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Tensor-train kernel learning for Gaussian processes
Max Kirstein, Martin Eigel, David Sommer

Abstract

We propose a new kernel learning approach based on efficient low-rank tensor compression for
Gaussian process (GP) regression. The central idea is to compose a low-rank function represented
in a hierarchical tensor format with a GP covariance function. Compared to similar deep neural
network architectures, this approach facilitates to learn significantly more expressive features at
lower computational costs as illustrated in the examples. Additionally, over-fitting is avoided with
this compositional model by taking advantage of its inherent regularisation properties. Estimates of
the generalisation error are compared to five baseline models on three synthetic and six real-world
data sets. The experimental results show that the incorporated tensor network enables a highly
accurate GP regression with a comparatively low number of trainable parameters. The observed
performance is clearly superior (usually by an order of magnitude in mean squared error) to all
examined standard models, in particular to deep neural networks with more than 1000 times as
many parameters.

1 Introduction

This work introduces a kernel learning approach based on tensor network models for approximating
high-dimensional functions. Specifically, we investigate the capabilities of tree tensor networks [Stouden-
mire and Schwab, 2016, Oseledets, 2011] to learn expressive features for Gaussian process (GP)
regression [Rasmussen and Williams, 2005] in order to enable uncertainty aware predictions. To achieve
this, the tensor network parameters are treated as kernel hyper-parameters, which can be optimised
through the marginal likelihood of the GP.

We also highlight tensor kernel learning as an approach for quantifying predictive uncertainty for tensor
network models. Thereby, their applicability can be extended to high stakes domains like medical appli-
cations. For these domains, integration of prior knowledge into the modelling process and interpretability
through rigorous mathematical foundations are important properties, which neural networks (arguably)
do not provide (yet) although they exhibit similar (but theoretically larger) representational power.

A first approach for using tensor networks for kernel learning was proposed in [Konstantinidis et al.,
2021]. We add to that work in two important ways: first, we make use of a different type of low rank
structure, namely Tensor-Trains (TTs) instead of the Canonical-Polyadic (CP) decomposition. Contrary
to the latter, the TT format permits an efficient pre-training procedure so that the tensor network kernel
starts with near optimal weights before end-to-end training. Moreover, the TT format allows pre-training
and gradient-based optimisation to be easily regularised w.r.t. the norm of an underlying function space.
This prevents over-fitting even in complex architectures and speeds up convergence. As a second
addition, we perform thorough experiments for all compared architectures in this work and are able
to show that our TT kernel method beats all baselines on the considered real world tasks usually by
at least one order of magnitude. These baselines include the architecture proposed in [Konstantinidis
et al., 2021] as well as a deep neural network with about a hundred times as many parameters as our
method.
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M. Kirstein, M. Eigel, D. Sommer 2

The rest of the work is structured as follows. In section 2 we briefly review the related literature. Section
3 then introduces the concept of low-rank feature extractors using TTs, which will be combined with GPs
in section 4 to define the Tensor-Train kernel learning method. In section 5 we detail the experimental
setup on several synthetic and real world data sets and report the results. Finally, section 6 provides a
summary of the work and some concluding remarks.

2 Related Work

Tensor network models for supervised learning have become increasingly popular in the machine
learning community for the last five years. Some notable contributions are [Stoudenmire and Schwab,
2016, Novikov et al., 2017, Efthymiou et al., 2019, Cohen and Shashua, 2016, Glasser et al., 2020,
Blagoveschensky and Phan, 2020, Grelier et al., 2019, Ali and Nouy, 2020a,b, 2021]. It should be
noted that the physics and numerical mathematics communities have driven research in this direction
for a much longer time, resulting, e.g. in standard textbooks like [Hackbusch, 2012], a range of training
methods [Holtz et al., 2011, White, 1992, Grasedyck and Krämer, 2019] or application of tensor
networks to (uncertainty quantification of) partial differential equations [Bachmayr et al., 2016, Eigel
et al., 2019, Dolgov et al., 2015, Eigel et al., 2017, 2018], optimal transport [Eigel et al., 2020] and
control [Oster et al., 2020].

Uncertainty quantification for tensor networks and tensor regression can e.g. be found in [Kirstein et al.,
2020, Hu et al., 2020, Hawkins and Zhang, 2019]. In contrast to our work however, the authors treat
the whole model as Bayesian rather than only using a Bayesian layer at the end of a multi-layer model
architecture.

Another interesting work is [Izmailov et al., 2018], where tensor networks are used to compress a
tensor-variate mean function of a sparse Gaussian process, in order to radically increase the possible
number of inducing points.

In what follows, we treat kernel learning as the composition of standard kernels (i.e. a Matérn or
squared-exponential kernel) with functions from a different model class (i.e. neural or tensor networks).
This approach is mainly developed in [Fu Jie Huang and LeCun, 2006, Salakhutdinov and Hinton, 2007]
and further extended, e.g. in [Wilson et al., 2016a,b, Damianou and Lawrence, 2013, Zhuang et al.,
2011]. The authors compose different kernel functions or use deep neural networks in conjunction with
kernels to learn rich high level features, which improve performance compared to classical support
vector machines and Gaussian processes.

In [Ober et al., 2021] the question of over-fitting in kernel learning with deep neural networks is posed.
The authors show empirically that an optimisation of the marginal likelihood does not provide enough
regularisation for highly complex models with lots of parameters like deep neural networks. This is
in contrast to the usual assumption that the marginal likelihood objective - as part of the Bayesian
approach - should deliver an inherent complexity penalty sufficient to prevent over-fitting. At this point we
conjecture that tensor networks are less prone to this kind of behaviour due to the inherent regularisation
properties of a low-rank structure and the introduction of prior knowledge through the choice of basis
functions for the tensor-product space.

Interestingly, [van Amersfoort et al., 2021] implicitly addresses the same problem as [Ober et al.,
2021]. As a remedy for over-fitting in their deep neural network model, the authors introduce further
regularisation, which increases smoothness of the generated function approximation. This supports our
claim that tensor networks can act as a stand-in for deep neural networks, especially when introduction
of prior information is needed, since regularisation is much more intuitive and a direct feature of the
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model.

3 Low-Rank Tensor Networks

3.1 Basis Representations in High-Dimensional Spaces

In order to construct a function approximator, we start with a set of basis functions {Pαi
: R → R}di=1,

with αi = 1, . . . , Ji and Ji ∈ N. Under the assumption of a tensor product function space, we can
represent the approximator as

fW (x) =

J1∑
α1=1

· · ·
Jd∑

αd=1

Wα1,...,αd

d∏
i=1

Pαi
(xi), (1)

for x = (x1, . . . , xd) ∈ X , where W is a coefficient tensor of order d, i.e. W ∈ RJ1×...×Jd .
While this means large expressive power, it poses a significant computational burden due to the
exponential complexity growth in the dimensionality d (“curse of dimensionality”), which we alleviate by
the introduction of a low-rank tensor format as described subsequently.

3.2 Tensor Decomposition

The exponential full tensor complexity (regarding storage and algorithms) fortunately can be reduced
significantly by exploiting an often encountered low-rank structure of fW (see, e.g. [Cichocki et al.,
2016]). For our experiments we choose the so-called Tensor-Train format [Oseledets, 2011], which
is a popular linearised case of more general tree tensor formats [Grelier et al., 2019]. Recalling
expansion (1), a low-rank TT compression of the coefficient tensor W reads

Wα1,...,αd
≈

r0∑
k0=1

. . .

rd∑
kd=1

d∏
i=1

V
(i)
ki−1,αi,ki

, (2)

with r0 = rd = 1 and components V (i) ∈ Rri−1×Ji×ri , i = 1, . . . , d. The upper summation bounds
ri, i = 1, . . . , d− 1, are called TT ranks.

The TT format exhibits a storage complexity of
O(max(J1, . . . , Jd)dmax(r1, . . . , rd−1)

2), which scales only linearly in the dimension d, hence
avoiding the curse of dimensionality.

Imposing a low-rank structure on the coefficient tensor results in an embedded manifold of functions with
low-rank tensors of rank at most r = (r1, . . . , rd−1). In practice this can be interpreted as neglecting
spurious features by controlling the rank parameters r1, . . . , rd−1 in the sense of an implicit feature
selection. Analytical bounds, which quantify this behaviour rigorously can be found in [Oseledets, 2011,
Oseledets and Tyrtyshnikov, 2010].

Utilising a TT format for the coefficient tensor W yields

fW (x) =
∑

α1,...,αd

r0∑
k0=1

. . .

rd∑
kd=1

d∏
i=1

V
(i)
ki−1,αi,ki

Pαi
(xi). (3)

Ultimately, this model allows to perform practical computations in a very high dimensional space while
staying trainable.
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4 Tensor-Train Kernel Learning

As an application and extension of tensor network regression, Gaussian processes provide an im-
mediate and principled way to equip an otherwise deterministic model with probabilistic features
(see Appendix A for a brief summary). Then again, tensor networks can also be beneficial to GP
regression. Due to the inherent regularisation by the choice of basis functions and by imposing a
low-rank structure, the problem of over-fitting as, e.g. encountered in standard deep kernel learning
can be significantly reduced. Additionally, the low-rank structure performs implicit feature selection on
the data, thus providing more expressive features for GP regression. Therefore, combining a low-rank
tensor network model and GP should improve upon regular GP regression especially in the domain
of high dimensional problems, where kernel evaluation is costly. Thus, the combination of a tensor
network compression together with a GP model provides principled and flexible modelling options.

4.1 Tensor-Train Kernel Model

The general idea of our proposed method is to first propagate data through a TT function, then
subsequently perform a GP regression on the resulting outputs (latents). Thus, the TT function serves
as a feature extractor for the GP.

Concretely, we estimate an R-valued random variable Y which depends on a d-dimensional X -valued
random vector X . Subsequently, we assume Y = Φ(X) and our goal is to approximate Φ by a GP g
with TT feature extractor using samples of the pair (X, Y ). Therefore, we start by defining an i.i.d. data
set DN := {x(n), y(n)} for n = 1, . . . , N .

To this end, let fW : X → Z denote a TT function with coefficient tensor W , mapping to the latent
space Z . This space need not be one-dimensional: multivariate latents can be achieved by adding
a latent output dimension dZ to the first component V (1) of the tensor train, transforming it to shape
r0 × J1 × r1 × dZ . Now, assume the composite kernel

k(x, x′|θ) := k̂(fW (x), fW (x′)|θ),

where k̂ : Z × Z → R is a base kernel with hyper-parameters θ, e.g. a squared-exponential or
linear kernel, and θ := {W, θ} are the joint hyper-parameters. Now, we perform regression with the
composite kernel, yielding the GP prior

g(x) ∼ GP(m(x), k(x, x′|θ)). (4)

With ki = k(x, x(i)|θ), Ki,j = k(x(i), x(j)|θ), yi = y(i) −m(x(i)) this leads to the representation

mΦ(x) = m(x) + k⊺K−1y (5)

for the posterior GP’s mean function mΦ (for more details we refer again to Appendix A).

With the described approach, we have defined a composition of a tensor network function and a GP,
where the parameters of the TT are now treated as kernel hyper-parameters. Thus, we are able to jointly
train our tensor network model and the GP using gradient-based optimisation. However, optimising the
resulting composite hyper-parameters of the kernel globally by standard gradient descent neglects the
multi-linear structure of the Tensor-Train. We thus prefer to pre-train the TT, using a regularised version
of the Alternating Linear Scheme (ALS) [Holtz et al., 2011] (see Appendix B).
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4.2 Learning Tensor-Train Kernel Models

After pre-training the TT model with ALS, we resort to stochastic variational inference (VI) for training
of a sparse GP with composite kernel k(x, x′|θ). For a thorough treatment of VI for GPs we further
suggest [Leibfried et al., 2021].

The idea is to introduce a set of inducing point locations {x1, x2, . . . , xM}, which are used as pseudo-
training data in order to ensure a sparse GP. For VI we have the following optimisation problem

max
θ,γ

N∑
n=1

Eqθ,γ log p(yn|g(xn))

−KL(qθ,γ(u)∥pθ,γ(u)),
(6)

where qθ,γ is the variational density (depended on kernel hyper-parameters θ and variational param-
eters γ) used to approximate the GP posterior with inducing variables u = g(x), i.e. a point-wise
evaluation of the GP at the inducing points. In VI related literature the stated objective is usually called
evidence lower bound, ELBO for short.

Furthermore, we need the likelihood function p(yn|g(xn)) and prior density pθ,γ(u) which corresponds
to equation 4. Due to the summation over data points, the objective is amenable to stochastic mini-
batching. In our case of regression, the expectation can be evaluated in closed-form, assuming qθ,γ is
a Gaussian. Otherwise, we rely on Monte-Carlo integration.

In our experiments, we introduce the inducing points not on the data space X , but on the (potentially
lower dimensional) latent space Z in order to reduce complexity. This leads to an overall asymptotic
cost of
O(N(max(J1, . . . , Jd)dmax(r1, . . . , rd−1)

2 +M2)) for M ≪ N operations.

5 Numerical Experiments

Tensor-Train kernel learning (TTKL) and five baselines1, namely TT and sparse GP regression, a deep
neural network (DNN), deep kernel learning (DKL) and the Canonical-Polyadic model from [Konstantini-
dis et al., 2021] (CPKL) are compared on three synthetic and six real-world data sets2. Moreover, we
execute ablation experiments for TTKL.

As methodological tool for hyper-parameter optimisation of all models, we use a random search [Bergstra
and Bengio, 2012] together with advanced early-stopping [Li et al., 2020]. Additionally, we repeat model
evaluation six times with randomly selected seeds and report the resulting mean and standard deviation.

Further information on the experiments, baselines, data sets and hyper-parameter optimisation is given
in Appendix C.

5.1 Tensor-Train Kernel Learning Set-up

The TT feature extractor uses orthonormal polynomials in a Sobolev space (H1) of order one up to a
fixed degree J as basis functions Pαi

which is also used to impose an H1-regularisation during end-to-

1All models were implemented with the PyTorch [Paszke et al., 2019] and GPyTorch [Gardner et al., 2018] frameworks.
Distributed model selection and evaluation were facilitated by means of Ray [Moritz et al., 2018] and Tune [Liaw et al., 2018].

2Available at https://drive.google.com/open?id=0BxWe_IuTnMFcYXhxdUNwRHBKTlU
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M. Kirstein, M. Eigel, D. Sommer 6

end training (see Appendix B for details). Additionally, we constrain the tensor-train rank uniformly to a
fixed value r. For pre-training, we use regularised ALS [Holtz et al., 2011], where we solve the underlying
linear systems by LU factorisation. This yields improved initial values for subsequent stochastic gradient
based optimisation of the tensor kernel model. For the base kernel k̂, we use the standard radial basis
function (RBF) kernel kRBF (see Appendix A). Subsequently, we use sparse variational inference
(VI) [Leibfried et al., 2021] with a mean-field Gaussian density. Additionally, we assign individual initial
learning rates for each TT component, the RBF kernel hyper-parameters and VI related parameters by
specifying so-called parameter groups for PyTorch’s optimiser class. As optimisation method we choose
ADAM [Kingma and Ba, 2015] with default hyper-parameters, except for the initial learning rates. In
order to adjust the TT’s latent dimension from pre-training to end-to-end training, we simply duplicate
the TT’s first component to match.

In the ablation experiments we compare the individual additions we made to the TTKL model to one
with all additions removed (Vanilla). That is, we examine the influence of pre-training (Pre-Train), H1

regularisation (H1) and TT component specific optimisation (Opt).

5.2 Results

In Table 3 we present estimates of the generalisation error of TTKL and the various baselines. Addition-
ally, we give a parameter count for each trained model on the specific data set. We also provide the
probabilistic models’ log-likelihoods in Table 1, which by including uncertainty information, constitute a
more “complete” metric. However, in our discussion, we will focus on the mean squared error, because
it is available for probabilistic and deterministic models alike. Note that the results for DKL are different
than those of [Wilson et al., 2016a], as we used a slightly different, richer architecture for the DNN (see
C.3.2) and a standard kernel (squared exponential), which we also used for all other model classes.
The change in DNN architecture is due to non-reproducible results of the original paper. For the sake of
consistency, we used sparse GP regression on all data sets, irrespective of the size.

The TTKL model outperforms all baselines in terms of mean squared error on five of the six real data
sets, on four even by an order of magnitude. On the synthetic data sets, it surpasses the GP, DNN, DKL
and CPKL models, while only TT regression achieves better results. We attribute the TT regression’s
strong performance to the structure of the synthetic data sets, which are readily approximated in a high
dimensional polynomial space [Ali and Nouy, 2021]. Moreover we can see that having a TT feature
extractor improves upon a pure GP’s generalisation error. Additionally, we argue that better performance
of TTKL compared to DKL corroborates our earlier conjecture about better regularisation properties
and therefore a reduced risk of over-fitting in TTKL. Another point we stress is the immensely reduced
number of trainable parameters of the TTKL model when compared to the neural network feature
extractor of DKL. Furthermore, especially in the high dimensional setting, the use of a TT feature
extractor for GP regression even reduces the amount of parameters when compared to ordinary sparse
GP regression. Moreover, construction of the Euclidean distance-based kernel matrix is sped-up, due to
the kernel’s evaluation on the lower dimensional latent space. Furthermore, we notice that CPKL fails in
the high dimensional tasks. We attribute this to the exploding / vanishing gradient problem when training
tensor network models purely by gradient descent. This behaviour underlines the importance of efficient
and robust training methods for tensor based models such as ALS. With regard to the log-likelihood,
TTKL outperforms the probabilistic baseline methods on all but one data set. This shows TTKL’s ability
to explain the data much better than the compared models.

In Table 2 we give results of the ablation experiments carried out on the synthetic data sets. Specifically,
we remove all extensions, i.e. pre-training, H1 regularisation and component specific optimisation, in
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order to receive a vanilla TTKL model. Subsequently, we only add one extension a time in order to
investigate its effect on TTKL’s performance. From these results we conclude that training methods
specific to the structure of low-rank functions used in pre-training provide the most benefit. Next in
line for consistently increased performance is H1 based regularisation. Component specific gradient
optimisation loses its benefit with increasing data dimension. Only on the low dimensional problem is
the vanilla model able to achieve near comparable performance to extended models. We conclude that
the interactions of extensions contribute the most to the performance of TTKL, especially in regard to
increased feature dimension.

6 Conclusion

In this work we presented a new method for GP kernel learning in the form of low-rank functions param-
eterised by decomposed weight tensors. We derived the TTKL model and gave a short introduction into
the learning method. Furthermore, we compared TTKL to five baseline models - namely TT and GP
regression, a DNN, DKL and CPKL - on three synthetic and six real-world data sets. All models were
subjected to extensive hyper-parameter optimisation and an average over six performance evaluations
on an independent test set was reported together with the respective standard deviation. TTKL showed
superior performance when compared to the other baselines on real-world data sets. Only on synthetic
data could better performance be achieved by the TT regression. Moreover, we conducted ablation
experiments. These clearly suggested that best performance of TTKL can only be achieved with the
interaction of all extensions proposed for our method.

More importantly, we gave evidence of the benefit of low-rank functions for kernel learning on regression
problems when compared to deep neural networks. Additionally, we introduced means to extend
ordinary low-rank tensor regression with uncertainty estimates for its prediction. We hence showed that
TTKL is a viable alternative to DKL and a promising research area.

DOI 10.20347/WIAS.PREPRINT.2981 Berlin 2022
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Table 1: Log-likelihood (higher is better) and one standard deviation for all probabilistic models on three
synthetic and six real-world data sets.

Data set N d
Test LL

TTKL (ours) CPKL DKL GP

HighDimSin
(Synthetic)

100 000 30
2.46 −1.94 2.43× 10−2 −3.43

± 9.51 × 10−1 ± 6.90× 10−4 ± 7.84× 10−2 ± 7.15× 10−2

Friedman
(Synthetic)

100 000 5
3.06 2.50 1.33× 10−1 1.53

± 3.05 × 10−2 ± 1.28× 10−1 ± 6.66× 10−2 ± 9.32× 10−2

Grid
(Synthetic)

65 536 2
2.54 1.88 1.34

± 8.21 × 10−2 ± 5.52× 10−1 ± 9.02× 10−2 ±

Kegg
(Real)

48 827 22
6.40 × 10−1 −1.74 3.56× 10−1 3.41× 10−1

± 5.11 × 10−1 ± 2.72× 10−5 ± 1.11× 10−1 ± 1.38× 10−2

Skillcraft
(Real)

3338 19
−1.53 −7.20× 10−1 −2.95 × 10−1 −3.05× 10−1

± 4.39× 10−1 ± 2.58× 10−1 ± 3.14 × 10−2 ± 7.30× 10−3

Elevators
(Real)

16 599 18
8.17 × 10−1 −8.04× 10−2 7.16× 10−2 7.61× 10−2

± 3.51 × 10−2 ± 8.30× 10−2 ± 1.18× 10−2 ± 1.80× 10−3

Housing
(Real)

506 13
−9.46 × 10−1 −3.98 −3.54 −5.50

± 2.78 × 10−1 ± 8.89× 10−2 ± 1.77× 10−1 ± 3.04× 10−1

Protein (Real) 45 730 9
1.11 × 10−1 −1.17 −7.49× 10−1 −1.18

± 4.17 × 10−2 ± 7.00× 10−5 ± 1.94× 10−1 ± 1.94× 10−2

Kin40K (Real) 40 000 8
2.15 3.11× 10−1 7.92× 10−1 −2.78× 10−2

± 1.34 × 10−1 ± 9.27× 10−1 ± 2.89× 10−2 ± 1.72× 10−3

Table 2: Mean squared error and one standard deviation for ablation experiments (vanilla, extended
and full TTKL model) on three synthetic data sets.

Data set N d
Test MSE

Vanilla H1 Pre-Train Opt Full

HighDimSin 100 000 30
2.84 1.62× 10−2 4.48× 10−5 2.89 2.54× 10−4

± 1.04× 10−2 ± 4.75× 10−2 ± 1.92× 10−5 ± 7.92× 10−2 ± 3.75× 10−4

Friedman 100 000 5
1.92 3.76× 10−2 1.40× 10−2 1.54× 10−2 9.00× 10−6

± 2.84 ± 8.59× 10−3 ± 1.71× 10−5 ± 1.91× 10−2 ± 9.42× 10−7

Grid 65 536 2
8.39× 10−5 4.58× 10−5 5.15× 10−6 1.15× 10−4 4.99× 10−6

± 2.77× 10−5 ± 2.91× 10−5 ± 1.60× 10−6 ± 5.26× 10−5 ± 8.29× 10−7
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Table 3: Mean squared error, one standard deviation and number of trainable parameters for all models on three synthetic and six real-world data sets.

Data set N d
Test MSE

Num Params

TTKL (ours) CPKL DKL DNN TT GP

HighDimSin
(Synthetic)

100 000 30
2.54× 10−4 2.83 2.77× 10−2 3.34× 10−2 2.69 × 10−14 2.11× 10−2

± 3.75× 10−4 ± 2.77× 10−4 ± 5.97× 10−3 ± 3.47× 10−3 ± 1.87 × 10−15 ± 2.94× 10−4

26 609 40 767 58 007 943 42 575 956 252 600 18 512

Friedman
(Synthetic)

100 000 5
9.00× 10−6 1.20× 10−4 1.14× 10−2 1.23× 10−2 2.34 × 10−16 1.73× 10−3

± 9.42× 10−7 ± 3.12× 10−5 ± 2.74× 10−3 ± 1.88× 10−3 ± 1.25 × 10−16 ± 2.85× 10−4

4308 3746 50 820 695 2 052 701 1020 2572

Grid
(Synthetic)

65 536 2
4.99× 10−6 1.12× 10−3 1.06× 10−3 1.29× 10−3 9.02 × 10−8 2.65× 10−6

± 8.29× 10−7 ± 1.48× 10−3 ± 3.36× 10−4 ± 1.97× 10−4 ± 7.66 × 10−12 ± 4.61× 10−7

2182 1394 2 695 770 2 614 358 52 1030

Kegg
(Real)

48 827 22
1.93 × 10−3 1.89 2.22× 10−2 1.76× 10−2 3.23× 10−2 2.39× 10−2

± 3.85 × 10−4 ± 2.66× 10−5 ± 1.60× 10−3 ± 8.90× 10−4 ± 2.78× 10−3 ± 2.52× 10−4

1469 25 258 2 999 434 57 336 262 19 448 17 844

Skillcraft
(Real)

3338 19
3.61 × 10−2 1.51× 10−1 8.18× 10−2 1.14× 10−1 3.18× 10−1 9.78× 10−2

± 1.21 × 10−2 ± 1.12× 10−5 ± 1.52× 10−3 ± 5.76× 10−2 ± 5.44× 10−2 ± 1.92× 10−3

14 457 18 318 9 530 027 57 292 606 12 350 6709

Elevators
(Real)

16 599 18
1.14× 10−2 6.31× 10−2 4.91× 10−2 4.86× 10−2 9.07 × 10−3 4.99× 10−2

± 1.64× 10−3 ± 2.18× 10−6 ± 3.82× 10−4 ± 3.23× 10−4 ± 1.74 × 10−4 ± 2.15× 10−4

2366 7400 12 513 644 14 920 122 52 200 7346

Housing
(Real)

506 13
1.62 × 10−1 8.17× 101 1.88× 101 2.82× 101 1.42× 101 3.83× 101

± 6.75 × 10−2 ± 4.76× 10−1 ± 1.22 ± 1.16 ± 1.54× 10−1 ± 2.62
2116 21 023 89 226 791 2 982 619 3770 1835

Protein (Real) 45 730 9
5.18 × 10−2 6.04× 10−1 4.00× 10−1 2.06× 10−1 6.70× 10−1 6.00× 10−1

± 7.96 × 10−3 ± 1.04× 10−5 ± 2.04× 10−1 ± 1.02× 10−2 ± 7.70× 10−2 ± 1.08× 10−3

4754 18 974 7 557 785 26 561 968 1170 6185

Kin40K (Real) 40 000 8
3.49 × 10−4 1.82× 10−2 9.74× 10−3 1.13× 10−2 1.96× 10−3 4.00× 10−2

± 1.84 × 10−4 ± 1.78× 10−2 ± 5.09× 10−4 ± 3.55× 10−4 ± 6.43× 10−5 ± 4.62× 10−4

9916 11 090 9 466 377 2 631 074 3600 7738
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A Gaussian Processes

We briefly recall the fundamentals of Gaussian process regression, following the notation used in the
classical reference [Rasmussen and Williams, 2005].

Starting from the same point as in subsection 3.1, we assume random variables X, Y with realisations
X = [x(1), . . . , x(N)] drawn according to ρ and y = [y(1), . . . , y(N)] with y(n) = Φ(x(n)) for all
n = 1, . . . , N . The goal now is to approximate Φ by f for which we assign a Gaussian process (GP)
prior distribution f0 to f . A GP (prior) f0 is characterised by a mean function m0 : X → R and a
symmetric positive-definite function k0 : X × X → R. Thus, we denote it by

f0(x) ∼ GP(m0(x), k0(x, x
′)).

For any finite number of inputs, the corresponding function values of the GP have a joint Gaussian
distribution

f0(X) = [f0(x
(1)), . . . , f0(x

(N))]

∼ N (m0(X), k0(X,X)),

where the mean vector m0(X) = [m0(x
(1)), . . . ,m0(x

(N))] and covariance matrix k0(X,X) =
k0(x

(i), x(j)) for all i, j = 1, . . . , N are defined by the mean function and covariance function,
respectively.

In order to predict at new points X∗ = (x
(n+1)
∗ , . . . , x

(n+m)
∗ ) we condition the GP on the data, yielding

the posterior process

f∗(x) ∼ GP(m∗(x), k∗(x, x
′)).

In this case, we obtain updated mean and covariance functions m∗, k∗ with corresponding mean vector
m∗(X∗) = m0(X∗)− k0(X∗,X)k0(X,X)−1(m0(X)− y)) and covariance matrix k∗(X∗,X∗) =
k0(X∗,X∗)− k0(X∗,X)k0(X,X)−1k0(X,X∗).

Furthermore, assuming a mean-zero prior GP we have

m∗(x) =
N∑

n=1

cnk0(x, x
(n)) ∀ x ∈ X , (7)

with c = [c1, . . . , cN ] and c = k0(X,X)−1y. This is the definition of a linear (kernel) predictor.
Therefore, the prior covariance function identifies the function space of the posterior mean as a
reproducing kernel Hilbert space, namely m∗ ∈ K := span{k0(·, x), x ∈ X}.

For our purposes it is important to note that the covariance function k0 usually depends on some set of
hyper-parameters θ, i.e.

k0(x, x
′) = k0(x, x

′|θ).
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For example, the common RBF kernel

kRBF(x, x
′) = σ2

f exp

(
− 1

2ℓ
∥x− x′∥2

)
has the prior standard deviation σf , known as the signal variance, and the lengthscale ℓ, which
determines the rate of correlation decay with increasing distance between inputs, as hyper-parameters.
Together with the noise variance, the set of hyper-parameters for this simple kernel is given by
θ = {σf , ℓ, σn}.

A GP is trained by optimising the kernel hyper-parameters. This can be done in a principled way by
maximising the marginal likelihood of the targets y conditioned on the data X and the hyper-parameters
θ w.r.t. θ:

log p(y|X,θ) ∝ −y⊺K−1
θ y − log |Kθ|.

Here, Kθ denotes the covariance matrix of the targets y given the hyper-parameters θ, i.e. Kθ =
k0(X,X). The first term gives a measure of how well the chosen kernel represents the data, while
the second term penalises complexity. Normally, this second term prevents over-fitting as the marginal
likelihood naturally favors models of intermediate complexity. However, as shown in [van Amersfoort
et al., 2021, Ober et al., 2021], when used together with deep neural networks the regularisation effect
is not strong enough.

B Risk Minimisation with the Alternating Linear Scheme

Following [Grelier et al., 2019], we can formulate the risk minimisation problem from statistical learning
as follows

min
f∈Mr

L(f) := min
f∈Mr

∫
X
ℓ(f ;x) ρ(dx), (8)

where we choose ℓ(f ;x) = (Φ(x)−f(x))2. Furthermore, as hypothesis class we assume a manifold
Mr of functions with rank-r TT coefficient which is embedded into the infinite dimensional tensor
product function space F .

Due to the intractability of the integral, we compute the empirical risk for a set of realisations (x(n), y(n) =
Φ(x(n))) for n = 1, . . . , N , i.e.

L(f) ≈ 1

N

N∑
n=1

(y(n) − f(x(n)))2. (9)

To reduce over-fitting, we introduce regularisation, meaning that we minimise

L̂(f) =
N∑

n=1

(y(n) − f(x(n)))2 + δ∥f∥2F , (10)

where δ is a hyper-parameter and the type of regularisation is dependent on the function space F .
Assuming that the data is contained in a d-dimensional cube Ω = (a, b)d, we choose F := H1

mix(Ω),
which is defined as the tensor product

⊗d
i=1H

1((a, b)). Here, H1((a, b)) denotes the Sobolev space
of square integrable functions on (a, b) whose weak derivative is again square integrable. By penalizing
large derivative values in this way, we impose smoothness on the learned function. This regularization
in mixed Soboloev Spaces for TTs has been used successfully already, e.g. in [Oster et al., 2022].
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Each function f ∈ Mr can be parametrised by a list of tensors (V (i))di=1. Furthermore, by the tensor
structure and Parseval’s identity we have ∥f(·; (V (i))i)∥2F = ∥(V (i))i∥2F , where ∥(V (i))i∥F denotes
the Frobenius-norm of the full tensor corresponding to (V i)i. Hence, we arrive at the finite dimensional
minimisation problem

min
(V (i))i

L̂((V (i))i) =

min
(V (i))i

1

N

N∑
n=1

(y(n) − f(x(n); (V (i))i))
2

+ δ∥((V (i))i∥2F ,

(11)

over all component tensors V (i). We can further exploit the multi-linear model structure by using an
alternating optimisation method. The idea is to fix all but one component tensor V (j) and sweep back
and forth over the tensor network, sequentially performing

min
V (j)

1

N

N∑
n=1

(y(n) − f(x(n); (V (i))i))
2 + δ∥V (j)∥2F , (12)

where V (i) is fixed for all i ̸= j. After the j-th component has been optimised it is orthogonalised using
a QR-decomposition where the non-orthogonal part is shifted to the next component in order to ensure
stability of the method. This procedure is known as the Alternating Linear Scheme (ALS) and was
introduced in [Holtz et al., 2011]. It is a method specific to the TT format, due to the latter’s linearised
tree structure. Hence, we have relaxed the non-convex learning problem such that only a sequence of
linear systems has to be solved. Additionally, regularisation is performed naturally by suitable choice of
orthonormal basis functions and penalisation of the Frobenius-norm.

C Specifics for Numerical Experiments

C.1 Data Sets

Three synthetic and six real-world data sets with differing feature dimensionality are used for evaluating
model performance.

For the first data set called Grid we assume X = [0, 1]2 and set the true function to Φ(x) =∑2
i=1 sin(2πixi) + ϵ with ϵ ∼ N (0, 0.1). Furthermore, we discretise the domain by an equidistant

grid with 256 vertices and evaluate Φ on this grid, resulting in 65 536 total data points.

The second data set is known as Friedman data set [Friedman, 1991]. Here, we assume X = [0, 1]5

with the data generating measure ρ =
⊗5

i=1 U(0, 1) and target function Φ(x) = 10 sin(πx1x2) +
20(x3 − 0.5)2 + 10x4 + 5x5. We draw an overall number of 100 000 data points from ρ.

The third data set represents a high dimensional sine function with a reasonable amplitude, hence the
name HighDimSine. We let X = [0, 1]30. Thus, we set ρ =

⊗30
i=1 U(0, 1) and sample 100 000 data

points. This time the target function is given by Φ(x) =
∑30

i=1 sin(πxi).

Furthermore, we test on the six data sets from the UCI Machine Learning Repository. Namely, the
Physicochemical Properties of Protein Tertiary Structure, KEGG Metabolic Relation Network (Directed),
Kin40K, SkillCraft1 Master, Elevators and Housing data set.

In order to conduct experiments, we split each data set into 70% training, 15% validation and 15% test
data, where we use the training set in conjunction with early stopping on the validation set.
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C.2 Tensor-Train Kernel Learning Hyper-parameters

The budgets for pre-training, hyper-parameter optimisation and test set evaluation are 20, 50 and 100
epochs respectively. For all instances we use early stopping on the validation set.

All hyper-parameters for Tensor-Train kernel learning and their respective search spaces are:

■ Tensor-Train ranks: r ∼ U(2, 15),

■ H1 polynomial degree: J ∼ U(2, 14),

■ ALS regularisation coefficient: δ1 = 10b, b ∼ U(log(1× 10−10), log(1× 10−1))

■ orthogonalisation of TT after pre-training with equal probability

■ latents dimensionality: L ∼ U(1, d)

■ number of inducing points: M ∼ U(10, 1000)

■ TT regularisation during end-to-end training with equal probability

■ TT regularisation coefficient during end-to-end training: δ2 = 10b, b ∼ U(log(1×10−10), log(1×
10−1))

■ initial TT learning rate: η1 = 10b, b ∼ U(log(1× 10−5), log(1× 10−1))

■ initial RBF hyper-parameters learning rate: η2 = 10b,
b ∼ U(log(1× 10−4), log(1× 10−1))

■ initial VI related hyper-parameters learning rate: η3 = 10b,
b ∼ U(log(1× 10−3), log(1× 10−1))

■ data batch size: S ∼ U(4, 1024)

C.3 Baselines

In this part, we present all baseline models together with their respective hyper-parameters and search
spaces.

C.3.1 Canonical-Polyadic Kernel Learning

In order to take the results from [Konstantinidis et al., 2021] into consideration, we implement the
Canonical-Polyadic model in PyTorch and use it as feature extractor. Similarly to the TTKL training,
we also use different learning rates for core tensors, GP kernel hyper-parameters and VI related
hyper-parameters. However, due to the structure of the Canonical-Polyadic model, pre-training with ALS
is not possible, since the orthogonalisation procedure required for ALS cannot be performed. Therefore,
we train by use of ADAM [Kingma and Ba, 2015], as suggested in [Konstantinidis et al., 2021]. The
budgets for hyper-parameters optimisation and test set evaluation are set to 50 and 1000, due to slower
convergence. Early stopping is used on the validation set.

Hyper-parameters and respective search spaces used in the random search:
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■ Canonical-Polyadic rank: r ∼ U(2, 15),

■ polynomial degree: J ∼ U(2, 20),

■ latents dimensionality: L ∼ U(1, d)

■ number of inducing points: M ∼ U(10, 1000)

■ CP regularisation during end-to-end training with equal probability

■ CP regularisation coefficient during end-to-end training: δ2 = 10b, b ∼ U(log(1×10−10), log(1×
10−1))

■ initial CP learning rate: η1 = 10b, b ∼ U(log(1× 10−5), log(1× 10−1))

■ initial RBF hyper-parameters learning rate: η2 = 10b,
b ∼ U(log(1× 10−4), log(1× 10−1))

■ initial VI related hyper-parameters learning rate: η3 = 10b,
b ∼ U(log(1× 10−3), log(1× 10−1))

■ data batch size: S ∼ U(4, 1024)

C.3.2 Deep Neural Network

To test against a deep learning model, we choose a variant of a pre-activation ResNet (including
batch normalisation layers) [He et al., 2016, He et al., 2016] with trainable residual units to account
for changes in dimensionality between layers. For all data sets, we assume 4 hidden layers to be
sufficient. Furthermore, we use the ADAM optimisation algorithm [Kingma and Ba, 2015] with default
hyper-parameters, except for the initial learning rate. The budgets for hyper-parameter optimisation and
test set evaluation are 50 and 500 epochs respectively. For all instances we use early stopping on the
validation set.

Hyper-parameters and respective search spaces used in the random search:

■ output dimension of first and second hidden layer: h1,2 ∼ U(1000, 10 000)

■ output dimension of third hidden layer: h3 ∼ U(100, 1000)

■ output dimension of fourth hidden layer: h4 ∼ U(10, 100)

■ hidden layer’s non-linearity is with equal probability either ReLU, Tanh or quadratic

■ data batch size: S ∼ U(4, 1024)

■ initial learning rate: γ = 10a, a ∼ U(log(1× 10−5), log(1× 10−1))

■ regularisation is either applied or not with equal probability

■ regularisation coefficient: δ = 10b, b ∼ U(log(1× 10−10), log(1× 10−1))
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C.3.3 Tensor Network

As a further baseline, we perform high dimensional tensor regression using the TT decomposition. The
tensorised basis consists of polynomials of degree J in the Sobolev space H1. We constrain the rank
uniformly to r and train the model by ALS using LU factorisation to solve the resulting linear systems.
Moreover, we regularise the problem by the H1 norm. The budgets for hyper-parameter optimisation
and test set evaluation are 25 and 100 epochs respectively. For all instances we use early stopping on
the validation set. Preliminary experiments have shown that stochastic training might also be possible.
The investigation of this objective is deferred to future work.

Again, hyper-parameters and their search spaces are:

■ Tensor-Train rank: r ∼ U(2, 15),

■ H1 polynomial degree: J ∼ U(2, 14),

■ regularisation coefficient: δ = 10b, b ∼ U(log(1× 10−10), log(1× 10−1)).

C.3.4 Gaussian Process

For the GP model we use the same training methods as for TTKL. The budgets for hyper-parameter
optimisation and test set evaluation are 50 and 100 epochs respectively. For all instances we use early
stopping on the validation set.

The GP hyper-parameters search spaces are:

■ Number inducing points: M ∼ U(100, 1000)

■ initial learning rate: γ = 10b, b ∼ U(log(1× 10−3), log(1× 10−1))

■ Batch size: S ∼ U(4, 1024).

C.3.5 Deep Kernel Learning

For deep kernel learning the same deep architecture (and hyper-parameters) is deployed as for the
DNN. However, we specify an additional hyper-parameter. Namely, we optimise over the DNN’s output
dimension. That is, we specify the number of features used for the subsequent GP regression. We
adjust the output dimension by simply duplicating the parameters of the last layer to fit the correct
number of outputs.

Exactly as in the TKL case, we train by sparse variational inference (VI) [Leibfried et al., 2021] in
conjunction with ADAM. Moreover, we specify separate learning rates for the DNN, RBF kernel hyper-
parameters and VI related parameters. The budgets for hyper-parameter optimisation and test set
evaluation are 50 and 500 epochs respectively. For all instances we use early stopping on the validation
set.

Hyper-parameters and search spaces for DKL are:

■ latents dimensionality: L ∼ U(1, d)

■ number of inducing points for sparse VI: M ∼ U(10, 1000)
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■ initial learning rate GP: γ1 = 10a, a ∼ U(log(1× 10−3), log(1× 10−1))

■ initial RBF hyper-parameters learning rate: γ2 = 10a,
a ∼ U(log(1× 10−4), log(1× 10−1))

■ initial DNN learning rate: γ3 = 10a, a ∼ U(log(1× 10−5), log(1× 10−1))

■ data batch size: S ∼ U(4, 1024)
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