the connected material,
where λmat and µmat are two material parameters characterising the strain-stress relationship. For the
void phase, to ensure solvability of the state equation in entire domain D, we define the tensor as a
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fraction of the material phases. More precisely, we set σvoid(x) := ε2σmat(x) with some small ε > 0.
Hence, the material tensor (or stress tensor) σ : R× Rd → Rd×d is given by

σ(ϕ(x), u(x)) := σmat(u(x))ω(ϕ(x)) + σvoid(u(x))ω(1− ϕ(x)).

Using the material tensor σ, a force with load g ∈ Rd (a pressure field) and the phase field ϕ, the
displacement vector field u is described by the state equation of the standard linear elasticity model
given by

−div[σ(ϕ(x), u(x))] = 0 for all x ∈ D,
u(x) = 0 for all x ∈ ΓD,

σ(ϕ(x), u(x)) = g for all x ∈ Γg, (2.1)

u(x) · n(x) = 0 for all x ∈ Γs,

σ(ϕ(x), u(x)) · n(x) = 0 for all x ∈ Γ0 = ∂D \ (ΓD ∪ Γg ∪ Γs).

This implies that on boundary subspace ΓD ⊂ D the material is fixed while on Γg ⊂ D the force
g acts on the material. On the boundary Γs ⊂ D the material is barred from movement in normal
direction n. In the following, equality usually is to be understood in a pointwise way.

State equation The weak formulation of the state equation (2.1) can be formulated as: find u ∈
H1

Γg
(D) such that ∫

D

σ(ϕ, u)E(vu) dµ =

∫
Γg

g · vu dµ ∀ vu ∈ H1
0 (D), (2.2)

where H1(D) is the usual Sobolev space and dµ the Lebesgue measure and

H1
Γg(D) := {u ∈ H1(D) | σ(ϕ, u) = g on Γg}

and
H1

0 (D) := {vu ∈ H1(D) | vu = 0 on Γ0}.

These definitions are in particular used for the finite element discretisation described in Section B.

Adjoint equation To define the optimisation problem, we introduce the Ginsburg-Landau functional
Eε : R→ R, which serves as a penalty term for undesired variations and is defined by

Eε(ϕ) =

∫
D

ε

2
|∇ϕ|2 +

1

2ε
ψ0(ϕ) dµ,

where | · | is the Euclidean norm. This ensures that the solution to the optimisation problem can be
interpreted as an actual smooth shape. The double well functional ψ0 : Rd → R with ψ0(x) =
(ϕ(x)−ϕ(x)2)2 penalises values of ϕ that differ from 0 or 1 and the leading term limits the changes
of ϕ. This results in the cost functional Jε : Rd → R to be minimised,

Jε(ϕ, u) =

∫
Γg

g · u dµ+ γEε(ϕ), γ > 0. (2.3)

The adaptivity parameter γ controls the weight of the interface penalty and hence has a direct influ-
ence on the minimum respectively the characteristics of the resulting shape of ϕ. In fact, γ is chosen
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adaptively to avoid non-physical or highly porous topologies, see [9]. Additionally, we require the vol-
ume constraint

∫
D
ϕ dµ = m|D| with m ∈ [0, 1] to limit the amount of overall material.

The (displacement) state u from equation (2.3) is obtained by solving the state equation (2.2), which
is used in the optimisation problem

minimize Jε(ϕ, u) over ϕ ∈ H1(D) (2.4)

s.t. equation (2.2) holds, 0 ≤ ϕ(x) ≤ 1 for all x ∈ D and

∫
D

ϕ(x) dµ = m|D|.

The Allen-Cahn gradient flow approach is used to determine the solution ϕ for which the adjoint
problem of equation (2.4) is used to avoid the otherwise more costly calculation. It is shown in [9] that
for Jε the corresponding adjoint problem can be formulated as: find p ∈ H1(D) such that∫

D

σ(ϕ, p))E(vp) dµ =

∫
Γg

g · vp dµ ∀ vp ∈ H1
0 (D), (2.5)

which is identical to the state equation. Hence, the respective adjoint solution p is equal to the solution
u of equation (2.2) and no additional system has to be solved.

Gradient equation With the solutions u respectively p one gradient step with adaptive step size
τ can be characterised by the unique solution (ϕ, λ) ∈ H1(D) × R such that, for all (vϕ, vλ) ∈
H1

0 (D)× R,

ε

τ

∫
D

(ϕ∗ − ϕn)vϕ dµ+ εγ

∫
D

∇ϕ∗ · ∇vϕ dµ+
γ

ε

∫
D

∂

∂ϕ
ψ0(ϕn)vϕ dµ

−
∫
D

∂

∂ϕ
σ(p, ϕn)vϕE(u) dµ+

∫
D

λvϕ dµ+

∫
D

(ϕ∗ −m)vλ dµ = 0. (2.6)

The restriction on 0 ≤ ϕ ≤ 1 for all x ∈ D is realised by ϕ(x) := min{max{0, ϕ∗(x)}, 1} in
every iteration step. For the calculation of the minimum of equation (2.4), the state equation (2.1),
the adjoint equation (2.5) and subsequently the gradient equation (2.6) are solved iteratively until ϕ
converges. We always assume that solutions u and ϕ exist, which in fact can be observed numerically.
The proposed procedure is described by Algorithm 4 where the solution of the integral equations
takes place on a discretisation of D. The algorithm solves the state, adjoint and gradient equations
in a loop until the solutions of the gradient equations only change slightly. The discretisation mesh is
subsequently refined and the iterative process is restarted on this adjusted discretisation.

2.2 Stochastic model formulation

In the stochastic setting the Lamé coefficients (determining the material properties) λmat : Ω → R+

and µmat : Ω → R+ and the load scenarios g : Ω → Rd are treated as random variables on
some probability space (Ω, P ). The randomness of the data is inherited by the solution of the state
equation as well as the adjoint equation. As a result, the gradient step can be considered as a random
distribution, see again [9, 10]. The goal is to minimise the functional for the expected value of ϕ as well
as for particularly unlikely events. For the formulation of an adequate risk-averse cost functional, we
introduce the conditional value at risk (CVaR). The CVaR, a common quantity in financial mathematics,
is defined for a random variable X by

CVaRβ[X] := E[X 1{X>VaRβ [X]}],

DOI 10.20347/WIAS.PREPRINT.2982 Berlin 2022
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with VaRβ[X] := inf{t ∈ R|P (X ≤ t) ≥ β} and 1 > β ≥ 0. It characterises the expectation of
the β-tail quantile distribution ofX , hence accounting for bad outliers that may occur with low probabil-
ity. The stochastic state equation can be formulated analogously to equation (2.5) in the deterministic
setting.

Adjoint equation For the risk-aware version of equation (2.3) with respect to the CVaR parameter
β, we define the cost Jεβ(ϕ) : Rd → R by

Jεβ(ϕ) = CVaRβ
[ ∫

Γg

g · u dµ
]

+ γEε(ϕ), γ > 0. (2.7)

In the special case β = 0, the CVaR is nothing else than the mean, i.e.,

Jε0(ϕ) = E
[ ∫

Γg

g · u dµ
]

+ γEε(ϕ).

This results in the stochastic minimisation problem analogous to equation (2.4) given by

minimise Jεβ(ϕ) over ϕ ∈ H1(D) (2.8)

s.t. equation (2.2) holds a.s., 0 ≤ ϕ(x) ≤ 1 for all x ∈ D and

∫
D

ϕ dµ = m|D|.

Following [9], the CVaR can be approximated in terms of the plus function. The solution of equa-
tion (2.8) can hence be rewritten as

min
ϕ∈H1(D)

Jεβ(ϕ) = min
ϕ∈H1(D),t≥0

(
t+

1

1− β
E
[( ∫

Γg

g · u dµ
)

+

]
+ γEε(ϕ)

)
. (2.9)

An obvious approach is to solve this optimisation problem by Monte Carlo simulations, i.e., for each
iteration step n ∈ N with evaluation of un, state equations (2.1) have to be solved for different param-
eter realisations. The associated adjoint problem to equation (2.9) reads∫

D

σ(ϕ, p)E(vp) dµ =

{
0, if

∫
Γg
gu dµ− t ≤ 0∫

Γg
(1− β)−1gu dµ, else

a.s. (2.10)

Consequently, the solution of equation (2.10) is given by

p =

{
0, if

∫
Γg
gu dµ− t ≤ 0

(1− β)−1u, else
a.s.

Gradient equation Analogous to the deterministic approach, the gradient can be defined corre-
sponding to equation (2.9) by the solution (ϕ, λ, t) ∈ H1(D)×R×R, such that for all (vϕ, vλ, vt) ∈
H1

0 (D)× R× R the following equation holds,

0 =
ε

τϕ

∫
D

(ϕ∗ − ϕn)vϕ dµ+
ε

τt

∫
D

(t− tn)vt dµ+

∫
D

λvϕ dµ+

∫
D

(ϕ∗ −m)vλ dµ

+ εγ

∫
D

∇ϕ∗ · ∇vϕ dµ+
γ

ε

∫
D

∂

∂ϕ
ψ0(ϕn)vϕ dµ−

∫
D

∂

∂ϕ
σ(p, ϕn)vϕE(u) dµ

+

{∫
D
vt dµ, if

∫
Γg
gu dµ− t ≤ 0∫

D
(1− 1

1−β )vt dµ, else
a.s. (2.11)
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The actual solution for one gradient step of the minimisation problem in equation (2.8) respectively
(2.9) follows from

ϕ ≈ 1

S

S∑
i=1

ϕ∗i , (2.12)

where S ∈ N is the number of samples of the Monte Carlo simulation. The larger β is chosen, the
larger t becomes and thus the number of evaluations of u for which

∫
Γg
gu dµ − t ≤ 0 holds true

increases. In order to ensure a valid simulation of equation (2.12),N must be chosen sufficiently large
so that an adequate number of evaluations of u in each gradient step fulfils condition

∫
Γg
gu dµ− t >

0. The described procedure is depicted in Algorithm 5 where the optimisation process is basically the
same as in Algorithm 4. The central difference is that N ∈ N realisations of the optimisation problem
have to be computed in each iteration. In practice, these are solved in parallel for N different ω ∈ Ω
and the results are then averaged. The large computational efforts caused by the slow Monte Carlo
convergence are alleviated by the neural network based machine learning approaches presented
in Section 3. In particular, gradient steps for arbitrary parameter realisations can be evaluated very
efficiently and significantly fewer iterations (i.e., optimisation iterations) are required.

3 Neural Network architectures

In modern scientific and engineering computing, machine learning techniques have become indis-
pensable in recent years. The central goal of this work is to devise neural network architectures to
facilitate an efficient computation of the risk-averse stochastic topology optimisation task. In this sec-
tion, we develop two such architectures. The first one described in Section 3.1 is based on the popular
convolutional neural networks (CNN) that have originally been designed for the treatment of image
data. In Section 3.2, a classical long short-term memory architecture (LSTM) is adapted to predict the
gradient step.

The usage of deep neural networks with topology optimisation tasks as have already been examined
in [16] and [4]. However, in contrast to other approaches, our architecture aims at a single NN that can
be trained to handle arbitrarily fine meshes in terms of what is required during the topology optimisation
process. More precisely, we want to find a NN that predicts the gradient step ϕn+k ∈ R|V (Tm)| from
equation (2.6) discretised on an arbitrarily fine mesh Tm at an arbitrary iteration step n ∈ N with given
k ∈ N, forN k : R1+d×|V (Tm)| → R|V (Tm)| such that

N k([ϕn, un+1]) = ϕn+k. (3.1)

Thus the total number of iterations required for the topology optimisation iteration should ideally be
reduced, resulting in improved practical performance. For the sake of a convenient presentation, we
consider all other coefficients of equation (2.6) as constant in the following analyses. Alternatively,
one would have to increase the complexity in the number of degrees of freedom which are the weights
describing the NN as well as the required training data. It can be assumed that with more information in
the form of coefficients provided to the NN during training the accuracy of the resulting approximation
of ϕn increases. Within the optimisation procedure, the actual calculation of the gradient step given in
equation (2.6) is done on the basis of variable coefficients (e.g τ and γ).

Since the discretisation ϕn ∈ R|V (Tm)| can be rewritten rather easily in tensor form, which represents
the input of a CNN, this is the first architecture we consider in the next section.
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3.1 Topology Convolutional Neural Networks (TCNN)

When using a visual representation of topologies as images (as they can be generated as output of a
finite element simulation), the solution of equation (2.6) can be transferred easily to the data structures
that are used in CNNs. Consequently, predicting the gradient step with a CNN can be understood as
a projection of the optimisation problem into a pixel-structured image classification problem. Here we
assume that the calculation of the learned gradient step is encoded in the weights that characterise
the NN.
In principle, the structure of a classical CNN consists of one or more convolutional layers followed by a
pooling layer. This basic processing unit can repeat itself as often as desired. If there are at least three
repetitions we speak of a deep CNN and a deep learning architecture. In the convolutional layers a
convolution matrix is applied to the input. The pooling layers are to be understood as a dimensional
reduction of their input. Although common for image classification tasks, pooling layers are not used
in the presented architecture.

3.1.1 TCNN architecture

We follow the presentation of the pytorch documentation [19]. The input of a layer of the CNN
architecture is a tensor I ∈ RS×Cin×H×W . Here, S ∈ N is the number of input samples, in our
case the evaluations of ϕ and u as presented in Section 3.1.2. It is therefore possible to calculate
the gradient step ϕn from equation (2.6) for several different loads g simultaneously. This way, Monte
Carlo estimates become very efficient. Cin ∈ N corresponds to the number of input channels and
each channel represents one dimension of an input (ϕ or u). H ∈ N and W ∈ N provide information
about the dimension of the discretisation of the space D. The output of one CNN layer is specified by
O ∈ RS×Cout×H×W . For fixed s ≤ S and i ≤ Cout ∈ N with Cout the number of output channels is
given as

Os,i(Is) = bi +

Cin∑
k=1

Wi,k ∗ Is,k. (3.2)

Here, ∗ denotes the cross-correlation operator, b ∈ RCout×H×W and Is,k with s ≤ S, k ≤ Cin is a
cutout of I . The weight tensorW ∈ RCout×Cin×HK×WK determines the dimensions of the kernel (or
convolution matrix) of the layers with HK ,WK ∈ N.

For simplicity we henceforth assume S = 1 unless otherwise specified. In particular, the entries of the
weight tensorW are parameters that are optimised during the training of the CNN. Depending on the
architecture of the CNN, an activation function σ : R→ R evaluated elementwise can additionally be
applied to equation (3.2).

Definition 3.1. Let b ∈ RCout×H×W andW ∈ RCin×Cout×HK×WK with L,H,W,HK ,WK ,
Cin, Cout ∈ N be given by one parameter vector θ ∈ Rd with

d = Cout ·H ·W + Cout · Cin ·HK ·WK .

Furthermore, let σ be a continuously differentiable activation function. We call a function

Conv( · ; θ) : RCin×H×W → RCout×H×W (3.3)

a convolution layer with activation function σ if it satisfies

Conv(I; θ)i = σ
(
bi +

Cin∑
k=1

Wi,k ∗ Ik
)

(3.4)
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with i = 1, . . . , Cout.

A sequential coupling of this layer structure provides the framework for the CNN. Specifically, for
iL = 1, . . . , CL

out ∈ N,

Conv( · ; θL−1)LiL ◦ Conv( · ; θL−1)L−1 ◦ . . . ◦ Conv(I; θ1)1 =

σL
(
bLcout

+

CL−1
out∑

kL=1

WL
cout,kL

∗ σL−1
(
bL−1
cout

+

CL−2
out∑

kL−1=1

WL−1
cout,kL−1

∗ . . .

. . . ∗ σ1
(
b1
cout

+

Cin∑
k1=1

W1
cout,k1

∗ Ik1
)
. . .
))

iL
. (3.5)

Definition 3.2 (CNN architecture). Let W1 ∈ RCin×C1
out×HK×WK , W l ∈ RCl−1

out ×Clout×HK×WK for
1 < l ≤ L and bl ∈ RClout×H×W for l ≤ L with L,H,W,HK ,WK , Cin, C

1
out, . . . , C

L
out ∈ N be given

by some parameter vector θ ∈ Rd with

d = C1
out ∗ (Cin(HK ·WK) + (H ·W ))︸ ︷︷ ︸

Dimension ofW1 and b1

+
L∑
l=2

C l
out ∗ (C l−1

out (HK ·WK) + (H ·W ))︸ ︷︷ ︸
Dimension ofWl and bl for 2≤l≤L

.

Furthermore, let σ1, . . . , σL be given continuously differentiable activation functions. We call a NN of
the form of equation (3.5) an L-layer topology convolutional neural network (TCNN) and characterise
it as the mapping

NCNN( · ; θ) : RCin×H×W → RCout×H×W .

The approximation of NCNN is hence determined by its parameter vector θ. For general CNNs, the
dimension H ×W does not have to be constant across the different layers. The same holds true for
the dimensions HK ×WK of the kernel matrices. In fact, before implementing the convolution, we
embed each channel of our input in a (H + bHK

2
c)× (W + bWK

2
c) space to preserve the dimension

in the output.

Example 3.1. The following specific TCNN has proved to be the most suitable for integration into
Algorithm 4 for the selections of hyperparameters we have investigated. The architecture is given as
a L = 6 layer TCNN with Cin = 3 input channels, C l

out = 15 for 1 < l < 5 hidden channel, C6
out = 1

output channel and kernel size HK = WK = 3 as well as trained weights described by θ ∈ R8806

which determine the mapping by

NCNN( · ; θ) : R3×201×101 → R1×201×101, (3.6)

with activation function σ6(x) := min{max{x, 0}, 1}. In contrast to many standard architectures,
only the activation function of the output layer is not the identity. We chose R3×201×101 as input space
in anticipation of the setting in Example 3.2, reflecting our mesh choice to discretise domain D =
[−1, 1] × [0, 1] with 201 × 101 nodes, which for first order finite elements then is the dimension of
the discrete functions u and ϕ.
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Figure 1: Visualisation of the TCNN from Example 3.1.

3.1.2 Data preparation

On the algorithmic level, our goal is to replace the computationally costly lines 5 and 6 of all cm ∈ N
loop iterations of Algorithm 4 with a TCNN. This is not directly possible (at least for a TCNN) since
the input space RCin×H×W of a TCNN does not match the mesh Tm on which the finite element dis-
cretisation and thus the optimisation of ϕn takes place in the current optimisation step t. It is hence
necessary to project the evaluation of ϕ onto the format of a CNN. For this we define a transformation
between R|V (Tm)|×Cin and the input tensor RH×W×Cin of NCNN. As described in Section B, we do
not assume that the mesh Tm stays fixed in the optimisation algorithm and we instead generate a
sequence of different meshes Tm by some adaptive mesh refinement, which has led to significant ef-
ficiency improvements in [10]. To get unique transformations between the discretisation finite element
space and the input space of the NN, one can interpolate the current solutions of ϕn and un+1 from
Tm onto a constant reference mesh Tconst by polynomial interpolations

p : R|V (Tm)|×Cin → RH·W×Cin ,

q : RH·W×Cout → R|V (Tm)|×Cout .

Hence, during the optimisation, the current solutions are interpolated via the operator p to the ref-
erence mesh, rendering the prediction independent from the actual adaptive mesh. After the NCNN

prediction of the gradient step on the reference mesh, it is mapped back to the actual computation
mesh via q.

Consequently, we define the reference mesh Tconst = (V (Tconst), E(Tconst)) with vertices V and edges
E as a graph such that |V (Tconst)| = H ·W . Each node vi ∈ V (Tconst) corresponds to the values of
ϕin = ϕn(vi) ∈ R and uin = un(vi) ∈ Rd, i ≤ H ·W = |V (Tconst)| at node vi. The features of the
nodes can hence be interpreted as rows of a feature matrix,

Ĩn =

 ϕ1 u1
...

...
ϕnH·W unH·W

 ∈ RH·W×Cin . (3.7)
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The structure of Tconst is illustrated in Figure 2. One can now define a transformation betweenRH·W×Cin

Figure 2: Tconst for ΦCin : R3×101·201 → R1×201×101 to transformNTCNN from Example 3.1.

and RCin×H×W by

ΦCin : RH·W×Cin → RCin×H×W , (3.8)

ΦCout : RCout×H×W → RH·W×Cout .

Hence, the approximation of the gradient step 6 of Algorithm 4 is basically a coupling of the mappings
p, Φ andNCNN , namely

R|V (Tm)|×Cin
p−→ RH·W×Cin

ΦCin−−→ RCin×H×W NCNN−−→
NCNN−−→ RCout×H×W ΦCout−−−→ RH·W×Cout

q−→ R|V (Tm)|×Cout . (3.9)

Example 3.2 (Illustrating the TCNN). The NN given by the coupling of functions in equation (3.9) with
NCNN given as in Example 3.1 can be described by

N k
CNN( · ; θ) : R|V (Tm)|×3 → R|V (Tm)|, (3.10)

with [
ϕn uxn+1 uyn+1

]
7→
[
ϕn+k

]
(3.11)

for ϕn ∈ R|V (Tm)| and un = (uxn, u
y
n), uxn, u

y
n ∈ R|V (Tm)| defined on Tm. Hence, this NN can be

applied directly to the finite element discretisations ϕn and un used in Algorithms 4 and 5.

With the TCNN from the example in equation (3.11) we have extended Algorithm 4. More precisely,
we have inserted a NN approximationN k

CNN(ϕn, un+1; θ) in each of the cm ∈ N steps, which predicts
k iteration steps by just one evaluation. For this, the sequence cm hast to be defined in advance. We
leave it to future research to adaptively control the sequence cm dynamically within the optimisation
algorithm. This extension of Algorithm 4 is described by Algorithm 1. In an analogous way, we also
extend Algorithm 5 by the TCNN given in equation (3.11). In particular, we are able to evaluate all
samples S ∈ N in parallel by adding additional sample dimensions to the input tensor of the TCNN
given in equation (3.2). This procedure is illustrated in Algorithm 2. Again, the parameter cm has to be
chosen in advanced.
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Algorithm 1: Deterministic optimisation algorithm with TCNN approximated gradient step.
Input: mesh T0, Tconst and initial values ϕ0 sequence cm ∈ N and j = 0 ∈ N

1 for m = 0, 1, . . . until converged do
2 for n = 0, 1, . . . until converged do
3 solve state equation on mesh Tm ⇒ un+1

4 if j = cm then
5 interpolate ϕn onto Tconst project un+1, ϕn to Rd+1×H×W

6 evaluateN k
CNN(ϕn, un+1; θ) like in equation (3.9)⇒ ϕn+k

7 project ϕn+k to Tconst

8 interpolate ϕn+k onto Tm
9 j = 1

10 else
11 solve adjoint equation on mesh Tm ⇒ pn+1

12 solve gradient equation on mesh Tm ⇒ ϕ∗n+1

13 project ϕ∗n+1 to [0, 1]⇒ ϕn+1

14 j = j + 1

15 end
16 end
17 adapt mesh according to Section B⇒ Tm+1

18 end

3.2 Topology long short-term memory Neural Networks (TLSTM)

One possible approach to improve the prediction of ϕn using an NN is to provide the classifier not just
one tuple (ϕn, un+1) as an input but to have it process a larger amount of information by a sequence
of these tuples of the last T ∈ N iteration steps, i.e.,(

(ϕn−T , un−T+1), (ϕn−T+1, un−T+2), . . . , (ϕn, un+1)
)
.

By this the shift of the phase field or the change of the topology ϕn over time is also transferred as
input to the NN. The sequence prediction problem considered in this case differs from the single step
time prediction in the sense that the prediction target is now a sequence that contains both spatial and
temporal information. Theoretically, this information can also be learned directly from the NN. However,
in practice it is more effective to adapt the architecture to the information we have in advance (in our
case with respect to the time dependency) to achieve better results. An NN that allows exactly this
is a recurrent Neural Networks (RNN). Unfortunately, standard RNNs often suffer from the vanishing
gradient problem [14, 15] which we try to prevent right from the start. Therefore, we build on the special
RNN concept of a Long Short-Term Memory (LSTM) in the context of our problem, which is more
robust against the vanishing gradient issue and provides promising results, especially in the analysis
of time series. For a background on time series analysis and the review of different methods, we refer
to the survey article [11]. In practice, time series are usually stored as one-dimensional sequences
in vector format. Consequently, there is no out-of-the-box LSTM layer implementation for structures
like the input tensor we require in equation (3.2). Nevertheless, we still do not want to abandon the
mechanism of convolution within the NN in order to keep the structural information of ϕ and u. A LSTM
layer with convolutional structure can be constructed by replacing the matrix vector multiplication within
a standard LSTM layer by convolutional layers. The unique selling point of an LSTM according to [15] is
its cell-gate architecture, which mitigates the vanishing gradient problem. More precisely, it consists of
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Algorithm 2: Stochastic optimisation algorithm with TCNN approximated gradient step.
Input: mesh T0, Tconst and initial values ϕ0, sequence cm ∈ N and j = 0 ∈ N

1 for m = 0, 1, . . . until converged do
2 for n = 0, 1, . . . until converged do
3 for i = 1, . . . , N do
4 sample g(ωi), λmat(ωi), µmat(ωi)
5 solve state equation on mesh Tm ⇒ un+1(ωi)
6 solve adjoint equation on mesh Tm ⇒ pn+1(ωi)
7 if j = cm then
8 interpolate ϕn(ωi) onto Tconst

9 project un+1(ωi), ϕn(ωi) to Rd+1×H×W

10 evaluateN k
CNN(ϕn(ωi), un+1(ωi); θ) like in equation (3.9)⇒ ϕn+k(ωi)

11 project ϕn+k(ωi) to Tconst

12 interpolate ϕn+k(ωi) onto Tm
13 j = 1

14 else
15 solve gradient equation on mesh Tm ⇒ ϕ∗n+1(ωi)
16 end
17 end

18 compute the mean ϕ̂n+1 = 1
N

∑N
i=1 ϕ

∗
n+1(ωi)

19 project ϕ̂n+1 to [0, 1]⇒ ϕn+1

20 adapt mesh according to Section B⇒ Tm+1

21 j = j + 1

22 end
23 adapt mesh according to Section B⇒ Tm+1

24 end

a “memory cell” ct : R4×dtin → Rdtout that serves as an accumulator of the current state t ≤ T, t ∈ N,
in the processed sequence. The information capacity of the last status ct−1 within ct is controlled by
the activation of the so-called “forget gate” ft : R3×dtin → Rdtout . The information capacity of the input
state xt ∈ Rdtin is controlled by the activation of the input gate it. Which information (or whether any
at all) gets transferred from memory cell ct to state ht : R2×dtin → Rdtout is in turn controlled by the
activation of the output gate ot. From a technical point of view, the gates can be understood as learning
forward layers.

3.3 TLSTM architecture

An ordinary LSTM layer to generate complex sequences with long-range structure as presented in [12]
corresponds to the described logic above and can be formulated numerically for a sequence of one-
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dimensional input state xt ∈ Rdtin and output vector ht ∈ Rdtout as an equation system

it(xt, ht−1, ct−1) = σ(Wxixt +Whiht−1 +Wci � ct−1 + bi),

ft(xt, ht−1, ct−1) = σ(Wxfxt +Whfht−1 +Wcf � ct−1 + bf ),

ct(ft, ct−1, it, xt, ht−1) = ft � ct−1 + it � tanh (Wxcxt +Whcht−1 + bc),

ot(xt, ht−1, ct) = σ(Wxoxt +Whoht−1 +Wco � ct + bo),

ht(ot, ct) = ot � tanh (ct),

(3.12)

where σ : R→ R with σ(x) = 1
1+ex

and tanh are evaluated element-wise. The operation� denotes

the Hadamard product and the subscripts of the weight matricesW ∈ Rdtout×dtin describe the affiliation
to the gates. For example, Wxi is the weight matrix to input xt of gate it. This illustrates how the
weights of the LSTMs are transferred to the weights of convolution LSTMs in the following.
We want to reformulate equation (3.12) by replacing all matrix-vector multiplications (i.e., the forward
layer) by a convolution layer from Definition 3.1. This is inspired by [21], which has already provided
the theoretic architecture of a convolutional LSTM layer with the approach on precipitation forecasting.
Let Conv( · ; θ) : RCin×H×W → RCout×H×W be a convolutional layer and I ∈ RT×Cin×H×W a
sequence of inputs ordered by the discrete time dimension T ∈ N. A convolutional LSTM layer to an
input sequence It≤T and H0 = 0 ∈ RCin×H×W , C0 = 0 ∈ RCin×H×W (since at t = 1 we do not
yet have any information about earlier steps in the sequence) is given by a system of equations,

ît(It,Ht−1, Ct−1) = σ
(

Conv(It; θxi) + Conv(Ht−1; θhi) +Wci � Ct−1

)
,

f̂t(It;Ht−1, Ct−1) = σ
(

Conv(It; θxf ) + Conv(Ht−1; θhf ) +Wcf � Ct−1

)
,

Ct(f̂t, Ct−1, ît, It) = f̂t � Ct−1 + ît � tanh
(

Conv(It; θxc) + Conv(Ht−1; θhc)
)
,

ôt(It,Ht−1, Ct) = σ
(

Conv(It; θxo) + Conv(Ht−1; θho) +Wco � Ct
)
,

Ht(ôt, Ct) = ôt � tanh (Ct),

(3.13)

with t ≤ T, t ∈ N and H ∈ RT×Cout×H×W the output of the convolutional LSTM layer as well as
Wci,Wcf ∈ RCin×H×W ,Wco ∈ RCout×H×W in equation (3.12). The subscripts t indicate a cutout of
the t-th element of sequence dimension T of the respective tensor.

Definition 3.3 (LSTM layer). LetL,H,W, T, Cin, Cout ∈ N as well asWci,Wcf ∈ RCin×H×W ,Wco ∈
RCout×H×W and parameter vectors, specifying the convolutional layer as in Definition 3.2 for L = 1
from equation (3.13),

θxi ∈ Rdxi , θhi ∈ Rdhi , θxc ∈ Rdxc , θhc ∈ Rdhc ,

θxf ∈ Rdxf , θhf ∈ Rdhf , θxo ∈ Rdxo , θho ∈ Rdho ,

and described by the parameter vector θ ∈ Rd, with

d = dxi + dhi + dxc + dhc + dxf + dhf + dxo + dho + 2 · Cin ·H ·W + ·Cout ·H ·W.

Furthermore, let σ : R→ R with σ(x) = 1
1+ex

and tanh evaluated element-wise. We call a function,

LSTM( · ; θ) : R3×T×Cin×H×W → R2×T×Cout×H×W ,

a LSTM layer, if it satisfies the mapping rule given by the system of equations (3.13).
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For the forecasting of our gradient sequence, we use an encoder-decoder architecture (i.e., an “au-
toencoder”) consisting of 2L, L ∈ N, LSTM layers,

LSTMl( · ; θl) : R3×T×Clin×H×W → R2×T×Clout×H×W ,

that satisfies the mapping rule given by the equation system (3.13) with 1 ≤ l ≤ 2L. The encoding
and decoding blocks of the autoencoder therefore have the same number of layers L ∈ N. The
autoencoder for an input sequence I ∈ RT×Cin×H×W can be described by the following system of
equations of the encoder block,

LSTM1(It, C1
t−1,H1

t−1; θ1) = [C1
t ,H1

t ],

LSTM2(H1
t , C2

t−1,H2
t−1; θ2) = [C2

t ,H2
t ],

...

LSTML−1(HL−2
t , CL−1

t−1 ,HL−1
t−1 ; θL−1) = [CL−1

t ,HL−1
t ],

LSTML(HL−1
t , CLt ,HL

t−1; θL) = [CLt ,HL
t ],

(3.14)

with 1 ≤ t ≤ Ten, t ∈ N. This is combined with the following decoder block by setting Õ0 = HL
Ten

andHL+1
0 = H1

Ten
, . . . ,H2L

0 = HL
Ten

and CL+1
0 = C1

Ten
, . . . , C2L

0 = CLTen
,

LSTML+1(Õt−1, CL+1
t−1 ,HL+1

t−1 ; θL+1) = [CL+1
t ,HL+1

t ],

LSTML+2(HL+1
t , CL+2

t−1 ,HL+2
t−1 ; θL+2) = [CL+2

t ,HL+2
t ],

...

LSTM2L−1(H2L−2
t , C2L−1

t−1 ,H2L−1
t−1 ; θ2L−1) = [C2L−1

t ,H2L−1
t ],

LSTM2L(H2L−1
t , C2L

t ,H2L
t−1; θ2L) = [C2L

t , Õt],

(3.15)

with 1 ≤ t ≤ Tdec, t ∈ N.

It should be mentioned that the input and output sequences do not have to be of the same length
(in fact, in general Ten 6= Tdec). Furthermore, C l−1

out = C l
in holds for individual LSTM layers 2 ≤

l ≤ 2L defined in equation (3.14) and (3.15). Especially, since the output sequence Õ is also input
of LSTML+1, it holds C2L

out = CL+1
in . In order to be able to select the dimensions of the output

tensor Õ completely independently of the hidden channels, we additionally apply a convolutional layer
Conv( · ; θfinal) : RC2L

out ×H×W → RCfinal×H×W with activation function σfinal : R → R to concatenate
the hidden channel to an arbitrary number of output channels Cfinal ∈ N given by

Conv(Õt; θfinal) = Ot , 1 ≤ t ≤ Tdec. (3.16)

Definition 3.4 (TLSTM architecture). Let L,H,W, Ten, Tdec, Cfinal, C
1
in ∈ N as well as C l

out ∈ N, with
1 ≤ l ≤ 2L be given. Hence, the respective LSTM layers from the encoder defined in equation (3.14)
and decoder in (3.15) block as well as the output layer in equation (3.16) can be described by the
parameter vectors of the CNN and LSTM layers (see Definition 3.2 for L = 1 and Definition 3.3)
θfinal ∈ Rdf , θl ∈ Rdl with df ∈ N, dl ∈ N for 1 ≤ l ≤ 2L and an activation function σfinal : R→
R of the output layer. These parameter vectors as well as the weight tensorsW l

ci,W l
cf ∈ RCin×H×W

and W l
co ∈ RCout×H×W for l ≤ 2L can in turn be described collectively by the parameter vector

θ ∈ Rd, where

d = df +
2L∑
l=1

dl.
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We call a NN as described in equations (3.14)–(3.16) Convolutional Topology Long Short-Term Mem-
ory (TLSTM) and characterise it by

NLSTM( · ; θ) : RTen×Cin×H×W → RTdec×Cfinal×H×W .

The difference between a TLSTM and an LSTM is therefore the structure of the input tensorRTen×Cin×H×W

of a TLSTM instead of RTen×Cin×H and the internal calculation carried out with convolutional layers in-
stead of standard multiplications.

Example 3.3. For the experiments in Section 4.2, the underlying L = 4 layer TLSTM with Cin = 3
input channels, C l

out = 9, l ≤ 4 hidden channels, Cfinal = 1 output channel, kernel size of all included
convolutional layers HK = WK = 3 and sequence lengths Ten = 5, Tdec = 10 with trained weights
described by θ ∈ R509266 are given as

NLSTM · ; θ) : R5×3×201×101 → R10×1×201×101, (3.17)

with activation function σfinal(x) = min{max{x, 0}1}. The autoencoder structure for a 8 layer LSTM
described in equations (3.14), (3.15) and (3.16) for (3.17) is visualised in Figure 3.

Figure 3: Autoencoder architectureNLSTM of Example 3.3.

3.4 Data preparation

As in the case of the integration of the NCNN proposed in Section 3.1, we want to replace lines 5
and 6 in Algorithm 4 with the approximation of the NLSTM from Definition 3.4. In case of a TLSTM,
the evaluations of ϕ and u have to be transformed from the graph structure of the finite element
simulation into an appropriate tensor format. This in principle is analogous to the composition ΦCin ◦ p
in equation (3.9). The only difference is that now this is performed on a sequence of evaluations ϕmn
and umn of length Ten ∈ N. As the subscripts suggest, such a sequence does not necessarily have
to be evaluated on a fixed mesh Tm, it may extend over a sequence of meshes Tm. However, since
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we use polynomial interpolations

pT : R|V (Tm)|×Cin×T → RH·W×Cin×T ,

qT : RH·W×Cout×T → R|V (Tm)|×Cout×T

to transfer the sequence ϕn−T , . . . , ϕn and un−T+1, . . . , un+1 onto some reference mesh Tconst =
(V (Tconst), E(Tconst)).

We intend to process Ten feature matrices of the form of equation (3.7). Hence, we define transforma-
tions

ΦCin,T : RH·W×Cin×T → RT×Cin×H×W , (3.18)

ΦCout,T : RT×Cout×H×W → RH·W×Cout×T .

Thus, the approximation of a gradient step in Algorithm 4 by a TLSTM can be understood as a con-
catenation of the form

R|V (Tm)|×Cin×Ten pT−→ RH·W×Cin×Ten
ΦCin,Ten−−−−→ RT×Cin×H×W NCNN−−−→

NCNN−−−→ RT×Cout×H×W ΦCout,Tdec−−−−−→ RH·W×Cout×Tdec
qT−→ R|V (Tm)|×Cout×Tdec (3.19)

Example 3.4 (The TLSTM). The NN given by the coupling of functions from equation (3.19), where
NLSTM as given in Example 3.3, can be described by

NLSTM( · ; θ) : R|V (Tm)|×3×5 → R|V (Tm)|×10 (3.20)

and ϕn−5 uxn−5+1 uyn−5+1
...

ϕn uxn+1 uyn+1

 7→
ϕn+1

...
ϕn+10


for ϕn ∈ R|V (Tm)| and un = (uxn, u

y
n), uxn, u

y
n ∈ R|V (Tm)| defined on mesh Tm.

The TLSTM from Example 3.4 can directly be integrated into Algorithm 4 like before with Algorithm 1.
In fact, since in Algorithm 4 only the most recent gradient step is relevant, in practice we restrict the
inverse mapping on the last element of the predicted sequences to save calculation time. The only
difference is that the sequences ϕn−T , . . . , ϕn and un−T+1, . . . , un+1 have to be stored in a list. We
chose c1 = 125 and cm = 50 for all 2 ≤ m ∈ N. This procedure is described in Algorithm 3. As in
case of the TCNN, we are able to include the extra sample dimension S to approximate gradient steps
from multiple problems at ones.

4 Results

This section is devoted to numerical results of the two previously described neural network architec-
tures. The implementations were done with the open source packages PyTorch [19] for the NN part
and FEniCS [2] for the FE simulations2. We first illustrate the performance of the TCNN in Section 4.1
with a deterministic bridge example compared to a classical optimisation. The important observation is
that with the TCNN the optimisation can be carried out with far fewer optimisation steps while still lead-
ing to the reference topologies from [10]. Similar results can be observed for the risk-averse stochastic
optimisation. In Section 4.2, numerical experiments of the TLSTM architecture are presented. It turns
out that the performance is comparable to the TCNN architecture and the optimisation seems to be
more robust with respect to the data realisations.

2see introduction for the link to the code repository
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Algorithm 3: Deterministic optimisation algorithm with TLSTM approximated gradient step.

Input: mesh T0, Tconst, initial values ϕ0, sequence cm ∈ N and j = 1, T ∈ N and list L = [ϕ0]
1 for m = 0, 1, . . . until converged do
2 for n = 0, 1, . . . until converged do
3 solve state equation on mesh Tm ⇒ un+1

4 add un+1 to L
5 if j = cm then
6 interpolate ϕn−T , . . . , ϕn and un−T1, . . . , un+1 on to Tconst

7 project ϕn−T , . . . , ϕn and un−T+1, . . . , un+1 on to Tconst to RT×d+1×H×W

8 evaluateN T
LSTM(ϕn−T , . . . , ϕn, un−T+1, . . . , un+1; θ) like in equation (3.19)

⇒ ϕn . . . ϕn+T

9 project ϕn+T to Tconst

10 interpolate ϕn+T onto Tm
11 declare list and add ϕn+T ⇒ L = [ϕn+T ]
12 j = 1

13 else
14 solve adjoint equation on mesh Tm ⇒ pn+1

15 solve gradient equation on mesh Tm ⇒ ϕ∗n+1

16 project ϕ∗n+1 to [0, 1]⇒ ϕn+1

17 add ϕn+1 to L
18 j = j + 1

19 end
20 end
21 declare list L
22 j = 1
23 adapt mesh according to Section B⇒ Tm+1

24 end

4.1 TCNN examples

Before we can use the TCNN architecure for the optimisation in Algorithm 1, we have to train it on data
which describes the system response of equation (2.6). Note that it would not be useful to let theNCNN

learn the gradient steps of a fixed setting since different settings of the bridge problem from Section
A.1 should efficiently be tackled. In considering the stochastic setting of the problem as defined in
Section 2.2, the TCNN is trained to learn the gradient steps ϕ for a random g : Ω→ Rd.

4.1.1 Sampling the data

To train the architecture, appropriate training data has to be generated. In order to achieve this, we
chose the same setting for g as in Section A.2. Using the optimiser in Algorithm 4, we can generate
S ∈ N different sample paths of gradient steps ϕn(g) and solutions of the state equation un(g) by
generating S samples of g. In this procedure, we store every k ∈ N iteration step of ϕn and un in
order to approximate k gradient steps at once. More precisely, we store bNmax

k
c − 1 tuples([

ϕn uxn+1 uyn+1

]
,
[
ϕn+k

])
, (4.1)
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with 0 ≤ n ≤ Nmax − k, where Nmax ∈ N is fixed in advance, representing the maximum number
of iterations of an optimisation. For the training of the models in the following experiments, we have
chosen Nmax = 500 since the topologies have mostly converged after this number of iterations. The
overall number of S(bNmax

k
c − 1) tuples are merged into an unsorted data set DCNN.

4.1.2 TCNN predictions

The following experiment validates that the performance of Algorithm 4 can be replicated or (desirably)
improved by including a CNN as described in Algorithm 1. As a first test, we illustrate that the proposed
new architecture is actually capable of predicting the gradients of the optimisation procedure.

Figure 4 shows the evaluations of the model equation (3.10) after determining θ within the training of
the NN on the data set DCNN . Here, the prediction N k

CNN(ϕn, un+1; θ) and the actual gradient step
ϕn+k generated by Algorithm 4 are compared for different loads sampled from a truncated normally
distributed g. Since the predictions of N 5

CNN are hardly distinguishable from the reference fields, we
have also trained equation (3.10) to predict larger time steps (for 25 and 100 iteration steps at once).
However, these NNs have proved to be less reliable in practice as prediction quality decreases. An
illustrative selection of some predictions is provided in Figures 16 and 17 in Appendix C.

4.1.3 Deterministic bridge optimisation

In these experiments we compare the performance of Algorithm 1 with that of Algorithm 4 in the
setting of Section A.1. As NN in Algorithm 1 we use equation (3.10) from Example 3.2. For cm ∈ N
in Algorithm 1 we chose cm = 55 for all m ∈ N. In order to train equation (3.10), data of the form
of equation (4.1) from Section 4.1.1 is used. We expect that the best (reference) results in the setting
from experiment A.1 can be obtained, since the distribution of the training data is a truncated normal
distribution around this expected value and we thereby have an accumulation of training points around
the load g = (0,−5000)T . As a convergence criterion, we used the convergence criterion of the
mesh refinement of equation (B.1) on a maximally fine mesh with |V (Tm)| ≤ 15000. A sub-sequence
generated by Algorithm 1 is shown in Figure 18a in comparison to that of Section A.1 in Figure 18b
in Appendix C. There it can be observed that the classical and the CNN assisted optimisation results
look basically identically with the CNN converging faster.

The metrics for evaluating our algorithms have also improved through the application of the CNN as
can be observed in Figure 5. For better comparability, we ran both algorithms ten times and averaged
all metrics. To be more precise, this is only the average of the calculation time, as the remaining
metrics are deterministic and therefore always the same. It is easy to see how the metrics diverge
with the first application of the CNN at iteration step 55, especially by the computation time required
per iteration. The most significant indicator is the evaluation of Jε(ϕn) per iteration of equation (2.3)
at the top right of Figure 5. The graph for Algorithm 1 reaches a constant lower level than the one of
Algorithm 4 after about 250 iterations and thus fulfils the convergence criterion earlier. Accordingly,
the step size criterion for τn applies earlier by using the CNN, which further accelerates convergence.
An interesting insight is provided by the calculation time, which shows that the actual time required per
iteration step is more or less the same, except for the iteration steps in which equation (3.10) is applied.
This is indicated by the upward outliers in the computation time series. This additional computation
cost can be explained by the application of the mesh projection of equation (3.9), which is an aspect
that requires further improvements. Nevertheless, in total we achieve a shorter total run-time due to
the faster convergence of Algorithm 1.
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Figure 4:N 5
CNN(ϕn, un+1; θ) (top row) in comparison with ϕn+5 (bottom row).

A detailed list of the run-times and target value metrics for the functional Jε(ϕn) is provided in Table
1. The evaluation of Jε(ϕnfinal) denotes the value of the functional for the topology ϕnfinal converged
after nfinal ∈ N iteration steps. The compliance is the value that is actually minimised in terms of
the functional Jε(ϕnfinal). Algorithm 1 requires less computing time than the reference procedure after
extending it with the CNN architecture from equation (3.10).

4.1.4 Stochastic bridge optimisation

Algorithm 5 can easily be extended by the TCNN of equation (3.10) in order to improve the efficiency
for topology optimisation under uncertainties. The corresponding procedure is shown in Algorithm 2
where we chose cm = 55 for all m ∈ N. Note that the predictions of the different realisations of
ϕn(ωi), ωi ∈ Ω for i = 1, . . . , S ∈ N (where an evaluation ϕn(ωi) is to be interpreted as trans-
formation of an evaluation from g(ωi)) are actually not executed within a loop but in parallel (lines
8-12 of Algorithm 2). This is possible because NNs are generally able to process batches of data in
parallel. We have also implemented parallelisation for Algorithm 5, which is limited by the number of
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method applied load g converges after nfinal evaluation of Jε(ϕnfinal) compliance
∫

Γg
g · u(ϕ) ds

Algorithm 4 (0,−5000)T 538 1475.39 1173.22
Algorithm 1 (0,−5000)T 441 1206.49 1148.66

Table 1: Comparison of metrics between Algorithms 4 and 1.

Figure 5: Comparison of metrics between Algorithms 4 and 1.

processor cores of the actual compute cluster. We want to compare the performance of Algorithm
5 and Algorithm 2 using the same setting as in Section A.2. To ensure comparable results despite
stochastic parameters, we set the random seed to 42 before running both algorithms. The resulting
sub-sequences of ϕn are compared side by side in Figure 6. Although the topology converges after
fewer iterations with Algorithm 5, one can see that the topology resulting from Algorithm 2 has a more
stable shape since the topology does not lose material to the unnecessary extra spoke. This is con-
firmed by the metrics in Table 3 where one can see that Algorithm 2 achieved a lower compliance
after fewer iteration steps. Additionally, the optimisation of Algorithm 2 is stopped after 500 iterations
to show that it achieves a better result after less time as shown in Figure 8. A notable observation is
that the times of applying equation (3.10) in Algorithm 2 can be identified by the spikes in the compu-
tation time of the iterations. It can be seen that despite the additional time that the transformation in
equation (3.9) requires, the calculation of a stochastic gradient step using equation (3.10) is generally
faster. This is due to the dynamic parallelisation that PyTorch provides when processing batches
(in our case the approximation of multiple evaluation from ϕn(ωi) with NNs). However, the amount
of evaluations of ϕn(ωi) that Algorithm 5 can process at once is limited by the number of available
processors. Since the calculation time for the evaluation of an optimisation step ϕn+1(ωi) increases
with finer meshes, the evaluation of the approximation of all gradient steps ϕn+1(ω1), . . . , ϕn+1(ωS)
at once results in a processing time advantage for the NN. It is to be expected that this time saving
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increases with the number of examples S.

(a) Sequence ϕ1, ϕ100, ϕ200, ϕ400, ϕ517 from Algorithm 2.

(b) Sequence ϕ1, ϕ100, ϕ200, ϕ400, ϕ490 from Algorithm 5.

Figure 6: Classical risk-averse stochastic optimisation (top) andNCNN accelerated (bottom).

As mentioned at the beginning of the experiment, we expect to achieve good results close to the mean
of g = (0,−5000)T . In order to get a more general view of the quality of Algorithm 1, we have
compiled a selection of extreme cases for the distribution of g (e.g., evaluations from g that deviates
strongly from (0,−5000)T ) in Figure 7 and Table 2. The figure shows the sequence of ϕn in hundreds
of steps as well as the final distribution of material (ϕ100, ϕ200, . . . , ϕnfinal) for the specific loads g.
Table 2 indicates a noticeable saving in calculation time, but there is no guaranteed improvement in
the results. In particular, when the topology “collapses” (i.e., the NN cannot generalise to the input
data with strong deviations from the training data), the application of the CNN leads to worse results.
Nevertheless, it can be seen that the NN extension gives the algorithm a greater robustness against
porous fragments (see Figure 7b) in the optimisation of the topology and thus a higher stability against
collapsing of the topology in the optimisation can be assumed. Finally, a critical aspect to be mentioned
is the step size cm. The time at which equation (3.10) is applied and which is controlled by cm ∈ N has
a crucial impact on the viability or “compatibility” between the state of the optimisation procedure and
the CNN. In some cases, a cm that is too small or too large can lead to the collapse of the topology,
i.e., the topology deteriorates and does not recover. For the reliable use of Algorithm 1, a method for
controlling cm would have to be devised.

method applied load g converges after nfinal evaluation of Jε(ϕnfinal) compliance
∫

Γg
g · u(ϕ) ds

Algorithm 4 (0,−5000)T 538 1475.39 1173.22
Algorithm 1 (0,−5000)T 441 1206.49 1148.66

Algorithm 4 (see Fig. 7a) (2632.16,−4251.09)T 473 1487.39 1416.46
Algorithm 1 (see Fig. 7a) (2632.16,−4251.09)T 517 1475.05 1405.39

Algorithm 4 (see Fig. 7b) (−733.23,−4945.95)T 457 1115.66 1062.41
Algorithm 1 (see Fig. 7b) (−733.23,−4945.95)T 497 1049.91 1042.58

Algorithm 4 (see Fig. 7c) (−1099.92,−4877.25)T 470 1042.18 992.28
Algorithm 1 (see Fig. 7c) (−1099.92,−4877.25)T 447 1048.44 998.34

Table 2: Comparison of metrics between Algorithm 4 and 1.

4.2 TLSTM examples

As in Section 4.1.3, randomly generated training data should be used in the following experiment with
the derived LSTM transformation of equation (3.19). The data tuples consist of input and output from
NLSTM according to Example 3.4.
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(a) g = (2632.16,−4251.09)ᵀ

(b) g = (−733.23,−4945.95)ᵀ

(c) g = (−1099.92,−4877.25)ᵀ

Figure 7: Comparison of metrics between Algorithms 4 (top row) and 1 (bottom row) for different loads
g.

4.2.1 Sampling the data

Again, we assume an expected load g = (0,−5000)T and a random rotation characterised by a
truncated normal distribution with bounds [−π

2
, π

2
], standard deviation 0.3 and mean 0. Using the

optimiser in Algorithm 4, S ∈ N sample paths of gradient steps ϕ(g) and solutions of the state
equation u(g) are generated by drawing S realisations of g. In contrast to Section 4.1.1, this time we
do not only store every T ∈ N iteration step of ϕn and un but instead store all iteration steps of the
optimisation of Algorithms 4. Afterwards these are merged into disjoint subsets, each consisting of a
sequence of T iteration steps. Thus, the feature or the sequence ϕn+1, . . . , ϕn+T is the label for the
assembled sequence from ϕn−T , . . . , ϕn and un−T+1, . . . , un+1. More precisely, with

(ϕn−T uxn−T+1 uyn−T+1
...

ϕn uxn+1 uyn+1

 ,
ϕn+1

...
ϕn+T

),

for 0 ≤ n ≤ N − (T − 1), a total of S(bN
k
c − 1) tuples are stored in an unsorted dataset DLSTM.
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method converges after nfinal evaluation of Jε0(ϕnfinal) compliance E
[ ∫

Γg
g · u(ϕnfinal) ds

]
samples

Algorithm 5 490 765.85 729.20 224
Algorithm 2 517 744.11 708.61 224
Algorithm 2 500 760.26 723.24 224

Table 3: Comparison of metrics between Algorithm 5 and 2.

Figure 8: Comparison of metrics between Algorithm 5 and 2.

4.3 TLSTM predictions

After training the TLSTM from equation (3.17) with the data set DLSTM generated in Section 4.2.1, we
want to investigate its predictive ability ofN T

LSTM(ϕn) := N T
LSTM(ϕn−T , . . . , ϕn, un−T+1, . . . , un+1; θ)

compared to the real sequence (ϕn+T )n. For this purpose we have visualised both sub-sequences for
T = 10 in Figure 9 using the iteration sequence generated for a load g = (0,−5000). The distorted
topology in the first forecasts is striking, this can be attributed to the comparatively low weighting of
training data in which the distribution of the material is constant ϕn(x) = 0, 5 for all x ∈ D or
almost constant. This forces us to choose a correspondingly high cm ∈ N in Algorithm 3. Further-
more, it can be seen that especially in early phases of the partial sequence in which the change
‖ϕn − ϕn+1‖ is very high, N 10

LSTM(ϕn) provides a better forecast from an visual perspective, i.e., the
topologyN 10

LSTM(ϕn) has already converged further than the target image ϕn+10. Since the topologies
on the finer meshes no longer show any major visual changes and therefore the differences in the
predictions are no longer recognisable, we have decided not to present them at this point.
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Figure 9: Input ϕ (top row),N 10
LSTM(ϕn) (center row) in comparison with ϕn+10 (bottom row).

The architecture of the TLSTM allows the length of the input sequence as well as the output sequence
to be chosen independently of the training data. The expected consequence is a decrease in prediction
quality. Despite this, Figure 10 depicts the prediction results of equation (3.17) with unchanged input
sequence (Ten = 5) and output sequence of length 40. Since a shorter output sequence (Tdes = 10)
is used to train equation (3.17), the results of the longer output sequence indicate that NLSTM has
indeed learned to predict a gradient step for the given setting and that the training data from Section
4.2.1 describes the problem correctly.

Figure 10: Input ϕ (top row),N 20
LSTM(ϕn) (center row) in comparison with ϕn+20 (bottom row).

Analogous to Section 3.1.1, the intention behind the construction of NLSTM is to replace the gradi-
ent step in reference Algorithm 4 by Example 3.3. Algorithm 3 describes the integration of the LSTM
prediction. When evaluating N T

LSTM, only the last iteration step ϕn+T of the predicted sequence is
projected back to the current mesh Tm in order to save computational resources. We examine the
performance of Algorithm 3 in the following deterministic experiment. As for the TCNN above, the ben-
eficial performance of a single gradient prediction transfers to the stochastic setting since it consists
of a Monte Carlo estimator with N ∈ N samples in each step. It is hence not necessary to examine
this in more detail.
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4.4 Deterministic bridge optimisation

The motivation for the design of the TLSTM architecture was that the information contained in the
time series of ϕn and un could ideally lead to an improvement in the forecast capabilities of the NN.
This can be investigated as in Section 4.1.4 by calculating the optimal topology for different loading
scenarios for g by Algorithm 3. Again, all results are based on the tenfold averaged performance of
the algorithms for each load g. Figure 11 shows the results in the setting similar to Section A.1 and
compares the respective metrics. Analogous to Section 4.1.3 the sequence ϕn of the optimisation by
Algorithm 3 is also more resilient to porous fragments in the structures than the reference optimisation
procedure. In general, the pictures of ϕn hardly differ between Algorithms 1 and 3. Hence, apart from
Figure 11, no further visualisations are presented. It should also be noted that the optimisation by
Algorithm 3 is much less stable than the optimisation usingNCNN from equation (3.11). This becomes
apparent when the structure collapses which was the case in each of our test runs if cm ∈ N was
chosen too small in Algorithm 3. Furthermore, it also could be observed that the convergence criterion
of equation (B.1) was not reached after applyingNLSTM because ϕn diverged too much from the actual
minimum on Tm. In conclusion, the stability of Algorithm 3 is even more dependent on cm than it is
with Algorithm 1, which makes parameter calibration more difficult. However, the metrics in Figure 11
show that Algorithm 3 converges faster than Algorithm 4 and often achieves better results.

One conspicuous feature is the high fluctuation in the calculation time per iteration in the applications
of NLSTM( · ; θ) during the optimisation when compared to Algorithm 1. On the one hand, this is
due to the comparatively high complexity of the TLSTM. In this context high complexity means a high
dimension d ∈ N of the parameter vector θ ∈ Rd. On the other hand, the main driver of the higher
calculation time is the transformation given by equation (3.19) since on an algorithmic level the entire
input sequenceϕn, ϕn+1, ϕn+2, ϕn+3, ϕn+4 has to be stored and transformed. In general, it becomes
apparent at this point that the transformations in equations (3.9) and (3.19) are the critical aspects that
compromise the performance of Algorithms 1 and 3.

Table 4 compares the performance of the three presented algorithms. In overall terms, Algorithm 3
achieves better compliance, whereas Algorithm 1 stands out due to its shorter calculation time.

method applied load g computation time converges after nfinal evaluation of Jε(ϕnfinal) compliance
∫

Γg
g · u(ϕ) ds

Algorithm 4 (0,−5000)T 4 min 43 sec 538 1475.39 1173.22
Algorithm 1 (0,−5000)T 4 min 05 sec 441 1206.49 1148.66
Algorithm 3 (0,−5000)T 4 min 34 sec 425 1209.24 1151.27

Algorithm 4 (2632.16,−4251.09)T 4 min 31 sec 473 1487.39 1416.46
Algorithm 1 (2632.16,−4251.09)T 4 min 14 sec 517 1475.05 1405.39
Algorithm 3 (2632.16,−4251.09)T 4min 34 sec 436 1209.24 1151.27

Algorithm 4 (−733.23,−4945.95)T 4 min 50 sec 457 1115.66 1062.41
Algorithm 1 (−733.23,−4945.95)T 4 min 21 sec 497 1049.91 1042.58
Algorithm 3 (−733.23,−4945.95)T 4 min 41 sec 484 1082.62 1031.62

Algorithm 4 (−1099.92,−4877.25)T 5 min 11 sec 470 1042.18 992.28
Algorithm 1 (−1099.92,−4877.25)T 4 min 42 sec 447 1048.44 998.34
Algorithm 3 (−1099.92,−4877.25)T 4 min 43 sec 542 1041.28 992.16

Algorithm 4 (−3197.16,−3844.24)T 2 min 17 sec 365 845.93 805.94
Algorithm 1 (−3197.16,−3844.24)T 2 min 13 sec 346 852.36 811.15
Algorithm 3 (−3197.16,−3844.24)T 2 min 59 sec 366 848.52 808.40

Table 4: Comparison of metrics between Algorithm 4, 1 and 3.
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5 Discussion & Conclusions

The objective of this work is to devise neural network architectures that can be used for efficient topol-
ogy optimisation problems. These tasks are computationally involved and typically are inevitably car-
ried out with a large number of optimisation steps, each requiring (depending on the chosen method)
the solution of state and adjoint equations to determine the gradient direction. Instead of learning a
surrogate for state and adjoint equations, we present NN architectures that directly predict this gra-
dient, leading to very efficient optimisation schemes. A noteworthy aspect of our investigation is to
take into account uncertainties of the model data in a risk-averse optimisation formulation. This is
a generalisation of the notion of “loading scenarios” that are commonly used in practice for a fixed
set of parameter realisations. With our continuous presentation of uncertainties in the material and
of the load acting on the considered structure, the robustness of the computed design with respect
to these uncertainties can be controlled by the parameter of the CVaR used in the cost functional.
Since computations with uncertainties require a substantial computational effort, our central goal is to
extend the algorithms used in [9, 10] by introducing appropriate NN predictions, reducing the needed
iteration steps. In contrast to other machine learning approaches, our aim is to achieve this even for
adaptively adjusted finite element meshes since this has proven to be crucial for good performance
in previous work. For this to work, an underlying sufficiently fine reference mesh is assumed for the
training data and the prediction. Moreover, in contrast to other NN approaches for this problem, we
consider the evolution of a continuous (functional) representation of a phase field determining the
material distribution.

Ideally the NN architectures should speed up the deterministic topology optimisation problem and
consequently also the risk-averse optimisation under uncertainties. This is achieved in Section 3.1 by
embedding a CNN in the optimisation for both the deterministic and the stochastic setting.

The observed numerical results for a common 2D bridge benchmark are on par with the reference
method presented in [10]. However, the gradient step predicted by the NN architectures allows for
significantly larger iteration steps, rendering the optimisation procedure more efficient. This directly
transfers to the Monte Carlo based risk-averse optimisation under uncertainties as defined by Algo-
rithm 2 since the samples for the statistical estimation are obtained very cheaply. In addition to the
CNN, a second architecture is illustrated in terms of a LSTM. This in general leads to a better quality
of the optimisation and is motivated by the idea that a memory of previous gradients may lead to a
more accurate prediction of the next gradient step. However, it comes at the cost of longer computation
times due to the transformation between the different adapted computation meshes (see Section 4.4).
Hence, a substantial performance improvement could be achieved by reducing the complexity of the
transformations of equation (3.9) and (3.19).

There are several interesting research directions from the presented approach and observed numeri-
cal results. Regarding the chosen architectures, an interesting extension would be to consider graph
neural networks (GNN) since there, the underlying mesh structure is mapped directly to the NN. Con-
sequently, the costly transfer operators from current mesh to reference mesh of the design space
could be alleviated, removing maybe the largest computational burden of our approach. Moreover,
transformer architectures have probably superseded LSTMs and it would be worth examining this
modern architecture in the context of this work.

The loss function used in the training also leaves room for improvements. For example, instead of the
simple mean squared error used here, one could approximate the objective functional of equation (2.5)
directly in the loss function. Regarding the training process, there are modern techniques to improve
the efficiency and alleviate over-fitting such as early stopping, gradient clipping, adaptive learning rates
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and data augmentation as discussed in [18]. Moreover, transfer learning in a limited-data setting could
substantially reduce the amount of training data required.

This work mainly serves as a proof of concept for treating the considered type of optimisation problems
with modern NN architectures. An important step towards practicability is the further generalisation of
this model, e.g., to arbitrary problems (with parameterised boundary data and constraints), determined
by descriptive parameters drawn from arbitrary distributions according to the problem at hand. More-
over, the models presented here can be used as a basis for theoretical proofs (e.g., regarding the
complexity of the representation) and further systematic experiments.

A Bridge benchmark problem

A.1 Deterministic bridge optimisation

For a comparison between Algorithm 4 from [9, 10] and its extension to NNs, we make use of a bridge
benchmark problem at selected locations. The name comes from the optimal shape resembling a
bridge, which exhibits the best stiffness under the given constraints and forces acting on it. To be
specific, the parameters are given as follows: Assume design domain D = [−1, 1] × [0, 1] with
boundaries ΓD = [−1,−0.9]×{0}, Γg = [−0.02, 0.02]×{0} on which the load g = (0,−5000)T

is applied and the slip condition ΓS = [0.9, 1.0] × {0} is set. The Lamé coefficients are given by
µmat = λmat = 150. Furthermore, the volume constraint is m = 0.4 and ε = 1

16
. This is the same

setting as in the deterministic experiment in [9, 10].

The initial material distribution is given by ϕ0(x) = 0.5 ∀x ∈ D. Several iteration results of ϕn from
Algorithm 4 are depicted in Figure 12. As can be seen by the finer edges in the images, in the course
of optimising the topology (compare, e.g., ϕ200 and ϕ538), an adapted mesh is used which is refined
depending on ϕn in order resolve fine details of the topology and to save computational costs (see
Section B).

Algorithm 4 took 538 iterations to converge. Figure 13 illustrates other metrics in the optimisation. The
convergence of Jε(ϕ) is clearly visible. Through the adaptation method of the step size τn (see [9]),
it becomes increasingly larger when ϕn begins to converge towards the optimal mesh Tm. The small
spikes in all time series are due to the refinement of the mesh Tm. In the lower-right corner, it can
be seen that the calculation time increases with the fineness of the mesh Tm. The lower-left part of
Figure 13 shows γn, which stabilises the form of ϕn, but plays no further role in our investigations.

A.2 Stochastic bridge problem

This modification of the experiment described in Section A.1 introduces uncertainties in the data,
which render the problem much more involved. The LaméâĂŞcoefficients µmat = λmat are modelled
as a truncated lognormal KarhunenâĂŞLoÃĺve expansion with 10 modes, a mean value of 150 and a
covariance length of 0.1 which is scaled by a factor of 100. The load g is assumed as a vector with
mean (0,−5000) and a random rotation angle simulated through a truncated normal distribution with
bounds [−π

2
, π

2
], standard deviation 0.3 and mean 0. In each iteration we use N = 224 samples for

the evaluation of the risk functional.

Some of the resulting iterations of the optimisation process are depicted in Figure 14. By calculating
the expected value of the functional in equation (2.7) (with parameter β = 0), one can see a loss of
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symmetry in the resulting topology compared to the deterministic setting from Example 3.2 since the
load is almost always not perpendicular to the load bearing boundaries. The main difference is the
strain on the Dirichlet boundary, which is introduced by the moved left most spoke. In contrast to this,
the right-hand side closely resembles the deterministic case since the slip boundary cannot absorb
energy in the tangential direction. In this particular stochastic setting, an additional spoke is formed.

Algorithm 4: Deterministic optimisation algorithm from [9].
Input: mesh T0 and initial values ϕ0

1 for m = 0, 1, . . . until converged do
2 for n = 0, 1, . . . until converged do
3 solve state equation on mesh Tm ⇒ un+1

4 solve adjoint equation on mesh Tm ⇒ pn+1

5 solve gradient equation on mesh Tm ⇒ ϕ∗n+1

6 project ϕ∗n+1 to [0, 1]⇒ ϕn+1

7 end
8 adapt mesh according to Section B⇒ Tm+1

9 end

Algorithm 5: Stochastic optimisation algorithm from [9].
Input: mesh T0 and initial values ϕ0

1 for m = 0, 1, . . . until converged do
2 for n = 0, 1, . . . until converged do
3 for i = 1, . . . , N do
4 sample g(ωi), λmat(ωi), µmat(ωi), ωi ∈ Ω
5 solve state equation on mesh Tm ⇒ un+1(ωi)
6 solve adjoint equation on mesh Tm ⇒ pn+1(ωi)
7 solve gradient equation on mesh Tm ⇒ ϕ∗n+1(ωi)

8 end

9 compute the mean ϕ̂n+1 = 1
N

∑N
i=1 ϕ

∗
n+1(ωi)

10 project ϕ̂n+1 to [0, 1]⇒ ϕn+1

11 adapt mesh according to Section B⇒ Tm+1

12 end
13 end

B Finite element discretization

The physical spaceD ⊂ R2 is discretised with first order conforming finite elements with the FEniCS
framework [2]. The reason for the favourable performance of the optimiser from [9, 10] is the adap-
tive mesh refinement based on gradient information of the phase field. The idea is that the optimi-
sation is started on a coarse mesh and refined in the course of the optimisation depending on the
topology (more precisely on the phase transitions of ϕ). For this purpose it is assumed that the
domain D is a convex polygon and is described with first order conforming elements by the mesh
Tm = (V (Tm), E(Tm)) at iteration step m ∈ N, which also can be understood as a graph. The
mesh consists of triangles T ∈ Tm and an associated set of edges E(T ) ⊂ E(Tm) ⊂ D × D
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and vertices V (T ) ⊂ V (Tm) ⊂ D. Based on this mesh, the next mesh Tm+1 is generated with a
simple error indicator using the bulk criterion for the DÃűrfler marking [8] to determine which triangles
T should be refined. Since ϕ moves within the domain D, the mesh refinement necessarily reflects
this. So instead of just refining the previous mesh, for every refinement we start with the initial mesh
T0, interpolate the current solution and displacement onto that mesh, refine according to the associ-
ated indicators and interpolate the current solutions ϕn and un onto the finer mesh. We repeat this
process until a mesh Tm+1 is obtained that is adequately finer than Tm. This refinement takes place
whenever ϕn converges on the current mesh Tm. The refinement across an optimisation with Algo-
rithm 4 is shown in Figure 15. It can be observed that the mesh is refined along the edges of ϕ. This
dynamic characterisation (depending on ϕ and thus on the coefficients of the associated PDE) of the
domain by the mesh Tm poses a special challenge for the presented NN architectures when solving

equation (2.6) or (2.11), respectively. The relative change en :=
‖ϕn+1−ϕn‖L2(D)

‖ϕn+1‖L2(D)
in combination with

the step size τn is used as convergence criterion, i.e.,

en
τn

< ε, ε > 0. (B.1)

This means that as soon as ϕ on a mesh Tm does not change significantly in relation to the step size
τn, φn is considered converged. The refinement of the mesh is bounded by a chosen maximum of
vertices |V (Tm)| ≤ b ∈ N.

We understand ϕn ∈ R|(Tm)| and un ∈ Rd×|(Tm)| as discretisation on Tm at iteration step n ∈ N in
the sense that the value at every node vi ∈ V (Tm), i ≤ |V (Tm)| is evaluated according to

uin := un(vi) or ϕin := ϕn(vi)

in this node.
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C Additional experiments

Figures 16 and 17 illustrate numerically less robust TCNN predictions for large gradient step sizes as
mentioned in Section 4.1.2. In Figure 18, some iterations of a classical optimisation in comparison
with the CNN assisted optimisation are depicted, showing basically identical results. However, it also
can be observed that the distribution of the material converges faster when using the CNN. After 100
iterations, the first spokes for stabilising the arc can already be seen.
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Figure 11: Comparison of ϕ200, ϕ300, ϕ400, ϕnfinal between Algorithm 4 (top row) and 3 (bottom row).

Figure 12: Iterations ϕ100, ϕ200, ϕ300, ϕ538 from Algorithm 4.
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Figure 13: Metrics of the optimisation of equation (2.4) using Algorithm 4.

Figure 14: Iterations ϕ1, ϕ100, ϕ200, ϕ300, ϕ400, ϕ490 from Algorithm 5.
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Figure 15: Iteration of adaptive mesh Tm from Section A.1.

Figure 16:N 25
CNN(ϕn, un+1; θ) (top row) in comparison with ϕn+25 (bottom row).

Figure 17:N 100
CNN(ϕn, un+1; θ) (top row) in comparison with ϕn+100 (bottom row).

(a) Sequence ϕ100, ϕ200, ϕ300, ϕ400, ϕ538 from Algorithm 4

(b) Sequence ϕ100, ϕ200, ϕ300, ϕ400, ϕ441 from Algorithm 1.

Figure 18: Optimisation without and withNCNN.
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