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Volume exclusion effects in perovskite charge transport
modeling

Dilara Abdel, Nicola E. Courtier, Patricio Farrell

Abstract

Due to their flexible material properties, perovskite materials are a promising candidate for
many semiconductor devices such as lasers, memristors, LEDs and solar cells. For example,
perovskite-based solar cells have recently become one of the fastest growing photovoltaic tech-
nologies. Unfortunately, perovskite devices are far from commercialization due to challenges such
as fast degradation. Mathematical models can be used as tools to explain the behavior of such
devices, for example drift-diffusion equations portray the ionic and electric motion in perovskites.
In this work, we take volume exclusion effects on ion migration within a perovskite crystal lat-
tice into account. This results in the formulation of two different ionic current densities for such a
drift-diffusion model – treating either the mobility or the diffusivity as density-dependent while the
other quantity remains constant. The influence of incorporating each current density description
into a model for a typical perovskite solar cell configuration is investigated numerically, through
simulations performed using two different open source tools.

1 Introduction

Arguably, only few materials have gained such interest within photovoltaics as perovskites [1]. These
materials show promise for use in applications including lasers, memristors, LEDs and solar cells. Re-
cently, perovskite-silicon tandem cells have become more efficient than high performing single junction
silicon solar cells [2]. However, for the commercialization of perovskite based solar cells a couple of
challenges need to be overcome, especially the fast degradation of such devices. Further, there does
not exist profound knowledge about the exact physical operation mechanisms within such devices.
Thus, adequate models and simulation tools are needed to better understand the device physics.

Figure 1: A perovskite unit cell under idealized conditions (left) and with realistic crystal defects (right).

Perovskites form a class of crystalline solids of the form ABX3 with two cations A, B and an anion X
which are not fixed to the crystalline lattice. To be more precise, crystal defects occur that dynami-
cally appear and reappear. They leave void spaces, called vacancies, within the crystal which can be
occupied by the migrating ions, visualized in the right unit cell in Figure 1. This continually changing
crystalline structure affects the electric charge carriers and cannot be neglected. In perovskites, the
movement of numerous negatively charged anions has a strong influence on the transport of charge.
The inclusion of ion migration can be investigated using different model approaches, for example by
atomistic Density Functional Theory (DFT) calculations [3, 4], equivalent circuit models [5, 6] or charge
transport modeling with drift-diffusion equations resulting in a system of partial differential equations.
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The latter approach is the most convenient one concerning the computational cost while still maintain-
ing a direct connection of the output to the device physics. Initial charge transport models incorporating
ionic movement for perovskite solar cells (PSCs) such as [7–9] were formulated, but ignored the fi-
nite size of ions, meaning the presented models did not bound the density of available lattice within a
perovskite crystal. Later, models were introduced tackling this issue advocating for a nonlinear diffu-
sion current density for ionic charge carriers [10, 11] or for linear diffusion but a modified drift current
density [12]. To the best of our knowledge, the two approaches were not compared yet and their in-
fluence on a perovskite charge transport model was not assessed. The remainder of this paper is
organized as follows: in Section 2 the model describing charge transport in perovskites will be intro-
duced and discussed. Afterwards, in Section 3 volume exclusion effects and their thermodynamically
consistent inclusion into the model will be presented. This results in two different formulations of the
ionic current density: treating either the mobility or the diffusivity as density-dependent while the other
quantity remains constant. Then, in Section 4 the influence of both current density descriptions on a
PSC configuration will be numerically discussed. Finally, we conclude in Section 5.

2 Model Equations

Let the domain Ω ⊂ Rd, d ∈ {1, 2, 3}, correspond to a perovskite material, which usually forms a
subdomain of a full device architecture and let α denote a moving charge carrier (electrons n, holes
p or anion vacancies a). Further, we define the corresponding density as nα and ψ as the electric
potential. Then, the carriers’ movement can be described by [10, 13]

−∇ · (εs∇ψ(x, t)) =
∑

α∈{n,p,a}

zαq (nα(x, t)− Cα(x)) , x ∈ Ω, t ≥ 0, (1a)

zαq∂tnα(x, t) +∇ · jα(x, t) = zαqrα(x, t), x ∈ Ω, t ≥ 0. (1b)

Here, εs denotes the dielectric permittivity given as the product of the relative material permittivity and
the vacuum dielectric constant, q denotes the elementary charge and zα the charge number which
is for electrons and holes zn = −1, zp = 1 and for anion vacancies za = 1. Further, the donor
and acceptor doping is given by Cn, Cp whereas the mean vacancy concentration is given by Ca.
A reaction/generation mechanism can be described by a rate rα. For example, the sum total of bulk
recombination mechanisms R and an external photo-generation G can be applied to both electrons
and holes, i.e. rn = rp = G(x) − R(nn(x, t), np(x, t)). For the anion vacancies, we may assume
ra = 0. Finally, the motion of charge carriers is described by the current density jα. Note that the
set of unknowns can be given either in terms of the electric potential ψ and the densities of moving
carriers nα, α = n, p, a, or in terms of (ψ, ϕn, ϕp, ϕa), where ϕα denotes the respective quasi Fermi
potentials. These potentials are linked to the charge carrier densities via the state equation

nα = NαFα
(
ηα(ψ, ϕα)

)
, ηα = zα

q(ϕα − ψ) + Eα
kBT

, α = n, p, a, (2)

whereNn, Np are the effective conduction and valence band density of states andEn, Ep the conduc-
tion and valence band-edge energies. Further, Na is the maximum ion vacancy concentration and Ea
the formation energy. The parameter kB refers to the Boltzmann constant and T to the temperature.
We call the function Fα, which relates the carrier densities to the respective quasi Fermi potentials,
the statistics function. For non-degenerate semiconductors the statistics function for electric charge
carriers is an exponential, but in general, in the degenerate case, it is given by an integral equation,
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corresponding to the Fermi-Dirac integral of order 1/2 (inorganic semiconductor) or the Gauss-Fermi
integral (organic semiconductor). For electrons and holes, the perovskite model (1) is supplemented
with the following current density descriptions

jn = −qzn
(
Dn∇nn + znµnnn∇ψ

)
, jp = −qzp

(
Dp∇np + zpµpnp∇ψ

)
, (3)

where the diffusion coefficients Dn, Dp and the mobilities µn, µp, are related via the generalized
Einstein relation [10]

Dα = µαUTgα

(
nα
Nα

)
, gα

(
nα
Nα

)
=
nα
Nα

(F−1α )′
(
nα
Nα

)
, α = n, p, (4)

where UT is the thermal voltage and gα the diffusion enhancement. When modeling non-degenerate
semiconductors we have gn = gp = 1with constant mobilities and diffusion coefficients, but in general
it holds that gn, gp ≥ 1. Finally, to discuss physically meaningful current density descriptions for anion
vacancies, volume exclusion effects need to be discussed. Note that, the model is supplemented with
homogeneous (no-flux) Neumann boundary conditions for the anion vacancies as well as suitable
initial and boundary conditions for all species.

3 Volume exclusion effects

In the fields of electrolytes and battery modeling, the need to take the finite size of ions into account is
already established [14–16]. To be consistent with non-equilibrium thermodynamics the finite density
of available lattice sites within a perovskite crystal needs to be reflected by the charge transport model.
It is common to refer to this phenomenon as volume exclusion effects, excluded-volume effects, steric
effects or limiting ion depletion. Within our framework, this can be incorporated implicitly by limiting
the vacancy density saturation. Figure 2 visualizes the density of ions and of ion vacancies within the

Figure 2: Development of the ion density (red) and the ion vacancy density (red) within two different
perovskite crystal unit cell configurations.

two possible perovskite unit cell configurations illustrated in Figure 1. The red area corresponds to an
idealized unit cell with no vacancies (green curve) and an ion density (red curve) equal to the ideal
ion density of the unit cell. Contrarily, the green area shows the densities for a unit cell with defects.
Bounding in this case the vacancy density from above, implies the existence of a lower bound for
the ion density. To include this effect in a thermodynamically consistent manner, we use a statistical
relation as in (2) for the anion vacancies given by the Fermi-Dirac integral of order −1

na = NaFa
(
ηa(ψ, ϕa)

)
=

Na

exp(−ηa) + 1
, ηa =

q(ϕa − ψ) + Ea
kBT

. (5)
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Note that ϕa is frequently called the electrochemical potential, but to be consistent with semiconductor
theory, we refer to it as a quasi Fermi potential. Now, possible descriptions for the ion vacancy current
density ja can be discussed. We start from this formulation

ja = −qµaz2ana∇ϕa,

showing the proportionality of the charge carrier current density to its thermodynamic driving force –
the negative gradient of the quasi Fermi potential. For diffusion on a lattice, the generalized Einstein
relation between the diffusion coefficient and mobility of the anion vacancies likewise holds [15]

Da = µaUTga

(
na
Na

)
, ga

(
na
Na

)
=

1

1− na

Na

, (6)

where ga is sometimes called the activity coefficient instead of diffusion enhancement. Whether we
assume now a constant mobility or a constant diffusivity results in two different drift-diffusion current
density descriptions.

Nonlinear diffusion. On the one hand, to be consistent with the electron and hole flux descriptions
we can assume a constant mobility µa = µa, apply the generalized Einstein relation (6) and make
use of the state equation (5) such that the current density comprises nonlinear diffusion [10]

ja,diff = −qzaµaUT
(
ga

(
na
Na

)
∇na +

za
UT

na∇ψ
)
. (7)

Modified drift. On the other hand, a constant diffusion coefficient Da = Da, called the chemical
diffusivity, allows us to express the mobility in terms of the activity coefficient ga. This leads to a
current density expression with linear diffusion but with a modified drift term [12, 15]

ja,drift = −qzaDa

∇na + za

UTga

(
na

Na

)na∇ψ
 . (8)

Note that both current densities, (7) and (8), lead to two different charge transport models which have
the same steady state solution due to the homogeneous Neumann boundary condition. To the best of
our knowledge, there does not exist a work where the influence of both current density descriptions
on the charge transport model behavior for perovskites was compared and investigated. Thus, in the
following we look closer at the numerical performances of the two current densities introduced in (7)
and (8).

4 Numerical simulation of a PSC device

In this section, we simulate a three-layer PSC device, where the perovskite is sandwiched between
two doped non-perovskite semiconductor transport layers. To be more precise, MAPI is used as the
perovskite material, while PCBM is chosen for the electron and PEDOT:PSS for the hole transport
layer. A schematic of the device architecture is shown in Figure 3. Note that anion vacancies move
solely within the perovskite (red area), whereas electrons, holes and the electric potential are defined
across the whole device.

DOI 10.20347/WIAS.PREPRINT.2965 Berlin 2022



Volume exclusion effects in perovskite charge transport modeling 5

Figure 3: Schematic diagram of the simulated device configuration with ohmic contacts. The electron
transport layer (blue) is given by PCBM, whereas for the hole transport layer (red) PEDOT:PSS is
used.

Designing the benchmark. Let us introduce the dimensionless scaling factor

ε =
Ca
Na

=
average anion vacancy density

maximum anion vacancy density
,

where Ca is incorporated into the model via the right-hand side of the Poisson equation (1a) and Na

is a model parameter in the state equation (5). If ε tends to zero, then we neglect the finite size of ions,
resulting in a Boltzmann relation between na and ϕa (meaning Fa ≈ exp). Contrarily, if ε = 1, then
ionic movement is suppressed and, thus, the model reduces to the classical van Roosbroeck system.
The precise choice of ε is strongly dependent on the perovskite material and may be calculated by
DFT calculations as performed by [17]. Given sufficient relaxation time, a charge transport model of the
form (1) on a domain as depicted in Figure 3 based on either (7) or (8) results in the same steady state
solution. Thus, of special interest is the simulation of current-voltage (J-V) scan protocols, where the
model is far from an equilibrium state. For this, we simulate a linear J-V scan protocol with a scan rate
of 40mV/s for an applied bias between 0V and 1.2V. This implies that the scan ends at t = 30s. Note,
that during the scan the outer boundary conditions for the ohmic contacts vary with time and the steady
state is not reached. The simulations were performed in one dimension and the chosen parameters
can be found in Table 1. We choose µa = 1× 10−10cm2/(Vs) and Da = 2.59× 10−12cm2/s.

Physical quantity symbol value unit

PCBM perovskite PEDOT:PSS

Layer thickness 8.5× 10−6 3.0× 10−5 3.0× 10−6 cm

Relative permittivity 3 23 4

Conduction band-edge energy En −3.8 −3.8 −3.0 eV

Valence band-edge energy Ep −6.2 −5.4 −5.1 eV

Eff. conduction band DoS Nn 1× 1019 1× 1019 1× 1020 cm−3

Eff. valence band DoS Np 1× 1019 1× 1019 1× 1020 cm−3

Mean anion vacancy density Ca – 1.0× 1018 – cm−3

Doping density Cn 2.09× 1018 0.0 0.0 cm−3

Doping density Cp 0.0 0.0 2.09× 1018 cm−3

Electron mobility µn 1× 10−3 20 0.1 cm2/(Vs)

Hole mobility µp 1× 10−3 20 0.1 cm2/(Vs)

Radiative recombination coeff. 0.0 3.6× 10−12 0.0 cm3/s

SRH lifetimes (electrons & holes) 1.0× 10100 1.0× 10−7 1.0× 10100 s

SRH trap energy −5.0 −4.6 −4.05 eV

Table 1: Parameter values at a temperature T = 300K from [11]. SRH denotes Shockley-Read-Hall
recombination.
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To simulate the PSC device, we make use of two open source tools Ionmonger [8, 13] and
ChargeTransport.jl [18, 19]. While ChargeTransport.jl uses a finite volume method
for the spatial discretization implemented in Julia, Ionmonger is based on a finite element method
written in Matlab. The same non-uniform grid spacing as introduced by [13] is used, whereas a uni-
form time mesh is utilized in ChargeTransport.jl and an adaptive one in IonMonger. To
primarily focus on the impact of the different current density descriptions, other effects such as photo-
generation and surface recombination are neglected in the simulations.

Electric potential and vacancy density profiles. Figure 4 shows the evolution of the electric poten-
tial within the perovskite layer (area shaded in red). Additionally, the evolution of the vacancy density
in the vicinity of each perovskite/transport layer interface is depicted in Figure 5. Both profiles are vi-
sualized for a model based on the nonlinear diffusion current density (7) and a model based on the
modified drift current (8) for two choices of ε reflecting low and high volume exclusion. The colored
lines correspond to a solution calculated with ChargeTransport.jl whereas the black dotted
lines indicate respective solutions calculated with Ionmonger. Brighter colors indicate later time.
First, note that both software tools based on different discretization techniques yield near-identical re-
sults. Hence, we can compare the impact of the different current density descriptions independent of
the numerical method.

nonlinear diffusion, ε = 0.01 modified drift, ε = 0.01

nonlinear diffusion, ε = 0.9
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Figure 4: Evolution of the electric potential ψ in the perovskite layer solving the model (1) based on
the nonlinear diffusion current density (7) (first column) and for the model based on the modified drift
current (8) (second column). The first row shows the case of ε = 0.01 (low exclusion,Ea = −4.66eV)
and the second row of ε = 0.9 (high exclusion, Ea = −4.16eV). The arrows indicate the direction of
increasing time.
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Not surprisingly, for ε = 0.01 no difference in the electrostatic potential evolution (Figure 4, first row)
and in the vacancy density profiles (Figure 5, top set of four) can be observed. Contrarily for high
volume exclusion, i.e. larger ε, the modified drift current density (8) causes a slower decrease of the
ion density at the right perovskite interface (Figure 5, second set of rows).

nonlinear diffusion, ε = 0.01 modified drift, ε = 0.01

nonlinear diffusion, ε = 0.9 modified drift, ε = 0.9

Figure 5: Evolution of the vacancy density na at the left and right perovskite/transport layer interface
for the model based on the nonlinear diffusion current (7) (first column) and for a model based on the
modified drift current (8) (second column). The first set of rows shows the case of ε = 0.01 (Ea =
−4.66eV) and the second set of rows (below the line) corresponds to ε = 0.9 (Ea = −4.16eV). The
arrows indicate the direction of increasing time. No differences can be observed in the case of low
exclusion, whereas a slower evolution of the ion profile can be observed in the case of high exclusion
and a modified drift current density.

This can be seen from the electric potential gradients remaining larger for the modified drift approach
for larger times such as t = 24 s and t = 30 s in Figure 4 (second row). Furthermore, Figure 6 shows
that the difference in the calculated electric potentials, i.e. ψdrift − ψdiff, is approximately two orders
of magnitude larger for high volume exclusion. Even though the difference in the electric potentials
(Figure 6) behaves similarly for all depicted times t, Figure 7 indicates in the case of high excluded-
volume effects the difference in the vacancy density at the end time t = 30s is comparably large. This
trend can be likewise observed for different choices of ε in Figure 8, where the L∞ error between the
calculated electric potentials and the vacancy densities with respect to ε are depicted. Both L∞ errors
are increasing with higher effects of excluded-volume for all visualized times t > 0. It seems that the
difference in the vacancy densities becomes most visible for larger times and larger ε (Figure 8, right)
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and increases the most for the end time t = 30s. Note that the end time here does not refer to a
steady state, but to the end time of the scan protocol. Thus, we can conclude that in the case of high
volume exclusion the time scales of converging towards a steady state for a model based on either
nonlinear diffusion or on a modified drift current density are diverging.
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Figure 6: Difference between calculated electrostatic potentials depicted in Figure 4 based on either a
modified drift or a nonlinear diffusion approach, i.e. the error ψdrift − ψdiff is shown for ε = 0.01 (left)
and ε = 0.9 (right). The scale of the y-axes differs by two orders of magnitudes.

Figure 7: Difference between calculated vacancy densities depicted in Figure 5 based on either a
modified drift or a nonlinear diffusion approach scaled by the average vacancy density for ε = 0.01
(left) and ε = 0.9 (right). The scale of the y-axes differs by two orders of magnitudes.
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Figure 8: L∞ error between the electric potentials (left) and the vacancy densities (right) from a model
based on either a nonlinear diffusion or a modified drift current density for variations of ε.
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Current-voltage curves. Lastly, the influence of the different current density descriptions on J-V
curves (simulated in the dark) is investigated in Figure 9 and Figure 10. Again, colored curves cor-
respond to solutions calculated with ChargeTransport.jl, while black dotted lines are the
solutions received when using IonMonger. Brighter colors indicate higher volume exclusion which
is reflected in the choice of ε. First, both approaches reveal in Figure 9 that the larger the choice for ε,
the more the respective J-V curve is shifted to the left, i.e. the higher the recombination rate. Second,
when employing the modified drift approach a greater change in the J-V curves with respect to the dif-
ference between the smallest and largest ε can be noticed (see Figure 9). Third, for the model based
on the modified drift current density, the impact of volume exclusion becomes observable in the J-V
curves at a smaller value of ε.

Figure 9: Current-voltage curves for nonlinear diffusion (left) and modified drift (right) for variations of
ε. The arrows indicate the direction of increasing ε. For larger values of ε the diode opens earlier.

The trends in the recombination current can be explained, as in [20], in terms of the distribution of the
electric potential across the cell. In this model, the dominant form of recombination is hole-limited bulk
SRH recombination. At earlier times (t = 0 and t = 9s in Figure 4), large positive electric fields keep
holes and electrons apart. However, at later times (t = 24 and t = 30s), we observe that the electric
field at the perovskite/HTL interface decreases for increasing ε.
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Figure 10: Simulated current-voltage curves for nonlinear diffusion (left) and modified drift (right) for
variations of ε in comparison with measurement curves from [7].

Smaller positive fields/larger negative fields allow a greater number of holes from the transport layer
to enter the perovskite, leading to increased recombination and higher currents, as shown in Figure

DOI 10.20347/WIAS.PREPRINT.2965 Berlin 2022



D. Abdel, N. E. Courtier, P. Farrell 10

9. For the modified drift current density, at large ε, a negative electric field also emerges across the
bulk of the perovskite due to the slower migration of ions (see Figure 5, second set of rows), which
further enhances the rate of recombination. In Figure 10, the simulated J-V curves are compared to
the measured curves from [7] for the same device set-up as illustrated in Figure 3. Now, one may
argue that the difference between either nonlinear diffusion or modified drift current density may be
minor. But, for the sake of simplicity, other effects such as surface mechanisms were entirely neglected
in this study. Additional physical effects may exhibit different behavior depending on whether a charge
transport model is based on nonlinear diffusion or modified drift current densities. Thus, it is important
to develop the capabilities to investigate the underlying ion migration mechanism in order to formulate
accurate device models.

5 Summary and Outlook

For a perovskite charge transport model we discussed how to properly include volume exclusion ef-
fects via the statistics function in the case of migrating ionic charge carriers. This study provides in
two possible current density descriptions: nonlinear diffusion (7) and a modified drift (8). Both descrip-
tions recover special cases of the charge transport model in the limit of ignoring the finite size of ions
or suppressing ionic movement. Further, the models based on both current density descriptions con-
verge towards the same steady solution. In numerical simulations, the influence of both descriptions
on the internal states and on the current-voltage behavior of a three-layer PSC configuration was in-
vestigated. The simulations were performed with two different open source tools based on different
numerical methods of solution, yielding near-identical results. In the case of high exclusion, the modi-
fied drift current leads to a slower evolution of the ion profile. This reveals a greater influence of volume
exclusion effects on model predictions based on a modified drift current density description. Studying
the impact of these approaches for a generalized charge transport model including further physically
meaningful mechanisms is of interest in the future. Also, studying the impact on the performance of
alternative device architectures based on other perovskite and transport layer materials can be a topic
of future research. Finally, the parameter sensitivity of other physical quantities such as band-edge
energies or the dielectric permittivity was neglected even though they have an impact on the electric
potential and thus on the vacancy density behavior. This could also be investigated in a continuation
of this work.
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