
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Impact of viscosity modeling on the simulation of aortic blood

flow

Sarah Katz1, Alfonso Caiazzo1, Volker John1,2

submitted: 24th October 2022

1 Weierstraß-Institut
Mohrenstr. 39
10117 Berlin
E-Mail: sarah.katz@wias-berlin.de

alfonso.caiazzzo@wias-berlin.de
volker.john@wias-berlin.de

2 Freie Universität Berlin
Arnimallee 6
14195 Berlin

No. 2963

Berlin 2022

2020 Mathematics Subject Classification. 76A05, 76-10, 76M10.

Key words and phrases. Computational hemodynamics, finite element method, viscosity modeling, non-Newtonian fluids,
turbulence modeling.

The work of S. Katz has been supported by the Deutsche Forschungsgemeinschaft (DFG) within the RTG 2433 Differ-
ential Equation- and Data-driven Models in Life Sciences and Fluid Dynamics (DAEDALUS). The geometry and the time-
averaged flow data were provided by Prof. Dr. L. Goubergrits & J. Brüning, Institute of Computer-assisted Cardiovascular
Medicine, Charité – Universitätsmedizin Berlin.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


Impact of viscosity modeling on the simulation of aortic blood
flow

Sarah Katz, Alfonso Caiazzo, Volker John

Abstract

Modeling issues for the simulation of blood flow in an aortic coarctation are studied in this
paper. From the physical point of view, several viscosity models for non-Newtonian fluids as well
as a Newtonian fluid model will be considered. From the numerical point of view, two different tur-
bulence models are utilized in the simulations. The impact of both, the physical and the numerical
modeling, on clinically relevant biomarkers is investigated and compared.

1 Introduction

The severity of heart diseases can be assessed by several biomarkers. For instance, the most relevant
clinical parameter for coarctation of the aorta is the trans-stenotic pressure difference. However, this
quantity can be measured directly only by an invasive catheterization. Medical imaging, e.g., cardiac
MRI, is a pillar of clinical diagnostic techniques and can give valuable information [1]. Nevertheless the
resolution of the images is not always sufficient to determine all desired biomarkers with the required
accuracy. To this end, numerical simulations are an indispensable tool for supporting available data
with predictions for clinically relevant quantities of interest, e.g., see [2, 3].

This paper will continue the study of turbulent blood flow simulations through a stenotic aorta begun
in [4]. For simulating a complex process, several decisions on the physical and numerical modeling
have to be made. Two aspects to be taken into account for blood flow simulations are as follows.
First, blood is certainly a non-Newtonian fluid, such that using a Newtonian model, as in [4], is only an
approximation. Second, the aorta is certainly not a rigid body, such that neglecting the fluid-structure
interactions of the flow and the wall of the aorta, as in [4], is a simplifying modeling approach. The
impact of such simplifications on the quantities of interest is a question of central concern. This
question will be studied in the present paper for the first aspect. To this end, several viscosity models
leading to non-Newtonian fluids, as previously applied to blood flow simulations in [5, 6, 7, 8, 9], will
be studied for the flow in an aortic coarctation.

Having fixed the model for the physical process, a numerical model has to be applied for the simulation.
In the simplest case, a standard discretization, e.g., a Galerkin finite element method in space, is
sufficient. However, the flow in larger blood vessels such as the aorta is turbulent. Most of the small
flow scales cannot be represented on affordable grids and their impact on the resolved scales has to
be modeled via a turbulence model. The impact of different turbulence models on clinically relevant
biomarkers, in the context of a Newtonian fluid model, is investigated in [4]. As shown in this paper,
the turbulence models can be classified in two main groups, depending on the amount of numerical
viscosity introduced by the model. In the present paper, one model from each group is considered.
With this setup, it will be studied whether the viscosity modeling or the turbulence modeling possess
a larger impact on the prediction of the biomarkers.
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Figure 1: Left: Sketch of the computational domain, representing a segment of the aorta, and the
corresponding decomposition of the boundary. Center and right: Surface mesh T , and zoom on the
inlet boundary Γin.

The paper is organized as follows. Section 2 describes the physical and numerical modeling, provid-
ing in particular details to the used viscosity models and turbulence models. The clinically relevant
quantities of interest, which are monitored in the simulations, are explained in Section 3. Section 4
presents the results of our numerical simulations, which are summarized in Section 5.

2 Modeling

This section introduces the governing continuous and discrete equations considered for the aortic
blood flow, in particular focusing on the different models for the viscosity, the applied discretizations in
time and space as well as the considered turbulence models.

2.1 Blood Flow Modeling

Figure 1 (left) depicts the computational domain Ω ⊂ R3, representing a piece of a patient’s aorta
segmented from medical imaging. See [4] for more details on the acquisition of the data. The inlet Γin

was chosen immediately above the sinotubular junction; the positions of the outlets are, in order:

Γout,1: about 25 mm along the brachiocephalic artery, prior to its division into the right subclavian
and right common carotid arteries,

Γout,2: about 25 mm along the left common carotid artery,

Γout,3: about 30 mm along the left subclavian artery, and

Γout,4: the descending aorta at the level of the left ventricular apex.

The total length of the considered aorta segment is roughly 25 cm.

We model the blood flow in Ω as an incompressible, generalized Newtonian fluid, whose dynamics is
described by the incompressible Navier–Stokes equations in terms of a velocity fieldu [m/s] : Ω→ R3
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Figure 2: Relative inflow amplitude over time, first two periods.

and a pressure field p [Pa] : Ω→ R satisfying the system of equations

ρ∂tu−∇ · τ + ρ(u · ∇)u+∇p = 0 in (0, T ]× Ω,
∇ · u = 0 in (0, T ]× Ω.

(1)

In (1), T [s] is the final simulation time, ρ = 1060 kg/m3 is the density of blood, and τ = τ (∇u) is
the shear stress, which in a generalized Newtonian fluid depends on the shear rate tensor; see (7) in
Section 2.4.

The maximum diameter of the aorta is D ≈ 0.03 m. A parabolic flow profile through a cylindrical
pipe with diameter D and volumetric flow rate Q = 4.42 m3/s, see Table 1, bottom row, has a peak
velocity of U∗ ≈ 1.25 m/s and, with each of the viscosity models detailed in Section 2.4, a mean
dynamic viscosity on the order of µavg ≈ 5 mPa · s. We can therefore very roughly estimate the peak
Reynolds number of the flow as

Re =
ρDU∗

µavg

≈ 8000.

One expects a moderately turbulent flow, necessitating the use of a suitable turbulence model for the
numerical simulation. As detailed in Section 2.5, we will compare the combination of each viscosity
model with each of two distinct approaches to modeling turbulence.

2.1.1 Initial and Boundary Conditions

We complement (1) with the following initial and boundary conditions:

u(0,x) = 0 in Ω,
u(t,x) = uin(t,x) := a(t)u∗in(x) on [0, T ]× Γin,
u(t,x) = 0 on [0, T ]× Γwall,

(τ − pI)n = −RiQi(t)n+ ρ
2
(u · n)−u on [0, T ]× Γout,i, i = 1, . . . , 4.

(2)

That is:

• we start the simulations from a homogeneous initial velocity field, to avoid more complicated ini-
tialization procedures,
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• we impose the inflow as Dirichlet boundary conditions given by a measured peak inflow profile
u∗in : Γin → R3 multiplied with a smooth amplitude profile a : R → R (plotted in Figure 2) that
provides a warm-up from zero to a periodic pulse; specifically, a(t) = 0 for nonpositive times t,
and a(t+ T0) for all t > t0, where T0 = 1 s and t0 = 0.01 s,
• we impose no-slip boundary conditions on Γwall, and
• we impose directional resistive boundary conditions on Γi, i = 1, . . . , 4.

In the directional resistive boundary conditions (2)4, the additional term ρ
2
(u · n)−u provides sta-

bilization against oscillations that can otherwise arise in the presence of backflow. This approach
was introduced in [10, 11], emerging as a natural way of controlling energy estimates on ∇u. The
other term on the right-hand side is the product of a constant vascular resistance Ri [Pa·s/m3] and the
volumetric outflow

Qi(t) =

∫
Γi

(
u(t, ·) · n

)
dµΓi

through the same outlet, representing a simple lumped model of the downstream circulation beyond
each outlet.

Table 1: Estimated flow rates and corresponding fraction of the inlet flow (absolute value) for each
outlet (see also Figure 1, left) used in the simulations.

Boundary Flow Q∗i [m3/s] Flow fraction outi

Γout,1 (brachiocephalic artery) 7.43 · 10−5 16.81 %

Γout,2 (left common carotid artery) 3.80 · 10−5 8.60 %

Γout,3 (left common subclavian artery) 3.63 · 10−5 8.21 %

Γout,4 (descending aorta) 2.93 · 10−4 66.38 %

Inlet 4.42 · 10−4 100.00 %

The resistances at each outlet, listed in Table 2, are tuned so as to closely match1 the peak outflow
rates listed in Table 1 and achieve a total downstream resistance of 115 MPa·s/m3; see [4] for further
details. This total resistance was chosen close to the middle of the clinical reference range for the
systemic vascular resistance, a zero-dimensional lumped model commonly used to express the overall
relationship between blood flow rate and pressure in the systemic circulation, e.g., see [12]. As shown
in [4], the choice of the downstream resistance, within a range of clinically reasonable values, has
negligible impact on diagnostically relevant flow statistics.

Table 2: Resistances [MPa·s/m3] at each outlet for the considered turbulence models.
Turbulence model R1 R2 R3 R4

σ-model, Cσ = 1.35 709.05 1335.9 1358.1 172.40

RB-VMS, P1/P1 elements, fine mesh 717.03 1333.3 1326.3 172.50

1 Specifically, the relative error in a constant-inflow simulation with constant (Newtonian) viscosity µ = 3.5mPa · s
and a given turbulence model, averaged over a quarter-second of simulated time after a quarter-second of warmup, was
below 10−3 at each outlet.
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2.2 Dimensionless Equations

Dividing (1) and (2) by ρ and using velocity and distance scales U = 1 m/s and L = 1 m, we arrive at
the fully dimensionless form

∂tũ−∇ · τ̃ + (ũ · ∇)ũ+∇p̃ = 0 in (0, T ]× Ω,
∇ · ũ = 0 in (0, T ]× Ω,

(3)

with boundary conditions

ũ(0,x) = 0 in Ω,
ũ(t,x) = ũin(t,x) := a(t)ũ∗in(x) on [0, T ]× Γin,
ũ(t,x) = 0 on [0, T ]× Γwall,

(τ̃ − p̃I)n = −R̃iQ̃i(t)n+ 1
2
(ũ · n)−ũ on [0, T ]× Γout,i, i = 1, . . . , 4.

(4)

Here ũ = 1
U
u, τ̃ = 1

ρU2τ , p̃ = 1
ρU2p, R̃i = UL2

ρ
Ri, Q̃i = 1

UL2Qi denote the dimensionless quanti-
ties. We will slightly abuse notation by not continuing to mark these distinctions on the dimensionless
discretized velocities and pressures uh and ph.

2.3 Spatial and Temporal Discretizations

We discretize (3) in space using a finite element method. Let Th ∈ {T , T ′} be a regular tetrahedral
mesh representing Ω. Let V h ⊂ C(Ω,R3) and Qh ⊂ C(Ω,R) denote continuous piecewise
polynomial spaces on Th, and let

V h,0 = {vh ∈ V h : vh ≡ 0 on Γin ∪ Γwall}

be the subspace of V h with homogeneous Dirichlet boundary conditions on the wall and the inlet
boundary.

Consider the nonlinear form

Gal
(

(uh, ph), (vh, qh)
)

= a(uh,vh) + b(uh;uh,vh)

−(∇ · vh, ph) + (∇ · uh, qh)− f(uh,vh)

with the generally nonlinear viscosity form

a(uh,vh) := (τ̃ (∇uh),D(vh)) with D(vh) =
1

2

(
∇vh + (∇vh)T

)
,

the trilinear convective form

b(uh;vh,wh) :=
(
(uh · ∇)vh,wh

)
,

and the nonlinear boundary form

f(uh,vh) :=
4∑
i=1

(
Pi(uh)n+

1

2
(uh · n)−uh,vh

)
Γout,i

for the directional resistive boundary conditions.
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The continuous-in-time Galerkin discrete formulation of (3) reads: Find (uh, ph) : [0, T ]→ V h×Qh

such that uh ≡ 0 on [0, T ]× Γwall, uh satisfies (4)1, and

(∂tuh,vh) + Gal
(

(uh, ph), (vh, qh)
)

= 0 (5)

for all t ∈ (0, T ) and for all (vh, qh) ∈ V h,0 ×Qh.

To solve (5), or its modifications detailed in Section 2.5, we employ a BDF-2 scheme, an A-stable
second order method. This scheme has the advantage of requiring residuals of only the current time
step. However, it does require the solution at two previous time steps, so the first time iteration is
performed using the backward Euler method.

At each time step, a nonlinear problem in the velocity and pressure must be solved. This is achieved
by Picard iteration: the convective form b, the boundary form f , and the viscosity form a are linearized
using the velocity field ûh computed by the previous step of the iteration:

Ĝal ((uh, ph), (vh, qh)) = â(uh,vh) + b(ûh;uh,vh) (6)

−(∇ · vh, ph) + (∇ · uh, qh)− f(ûh,vh),

where the solution (uh, ph) denotes the next iterate and â is a linearized version of the viscosity
form a in which the effective viscosity is computed from ûh as in (8) below. We provide initial guesses
(ûh, p̂h) for the first iteration by linearly extrapolating from the solutions computed at the two preceding
time steps.

2.4 Viscosity Modeling

Each of the models below is implemented as an isotropic generalized Newtonian fluid - that is, the
shear stress takes the form

τ = µeff(γ̇)γ̇ [Pa], (7)

where
γ̇ = 2D(u) = ∇u+ (∇u)T [s−1]

is the shear rate tensor, and µeff(γ̇) [Pa · s] is a dynamic viscosity that depends on the scalar shear
rate

γ̇ =

√
1

2
‖γ̇‖2

F [s−1] .

Taking the dimensionless effective viscosity νeff = U
Lρ
µeff and the discrete velocity’s shear rate

γ̇h = γ̇h(uh) =
√

2‖D(uh)‖2
F ,

and shear stress
τ h = 2νeff(γ̇h)D(uh),

we can specify the linearized viscosity form in (6):

â(uh,vh) := (2νeff (γ̇h(ûh))D(uh),D(vh)) . (8)

Each model has a number of parameters describing the scale and behavior of the fluid’s viscosity as
shear rate changes, which have been variously fitted to blood viscosity measurements.

DOI 10.20347/WIAS.PREPRINT.2963 Berlin 2022
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2.4.1 Newtonian Fluid

A Newtonian fluid has constant isotropic viscosity, that is

µeff(γ̇) ≡ µ∗,

i.e., independent on the value of γ̇. In our Newtonian simulations we use the value

µ∗ = 3.5 mPa · s,

which is a common choice for Newtonian simulations in large blood vessels (see, e.g. [4, 13, 14, 15]),
and it is close to the viscosity at large shear rates as computed by each non-Newtonian model below.

The simulation results obtained using a Newtonian flow model will be labeled (NEWT).

2.4.2 Power-law Fluid

The simplest commonly used non-Newtonian fluid model assumes a power-law relationship. Rheology
experiments in the early 20th century, e.g., see [16], yielded the observation that, in fluids such as
starch or protein suspensions, the logarithms of shear rate and shear stress are (almost) linearly
related across much of the measurable range, motivating the modeling of viscosity by a power law
relation

µeff(γ̇) = kγ̇n−1 (9)

for γ̇ > 0, with the dimensionless flow behavior index n ∈ R, and the flow consistency index
k [Pa · sn]. Notice that for a shear-thinning fluid (n < 1) the effective viscosity becomes singu-
lar near zero shear rate and vanishes as shear rate increases. In our simulations, we regularize by
cutting off the viscosity:

µeff(γ̇) =

{
max{min{kγ̇n−1, µmax}, µmin} if γ̇ > 0,

µmax if γ̇ = 0.
(10)

Here µmin, µmax [Pa · s] are the smallest and largest viscosity the simulated fluid is allowed to attain.

We use the following values in our simulations:

n = 0.7, k = 0.02 Pa · s0.7,
µmin = 2.2 mPa · s, µmax = 1 kPa · s.

The values for k and n are taken following [5]. The value of µmin is taken from the smallest limiting
viscosity of blood we have encountered in the literature (see Section 2.4.3); µmax is chosen to lie at
the extreme of computational feasibility.

The results of our regularized power-law simulations will be labeled (POW).

2.4.3 Carreau–Yasuda Fluid

In the Carreau–Yasuda model [17] the fluid viscosity obeys the equation

µeff(γ̇) = µ∞ + (µ0 − µ∞)(1 + (λγ̇)a)
n−1
a (11)

DOI 10.20347/WIAS.PREPRINT.2963 Berlin 2022
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with dimensionless power indices n and a, relaxation time λ [s], and limiting viscosities µ∞, µ0 [Pa · s].
The model proposed in [17] is a generalization of the earlier Carreau B model [18], which corresponds
to a = 2 in (11).

The flexibility of this model in describing varying flow behaviors makes it a popular choice for modeling
blood. As the concrete realizations in the literature vary widely, we use three sets of parameters
derived from different measurements:

(CY-0): Following [6]:

n = 0.22, a = 1.25, λ = 1.902 s,
µ∞ = 3.45 mPa · s, µ0 = 56 mPa · s.

(CY-1): Following [7]:

n = 0.392, a = 0.644, λ = 0.11 s,
µ∞ = 2.2 mPa · s, µ0 = 22 mPa · s.

(CY-2): Following [8]:

n = 0.2128, a = 0.64, λ = 8.2 s,
µ∞ = 3.5 mPa · s, µ0 = 160 mPa · s.

2.4.4 Casson Fluid

The Casson fluid model, originally introduced in [19] in the context of modeling printing ink, was soon
applied to blood flow, e.g., in [20], though with particular regard to smaller blood vessels.

The Casson fluid model is notable in that it has nonzero yield stress:

µeff(γ̇) =

(√
τ0

γ̇
+
√
µ∞

)2

(12)

for γ̇ > 0, so that

lim
γ̇→0

µeff(γ̇)γ̇ = τ0.

Here, τ0 [Pa] is the yield stress and µ∞ [Pa · s] is the limiting viscosity at infinite shear rate. Since
this formula again yields a singular value near zero shear rate, we regularize it by imposing an upper
limit, i.e.

µeff(γ̇) =

min

{(√
τ0
γ̇

+
√
µ∞

)2

, µmax

}
if γ̇ > 0,

µmax if γ̇ = 0,
(13)

with a maximum viscosity µmax [Pa · s].
Following [9] for the yield stress and limiting viscosity and using the same maximum viscosity as in
Section 2.4.2, we take

τ0 = 4 mPa, µ∞ = 3.5 mPa · s, µmax = 1 kPa · s .

The simulation results for the Casson model are labelled (CASS).
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Figure 3: Dependency of the viscosity models on the shear rate. Upper left: Effective viscosity
over a large shear rate range. Upper right: Effective viscosity over a smaller range of shear rates
most relevant during simulations. Lower left: Effective shear stress over a large range. Lower right:
Effective shear stress over a smaller range.

2.4.5 Dependency of the Viscosity Models on the Shear Rate

Figure 3 compares the effective viscosities and shear stresses given by each model over a represen-
tative range of shear rates. The right-hand graphs show the range of shear rates most relevant during
our simulations: very slow shear rates below 10 s−1 appear in regions of significant extent only briefly
during the dissipative period at the end of diastole, and very rapid shear rates above 104 s−1 appear
only in small regions around inflection points such as the inner edge of the coarctation.

It is clear that (CY-0), (CY-2), and (CASS) result in fairly similar behaviors in this range, whereas
(CY-1) and (POW) deviate considerably. Indeed, the mid-range behavior of (CY-1) clearly resembles
a power-law fluid with behavior index close to that of (POW) at a slightly different scale.

2.5 Turbulence Modeling

The numerical studies concerning the impact of turbulence modeling in the context of a Newtonian
blood flow model presented in [4] indicate that, based on selected quantities of interest, turbulence
models can be classified in two main groups, depending on the amount of numerical viscosity intro-
duced. One representative of each group was chosen for performing the numerical studies presented
in Section 4, in order to compare the impact of viscosity modeling to that of turbulence modeling. Both
these models belong, in the broadest sense, to the large eddy simulation (LES) family of models in that
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they seek to reproduce flow behavior at feasibly resolvable spatial scales by modeling its interaction
with fine-scale flow structures without explicitly computing these.

Our two models of choice nevertheless represent two different approaches to turbulence modeling:
the σ-model (Section 2.5.1) proceeds from the traditional LES notion of separating scales by applying
a convolutional spatial low-pass filter to the continuous equation (3) and modeling the subgrid-scale
stress tensor to account for interactions between fine and coarse velocity scales. The residual-based
variational multiscale method (Section 2.5.2) begins instead from the variational formulation (5) and
separates the scales explicitly using the finite element discretization. The numerical studies in [4]
showed that the σ-model belongs to a group of turbulence models that introduce comparably little
numerical viscosity, whereas the residual-based variational multiscale method introduces notably more
numerical viscosity.

2.5.1 The σ-model

The σ-model, introduced in [21], is a classical eddy viscosity model, adding to the left-hand side of
(5) an artificial viscosity term representing the loss of energy from the resolved scales to the subgrid
scales:

(∂tuh,vh) + Gal
(

(uh, ph), (vh, qh)
)

+ 2
(
νt(uh)D(uh),D(vh)

)
= 0

with a (pointwise) eddy viscosity νt(uh), which estimates coarse-fine interactions by the behavior of
the resolved velocity field.

In [21], it is postulated based on concerns of practicality and on data from high-fidelity simulations and
experiments that the eddy viscosity νt must

• be computed locally from the gradient of the resolved velocity field and scale with it,
• scale with the cube of the distance from solid boundaries in simple shear flow scenarios,
• vanish in regions of less than three-dimensional flow behavior, and
• vanish in regions of axisymmetric expansion or contraction.

Combining these key requirements with the idea of computing the eddy viscosity from the velocity
gradient’s singular values σ1 ≥ σ2 ≥ σ3 ≥ 0, one arrives at

νt(uh) = (Cσδ)
2σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

.

Here, δ is a local length scale, in our case, twice the shortest edge length of the local tetrahedral cell,
and Cσ is a scaling parameter. Following [21], we use the value Cσ = 1.35.

We use the σ-model with Taylor-Hood (P2/P1) elements on the base mesh T ; for the purpose of the
Picard iteration scheme, νt is computed from the previous iterate ûh.

2.5.2 RB-VMS Model

In [22], a residual-based variational multiscale (RB-VMS) method was developed. A (two-scale) varia-
tional multiscale method separates the solution (ũ, p̃) of (3) into two scales by use of the finite element
discretization:

(ũ, p̃) = (uh, ph) + (u′, p′).

The coarse solution (uh, ph) is then assumed to be uniquely determined by some projection of (ũ, p̃)
onto V h × Qh, and from this starting point a model for the fine scales (u′, p′) and their interaction
with (uh, ph) is developed.

DOI 10.20347/WIAS.PREPRINT.2963 Berlin 2022
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In the case of [22], this involves representing the fine scales by a perturbation series in the norm of the
residuals and approximating the fine-scale Green’s operator by using just the first term of this series,
see also [23] for details. The result, for Newtonian flow (τ h = 2νD(uh) with a constant dimensionless
viscosity ν), is:

u′ ≈ −τmrm(uh, ph) = −τm (∂tuh + (uh · ∇)uh +∇ph − ν∆uh) ,

p′ ≈ −τcrc(uh) = −τc(∇ · uh),

with stabilization parameters τm and τc. A variational formulation is then derived by adding the missing
coarse-fine, fine-coarse and fine-fine terms to (5). Note, however, that:

(i) the second derivatives of uh are generally not well-defined globally. This may be dealt with by
using only values in the interior of each cells or by applying a projection,

(ii) in our case of a generalized Newtonian fluid with a nonconstant dimensionless viscosity νeff

depending on D(uh), the divergence of τ h includes an additional term with first derivatives of
νeff .

We applied the RB-VMS model in combination with continuous piecewise linear (P1/P1) elements.
As νeff is a function of γ̇h, which is a function of first derivatives of the coarse velocity uh, all terms of

∇ · τ h = νeff(γ̇h) (∆uh +∇ (∇ · uh)) + 2νeff
′(γ̇h)∇γ̇hD(uh)

involve second derivatives ofuh. Thus, ifuh is piecewise linear,∇·τ h vanishes when using pointwise
derivatives in the interior of mesh cells.

In our case, therefore, the momentum residual takes the form

rm(uh, ph) = ∂tuh + (uh · ∇)uh +∇ph.

Using integration by parts to avoid derivatives of the residuals and making some additional simplifying
assumptions, see also [24, Rem 8.224], we obtain the following variational problem: find (uh, ph) :
[0, T ]→ V h ×Qh such that

(∂tuh,vh) + Gal ((uh, ph), (vh, qh))

+ τm (rm(uh, ph), (uh · ∇)vh) + τm (rm(uh, ph),∇qh)
+ τc (rc(uh),∇ · vh) + τm

(
rm(uh, ph), (∇vh)Tuh

)
− τ 2

m (rm(uh, ph)⊗ rm(uh, ph),∇vh) = 0

(14)

at all times t ∈ (0, T ] and for all vh ∈ V h,0, qh ∈ Qh.

In (14), the form Gal(·, ·) denotes the terms resulting from the Galerkin discretization of (3) as in (5).
Most of the remaining terms result from the interactions of the coarse and fine scales; the last term
represents fine-fine interactions. As one of the terms couples the momentum residual (which includes
the pressure gradient) with pressure test functions, the resulting systems will include a nonsingular
pressure-pressure block. Consequently, the RB-VMS model does not require inf-sup stable velocity-
pressure pairs.

With the exception of the grad-div term τc (rc(uh),∇ · vh), every additional term in (14) is necessarily
at least quadratic in uh, and the final term is quadratic in ph. Additionally, the stabilization parameters
may depend on the solution. There are therefore various possible approaches for linearizing the
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problem for applying a Picard iteration. Where the stabilization parameters depend on the solution,
they are computed from the previous iterate; the momentum residual rm is linearized as usual by
taking the previous iterate as the convection field:

r̂m(uh, ph) = ∂tuh + (ûh · ∇)uh +∇ph.

With some additional decisions, we obtain the following linearized problem:

(∂tuh,vh) + Ĝal ((uh, ph), (vh, qh))

+ τm (r̂m(uh, ph), (ûh · ∇)vh) + τm (r̂m(uh, ph),∇qh)
+ τc (rc(uh),∇ · vh) + τm

(
r̂m(uh, ph), (∇vh)T ûh

)
− τ 2

m (r̂m(ûh, p̂h)⊗ r̂m(uh, ph),∇vh) = 0,

(15)

where Ĝal(·, ·) denotes the linearization of the Galerkin terms, as in (6). Notice that the time deriva-
tive of the velocity appears in the momentum residual rm (and its linearization r̂m). We shift the
terms involving ∂tuh to the time discretization’s modified mass matrix; ∂tûh is approximated as the
difference quotient

∂tûh ≈
1

∆t
(ûh − uh,prev) ,

where uh,prev is the previous time step’s velocity.

Concerning the choice of the stabilization parameters τm, τc, we again follow [22, Eq.(63), (64)], where
the following values are suggested for equal-order pairs (based on asymptotic scaling arguments):

τm(K,uh) =

(
4

∆t2
+ uh ·Guh + CIν

2(G : G)

)− 1
2

,

τc(K,uh) =
1

τm(K,uh)|g|2
.

(16)

In (16),K denotes the local cell of the tetrahedral finite element mesh,G = G(K) = (∇F−1
K )T∇F−1

K

and g = G(K) = 1T∇F−1
K are derived from the local reference transformation F−1

K : K → K̂

fromK to the reference tetrahedron K̂ = conv (0, e1, e2, e3), and CI is the constant of an element-
wise inverse estimate. The concrete value of the constant in the inverse estimate is not of importance
for our simulations because the term with CI possesses only very little impact since ν2 is very small.
We used CI = 1 and a dimensionless viscosity corresponding to 3.5 mPa · s.

We apply the piecewise linear RB-VMS model on the uniformly refined mesh T ′, such that the velocity
space has the same dimension as the corresponding P2 space on T , compare Table 3.

3 Quantities of Interest

In this section we will introduce a number of flow statistics used in assessing the severity of various
cardiovascular conditions.

3.1 Pressure Difference

Pressure differences across narrowed portions of major blood vessels (as in coarctation of the aorta)
are an important criterion for judging the severity of the condition. Given two planar cross-sections
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S, S ′ ⊂ Ω, both approximately orthogonal to the main direction of flow, we will monitor the difference
between averaged pressures on the two cross-sections:

PS′ − PS =
1

|S ′|

∫
S′
p(t,x) dµS′(x)− 1

|S|

∫
S

p(t,x) dµS(x) [Pa].

3.2 Maximum Velocity

Similarly, high peak flow velocities within the narrowed region and delayed decay of diastolic velocity
downstream of it may also be indicative of the seriousness of the coarctation. We are interested in the
maximum velocity magnitude

max
x∈X
|u(t,x)| [m/s]

over a region X ⊂ Ω, which may be a planar cross-section or a region enclosed between two planar
cross-sections, and the minimum and maximum normal velocity

min
x∈S

(
u(t,x) · nS

)
, max

x∈S

(
u(t,x) · nS

)
[m/s]

through a planar cross-section S ⊂ Ω with forward normal nS .

3.3 Secondary Flow Degree (SFD)

The secondary flow degree (SFD) is a dimensionless quantity describing the “swirliness” of the flow
through a planar cross-section S ⊂ Ω with normal nS . It is defined as the ratio between the total
tangential (in-plane) velocity magnitude and the total normal (through-plane) velocity:

SFDS(t) :=

∫
S
|u(t,x)−

(
u(t,x) · nS

)
nS|dµS(x)∫

S
|u(t,x) · nS|dµS(x)

.

3.4 Normalized Flow Displacement (NFD)

The normalized flow displacement describes the eccentricity of the flow through a planar cross-section
of the domain. Given S ⊂ Ω with normal nS and defining the normal flow moment through S as

xn

(
u(t, ·), S

)
:=

∫
S
|u(t,x) · nS|xdµS(x)∫
S
|u(t,x) · nS|dµS(x)

,

we define the NFD as the distance of the normal flow moment from the centroid xS , normalized by
the hydraulic radius rH(S) = |S|

|∂S| :

NFDS(t) :=
|xn

(
u(t, ·), S

)
− xS|

rH(S)
.

The NFD is a dimensionless number ranging from 0 (perfectly centered flow) to R(S)
rH(S)

, whereR(S) =

maxx∈S = |x − xS| is the geometric radius. This upper limit is not approached very closely in
physiological flows, however.
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Figure 4: Left: positions of the planar cross-sections S0 through S6 of the aorta segment under
consideration. Center: quadrature points on a coarse 1 mm-resolution grid on cross-section 4. Right:
reference patch for wall shear stress computation.

3.5 Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI)

The wall shear stress (WSS) quantifies the density of tangential force exerted by the passing flow on
the walls of the blood vessel. At a given point x ∈ ∂Ω on the boundary, with unit outer normal n, the
WSS at x is given by the normal derivative of the tangential component of the velocity at x multiplied
by the dynamic viscosity:

τw(t,x) = µ
∂

∂n

(
u(t,x)−

(
u(t,x) · n

)
n
)
.

As the WSS is a tangential pressure, it is essentially a two-dimensional quantity. Given a constant unit
vector v representing a generally forward direction near a region of interest, the WSS decomposes
into a forward (or backward) component τw,f = τw · v and a lateral component τw,l = τw ·w, where
w = w(x) is a unit vector orthogonal to both v and the outer unit normal n(x). As the sign of
τw,l depends on the orientation of w, when comparing spatially averaged quantities we will instead
consider its magnitude |τw,l| = |τw − (τw · v)v|.
The oscillatory shear index (OSI) measures the extent to which the WSS oscillates, as quantified
by the relative difference between the magnitude of the temporal mean of the WSS vector and the
temporal mean of its magnitude:

OSII(x) =
1

2

(
1−

∣∣∫
I
τw(t,x)dt

∣∣∫
I
|τw(t,x)|dt

)
,

where x ∈ ∂Ω is a point on the boundary and I is a time interval of interest, e.g., a single heartbeat
or a longer simulation period spanning multiple heartbeats.

3.6 Regions of Interest

We evaluate average pressure, SFD, and NFD on seven cross-sections Si of the domain, as shown
in Figure 4 (left), for i = 0, . . . , 6. Notice that Si includes only the connected component of the
intersection of Ω with the defining plane closest to the depicted portions of the planes. They are
placed in key positions along the aorta segment, namely:
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S0: just past the inlet boundary, as the ascending aorta curves into the aortic arch,

S1: at the center of the aortic arch, before the left common subclavian artery,

S2: between the left common subclavian artery and the coarctation,

S3: past the coarctation where the aortic arch straightens into the descending aorta,

S4: close to the upper end of the descending aorta,

S5: half-way between the coarctation and the outlet boundary, and

S6: close to the outlet boundary,

Each of these quantities involves the evaluation of integrals over the cross-section. We chose to
approximate these integrals using a regular Cartesian grid of quadrature point on each cross-section
Si. Choosing two orthogonal unit vectors ti and t′i tangential to Si, a central point xi ∈ Si and the
resolution h(q) = 0.1 mm, we associate each point

x
(q)
i,km = xi + kh(q)ti +mh(q)t′i ∈ Si, k,m ∈ Z,

with the constant weight (h(q))2 = 100µm2. Figure 4 (center) shows a coarser 1 mm grid on cross-
section 4, by way of example. The velocity extremes on a cross-section Si are estimated using the
same points. To estimate the maximum velocity in the wedgeWi between cross-sections Si and Si+1,
i = 0, . . . , 5, the velocity is estimated on the bounding cross-sections and on all vertices and edge,
face, and cell midpoints within Wi.

In Figure 4 (right), a patch on the underside of the aorta is highlighted, which is the region of interest for
studying the wall shear stress because it is just past the exit of the coarctation, where a jet is expected
to form. In the space between the jet and the underside of the aorta, there should be noticeable vortex
formation, causing backward or oscillating shear stress on the reference patch.

4 Numerical Studies

4.1 Setup of the Simulations

We performed simulations with each of the viscosity models listed in Section 2.4 paired with both the
σ-model (Section 2.5.1) and the RB-VMS model (Section 2.5.2). Since the σ-model does not contain
a pressure stabilization, and we did not add such a term, the finite element velocity and pressure
space have to satisfy a discrete inf-sup condition. We used Taylor–Hood finite elements on the base
mesh T , i.e., V h = P2(T )3, Qh = P1(T ), which is the most widely used inf-sup stable pair of
spaces. As the RB-VMS model naturally includes a pressure-pressure term, it does not require an
inf-sup stable pair of finite element spaces. We used piecewise linear velocities and pressures on
the uniformly refined mesh T ′, i.e., V h = P1(T ′)3, Qh = P1(T ′). Table 3 lists the sizes of these
spaces. Note that dim P1(T ′) = dim P2(T ), so that the velocity spaces have the same dimension
in both cases.

We discretized in time using a BDF-2 scheme with a fixed time step length of ∆t = 125µs. The
resulting nonlinear systems were solved using a Picard iteration (see (6), (8), (15) for an overview of
the linearization), terminating the iteration when the Euclidean norm of the residual vector no longer
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Table 3: Information on the mesh and the velocity/pressure space dimensions.
Mesh Tetrahedra dim(P1) dim(P2) dim(P3

1 × P1) dim(P3
2 × P1)

T 106, 983 21, 495 158, 335 − 496, 500

T ′ 855, 864 158, 335 − 633, 340 −

-model, C = 1.35, (POW)
RB-VMS, P1/P1 elements, fine mesh, (POW)

-model, C = 1.35, (CY 0)
RB-VMS, P1/P1 elements, fine mesh, (CY 0)

-model, C = 1.35, (CY 1)
RB-VMS, P1/P1 elements, fine mesh, (CY 1)

-model, C = 1.35, (CY 2)
RB-VMS, P1/P1 elements, fine mesh, (CY 2)

-model, C = 1.35, (CASS)
RB-VMS, P1/P1 elements, fine mesh, (CASS)

-model, C = 1.35, (NEWT)
RB-VMS, P1/P1 elements, fine mesh, (NEWT)

Figure 5: Common legend for plots showing the impact of the variation of viscosity and turbulence
models.

exceeded 10−10. All simulations were run on the time interval [0, T ] with T = 11 s, covering 11
heartbeats. We will compare ranges and averages over the latter 10 heartbeats, discarding the first
period to avoid artifacts due to the homogeneous initial conditions.

The linear systems corresponding to each step of the Picard iteration were solved by FGMRES itera-
tion, using a least-squares commutator preconditioner2 (as proposed in [25]) for the simulations using
the σ-model and a hybrid FGMRES/BiCGSTAB approach for the RB-VMS computations3.

The simulations were run using the finite element library PARMOON [27] developed at WIAS Berlin,
using 32 parallel processes per simulation on several HPE Synergy 660 Gen10 compute servers with
four Intel Xeon Gold 6254 CPUs, each with 18 cores clocked at 3.1 GHz.

Figure 5 shows the common legend for each of the figures below. In each time-averaged plot (e.g.,
Figure 7, left) the line corresponding to the legend shows the average over the whole time interval
[1, 11] s. Each time-dependent plot (e.g., Figure 7, right) presents the period-average of the given
quantity at the instant t in the sense of averaging over t+ i, i = 1, . . . , 10. Period-by-period variation
is omitted, as it would make the graphs difficult to interpret; however, in the case of the RB-VMS
model’s computations, it is in any case not significant. The σ-model does show substantial variation
from period to period e.g. for the NFD at very low flow rates (e.g. Figure 10, upper right, t between
0.25 and 0.5 s), but this has little impact on the averaged results; see [4] for more information in the

2 This involves solving two relatively low-dimensional pressure-block systems for the approximate Schur complement
inversion; we used the parallel sparse direct solver MUMPS for this purpose. The larger velocity-block problems were
solved using the same FGMRES/BiCGSTAB approach used for the RB-VMS systems, except in the cases of (CASS) and
(POW), where BiCGSTAB was poorly behaved and a simple Jacobi preconditioner was used instead.

3 The least-squares commutator approach is specific to saddle point problems as encountered in non-stabilized dis-
cretizations. Although extensions to stabilized problems have been proposed, e.g., in [26], these performed poorly when
applied to the systems resulting from our RB-VMS discretization.
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Figure 6: Impact of the variation of viscosity and turbulence models on shear rates and viscosities.
Top: σ-model. Bottom: RB-VMS model. Left: Shear rate averaged over the whole domain. Right:
Effective viscosity averaged over the whole domain. Legend in Figure 5.

Newtonian case.

4.2 Viscosity

Figure 6 presents the volume-averaged shear rates and effective viscosities for each model. Notice
that the viscosities vary by less than an order of magnitude, and the difference in shear rates is barely
detectable, even though the more rapid decay of high-frequency modes under the RB-VMS model
causes the viscosity in some regions to spike near the end of diastole when combined with (CASS),
as seen in the lower right-hand figure.

4.3 Pressure Difference

Results for the pressure difference are depicted in Figure 7. On the left-hand side, the time-averaged
pressure difference over each cross-section relative to cross-section 0 is presented and on the right-
hand side the period-averaged pressure difference between cross-sections 6 and 2, with the clinical
threshold of 20 mmHg for the trans-stenotic pressure difference highlighted. The choice of the viscos-
ity model possesses a negligible impact on the time-averaged pressure differences, though (POW)is
a slight outlier within the σ-model computations. Noting the different scales of the ordinate for the
pressure differences between the cross-sections, one can see that the choice of the turbulence model
has a tremendous impact instead.
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Figure 7: Impact of the variation of viscosity and turbulence models on the pressure difference.
Top: σ-model. Bottom: RB-VMS model. Left: time-averaged pressure difference on each cross-
section. Right: pressure difference between cross-sections 6 and 2 over time. The 20 mmHg thresh-
old marked by a dotted line. Note the different scalings of the ordinate in the left pictures. Legend in
Figure 5.

4.4 Maximum Velocity

Comparisons of the maximum velocity in the wedge W2 between cross-sections 2 and 3 and through
cross-section 6 are shown in Figure 8. Again, the choice of the turbulence model is of much more
importance than the choice of the viscosity model. Whereas all curves are more or less on top of each
other for the RB-VMS model, slight variations can be observed for the σ-model on cross-section 6.

4.5 Secondary Flow Degree

Figure 9 depicts the time-averaged SFD across each cross-section (left) and the period-averaged
SFD across cross-section 4 (right). Although the choice of turbulence model is also for this biomarker
of greater impact than the choice of the viscosity model, one can observe also a notable impact of
the latter for each turbulence model. A broad tendency toward smaller SFD with the various non-
Newtonian models may be observed, as each is somewhat more viscous in the relevant range of
shear rates than the Newtonian model. The model (CY-1), which has the highest viscosity over most
of this range, exhibits often the smallest SFD.
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Figure 8: Impact of the variation of viscosity and turbulence models on the maximum velocity. Top: σ-
model. Bottom: RB-VMS model. Left: Maximum velocity in the wedge W2 between cross-sections 2
and 3 over time. Right: Maximum velocity through cross-section 6 over time. Legend in Figure 5.

4.6 Normalized Flow Displacement

The time-averaged NFD across each cross-section and the period-averaged NFD across cross-section 4
are displayed in Figure 10. Again, the impact of modelling the turbulence dominates the influence of
the viscosity model. Slight variations depending on the viscosity model can be observed for the NFD
behavior during a period.

4.7 Wall Shear Stress

Results obtained for the wall shear stress’s magnitude and the forward component, averaged over the
reference patch highlighted in Figure 4, are given in Figure 11. Because of the substantial difference
in behavior at walls of the two turbulence models, this choice proved to be much more influential once
again. But within each turbulence model, also the impact of viscosity modeling is visible, e.g., the
averaged WSS magnitude over the reference patch is usually somewhat larger for the non-Newtonian
models than for the Newtonian one, in particular for (CY-1). The notable exception to this is (POW)
during systole, which can be seen in Figure 3 to have particularly small viscosities at high shear rates.

Table 4 lists the time-averaged wall shear stress magnitude and oscillatory shear index averaged over
the reference patch for each model. As expected, the influence of the choice of turbulence model
again greatly exceeds the viscosity model’s.
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Figure 9: Impact of the variation of viscosity and turbulence models on the SFD. Top: σ-model.
Bottom: RB-VMS model. Left: Time-averaged secondary flow degree. Right: Secondary flow degree
across cross-section 4 over time. Note the different scalings of the ordinate in the right pictures.
Legend in Figure 5.

Table 4: Information on the time-averaged wall shear stress magnitude and OSI.
Model µ(|τw|) [Pa] OSI

σ-model, (NEWT) 1.185 0.309

σ-model, (POW) 1.061 0.327

σ-model, (CY-0) 1.290 0.313

σ-model, (CY-1) 1.264 0.322

σ-model, (CY-2) 1.256 0.313

σ-model, (CASS) 1.186 0.320

RB-VMS, (NEWT) 0.534 0.246

RB-VMS, (POW) 0.584 0.226

RB-VMS, (CY-0) 0.589 0.237

RB-VMS, (CY-1) 0.686 0.228

RB-VMS, (CY-2) 0.588 0.238

RB-VMS, (CASS) 0.616 0.236
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Figure 10: Impact of the variation of viscosity and turbulence models on the NFD. Top: σ-model.
Bottom: RB-VMS model. Left: Time-averaged normalized flow displacement. Right: Normalized flow
displacement across cross-section 4 over time. Note the different scalings of the ordinates for both
turbulence models. Legend in Figure 5.

4.8 Computational Costs

Figure 12 compares the number of iterations taken by each model to achieve the stopping criteria
stated in Section 4.1. Each plot shows (for legibility) a running average over 10 output steps (i.e.
80 computed time steps) of the number of Picard iterations4 (left) and the total number of FGMRES
iterations5 (right), further averaged over the latter ten periods.

It is clear that by these metrics, the σ-model’s iteration counts differ very little, whereas in the RB-
VMS case, additional Picard iterations (and consequently linear solver iterations) were often required
specifically in the (CASS) and (POW) settings, particularly during systole, with clearly visible peaks
during acceleration and deceleration and a smaller peak at peak flow. This was not the case for the
σ-model and is perhaps due to the smoother velocity fields computed by the RB-VMS model, giving
larger areas with slow shear rates below 10 s−1, where the effective viscosity according to (CASS)
and (POW) is large and changes rapidly with respect to the shear rate.

Actual computation times of the different models are difficult to compare, as varying load due to other
tasks on the same servers caused additional variation in runtime. Nevertheless, average CPU times

4 Note that as the final Picard iteration always consists solely of assembly of the linear system and computation of the
residual at the previous iteration’s result, a single iteration can be achieved only in the unusual case when the initial guess’s
residual is already small enough. This did not occur in our simulations.

5 That is, the number of the (outer) linear solver’s iterations summed up over all Picard iterations for a given time step.
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Figure 11: Impact of the variation of viscosity and turbulence models on the WSS. Top: σ-model.
Bottom: RB-VMS model. Left: Wall shear stress magnitude averaged over reference patch. Right:
Forward wall shear stress averaged over reference patch. Note the different scalings of the ordinates
for both turbulence models. Legend in Figure 5.

per millisecond simulated (that is, per 8 simulated time steps) were on the order of 26.5 − 43.0 s for
the σ-model and 60.2− 73.1 s for the RB-VMS model.

5 Conclusions

This paper studied the impact of viscosity modeling and of choosing the turbulence model in gener-
alized Newtonian blood flow simulations in an aortic coarctation. For all clinically relevant biomarkers
that were monitored, the impact of the numerical modeling with the turbulence model dominated the
impact of the physical viscosity modeling. For time-averaged quantities defined on cross-sections of
the aorta, the differences of the results between different viscosity models within the simulations with
the same turbulence model were negligible. The instantaneous behavior, averaged over the periods,
showed, in some cases, minor quantitative differences among the viscosity models, e.g., for the sec-
ondary flow degree, the normalized flow displacement, and the wall shear stress. However, the order
of magnitude of these differences is not expected to affect diagnostic decisions.
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Figure 12: Impact of the variation of viscosity and turbulence models on computation efficiency. Top:
σ-model. Bottom: RB-VMS model. Left: Average number of Picard iterations per time step. Right:
Average number of (outer) linear solver iterations per time step. Legend in Figure 5.
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