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ON A GENERAL CONCEPT OF MULTIFRACTALITY 

ABSTRACT. We introduce the mathematical concept of multifracfality and describe 
various multifractal spectra for dynamical systems, including spectra for dimensions 
and spectra for entropies. We support the study by providing some physical mo-
tivation and describing several non-trivial examples. Among them are subshifts of 
finite type and one-dimension.al Markov maps. 

An essential part of the paper is devoted to the concept of multifractal rigidity. 
In particular, we use the multifractal spectra to obtain a "physical" classification 
of dynamical systems. For a class of .Markov maps, we show that if the multifrac-
tal spectra for dimensions of two maps coincide, then the maps are differentiably 
equivalent. 

1 

In the study of chaos one often encounters invariant sets with a very 
complicated geometry. In general, these sets are not self-similar, but can 
often be decomposed into subsets each. possessing some scaling symmetry. 
This decomposition is called a multifractal decomposition and is an essen-
tial part of the multifractal analysis of dynamical systems. The physical 
data obtained in the numerical study of dynamical systems contains "hid-
den" information about multifractal decompositions. In order to reveal 
this information in a way which is convenient for the numerical analysis 
one can use the so-called multifractal spectra. Since the available data 
comes often only through "physical" observables, it is an important and 
challenging problem to recover information from the "raw" data about the 
dynamical system. We believe that for dynamical systems of hyperbolic 
type one can use a finite number of "independent" multifractal spectra 
to fully "restore" the dynamics. In this paper, we present several results 
towards the solution of this problem. 

L INTRODUCTION 

The multifractal analysis, i.e., the analysis of invariant sets and measures with mul-
tifractal structure, has been recently developed as a powerful tool for numerical study 
of dynamical systems. Its main constituent component is dimension spectra which in-
clude Renyi spectrum for dimensions, Hentschel-Procaccia spectrum for dimensions, 
and f (a )-spectrum for (pointwise) dimensions. These spectra capture information 
about various dimensions associated with the dynamics. Among them are the well-
known Hausdorff dimension, correlation dimension, and information dimension of 
invariant measures. 

There is another dimension spectrum which is used to describe the distribution of 
Lyapunov exponents. It is called the dimension spectrum for Lyapunov exponents 
and it yields an integrated information on instability of trajectories. 

Dimension spectra are examples of more general multifractal spectra which we 
introduce in this paper. Another example of multifractal spectra is entropy spectra. 



2 LUIS BARREIRA, YAKOV PESIN, AND JORG SCHMELING 

They provide an integrated information on the distribution of topological entropy 
associated with pointwise dimensions, Lyapunov exponents, etc. 

One of the main points of the paper is to demonstrate that multifractal spectra 
can be used in a sense to "restore" the dynamics - the phenomenon that we call the 
multifractal rigidity. There are two main problems related to multifractal rigidity. 
First, given a dynamical system of hyperbolic type there exist finitely many indepen-
dent multifractal spectra which uniquely identify the main macro-characteristics of 
the system (such as its invariant measure, geometric structure of its invariant sets, 
their dimensions, etc.). These spectra can be viewed as a special type of degrees 
of freedom, called multifractal degrees of freedom, and can be effectively used in the 
numerical study of dynamieal systems. 

In particular, we demonstrate that for subshifts of finite type and some conformal 
expanding maps, the dimension spectrum alone is sufficient to determine all other 
multifractal spectra, and thus, these systems have one multifractal degree of freedom. 

Another problem is inspired by an attempt to produce a "physically meaningful" 
classification of dynamical systems which takes care of various aspects of the dynamics 
( chaoticity, instability, geometry, etc.) simultaneously. 

In the theory of dynamical systems there are various types of classifications. The 
most prominent ones seem to be topological classification (up to homeomorphisms) 
and measure-theoretic classification (up to measure preserving automorphisms). From 
a physical point of view, these classifications trace separate "independent" character-
istics of the dynamics. We suggest a new type of classification which is based upon 
multifractal spectra and combines features of each of the above classifications, in what 
we call the multifractal classification. The new classification has a strong physical 
content and identifies two systems up to a change of variables. From a mathematical 
point of view, we establish the smooth equivalence of two dynamical systems which 
are a priori only topologically equivalent and have the same multifractal degrees of 
freedom. The multifractal classification is much more rigid than the topological and 
measure-theoretic classifications. Besides the smooth equivalence of the two dynam-
ical systems, it establishes the coincidence of their dimension characteristics as well 
as the correspondence between their invariant measures. 

2. A GENERAL CONCEPT OF MULTIFRACTALITY 

We begin with the general concept of multifractal spectrum. 
Let X be a set and let g: X-+ [-oo, +oo] be a function. The level sets of g 

K; = {x EX: g(x) =a}, -oo ~a~ +oo 

are disjoint and produce a multifractal decomposition of X, that is, 

X= u K;. (1) 
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FIGURE 1. A typical multifractal decomposition for a smooth function g. 

Let now G be a set function, i.e., a real function that is defined on subsets of X. 
Assume that G(Z1) ~ G(Z2) if Z1 C Z2. We define the function :f: [-oo, +oo] -+JR 
by 

:f(a) = G(Kfx). 
We call :f the multifractal spectrum specified by the pair of functions (g, G), or the 
(g, G)-multifractal spectrum. The function :f captures an important information 
about the structure of the set X generated by the function g. 

It often happens that the function g is defined only on a subset Y c X. In this 
case the decomposition (1) should be replaced by 

X= u Kfx u (X \ Y). 

We still call this decomposition of X a multifractal decomposition. 
Given -oo ~ a~ +oo, let Va. be a probability measure on X such that va.(Kf;J = 1. 

If 

:f(a) =inf{ G(Z) : va.(Z) = 1 }, 

we call Va. a (g, G)-full measure. Constructing a one-parameter family of (g, G)-
full probability measures Va. seems the most effective way of studying multifractal 
decompositions. 

When X is a smooth compact manifold and g is a smooth function, each level set 
Kfx. is a hypersurface for all a but at most the critical values of g (see Figure 1); 
moreover, the set of numbers a for which the set K~ is non-empty is an interval. For 
smooth functions, typically, the Lebesgue measure on K~ is a full measure, and the 
spectrum :f is a delta function. 

We are mostly interested in the case where g is not even continuous, and thus, the 
sets K~ can be of a very complicated structure (see Figure 2). In this case, we are 
going to establish, in some situations, that: 

1. The set of numbers a for which the set K~ is non-empty is an interval. 
2. Given a (with non-empty K~), there is a measure Va. supported on Kfx. such that 

g(x) =a almost everywhere. 
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FIGURE 2. A typical level set K~ for a non-continuous function g. 

3. The set X \ Y is negligible (in some sense). 
4. The function S:- is analytic and strictly convex. 
Furthermore, we use families of full measures to classify multifractal decompo-

sitions and the corresponding multifractal spectra. Namely, let S:- and S:-' be two 
multifractal spectra specified by the pairs of functions (g, G) and (g', G'), respec-
tively. Assume that there exist families {Vi)(}aElR and {v~}aElR of (g, G)-full measures 
and (g', G')-full measures, respectively. We say that the spectra S:- and S:-' are equiv-
alent (with respect to the families {va}aElR and {v~}aEJR) and we write S:- ,....., S:-' if 
there exists a bijective map 7r: [-oo, +oo] -+ [-oo, +oo] such that Va = v~(a)· The 
function 1f' is called a (S:-, S:-')-parametrization. 

In t~is paper we will be interested in multifractal decompositions associated with 
dynamical systems acting on X. There may exist many such decompositions gener-. 
ated by different "naturally chosen" functions g and G (see Section 3). We believe 
that in studying dynamical systems with chaotic behavior, the equivalence class of 
every such spectrum contains crucial information about the dynamics of f on the 
invariant set X. 

3. EXAMPLES OF MULTIFRACTAL SPECTRA 

We illustrate the general concept of multifractal spectra by studying several explicit 
spectra. 

3.1. Dimension and entropy spectra. Let X be a complete separable metric 
space and let f: X -+ X be a continuous map. We begin with the choice of the set 
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function G. There are two "natural" set functions on X. The first one is generated 
by the metric structure on X. Namely, given a subset Z c X, we set 

(2) 
where dimH Z is the Hausdorff dimension of Z (see Appendix). 

The second function is generated by the dynamical system f acting on X and the 
metric on X. Namely, 

GE(Z) = h(flz), (3) 
where h(f lz) is the topological entropy of f on Z (see Appendix; notice that Z 
need not be compact nor !-invariant). We call the multifractal spectra generated 
by the function GD dimension spectra, and the multifractal spectra generated by the 
function GE entropy spectra. 

We now describe some "natural" choices for the function g. 

3.2. Multifractal spectra for pointwise dimensions. Let µ be a Borel finite 
measure on X. Consider the subset Y C X consisting of all points x E X for which 
the limit 

d ( x) = lim logµ( B ( x' r)) 
µ r-rO logr 

·exists, where B(x, r) denotes the ball of radius r centered at x. The number dµ(x) is 
called the pointwise dimension ofµ at x. Whenever x E Y we say that the pointwise 
dimension ofµ exists at the point x. We define the function gv on Y by 

gv(x) = dµ(x). 
We note that the corresponding multifractal decomposition consists of the sets 

K~D = {x: dµ(x) =a}. 

We obtain two multifractal spectra 'Dv = 'Di) and 'DE 'D~) specified by the 
pairs of functions (gv, Gv) and (gv, GE), respectively, where the set functions Gv 
and GE are given by (2) and (3). We call them multifractal spectra for {pointwise) 
dimensions. 

Let us remark that the spectrum 'DD is known in the literature as the dimension 
spectrum or fµ(a)-spectrum for dimensions. The concept of a multifractal analysis 
was suggested by a group of physicists in [7] (see [8] for more references and details). 

In [6], Eckmann and Ruelle discussed the pointwise dimension of hyperbolic mea-
sures (that is, measures with non-zero Lyapunov exponents almost everywhere), in-
variant under diffeomorphisms. They conjectured that the pointwise dimension ex-
ists almost everywhere, that is, µ(X \ Y) = 0. This claim has been known as the 
Eckmann-Ruelle conjecture and has become a celebrated problem in the dimension 
theory of dynamical systems. In [2], we establish the affirmative solution of this 
conjecture for Cl+e diffeomorphisms (an ann,ouncement appeared in [1]). 
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3.3. Multifractal spectra for local entropies. Let X be a complete separable 
metric space and let f: X -t X be a continuous map preserving a Borel probability 
measure µ. Consider a finite measurable partition e of X. For every n > 0, we write 
en= e v 1-1e v ... v 1-ne, and denote by en(x) the element of the partition en that 
contains the point x. Consider the set Y = Ye c X consisting of all points x E X for 
which the limit 

hµ(f,e,x) = lim -~logµ(en(x)) 
n-too n 

exists. We call hµ(f, e, x) the µ-local entropy of j at the point x (with respect toe). 
Clearly, Y is !-invariant and hµ(f, e, fx) = hµ(f, e, x) for every x E Y. By the 
Shannon-McMillan-Breiman theorem, µ(X \ Y) = 0. In addition, if e is a generating 
partition andµ is ergodic, then 

hµ(f) = hµ(f, e,·x) 
for µ-almost all x E. X, where hµ(f) is the measure-theoretic entropy of f (with 
respect toµ). We define the function 9E on Y by 

9E(x) = hµ(f, e, x). 

Let us stress that 9E may depend one. We note that the corresponding multifractal 
decomposition consists of the sets 

Kl//= {x: hµ(f, e, x) =a}. 

We obtain two multifractal spectra CD = c~) and CE = c~) specified by the pairs 
of functions (gE, GD) and (gE, GE), respectively, where the set functions are given 
by (2) and (3). We call them multifractal spectra for {local) entropies. In Sections 4 
and 5 below we will observe that in some situations these spectra, in fact, do not 
dependent. one for a broad class of partitions. 

We remark that in the study of the multifractal spectra for local entropies, the 
Shannon-McMillan-Breiman theorem plays the same. role as the Eckmann-Ruelle 
conjecture in the study of the multifractal spectra for pointwise dimensions. 

3.4. Multifractal spectra for Lyapunov exponents. Let X be a differentiable 
manifold and let f: X -t X be a 0 1 map. Consider the subset Y C X of all points 
x EX for which the limit 

exists. By Kingman's subadditive ergodic theorem, ifµ is an !-invariant Borel prob-
ability measure, then µ(X \ Y) = 0. We define the function 9L on Y by 

9L(x) = A(x). 
We note that the corresponding multifractal decomposition consists of the sets 

Kf/ = {x: A(x) =a}. 
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We obtain two multifractal spectra £v and £E specified, respectively, by the pairs of 
functions (gL, Gv) and (gL, GE), where the set functions Gv and GE are given by (2) 
and (3). We call them multifractal spectra for Lyapunov exponents. The spectrum £v 
was studied in [13] (see also the references in that paper). The spectrum £E was 
introduced in [5]. 

In the following sections we show how to compute the above multifractal spectra 
in some particular cases. 

4. MULTIFRACTAL SPECTRA OF GIBBS MEASURES FOR SUBSHIFTS OF FINITE 
TYPE 

Let A be a p x p matrix whose entries are either 0 or 1. The topological Markov 
chain :E1 consists of the sequences w = (i1i2 · · ·) E {1, ... , p}N such that aikik+i = 1 
for every k ~ 1. Let er( ii i2 · · · ) = ( i2i3 · · · ) be the shift map on :E1. We assume that 
A is transitive, i.e., there exists a positive integer k such that all entries of A k are 
positive (this holds if and only if erl~+ is topologically mixing). 

A 

Fix a > 1 and define a metric on :E! by 
00 

d(w, w') = L a-klik - i~I· 
k=l 

Notice that d(erw, erw') =a· d(w, w') for all w, w' E :E! with d(w, w') < a-1 . 

Given a continuous function <.p on :E!, a measure µ on :E1 is said to be a Gibbs 
measure for <.p if there exist constants 0 1 , 0 2 > 0, such that 

O < µ(Oii ... in) < C 
1 

- exp(-nP(cp) +I:~:~ cp(Jkw)) - 2 

for every w = (i1i2 · · ·) E :E! and n EN, where Oii···in is the cylinder set of length n 
containing w, and Pis the topological pressure with respect to er (see Appendix). 

Let <.p be a Holder continuous function on :E! and let µ be the corresponding 
Gibbs measure; it exists and is unique (because erl~+ is topologically mixing). It 

A 

is more convenient to work with the "normalized" function log 'l/; on :E! defined by 
log'l/; = <.p - P(cp). Note thatµ is also the Gibbs measure for log'lj;. 

For each q E IR let us consider the function 
· <.pq = -T(q) log a+ qlog'l/;, 

where the number T(q) is chosen in such a way that P(cpq) = 0. See Figure 3 below 
for a typical graph of the function T(q). Clearly, 

T(q) log a= P(qlog'l/;). (4) 
Let h be the spectral radius of A (which is also the topological entropy of er!~+). 

A 

Proposition 4.1. The function T is real analy~ic on IR, and satisfies T' ( q) ::; 0 and 
T"(q) ~ 0 for every q E IR. Moreover, T(O) = h/ log a and T(l) = 0. 
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Proof. Since qr--+ P(qlog'lj;) is analytic (see [11]), the function Tis analytic. All the 
remaining statements are consequences of well-known properties of the topological 
pressure (see, for example, [10]). If Vq is the Gibbs measure for cpq (and hence, for 
q log 'ljJ ), we obtain 

d
d P( q log 'ljJ) = { log 'ljJ dvq = { cp dvq ·- P( cp) ::; -hvq (a IE+) ::; 0. 
q }E+ }E+ A A A 

Therefore, T' ( q) ::; 0 for every q E JR. Since the topological pressure is convex, the 
function T is convex and hence T"(q) 2:'.: 0 for every q E JR. The identities in the 
proposition follow immediately from ( 4). D 

Only the four spectra 'DD, 'DE, cD, and cE make sense for subshifts of finite type. 
We prqvide a complete description of all these spectra. 

Denote by s,p- the class of finite partitions of I;1 into disjoint cylinder sets (not 
necessarily of the same length). Clearly, each e E q:3' is a generating partition. We 
use it to define the spectra for entropies cD and CE· 

The following theorem establishes the relations between the multifractal spectra 
for dimensions and entropies. 

Theorem 4.2. For every a E JR, we have 
CE( a)= CD( a) log a= '])E(a/ log a)= '])D(a/ log a) log a, (5) 

and the common value is independent of the partition e E q:3'. Moreover, the mul-
tifractal decompositions of the spectra CE, CD, ']) E, and ']) D coincide, that is, the 
families of level sets of these four spectra are equal up to the parametrizations given 
by (5). 
Proof. Notice that there exists a constant C > 0 such that diamen(x) = ca-n for 
every x E I;1 and n 2:'.: 1. If the pointwise dimension dµ ( x) or the local entropy 
hµ(f, e, x) exists for some x E I;1, then 

( ) . 1 ( ( ) ) . logµ( en ( x)) ( ) hµ J,e,x = hm --logµ en x = loga hm d' e ( ) = loga. dµ x. 
n-+oo n n-+oo iam n x (6) 

This shows that dµ(x) exists at a point x if and only if hµ(f, e, x) exists. The previous 
identity and the lemma in the Appendix immediately imply the relations (5). 

Since the spectra for dimensions ']) D and ']) E are independent of the partition e E 
q:3', each of the values in (5) are independent of e E q:3'. D 

We begin with the description of the dimension spectrum for pointwise dimen-
sions 'DD. The following theorem shows (with a minor exception) that 'DD is defined 
on an interval, is analytic, and strictly convex. It also establishes a relationship be-
tween the functions 'DD(a) and TD(q); namely, they form a Legendre pair. By virtue 
of Theorem 4.2 this also provides a description of the spectra 'DE, CD, and CE. 

Let mE be the measure of maximal entropy. The following statement is a conse-
quence of a general result proved by Pesin and Weiss in [9] (see also their paper in 
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this volume). We set a(q) = -T'(q). The range of the function a(q) is the interval 
[a1 , a 2], where a 1 =a( +oo) and a 2 = a(-oo ). 

Theorem 4.3. 
1. For µ-almost every x E ~1, the pointwise dimension ofµ at x exists and 

9D(x) = dµ(x) = --
1 

l r log1/J dµ. 
oga }y:,1 

2. The domain of the function a f--1: TI D (a) is a closed interval in [O, +oo) and 
coincides with the range of the function a(q). For every q ER, we have 

TID(a(q)) = T(q) + qa(q). 

3. Ifµ =j:. mE, then TI D and T are analytic strictly convex functions, and hence, 
(TID, T) is a Legendre pair with respect to the variables a, q {see Appendi~). 

Using Theorems 4.2 and 4.3 we describe the spectra TIE, eD, and eE. 

Theorem 4.4. 
1. There exists a set S c ~1 with µ( S) = 1 such that for every partition e E SlJ 

and every x E ~~' the local entropy ofµ at x exists, has the same value for 
every e, and 

9E(x) = hµ(f, e, x) = - . { log1/J dµ. }y:,+ 
A 

2. The domain of each of the functions a H- TIE(a), a H- eD(aloga), and a H-
eE(a log a) is the range of the function a(q). For every q ER, we have 

TIE(a(q)) = T(q) log a+ qa(q) log a, 

eD(a(q) log a)= T(q) + qa(q), 

eE(a(q) log a)= T(q) log a+ qa(q) log a. 

3. Ifµ =j:. mE, then TIE, eD, and eE are analytic strictly convex functions, and 
hence, 

(TIE I log a, T)' ( e D (. log a)' T)' ( e E(. log a) I log a, T) 

are Legendre pairs with respect to the variables a, q. 

Proof. The existence of the set S follows from the identity (6), which is valid for a 
set of full µ-measure (notice that dµ(x) does not depend on the partitions e E SlJ). 

All the remaining statements follow easily from Theorem 4.3 and (6). D 

Remarks. 
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1. Let HPµ and Rµ be respectively the Hentschel-Procaccia and Renyi spectra for 
dimensions (see [8]). In [9], Pesin and Weiss proved that for every q ER, 

. 1 """" T(q) = (1 - q)HPµ(q) = (1 - q)Rµ(q) = lim l log L__, µ(C)q, 
n-+oo n oga c 

where the sum is taken over all cylinder sets of length n. 
2. It follows from results of Schmeling (see [12]) that the level sets K~D are empty 

for every a tj. [a1, a 2], the function q f---7 a(q) is invertible, and the numbers 
1) D ( ai) and 1) D ( a 2) may not be zero. More precisely, for any numbers 71, 
T2 E [O, dims :E1) there exists a Gibbs measure corresponding to a Holder con-
tinuous function such that Tin(a1) = 71 and Tin(a2) = T2 . On the other hand, 
"generically" Tin(a1) = Tin(a2) = 0. 

Similar conclusions hold for the spectra TIE, en, and CE· 
3. One can show that the unique Gibbs measure vq corresponding to the Holder 

continuous function cpq is a (gn, Gn)-full measure for a(q). More precisely, for 
every q ER we have vq(K!(q)) = 1 and d11q(x) = T(q) + qa(q) for Vq-almost all 
x E K!fq). See Section 5 for more general results. 

5. MULTIFRACTAL SPECTRA OF GIBBS MEASURES FOR CONFORMAL 
REP ELLERS 

We consider Gibbs measures invariant under conformal expanding maps, and de-
scribe the associated multifractal spectra for dimensions, entropies, and Lyapunov 
exponents. 

5.1. Preliminaries. Let M be a smooth Riemannian manifold and let f: M ~ M 
be a C1 map. Consider a compact subset J of M. We say that f is expanding and 
J is a repeller of f if: 

1. there are constants C > 0 and (3 > 1 such that lldxfnull ~ Cf3nllull for all x E J, 
u E TxM, and n ~ 1; 

2. J = nn;:::o 1-nv for some open neighborhood v of J. 
One can easily show that f J = J. 

We recall that a finite cover { Ri, ... , Rp} of X by closed sets is called a Markov 
partition if: 

1. int Ri = Ri for each i = 1, ... , p; 
2. intRi n intRi = 0 if ii= j; 
3. each f ~ is a union of sets Ri. 

It is well known that repellers admit Markov partitions of arbitrarily small diameter. 
Markov partitions are used to build symbolic models of repellers by subshifts of finite 
type (see Section 4). · 

Let J be a repeller of an expanding map f, and let~= {Ri, ... , Rp} be a Markov 
partition of J with respect to f. We define a p x p transfer matrix A = ( aij) by 
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setting aij = 1 if Ri n 1-1 Ri =I- 0, and aii = 0 otherwise. Consider the associated 
subshift of finite type (:E1, a). For each w = ( i 1 i 2 • · ·) E :E~, we set 

x(w) = { x EX: fk-lx E Rik for every k ~ 1 }. 

The set x(w) consists of a single point in J, and we obtain the coding map x: :E!-+ 
J for the repeller. The map x is continuous, onto, and the following diagram is 
commutative: 

:E1 ~ :E! 

xl lx 
J _!_., J 

We assume that the matrix A is transitive (and thus, f is topologically mixing). 
It is clear that any Markov partition e is a generating partition. The same is true 

for any partition of J by rectangles obtained from a Markov partition (not necessarily 
all of the same level) and corresponding to disjoint cylinder sets in :E!. We denote 
the class of such partitions by ~!· It is easy to see that for every partition e E ~f, 
there is a partition 'TJ E ~ such that X'T/ = e. 

A smooth map f: M -+ M is called conformal if d~rJ is a multiple of an isometry 
at every point x E M. Well-known examples of conformal expanding maps include 
one-dimensional Markov maps (see Section 7 below), and holomorphic maps. We 
write a(x) = lld:iJll for each x EM. 

5.2. Multifractal spectra. Let J be a repeller of a conformal ci+e: expanding 
map f, for some c > 0. Let also mn be the unique Gibbs measure correspond-
ing to the function x i--+ - dimrr J '·log a( x) on J. It is known that m D is a measure 
of maximal dimension, i.e., dimrr J = dimrr mn (see [11]). We denote by mE the 
measure of maximal entropy for f: J -+ J, and by h the topological entropy off 
on J. 

Let cp be a Holder continuous function on J and letµ be the corresponding Gibbs 
measure with respect to f. Write log'ljJ = <p - P(cp). 

For each q, p E JR, consider the functions 

<pn,q = -Tn(q) log a+ qlog'ljJ and 'PE,p = -TE(P) + plog'ljJ, 
where the numbers Tn(q) and TE(P) are chosen such that 

P(cpn,q) = P(cpE,p) = 0. 

Clearly, TE(P) = P(plog'ljJ). See Figure 3 for a typical graph of the function Tn(q). 

Proposition 5.1. The following properties hold: 
1. The function Tn is real analytic and satisfies T}J(q) ~ 0 and T_f!,(q) ~ 0 for every 

q E JR. We have Tn(O) = dimrr J and Tn(l) = 0. 
2. The function Tg is real analytic, and satisfies T~(p) ~ 0 and T~(p) ~ 0 for 

every p E JR. We have TE(O) = h and TE(l) = 0. 
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slope= -a (-oo) 

'D~ TD(q) 

~ 

\ 
\ 

slope= -aD(oo) q 

' - - - _ slope= -a (oo) 
\ ----~ D 

\ 

',~ 
\ 

slope= -aD(-oo) 

FIGURE 3. A typical graph of the function Tv(q). 

The first property is proved in [9] (see also the paper of Pesin and Weiss in this 
volume; note that the equality Tv(O) = dimH J follows the formula for the dimension 
of a conformal repeller established by Ruelle in [11]). The second property is a 
rewriting of Proposition 4.1. Set 

av(q) = -Tf>(q) and aE(P) = -T~(p). 

We now give a full description of the four multifractal spectra 'Dv, eE, /:.;D, and /:.;E 
for Gibbs measures supported on repellers of conformal smooth expanding maps. 

We begin with the dimension spectrum for pointwise dimensions 'Dv. The following 
theorem shows (with minor exceptions) that 'DD is defined on an interval, is analytic, 
and strictly convex. It also establishes a relationship between the functions 'DD (a) 
and Tv(q); namely, they form a Legendre pair. In [9], Pesin and Weiss effected a 
description of the spectrum 'Dv (see also their paper in this volume). 

Theorem 5.2. 
1. For µ-almost every x E J, the pointwise dimension ofµ at x exists and 

· gv(x) = dµ(x) = f1 1og'lj;dµ 
f1 logadµ · 
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tangent to the curve at a ( 1), with slope = 1 
~D. 

vertical tangent 
~ 

0 a 
I I 

q>O I I 
I q < 0 I 
I I 

FIGURE 4. A typical graph of the function '.Dn(a). 

2. The domain of the function a r-+ '.Dn(a) is a closed interval in [O, +oo) and 
coincides with the range of the function an(q). For every q E JR, we have 

'.Dn(an(q)) = Tn(q) + qan(q). (7) 
3. Ifµ i= mn, then '.Dn and Tn are analytic strictly convex functions, and hence, 

( '.D n, T n) is a Legendre pair with respect to the variables a, q. 
4. If µ = m n, then '.D n is the delta function 

'.Dn(a) = {dimH J if a= dimH J. 
0 if a i= dimH J 

The identity (7) is a consequence of property 1 in Theorem 5.4 below. See Figure 4 
for a typical graph of the function '.D n (a). 

We now provide a description of the spectrum CE· The following result is an 
immediate consequence of Theorem 4.4. 

Theorem 5.3. 
1. There exists a set S C X with µ( S) = 1 such that for every partition ~ E s,p-f 

and every x E J, the local entropy ofµ at x exists, does not depend on x and~' 
and 

9E(x) = hµ(f, g, x) = - i log7/J dµ. 
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2. The ¢amain of the function a t-+ cE{a) is a closed interval in [O, +oo) and 
coincides with the range of the function aE(p). For every p E IR, we have 

cE(aE(P)) = TE(P) + paE(p). (8) 
3. Ifµ =I mE, then cE and TE are analytic strictly convex functions, and hence, 

( c E' TE) is a Legendre pair with respect to the variables a' q. 
4. Ifµ= mE, then cE is the delta function 

c (a) = { h if a = h . 
E 0 if a =f=. h 

The identity (8) is a consequence of property 2 in Theorem 5.4 below. 
We now describe the full measures for the spectra 'Dn and CE. It turns out that 

these are the unique Gibbs measures v~D and vffE for the (Holder continuous) .func-
tions 'PD,q and 'PE,p, respectively. 

Theorem 5.4. The following properties hold: 
1. For every q E IR, we have v~D (K;~(q)) = 1 and 

d 1)D (x) = Tn(q) + qan(q) 
Vq 

for v~D-almost all x E K;~(q)' Moreover, v~D is a (gn, Gn)-full measure for 
an(q). 

2. For every p E IR, we have veE (K9E ) = 1 and P aE(P) 

h e,E (!, ~' x) = TE(P) + paE(P) 
Vp 

for vffE-almost all x E K;~(p) and every~ E qJ,. Moreover, vffE is a (gE, GE)-
full measure for aE(p). 

The first statement is proved in [9]. The proof of the second statement is similar. 
We now give a description of the spectra for Lyapunov exponents. In [13], Weiss 

effected a complete analysis of the spectrum £n. 

Theorem 5.5. For every a E IR, we have 

£n(a} = 'D~E)(h/a). 
Moreover: 

1. if mE =I mn, then £n is an analytic strictly convex function defined on a closed 
interval containing h / dimH J; 

2. if mE = mn, then £n is the delta function 

£n(a) = {dimH J if a= h/ dimH J. 
0 if a =I h/ dimH J 

At last, we give a complete description of the spectrum £E. 
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Theorem 5.6. For every a E IR and~ E 5.lJj, we have 

,CE(a) = ekmD)(adimH J). 
Moreover: 

15 

1. if mD =f. mE, then ,CE is an analytic strictly convex function defined on a closed 
interval containing h/ <limn J; 

2. if mD = mE, then ,CE is the delta function 

,CE(a) = {h if a= h/ <limn J. 
0 if a =f. h/ <limn J 

Proof. Since f is conformal and of class c1+e, there exist positive constants C1 and C2 
such that for each x = x(i1i2 • • ·) E J and integer n 2:: 1, 

C < diam~i···in C 
1 - rrn-1 (fk )-1 ~ 2· 

k=O a X 

Since mD is the Gibbs measure for - <limn J · log a, for every x E J we have 

d ( ) 1. logmD(Ri1 ... in) 1. logmD(Ri1 ... iJ. d' mD X = Im . = Im = Imn J. 
n-roo log diam Ri1 ···in n-roo log IJ~:~ a(Jkx )-1 

Therefore, for every x E J n K~L and ~ E s,p-f, 
. 1 

hmD(f,~,x) = hm --logmD(~1 ... in) 
n-Too n 

=<limn J Iim -~ logdiamRii···in = adimn J 
n-Too n 

and hence, x E K!~imHJ• This implies that ,CE(a) = ekmD)(adimn J). Property 1 
follows from Theorem 5.3. To obtain property 2 observe that for every x E J, 

hmE(f, ~' x) = lim -~ logmE(Ri1 ... iJ = h. 
n-Too n 

This completes the proof of the theorem. D 

We now describe the full measures for the spectra ,CD and ,CE· In the case of ,CD 
these are the Gibbs measures v~D corresponding to the functions 

-T.cD(r)loga-rh, (9) 
where T.cD (r) is chosen to satisfy P(-T.cD (r) log a) = rh. Similarly, the full measures 
for ,CE are the Gibbs measures v~E corresponding to the functions 

-T.cE(s) + sdimn J ·log a, (10) 
where T.cE(s) = P(sdimn J ·log a). One can check that T.cD(r) and T.cE(s) are real 
analytic functions. We set 

a.cD(r) = -T£D(r) and a.cE(s) = -T£E(s). 
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Theorem 5. 7. The fallowing properties hold: 
l. For every r E JR, we have 11.cD (K9L ) = 1 and r a.c,D(r) 

d .cD (x) = T.cD(r) + ro:.cD(r) 
Vr 

for 11~D-almost all x E K!_~D(r)· Moreover, 11~D is a (gL, GD)-full measure for 
o:.cD(r). 

2. For every s E JR, we have 11.cE (K9L ) = 1 and s a.c,E(s) 
h .cE(f,e,x) =T.cE(s)+so:.cE(s) 

Vs 

for l/~E-almost all x E K!_~E(s) and every e E s,p,. Moreover, l/~E is a (gL, GE)-
full measure for o:.cE ( s). 

3. £D rv £E, i.e., l/~D = l/~E 1 Where the parametrizations 
r = r(s) = T.cE(s)/h and s = s(r) = -T.cD(r)/ dimH J 

are strictly monotonic· and analytic. 

Proof. We note that 

d ( ) 1. log11~D(Rii···in) 
.CD X = Im . 

Vr n-+oo log diam Ri1 ···in 

. T.cD(r) log (IT~:~ a(!kxt1) - rhn = hm ____ _;__ _ _;;__ ___ .;...__ __ 
n-+oo log diam ~i ···in 

= T.cv (r) - rh/ >..(x) = T.cv(r) + rh/ 1 loga dv~D. 
Since P( -T.cv ( r) log a) = rh, taking derivatives with respect to r we obtain 

a.cv(r) 1 logadv;-v = h, 

and hence, 

for 11~D-almost all x E K!~D(r)· The remaining properties in statement 1 can be 
easily checked. 

In a similar way, we obtain 

h .c E (!' e' x) = T .(, E ( s) - s dimH J . A ( x) 
Vs 

= T.cE(s)- sdimH J 1 logadi/,'E. 

Since o:.cE ( s) = - dimH J f 1 log a d11~E, we conclude statement 2. 
Statement 3 follows immediately from the definitions. D 

Remarks. 
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1. In [9], Pesin and Weiss proved that the µ-measure of any ball centered at any 
point of J is positive, and for every q E JR we have 

Tn(q) = (1 - q)HPµ(q) = (1 - q)Rµ(q) = - lim ~log inf '"°"' µ(B)q, 
r-rO r 6 

BE~r 

where the infimum is taken over all finite covers ~r of J by balls of radius r. 
2. All the results in this section extend to continuous expanding maps (see [8] for 

the definition). Similar results can also be obtained for hyperbolic sets (see [3]). 

It is an open problem in dimension theory to obtain a description of the spectra 
'DE and en for Gibbs measures on repellers of conformal smooth expanding maps. 

6. MULTIFRACTAL RIGIDITY l 

We will show in Theorem 6.2 below that if, for instance, the spectra 'Dn and eE 
are equivalent, with respect to the "canonical" families of measures {v~D }qEJR and 
{viE}pEJR, then "all other" spectra are equivalent. We call this phenomenon multi-
fractal rigidity. It indicates that the spectra 'Dn and eE are essentially independent. 

We recall that two functions r.p1 and r.p2 on X are called cohomologous (with respect 
to J) if there exist a Holder continuous function 'fJ: X -+ JR and a constant "" such 
that 

'Pl - 'P2 = 'fJ - 'fJ 0 f + K,. 

In this case we write r.p1 rv <p2. We recall some well-known properties of cohomologous 
functions (see, for example, [10]). 

Proposition 6.1. Let r.p1 and r.p2 be Holder continuous functions on X. Then the 
fallowing properties hold: 

1. ~f <p1 rv <p2, then for every x E X, we have 
n-1 

lim ~ L[r.p1(fkx) - r.p2 (fkx)] = ""i 
n-+oo n 

k=O 

2. if 'Pl rv <p2, then 'Pl - <(J2 rv 0, C<(J1 rv C<p2, and 'Pl rv <p2 + C for any real number c; 
3. r.p1 rv r.p2 if and only if the equilibrium measures corresponding to r.p1 and r.p2 

on X coincide. 

Let f : M -+ M be a conformal ci+e expanding map and let r.p be a Holder 
continuous function on M. We consider the "canonical" families of full measures 
{v~D}qEJR, {viE}pEJR, {v;D}rEJR, and {v~E}sEJR, for the spectra 'Dn, eE, £n, and £E, 
respectively. 

Theorem 6.2. Assume that log a rf 0 {i.e., mn i- mE)· Consider the following five 
pairs of multifractal spectra 

(eE, 'Dn), (eE, £n), (eE, £E), ('Dn, £n), ('Dn, £E)· 
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If in at least one of these pairs the two spectra are equivalent, then: 
1. log 1/; rv r log a for some r i= O; 
2. 'Dn rv CE rv £n rv £E, i.e., v~D = v:E = v;D = v~E' where the parametriza-

tions 
P = _ Tn(q) + q, 

r 
qP(rloga) 

r = h ' 
-Tn(q) +qr s=-----

dimHJ 
are analytic coordinate transformations and r i= 0 is a constant; 

3. T1:,D(r) = Tn(q) - qr= -sdimH J, and T1:,E(s) = qP(rloga) = rh. 

Proof. We assume that 'Dn rv CE. Proofs in the other cases are similar. There exists 
a parametrization p = 7r(q) such that 

-Tn(q) log a+ q log'lj; rv -TE(P) + p log'lj;. 

It follows that 

-Tn(q) log a rv (7r(q) - q) log'lj;. 

Since log a rf 0 we have that the function -Tn(q) is strictly monotonic, analytic, and 
convex. Moreover, Tn(q) i= 0 if qi= 1. · 

Furthermore, there exists q i= 1 for which 7r( q) i= q (otherwise, log a rv 0). It 
follows that 

-Tn(q) 
( ) log a rv log 'lj;. 7r q - q 

Set 

r = -Tn(q)/(7r(q) - q) 
and notice that r i= 0 is a constant independent of q =/. 1 (otherwise, r( q1 ) log a rv 

r(q2 ) log a for some q1 =/. q2 which is impossible because log a rf 0). We conclude that 

log 1/; rv r log a. 
Therefore, v~D is the Gibbs measure corresponding to the function 

-Tn(q) log a+ q(rloga - P(rloga)), (11) 

where Tn(q) satisfies 

P((-Tn(q) +qr)loga). qP(rloga). 
Consider 

r = r(q) = qP(rloga) 
h 

d _ ( ) _ -T n ( q) + qr 
an s - s q - d" J . 

ImH 

These functions are strictly monotonic and analytic .. 

(12) 

Substituting r = r(q) into (12) we obtain that T1:.,D(r) = Tn(q) - qr. Comparing 
(9) and (11) we conclude that v;D = v~D. In a similar way, substituting s = s(q) 
into (12) and comparing (10) and (11), we obtain that T1:,E(s) = qP(rloga) and that 
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v~E = viD. The remaining statements in properties 2 and 3 follow from property 3 
in Theorem 5.7. D 

We now describe the case when log a rv 0, i.e., when mn = mE. 

Theorem 6.3. The following statements are equivalent: 
1. log a rv O; 
2. the spectrum £ n is a delta function; 
3. the spectrum £E is a delta function; 
4. CD rv ']) D rv CE rv ']) E with respect to the family of measures { V~ D} aEJR, and 

v'tD = vfE for every p. 

Proof. We first assume that log a rv 0. It follows from statements 2 and 3 in Propo-
sition 6.1 that 

-Tn(P) log a+ plog'lj; rv plog'lj; rv -TE(P) + plog'lj;, . (13) 

and hence, v'tD = vffE. This implies that 'Dn rv CE. On the other hand, it fol-
lows from statement 1 in Proposition 6.1 that .X(x) = "" for every x E J and some 
constant ""' because log a rv 0. This implies that the spectra £ D and £ E are delta 
functions. Moreover, KgE = Kg~ for every number a. This implies that c D rv ']) D 

and that CE rv 'DE, and the proof of statement 4 is complete. 
To complete the proof of the theorem it is sufficient to prove that statement 4 

implies that log a rv 0. But v~D = vff E implies that (13) holds and hence that 
logarvO. D 

7. MULTIFRACTAL RIGIDITY II 

In this section we consider another interesting phenomenon in dimension theory of 
dynamical systems which we regard as a multifractal rigidity phenomenon. Roughly 
speaking, it states that if two dynamical systems are topologically equivalent (via 
a homeomorphism) and some of their multifractal spectra coincide, then they are 
smoothly equivalent (via a diffeomorphism). This leads to a classification of maps 
and Gibbs measures using multifractal spectra and/or multifractal decompositions. 
We believe that this type of classification fits well with the "physical" interpretation 
of the equivalence of dynamical systems. We think that this is a non-trivial and 
challenging problem, and we support that believe by the following observations. 

Let f be a one-dimensional linear Markov map of the unit interval, modeled by the 
full shift on two symbols. This means that there are linear maps Ji and h defined 
respectively on two disjoint closed intervals 11, 12 C [O, l] such that fi(J1) = h(h) = 
[O, 1], and the map f: 11 U 12 -+ JR is given by f(x) = fi(x) whenever x E h for 
i = 1, 2 (see Figure 5). 

We consider the !-invariant set 
00 

J = n f-k(l1U12). 
k=l 
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1 

0 1 

FIGURE 5. A one-dimensional linear Markov map of the unit interval. 

Clearly, f extends to a C 00 map on an open neighborhood of J. Moreover, JIJ is 
conformal and J is a repeller of f. 

The partition {Jn 11 , Jn 12} is a Markov partition of J (with respect to f) and 
f IJ is topologically conjugate to the full shift a-IE+, where ~t = {1, 2}N. 

2 

We consider the Bernoulli measure on ~t with probabilities /31 and /32 = 1 - /31 
(which is a Gibbs measure), and let Ci= lf'lril = l!Il1il for i = 1, 2. 

We define the functions a and cp on J by 

a(x) =Ci and cp(x) = logf3i if x Eh (14) 
for i = 1, 2. ~or every p, q E IR, the functions TE(P) and Tv(q) satisfy the identities 

e-TE(P) (f31P + f3l) = 1 

and 

(15) . 

One can explicitly compute the measures v:E and vrD: they are the Bernoulli mea-
sures with probabilities e-TE(p) f31P and e-TE(P) /3l, and with probabilities c~Tv(q) /31 q 

and c-;_Tv(q) {32~ respectively. 
Let f and f be two one-dimensional linear Markov maps of the unit interval, as 

above, with conformal repellers 
00 00 

k=l k=l 
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respectively. The underlying symbolics dynamics of f I 1 and Ji J coincide and are the 
full shift on two symbols crlEt· Let x: I:t -+ J and x: I:t-+ Jbe the corresponding 
coding maps. We consider two Bernoulli measuresµ andµ on L:t with probabilities 
/31 and /32 , and with probabilities 'fJ1 and 'iJ.i, respectively, where {31 + {32 = 'jj1 + 'fJ.i = 1. 
We also consider the numbers ci, c2 and the numbers Ci, c2 , which are the absolute 
values of the derivatives of the linear pieces off and f, respectively. 

We define the functions a and <p on J by (14), as well as the functions a and rp 
on Jby 

a(x) =Ci and cp(x) =log A if x E Z, 
for i = 1, 2. We note that the measuresµ andµ are the Gibbs measures for <p and cp. 

Recall that an automorphism p of I:t is a homeomorphism p: Et -+ Et which com-
mutes with the shift map er. The involution automorphism is defined by p( i 1 i 2 .•. ) = 
( i~ i~ · · · ), where i~ = 2 if in = 1, and i~ = 1 if in = 2, for each integer n 2: 1. 

Since x and x are invertible, one can define a homeomorphism e: J -+ J by 
e = x o x-1. We note that e o f = f o e on J, and hence, e is a topological conju-
gacy between f I 1 and Ji y, i.e., the two maps are topologically equivalent. If p is an 
automorphism of Et, then the homeomorphism O' = x o po x-1 is also a topological 
conjugacy between f 11 and Jiy, and all topological conjugacies are of the this form. 
An important question is whether the class of all conjugacies contains a homeomor-
phism ( preserving the differentiable structure, i.e., a = a o (. One can ask if in 
addition ( is measure preserving, i.e., µ = µ o (. We give below a complete answer 
to these questions. 

We consider the spectra 'Dn = 'D~) and GE = c~) specified by the measure µ, 
as well as the spectra and i>n = 'Dt) and eE = G~) specified by the measure µ. 
Similarly, ·we consider the spectra £ n and £ E, as well as the spectra En and EE. 

As before, we use the functions a and <p to define the full measures v~D, v;E, v~D, 
and v~E. In a similar way, we use the functions a and cp to define the full measures 
v® D veE vED and vEE 

q ' p ' r ' s • 

Theorem 7 .1. If 'D n (a) = i> n (a) for every a and these spectra are not delta func-
tions, then there is a homeomorphism (: J -+ J such that: 

1. (of= f o ( on J, that is, ( is a topological conjugacy between f 11 and Jly; 
2. the automorphism p of Et satisfying x o (=pox is either the identity or the 

involution automorphism; 
3. a =a 0 (, <p = rp 0 (, and µ = µ 0 (; 

4 v'DD = v®D o ;- veE = veE o ;- vLD = vE. D o t and vLE = vEE o ;- 1or every q • q q ':i1 p p ':i1 r r S1 s s ':i J' ' . 
p, r, ands. 

Proof. It is enough to prove that the spectrum 'D n uniquely determines the numbers 
{31 , {32 , c1 , and c2 up to a permutation of the indices 1 and 2. 
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By the uniqueness of the Legendre transform, the spectrum 'D n uniquely deter-
mines Tn(q) for every q E IR, and hence, it is enough to prove that equation (15) 
uniquely determines the numbers /31, /32, c1, and c2 up to a permutation of the indices 
1 and 2. 

One can verify that the numbers a±= an(±oo) can be computed by 

a±= - lim (Tn(q)/q). 
q-+±oa 

We observe that since the spectrum 'Dn is not a delta function, and hence, Tn(q) is 
not linear and is strictly convex, then a+ < dimH J < a_. Therefore, raising both 
sides of (15) to the power 1/ q and letting q --+ ±oo, we obtain 

max{f31c1a+,f32c2a+} = min{/31c1a_ ,/32c2a-} = 1, 

We assume that /31c1 a+ = 1 (the case when f32c2a+ = 1 can be treated in a similar 
way; in this case, pis the involution automorphism). Since a+ <a_, we must have 
/32C2a_ = 1. 

Setting q = 0 and q = 1 in equation (15), we obtain, respectively, 
C1 -dimH J + C2 -dimH J = 1 and /31 + /32 = 1. 

Set x = c1-dimHJ, a= a+/ dimH J < 1, and b =a_/ dimH J > 1. Then, one can 
easily derive the equation 

Xa + (1 - X )b = 1. 

One can verify with standard calculus arguments that this equation has a unique 
solution x E (0, 1), which uniquely determines the numbers c1 and c2, and hence, also 
the numbers /31 and /32. D 

It follows from statement 2 in Theorem 7.1 that the following diagram is commu-
tative: 

~+ 
p 

~+ 
id 

~t 2 2 

:/I :/I ;/ 
p id ~+ 

~t lx ~t 1- 2 x 

x x x 

J ' - () 
J x J Y, y y - () J J J 

The diagram gives a complete picture of the relation between the conjugacies (} and (. 
A more general version of Theorem 7.1 can be found in [4]. 

Remarks. 
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1. Let f be a one-dimensional linear Markov map of the unit interval. It is straight-
forward to verify that: 
(a) CE is a delta function if and only if {31 = {32 = ~; 
(b) 'DD is a delta function if and only if logcif logf31 = logc2/log{32 ; 

( c) c E "-' 'DD if and only if c1 = c2 . 

Notice that neither of these three properties specifies all the numbers {3i, {32 , 

c1 , and c2 . On the other hand, the dynamical system is completely specified if 
and only if all these four numbers are known. In particular, we conclude that 
knowing any one of the three properties above is not sufficient to restore the 
system. 

2. We have shown that for a one-dimensional linear Markov map of the unit inter-
val, one can determine the four numbers {31 , {32 , c1 , and c1 using the spectrum 
'DD. However, from the spectrum c E one can only recover the two numbers {31 
and {32 : one can show that if {31 2: {32 , then 

/31 =exp lim (TE(P)/p) and /32 =exp lim (TE(P)/p). 
p~+oo p~-oo 

In a similar way, using one of the spectra /:.; D and /:.; E, one can only recover the 
two numbers c1 and c2 . For example, using the spectrum /:.; E, one can prove 
that if c1 2: c2 , then 

3. Given two multifractal spectra 3='1 and 3='2 for the same map f, the condition 
3='1 "-' 3='2 means that we can reparametrize the "physical" variables used to 
describe the dynamics, and hence, their multifractal decompositions are equal. 

On the other hand, if :f and J- are two multifractal spectra for the maps f 
and .i, respectively, the condition :f = J- indicates the existence of a "symmetry" 
between the two dynamical systems (expressed by the existence of a homeomor-
phism(). Thus, it is a requirement of "physical" nature, and Theorem 7.1 has 
a strong physical content: if the spectra of two dynamical systems are equal, 
then the systems are the same up to a change of variables, and thus should be 
considered the same from the physical point of view. 

Another fundamental open problem of multifractal rigidity is whether one can 
determine the main "macroscopic" characteristics of a given dynamical system using 
information "hidden" in its multifractal spectra. In particular, one can ask whether 
any subset of the six spectra are sufficient to "determine" the functions a and r.p. For 
the class of one-dimensional linear Markov maps of the unit interval, the phenomena 
described in Theorem 7.1 and in Remark 2 above give a complete affirmative answer 
to this question. 
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APPENDIX 

Let (X, d) be a complete separable metric space. Consider a set Z c X and a 
positive number 8. A cover of Z by sets of diameter at most 5 is called a 8-cover 
of Z. For any s > 0, we define the s-dimensional Hausdorff measure of Z by 

mH(Z, s) = liminf. '°""'(diamU) 8
, 

&-rO il ~ 
UEil 

where the infimum is taken over all finite or countable 8-covers il of Z. There exists 
a unique value of s at which mH(Z, s) jumps from +oo to 0. We call this value the 
Hausdorff dimension of Zand denote it by dimH Z. We have 

dimH Z = inf{s: mH(Z, s) = O} = sup{s: mH(Z, s) = +oo}. 

Let f: X --7 X be a continuous map. If il is· a finite open cover of X, for each 
integer n 2:: 1 we denote by Sn(il) the collection of strings U = U1 ···Un, where 
U1, ... , Un E il. For each U E Sn(il), we write n(U) = n and define the open set 

X(U) = { x EX: fk-lx E Uk fork= 1, ... , n }. 

Consider a set Z c X. We say that a collection of strings r covers Z if the union 
UuEr·X(U) ~ Z. For every real numbers, we define 

M(Z, s,il) = lim inf'°""' exp (-n(U)s), 
n-roo r ~ 

UEr 

where the infimum is taken over all collections r c LJk>n Sk(il) covering Z. There 
exists a unique value of s at which M(Z, s, il) jumps from +oo to 0, given by 

h(Z,il) = inf{s: M(Z, s,il) = O} = sup{s: M(Z, s,il) = +oo}. 

We define the topological entropy off on the set Z by 

h(flz) = . lim h(Z,il) 
diamil-rO 

(one can show that the limit always exists). If Z is compact and !-invariant, then 
h(f lz) coincides with the classical topological entropy (see, for example, [8]). How-
ever, the set Z need not be compact nor /-invariant for our definition. 

The following simple statement follows from the special type of metric on :El 
introduced in Section 4. 

Lemma. For any subset Z C :El we have h(flz) = dimH Z ·log a. 

For each n E N, we define the metric dn on X by 

dn(x, y) =max{ d(fkx, fky): 0 ~ k ~ n - 1 }. 

Given 8 > 0, we say that a finite set E C X is a (n, 8)-separated set if dn(x, y) > 8 
whenever x, y E E and x f. y. We define the topological pressure of the continuous 
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function cp: X-+ IR (with respect to f) by 

_ l n-1 

P(cp) = lim lim - log sup L exp L cp(fkx), 
a-+0 n-+oo n E 

xEE k=O 

where the supremum is taken over all (n, 8)-separated sets E. 
The Legendre trans! orm of the function T is the function 2) defined by 2) (a) 

supq(aq - T(q)). We then say that the pair (1>, T) is a Legendre pair with respect 
to the variables a, q. We say that a 0 2 function T is strictly convex if T" > O 
everywhere on its domain. Given two strictly convex 0 2 functions 2) and T, one can 
show that the pair (1>, T) is a Legendre pair with respect to the variables a, q if and 
only if 2J(a) = T(q) + qa, where a= -T'(q) and q = 2J'(a). 
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