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Temporal dissipative solitons in the Morris–Lecar model with time-delayed feedback

Mina Stöhr, Matthias Wolfrum

ABSTRACT. We study the dynamics and bifurcations of temporal dissipative solitons in an excitable system under time-delayed
feedback. As a prototypical model displaying different types of excitability we use the Morris–Lecar model. In the limit of large
delay soliton like solutions of delay-differential equations can be treated as homoclinic solutions of an equation with an advanced
argument. Based on this, we use concepts of classical homoclinic bifurcation theory to study different types of pulse solutions
and to explain their dependence on the system parameters. In particular, we show, how a homoclinic orbit flip of a single pulse
soliton leads to the destabilization of equidistant multi-pulse solutions and to the emergence of stable pulse packages. It turns
out that this transition is induced by a heteroclinic orbit flip in the system without feedback, which is related to the excitability
properties of the Morris–Lecar model.

The phenomenon of solitons has been of great interest since its first discovery in the first half of the 19th cen-
tury by John Scott Russel, who observed a solitary water wave in a canal whilst riding alongside. Solitons can
be explained as specific solutions in conservative spatially extended systems, where they appear due to a bal-
ance between dispersion and nonlinearity. More recently, they play an important role in nonlinear optical fibres.
As they preserve their shape and localization even after collisions, they are of great importance for data trans-
mission. Similarly, localized solutions in dissipative systems are often called dissipative solitons. In contrast to
conservative systems, soliton like solutions emerge here due to a balance between energy gain and loss. This
can happen not only in optically active material, but also in chemical, biological, or neuronal systems. In some
cases, e.g. in certain optoelectronic systems with a time-delayed signal resulting from a cavity round-trip, such
localized states can be found also in systems of delay-differential equations where no spatial variable is present
and the localization happens in the time variable. In such cases one speaks about temporal dissipative solitons.
We investigate in detail the emergence, stability and bifurcations of such solutions in the Morris–Lecar model
with time-delayed feedback.

Temporal dissipative solitons (TDSs) are localized states in systems with time delay. Recently, they found application
in a variety of fields, particularly in opto- electronic systems. They have been used to describe different types of cavity
solitons [9, 12, 34, 38, 39, 28], mode-locked pulses [23, 33, 42], their interaction dynamics [41, 26, 25], and certain
specific instabilities [14, 32]. However, a comprehensive mathematical theory for this type of solutions, their instabilities
and bifurcations, is still largely absent.

A temporal localization can be observed in situations where the delay time is substantially longer than the internal time
scale. In this way there can be solutions that spend most of the time close to a stable background equilibrium except for a
short time interval during which the localized structure appears. The localization pattern then repeats with a period slightly
larger than the delay time, i.e the soliton is localized within the time window of the delay. This reminds of the analogy of
delay-differential equations (DDEs) with large delay and spatially extended systems that has been pointed out already by
Politi and Giacomelli in 1996 [10]; for a recent survey, see [43]. The limit of large delay is in fact a singular perturbation and
in a natural way induces dynamics on multiple time scales. This has been elaborated in detail for the eigenvalue spectrum
of equilibria [20], for the Floquet-spectrum of rapidly oscillating solutions [37], and also for chaotic dynamics [13].

Recently, this approach has been extended to TDSs. It has been shown in [45] that the stability of such solutions is
governed by a Floquet-spectrum that is composed by a pseudo-continuous part, accounting for the stability properties of
the soliton background, and point spectrum coming from the localized part of the solution. Moreover, it has been pointed
out that TDSs can be found as homoclinic solutions of a so called profile equation, such that their stability and bifurcations
can be described in terms of classical homoclinic bifurcation theory. As the simplest example of a TDS they presented an
excitable system with an input from a time-delayed feedback, such that an excitation pulse can replicate itself after a bit
more than the delay time and in this way give rise to a periodic appearance of localized pulses. The interaction of solitons
in an excitable phase oscillator system has been studied in [25].

In the present paper, we study the Morris–Lecar model with delayed feedback in the excitable regime as an example for
more complicated pulse dynamics. In Fig. 1 we show different types of coexisting pulse patterns for different parameter
values. There are parameter regions where stable solutions with one or several equidistant pulses coexist (blue trajectories
in panels (a), (c), and (d)). Changing a parameter, the equidistant pulses with more than one pulse per delay interval
become unstable and stable pulse packages (bursts) appear (purple trajectories in panels (c) and (d)). Changing the
parameter further, all the pulse solutions become unstable and a rapidly oscillating solution is the only attractor (red
trajectory in panel (c)). Figure 2 shows the corresponding dynamics in space-time representation. In the parameter region
of stable equidistant pulses we show a single-pulse soliton in panel (a); an initial condition with two non-equidistant pulses
approaches the stable equidistant configuration, see panel (c). In the parameter region of stable pulse packages a similar
initial condition tends to the stable two-pulse package, see panel (d). In the region of stable oscillations, an initial condition
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M. Stöhr, M. Wolfrum 2

FIGURE 1. Different types of stable periodic solutions of the Morris–Lecar model Eqs. (1a)–(1b) with
delayed feedback (5) for different choices of the parameter V4. At V4 = 0.13 the single pulse soliton
coexists with equidistant multi-pulse solutions (blue trajectories). At V4 = 0.06 the single pulse soliton
coexists with pulse packages (purple trajectories). At V4 = 0.048 there is only a stable rapid oscillation.
Other parameters: τ = 100, El =−0.37, κ = 0.2 and as given in Table 1.

FIGURE 2. Space-time representation of solutions of the Morris–Lecar model Eqs. (1a)–1b with de-
layed feedback (5). Stable soliton at V4 = 0.13 (a). At V4 = 0.13 a two-pulse solution approaches
a stable equidistant configuration (c). At V4 = 0.06 a two-pulse solution approaches a stable pulse
package (d). At V4 = 0.048 the single pulse has a trailing edge instability. Parameters: τ = 50, other
parameters as in Fig. 1.

with a single pulse develops a trailing-edge instability, which in the course of time leads to the appearance of additional
pulses, until the whole delay interval is filled with oscillations, see panel (b).

Our goal is to understand these different feedback induced pulse dynamics in the excitable regime. The paper is organized
as follows. First, in section 1, we introduce the Morris–Lecar model and recall some of the bifurcations for the case without
feedback. In particular, there is a saddle-node separatrix loop bifurcation, governing the transition between different types
of excitability and inducing a heteroclinic orbit flip. Then, in section 2, we introduce the time-delayed feedback and show
how it gives rise to TDSs. We recall from [45] how solitons can be found as homoclinic orbits in an equation with advanced
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Temporal dissipative solitons in the Morris–Lecar model with time-delayed feedback 3

FIGURE 3. Sketch of the unfolding of a saddle-node separatrix loop bifurcation. Coloured parameter
regions correspond to different dynamical regimes. Sketched phase portraits in the insets indicate
qualitative dynamics in the regions and at the bifurcations.

argument, called profile equation and present the stability region of such solutions. We use the software package DDE-
biftool [36] for a numerical calculation of all stability boundaries and bifurcations of the TDSs. In section 3, we show how
the heteroclinic orbit flip in the system without feedback leads to a homoclinic orbit flip in the profile equation. We then
recall how according to classical homoclinic bifurcation theory [15, 35], the homoclinic orbit flip organizes homoclinic orbits
with multiple pulses and, in particular organizes the pulse dynamics presented in Fig. 1. In section 4 we conclude with an
outlook and discussion of our results.

1. THE MORRIS–LECAR MODEL

The Morris–Lecar model is a model for the dynamics of the action potential in a neuron introduced in [24] given by the two
ODEs

V̇ = Iext −gl(V −El)−gkw(V −Ek)(1a)

−gCam∞(V )(V −ECa),

ẇ = λ (V )(w∞(V )−w),(1b)

for the membrane potential V and the recovery variable w. The quantity Iext refers to the applied current stimulus and will
be used for the time delayed feedback in section 2. With the voltage dependent sigmoidal activation functions m∞(V ),
w∞(V ) and the time scale λ (V ), given as

m∞(V ) =
1
2

(
1+ tanh

(
V−V1

V2

))
(2)

w∞(V ) =
1
2

(
1+ tanh

(
V−V3

V4

))
(3)

λ (V ) =
1
3 cosh

(
V−V3

2V4

)
,(4)

it is able to reproduce different aspects of neuronal behavior in great detail and has been studied extensively, both from
the mathematical [8, 27, 16, 17, 2, 7] and the neuroscientific [24, 22, 40] point of view. In particular, depending on the
parameters it can display different types of excitability (Class I and Class II excitablity), which are responsible for the
nonlinear response of the system to input signals of different kind [21]. The main underlying mechanism is a codimension-
two bifurcation, the so called saddle-node separatrix loop bifurcation (SNSL) [31, 5, 6], which we briefly recall below.
We use an unfolding of this bifurcation in the parameters V4 and El , while throughout the whole paper we fix all other
parameters to the values given in table 1, following Izhikevich[16].

Figure 3 schematically displays the unfolding of a saddle-node separatrix loop bifurcation. The unfolding contains four
regions in parameter space with different dynamics. They are separated by three curves of codimension-one bifurcations
meeting in the SNSL-point, which is of codimension-two. Within the grey region, there is only one unstable equilibrium and

V1 V2 V3 Ek ECa gl gk gCa

0 0.15 0.1 −0.7 1 0.5 2 1.2
TABLE 1. Parameters for the Morris–Lecar model (cf. Izikevich [16])

DOI 10.20347/WIAS.PREPRINT.2970 Berlin 2022



M. Stöhr, M. Wolfrum 4

FIGURE 4. Phase portraits of heteroclinic orbits (blue) for the system without feedback κ = 0. The
different choices of parameter V4 in panels (a)–(c) represent the situation before, directly at, and after
the orbit flip, respectivley. Grey lines: nullclines of Eqs. (1a)–(1b). Stable, saddle and unstable equilib-
rium are indicated by black dot, cross, and circle, respectively. Leading stable eigendirection of stable
equilibrium indicated with one arrow, strong stable eigendirection with two arrows. Other parameters as
in Fig. 1.

a stable periodic orbit. At the vertical saddle-node curve, separating this region from the other regions, there emerge two
more equilibria. In the upper part above the SNSL point it is a saddle-node on invariant circle (SNIC) bifurcation, such that
in the blue region the stable equilibrium and the saddle lie on an invariant circle while the periodic orbit has disappeared.
Instead, there are two heteroclinic orbits linking the saddle with the stable equilibrium. In the lower part below the SNSL
point, the two new equilibria emerge outside the periodic orbit such that in the red region we have a bistable situation with a
coexisting stable equilibrium and a periodic orbit. However, passing over to the purple region, the periodic orbit disappears
in a homoclinic bifurcation.

At the transition from the purple to the blue region there is a so called heteroclinic orbit flip. In Fig. 4 we show in panels
(a)–(c) numerically calculated heteroclinic orbits before, directly at, and after this bifurcation. An orbit flip is characterized by
the fact that a connecting orbit, which generically approaches the equilibrium along the leading stable eigenvector (single
arrows in Fig. 4), switches to the other side and, at the bifurcation, lies in the strong stable subspace (double arrows in Fig.
4).

We focus here on the region with an excitable equilibrium to the left of the saddle-node bifurcation branch and show how
the addition of a time-delayed feedback leads to different types of solitons in this region.

2. SOLITONS IN MORRIS–LECAR MODEL WITH TIME-DELAYED FEEDBACK

Adding a time-delayed feedback in the excitable region of the ODE Morris–Lecar model, we expect the creation of soliton
solutions. We use a feedback of Pyragas type of the form

Iext = κ(V (t − τ)−V (t)),(5)

where the delay τ > 0 is chosen substantially bigger than the duration of a pulse and κ denotes the coupling strength.
For the rest of the paper, we fix in our calculations κ = 0.2. While Iext remains small, the DDE dynamics are similar to the
ODE dynamics. In particular, for small κ the stability properties of the fixed points do not change qualitatively, such that
close to the saddle-node bifurcation we still have two nearby equilibria of stable and saddle type. Note, however, that due
to the infinite dimensional phase space of a DDE, there are additionally infintely many stable eigenvalues.
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Temporal dissipative solitons in the Morris–Lecar model with time-delayed feedback 5

FIGURE 5. (a) – Phase portrait of a soliton solution at κ = 0.2 (blue) and of the heteroclinic orbits
in the system without feedback at κ = 0 (purple). (b) – Enlargement of framed region in (a) close
to the background equilibrium. (c) – time traces of the soliton and of the feedback-term. Parameters:
V4 = 0.13, other parameters as in Fig. 1.

Due to the excitability of the stable equilibrium already a small input from the feedback term can lead to an excitation pulse.
In this way the feedback can induce periodic solutions, where each of the subsequent pulses is triggered by the previous
pulse entering the feedback term. Figure 5(a) displays the heteroclinc orbits for the ODE (purple trajectories) together with
a soliton periodic orbit of the DDE (blue). While both trajectories behave more or less similar for most of the time, the zoom
in panel (b) shows that close to the equilibrium, the ODE and DDE trajectories point in almost opposite directions. This is
exactly the moment, when the feedback term Iext is not close to zero (cf. panel (c)).

Note that this mechanism works for any large enough value of the delay τ , such that one can use the limit τ → ∞ for
an approximation of the case of large but finite values of the delay. In fact, TDSs can be characterized by the fact that
they appear as families of periodic orbits parametrized by the delay parameter τ with corresponding periods T (τ) and a
response time

δτ := T (τ)− τ

which is always positive and tends to a finite limit δ∞ when τ → ∞.

In [45] it has been pointed out that the profile of a soliton can be calculated not only as a periodic solution of the DDE with
large delay τ , but also for τ replaced by −δτ . This is due to the general fact that any T -periodic solution of a DDE with
delay τ0 reappears as a solution for all

(6) τk = τ0 + kT, k ∈ Z,

see [44]. In this case, this allows us to replace the singular limit τ → ∞ with the regular situation δ → δ∞. At this value, the
profile of TDS is given as a homoclinic orbit tending for t →±∞ to the background equilibrium. Replacing the delay time
τ by −δ the original delay equation turns into an equation with advanced argument, which is called profile equation. For
such equations initial value problems can be solved only backward in time. Note that the the reappearing periodic solutions,
as well as the equilibria, which are also preserved when the delay time is changed, have different stability properties. The
background equilibrium is assumed to be stable for all large positive values of the delay τ . Hence, according to [46] it is
absolutely stable, i.e. stable for all positive τ . However, in the profile equation it turns into an equilibrium of saddle type
such that a homoclinic orbit approaching this equilibrium can appear.

Recall that in generic dissipative systems homoclinic orbits are of codimension one, i.e in order to obtain a homoclinic
solution one typically has to adjust one parameter. Thus, we can solve the profile equation simultaneously for a homoclinic
solution, giving the profile of the TDS, and for the asymtotic response time δ∞. At the same time, soliton periodic orbits are
generic solutions of the DDE with large delay. They persist for small changes of the parameters and can be found for all
sufficiently large values of the delay. Hence, our codimension-one homoclinic solution from the profile equation corresponds
to a generic soliton solution of the original system, where δ is not a control parameter, but is already determined by the
soliton. In all bifurcation problems for the profile equation, this specific role of δ leads to the fact that codimension-two
homoclinic phenomena in the profile equation refer to codimension-one situations for the solitons in the original DDE with
large delay.
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FIGURE 6. Branches of periodic solutions in the profile equation (a) and in the large delay DDE (b) for
two different choices of V4. In the DDE (b), the branches approach the lines τ + δ∞ (dashed), while
both T and τ become infinite. In the profile equation each branch approaches a vertical line at δ = δ∞

with T −→ ∞ in a homoclinc bifurcation. Other parameters as in Fig. 1.

Figure 6 illustrates the relation between the original DDE with large delay and the profile equation. Panel (b) shows the
typical signature of a TDS: a branch of periodic solutions that exists for all large τ , while its period T approaches the
line T = τ + δ∞ (dashed lines). In panel (a) the same branches of periodic orbits are shown, now as periodic solutions
of the profile equation. The period increases when δ approaches δ∞, displaying a classical homoclinic bifurcation while
all system parameters remain bounded. The homoclinic orbit approaches the background equilibrium, which in the profile
equation is always a saddle. Note that for the original DDE with large delay the soliton orbit actually comes never close to
the background equilibrium in terms of the infinite dimensional phase space since there is always a pulse contained in the
history interval.

The two soliton branches in Fig. 6 correspond to the profiles shown in Fig. 1(a) and represent the two different regimes of
the Morris–Lecar model without feedback, shown in Fig. 3 in purple and blue, respectively. They differ by the undershoot
in V (hyperpolarization), which is not present in the purple region. This different shape of the trajectory comes together
with a qualitative difference in the response time δτ . In the purple region, the response time for finite τ is smaller than its
asymptotic value δ∞, while in the blue region it is bigger. We will show in the next section how this difference is related to
the different behavior of the multi-pulse solutions shown in Fig. 1 and Fig. 2.

Using the profile equation, one can use standard methods to study existence and bifurcations of TDSs, see also [11]. Note
that in order to use DDEbiftool for a system with an advanced argument, the time has to be reversed. In Fig. 7 we show
the parameter region of stable solitons in the (El ,V4)-parameter plane in the neighbourhood of the SNSL point. For our
choice of κ = 0.2 stable TDSs exist only up to a certain distance from the saddle-node curve. This can be explained by the
fact that at larger distance from the saddle-node also the excitation threshold becomes higher such that at a certain point
the given feedback strength is no more sufficient to sustain the generation of subsequent pulses. This stability boundary
is given as a subcritical period-doubling (green curve in Fig. 7) of the soliton periodic solutions. In contrast to the other
bifurcations in this diagram, this type of period doubling cannot be calculated in the framework of the profile equation, see
[11], Lemma 1. We used instead a continuation based on soliton periodic orbits of the original large delay DDE.

Remarkably, the other stability boundaries are closely related to the bifurcations from the Morris–Lecar model without
feedback, described in section 1. In Fig. 7 they are given by black lines. Close to the homoclinic bifurcation of the Morris–
Lecar model without feedback (black dashed line) there is the stability boundary of the solitons. Close to the SNSL point,
it is given as a curve of Bykov T -points [4, 19] (red curve). Approaching this curve, the soliton profile approaches also the
unstable saddle equilibrium and in this way becomes itself unstable. The curve of Bykov T -points has been calculated in the
framework of the profile equation by a continuation of a codimension-two heteroclinic between the saddle equilibrium and
the original background equilibrium of the soltion; for details of the method see [29, 1]. Using in the continuation also the
asymptotic response time δ∞ as a free parameter, we obtain a codimension-one curve in the original system parameters.
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Temporal dissipative solitons in the Morris–Lecar model with time-delayed feedback 7

FIGURE 7. Stability region (blue) and bifurcation curves (coloured) of the single pulse soliton in the DDE
system κ = 0.2 and bifurcations of the ODE system κ = 0 (black) with SNSL point in the (El ,V4)-
parameter plane, cf schematic picture in Fig. 3. Other parameters as in Fig. 1.

FIGURE 8. Branches of single pulse solutions for varying parameter V4. (a) – For El =−0.4, unfolding
of Bykov T -point (red dot) with the saddle equilibrium of saddle focus type and fold point (magenta). (b)
– For El =−0.36 Bykov T -point (red dot) with simple saddle. Other parameters as in Fig. 1.

At the red point located on this branch in Fig. 7, the saddle equilibrium has a double eigenvalue in the linearized profile
equation and changes from a simple saddle (two real leading eigenvalues) to a saddle focus (one complex conjugate pair
and one real leading eigenvalue). Qualitatively, this changes the unfolding of the T -point, see Fig. 8: In the case of real
leading eigenvalues, the branch of homoclinics displays a kink at the T-point, see panel (b). In the case where the saddle
equilibrium is of saddle-focus type, the branch has a spiraling shape and undergoes a sequence of folds (see panel (a))
before hitting the T -point in the center of the spiral. Hence, beyond this degenerate Bykov T-point the stability boundary of
the soliton is given by a fold of solitons (magenta curve in Fig. 7). Along this fold curve, the manifold of homoclinic solutions
of the profile equation is folded with respect to the parameter δ∞.

In the interior of the stability region there is the heteroclinic orbit flip (black dotted line) of the system without feedback. It is
accompanied by a homoclinic orbit flip of the system with feedback (blue curve), which is computed by a continuation of a
connecting orbit with the corresponding asymptotic behavior in the profile equation.
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FIGURE 9. Homoclinic orbit flip in the profile equation. The different choices of parameter V4 in panels
(a)–(c) represent the situation before, directly at, and after the orbit flip, respectivley. Stable, saddle
and unstable equilibrium are indicated by black dot, cross, and circle, respectively. Projection of leading
stable eigendirection of stable equilibrium indicated with single arrow, of strong stable eigendirection
indicated with double arrow. Other parameters as in Fig. 1.

3. HOMOCLINIC ORBIT FLIP INDUCES PULSE PACKAGES

Figure 9 depicts the phase portraits of the homoclinics before the flip (panel (a)), directly at the flip, when the homo-
clinic passes through the strong stable eigendirection of the equilibrium (b), and after the flip, when the homoclinic orbit
approaches its saddle again along the corresponding leading eigendirection, but now from the other side (c). The corre-
sponding stable eigendirections, indicated by the black arrows, are the eigenfunctions of the linear delay operator, projected
to the (V,w)-plane. For t →−∞ the homoclinic approaches the equilibrium along an unstable eigenfunction, which cannot
be shown properly in this projection.

In contrast to the heteroclinc orbit flip, shown for the ODE without feedback in Fig. 4, the homoclinic orbit flip is a
codimension-two phenomenon [30] and for its continuation as a DDE connecting orbit (blue curve in Fig. 7) we have
to use the parameters V4, El , and δ . Recall that the corresponding branches of periodic orbits for panel (a) and (c) have
been shown in Fig. 6. Note that the branch corresponding to V4 = 0.06 (magenta in panel (a)) has a fold of limit cycles.
At the homoclinic orbit flip, this fold collides with the homoclinic bifurcation and disappears. Indeed, according to general
homoclinic bifurcation theory, see e.g. the review by Homburg & Sandstede [15] and references therein, there can be addi-
tional codimension-1 bifurcations, emanating from a homoclinic orbit flip. In the situation given here, the orbit flip generates
infinitely many branches of N-homoclincs. They come together with a period doubling and resonant Neimark-Sacker bi-
furcations of the accompanying periodic orbits with large period, which are relevant for the multi-pulse solutions, shown in
Fig. 1. Applying the reappearance rule (6) with k > 1 to the soliton solution with a single pulse (k = 1), we obtain multi-
pulse solutions with several equidistant pulses within one delay interval. For these solutions each pulse is not triggered by
the directly preceding pulse, but by the k-th preceding pulse, which in this case has the distance close to τ . Note that for
a stable soliton, the corresponding equidistant multi-pulse solutions can be stable or unstable, in particular depending on
the stability with respect to their relative distance. At the other hand, the N-homoclincs in the profile equation, correspond
to soliton solutions with a single localized pulse package and can formally be treated analogously to single-pulse solitons.

In Fig. 10 we show branches of multi-pulse solutions obtained from numerical continuations with varying parameter V4,
crossing the orbit flip bifurcation. The stability of the branch of single pulse solutions is not affected by the orbit flip. As
we have already demonstrated in Fig. 1, in the parameter region above the orbit flip (blue region in Fig. 3) the equidistant
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Temporal dissipative solitons in the Morris–Lecar model with time-delayed feedback 9

FIGURE 10. Homoclinic orbit flip along the branch of single pulse solitons (green curves) induces bi-
furcations along the branches of multi-pulse solutions (curves of other colours). For V4 > Vf lip the
equidistant multi-pulse solutions are stable. For V4 <Vf lip the equidistant multi-pulse solutions are un-
stable (dashed curves) and stable non-equidistant multi-pulse solutions bifurcate (solid curves). Along
the branch they turn into pulse packages with decreasing spacing of the pulses (see insets). The quan-
tities Nx0 and Nh, used in panels (a) and (b) are given in (7) and (8), respectively. Other parameters as
in Fig. 1.

multi-pulse solutions turn out to be stable. Directly at the orbit flip they lose their stability and branches of stable non-
equidistant multi-pulse solutions bifurcate. For the double pulse, this is a period doubling bifurcation, while it is a resonant
Neimark-Sacker bifurcation for k > 2. Along the branch, these pulse packages are getting packed more and more closely,
see insets in Fig. 10. In panels (a) and (b), we used two different distance measures to display the branches. With

(7) Nx0 = ||h− x0||2L2

we measure the L2-distance of a solution profile h to the background equilibrium x0. In this way, each k-pulse solution
appears as a different branch and also the increasing distance between the unstable equidistant pulses (dashed) and the
corresponding stable pulse package becomes visible. In panel (b) we use instead the distance

(8) Nh = ||h−hV f lip ||L2 ,

of a solution profile h to the corresponding profile with k equidistant pulses from the orbit flip. This shows that, for large
delay, when becoming equidistant, the shapes of all pulses for all different k become equal and all k-pulse packages
bifurcate at the critical value at V4 = Vf lip from the profile corresponding to the degenerate homoclinic. all together, this
implies the coexistence of stable equidistant k-solitons for V4 > Vf lip and stable k-pulse packages for V4 < Vf lip in the
large delay DDE.

For large but finite values of the delay τ the infinite number of bifurcating N-homoclinic solutions, predicted by the ho-
moclinic theory, turns into a finite number of multi-pulse solutions up to the possible number of pulses that can be ac-
commodated within the delay interval. A similiar scenario of multi-pulse solutions where the number of pulses gradually
increases with increasing delay has been presented in a detailed bifurcation analysis of the Yamada model with delayed
feedback [38, 39]. Treating the delay as the main bifurcation parameter and using classical numerical bifurcation analysis,
their approach is restricted to moderate values of τ and gives a detailed picture of the effects caused by the finite delay
and the changing number of admissible pulses for varying delay.
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4. CONCLUSION

We demonstrated how complicated dynamics of TDSs in systems with time delay can be analyzed in the framework of the
profile equation by means of homoclinic bifurcation theory. The approach via the profile equation is similar to the ßpatial
dynamicsäpproach, which has been widely used to study pulse and also wave solutions in spatially extended systems, see
e.g. Ref. [18], and adds a new chapter to the relationship between delayed and spatially extended systems [10]. The profile
equation is of advanced type, which resembles the causality within the original large delay DDE, and the finite advanced
time shift removes the singular nature of the limit of large delay. This equation is also extremely useful for the numerical
treatment and bifurcation analysis, which can become numerically difficult in the original systems with the large delay. Note
that not only the homoclinics, calculated in this way, can serve as approximations of the soliton solutions and reproduce
the bifurcation structure. In fact, the large period periodic orbits that come along with the homoclinics in the profile equation
exactly reproduce soliton solutions for large but finite delay. As in the case of the spatial dynamics, the stability properties
of solutions with respect to the linearized profile equation are different from those of the soliton in the linearized original
large delay DDE. The relation between specific homoclinic bifurcations and the corresponding bifurcations and instabilities
of the TDSs is not straight forward. In particular, the specific role of the response time δ as an additional parameter in the
profile equation has to be considered carefully.

The scenario of a homoclinic orbit flip, which we studied here in detail, leads to pulse packages, sometimes also called
"bound states", without oscillatory tails of the profiles. The coexistence of such stable pulse packages with an increasing
number of pulses reminds of the homoclinic snaking scenario, which has been studied extensively in the context of spatially
extended systems [3]. Here, however, the pulse packages are not organized on a single snaking branch where pulses are
added in the course of subsequent foldings. Instead, the stable pulse packages emerge from equidistant pulses at the
homoclinic orbit flip and disappear by the collision of their profile with another unstable equilibrium in a Bykov T -point,
which induces a destabilization. Beyond this stability boundary, we observe that the pulse package solutions display a
trailing edge instability that induces the subsequent generation of additional pulses until a uniformly pulsating solution is
reached, see Fig. 2 (b).

It turns out that for small feedback strength, the bifurcations leading to different types of excitability in the Morris–Lecar
model, can be directly related to the dynamics of the solitons and multi-pulse solutions. For larger feedback strength or
feedback including also the activation variable w one might expect other and more complicated dynamical scenarios.
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