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Solitary routes to chimera states
Leonhard Schülen, Alexander Gerdes, Matthias Wolfrum, Anna Zakharova

Abstract

We show how solitary states in a system of globally coupled FitzHugh-Nagumo oscillators
can lead to the emergence of chimera states. By a numerical bifurcation analysis of a suitable
reduced system in the thermodynamic limit we demonstrate how solitary states, after emerging
from the synchronous state, become chaotic in a period-doubling cascade. Subsequently, states
with a single chaotic oscillator give rise to states with an increasing number of incoherent chaotic
oscillators. In large systems, these chimera states show extensive chaos. We demonstrate the
coexistence of many of such chaotic attractors with different Lyapunov dimensions, due to different
numbers of incoherent oscillators.

Solitary states in coupled oscillator systems – a counterpart to classical solitons in spatially extended
systems – are an interesting nonlinear pattern and have recently received much attention from re-
searchers [1, 2, 3, 4, 5, 6, 7, 8, 9]. They play an important role as a cornerstone to more complex
self-organized states [10, 11, 12, 13], e.g. in power grid models or neuronal systems. Here, we will use
them to explain the origin of another intriguing nonlinear phenomenon in coupled oscillator systems,
namely the emergence of coherence/incoherence patterns, called chimera states [14]. They are charac-
terized as dynamical states, where in a self-organized process a population of homogeneous oscillators
splits into coherent and incoherent parts. Since their discovery [15] it was a major open question how
their emergence can be explained by a step-wise supercritical scenario [16]. Only recently, two results
in this direction have been obtained. Haugland et al. [17] showed how they arise in a system with global
non-linear coupling in a cascade of cluster-splittings, after in [18] clustering has been identified as a
prerequisite for chimera states. In [19] Franović et al. showed a completely different scenario where in
an array of excitable phase oscillators with attractive and repulsive coupling, coherence/incoherence
patterns arise from a coherent Turing pattern by a homoclinic bifurcation with subsequent transition to
extensive chaos.

In this letter, we disclose another route to the emergence of chimera states. We use a system of
globally coupled FitzHugh-Nagumo (FHN) oscillators to demonstrate how solitary states can become
an entry point to such patterns of localized extensive chaos. This transition occurs as follows (Fig. 1).
For a fixed value of coupling strength parameter, the system demonstrates a periodic solitary state,
where a single solitary oscillator performs an independent periodic motion (red (gray) trajectory in
Fig. 1(a), while all other oscillators form a stable synchronized cluster moving along the limit cycle of
the FHN system in the oscillatory regime (black trajectory in Fig. 1(a)). Upon a variation of the coupling
strength the temporal dynamics of the solitary oscillator becomes chaotic, see Fig. 1(b). For even
lower coupling strengths we obtain solutions with several incoherent oscillators, each displaying an
independent chaotic motion, see Fig. 1(c). The results in Fig. 1 were obtained from random uniform
initial conditions. Note that all states coexist with the stable fully synchronized solution and may coexist
with stable solutions with other cluster types. However, the solitary states in panels (a) and (b) are the
most probable ones, when random initial conditions are chosen. In the parameter regime of the chimera
state, shown in panel (c), we observe the coexistence of several similar states with different numbers of
incoherent oscillators, which we will discuss below in more detail.
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Here, we provide a detailed study of this transition process. First, we use a thermodynamic limit
description for a bifurcation analysis of the solitary states and demonstrate the transition to chaos
in a classical period doubling cascade. Identifying in this way the parameter conditions and suitable
initial conditions, we show how the chaotic solitary state gives rise to multiple coexisting chimera states
characterized by different numbers of incoherent oscillators. Based on a Lyapunov analysis, we show
that they represent coexisting attractors with extensive chaos of different Lyapunov dimension.

Figure 1: Phase portraits of different types of solutions for globally coupled FHN oscillators (1). Trajecto-
ries of coherent (black) and incoherent (in color) oscillators. (a) periodic solitary state at σu = 0.14;
(b) chaotic solitary state at σu = 0.12; (c) chimera state with 4 incoherent oscillators at σu = 0.11.
Other parameters: N = 100, a = 0.5, ε = 0.1, σv = 0.15. All results were obtained from random
initial conditions, uniformly distributed in the intervals ui ∈ [−2.2, 2.2] and vi ∈ [−1.2, 1.2] for an
integration time of T = 5000 using the LSODA method of the python package scipy.integrate with
an initial time-step of dt = 0.01.

Our model is a globally coupled system of N identical FHN oscillators:

ε
dui
dt

= ui −
u3i
3
− vi + σu(ũ− ui) + σv(ṽ − vi),

dvi
dt

= ui + a, ũ =
1

N

N∑
j=1

uj, ṽ =
1

N

N∑
j=1

vj, (1)

i = 1, . . . , N where ui and vi are the activator and inhibitor variables of the i-th oscillator, respectively,
ε determines the time scale separation between the fast (u) and the slow (v) variable. The strength of
the coupling to the mean fields ũ and ṽ is given by σu and σv, respectively. Throughout the paper we fix
the threshold parameter a = 0.5 in the oscillatory regime (|a| < 1) far away from the Hopf bifurcation
and use a moderate time scale separation ε = 0.1.
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Bifurcations of solitary states in the thermodynamic limit: Cluster states are self-organized
patterns arising naturally in systems of identical units with global symmetric coupling. Each cluster
type is characterized by a partition of the set of oscillators into subsets (clusters) with ui = uj and
vi = vj whenever two oscillators i and j belong to the same cluster. By the symmetry of the system,
this induces a corresponding dynamically invariant subspace, allowing a low-dimensional description of
these states [20]. The situation with only one cluster, i.e. all oscillators behaving identically, corresponds
to (global) synchrony. The dynamics of a cluster state can be described by a reduced system within the
invariant subspace with one pair of variables u, v for each cluster and the cluster sizes represented by
corresponding weights in the mean fields ũ, ṽ. Note that symmetry breaking bifurcations, which are
transversal to the invariant subspace, are not covered by the reduced system.

A specific type of cluster states are solitary states, where N − 1 oscillators constitute one big cluster
(“bulk”), while the remaining single oscillator forms a (trivial) second cluster. For the thermodynamic
limit of large system size N →∞, the mean fields ũ, ṽ are equal to the bulk variables ub, vb and we
obtain

ε
dub
dt

= ub −
u3b
3
− vb,

dvb
dt

= ub + a,

ε
dus
dt

= us −
u3s
3
− vs + σu(ub − us) + σv(vb − vs),

dvs
dt

= us + a, (2)

where the coupling term in the equations for the bulk variables vanishes. Therefore, the solitary
oscillator can be interpreted as a probe particle driven by a mean-field to which its variables us, vs
do not contribute. We will use this system to study the emergence of stable solitary states and their
transition from a periodic to a chaotic regime. To this end we employ numerical bifurcation analysis
based on path-following methods using the software auto− 07p [21]. The bifurcation diagram in
Fig. 2(a) shows a branch of synchronous periodic states (dotted horizontal line) and a bifurcating
branch of periodic solitary states (dashed and solid black curve) for varying σu at fixed σv = 0.15.
The synchronous state does not depend on the coupling σu, but its stability changes – a well known
phenomenon [22] sometimes called Benjamin-Feir instability [23]. This instability manifests itself in the
reduced system (2) as a transcritical bifurcation (TC / green triangle in Fig. 2(a)). The dashed horizontal
branch left of this bifurcation corresponds to the now unstable synchronized solution, whereas the
dotted upper left branch is stable only in the reduced system, but has no corresponding stable solution
in the full system. The bifurcating branch of solitary states (black dashed curve) turns around in a
fold bifurcation (SN / red square), where it gains stability and gives rise to stable periodic solitary
states (black solid line). This stable branch undergoes a supercritical period doubling bifurcation (PD1 /
dark blue (gray) diamond), where a stable branch of period doubled solitary states (solid line in the
inset) emerges. By a subsequent period-doubling cascade chaotic solutions similar to those shown
in Fig. 1(b) arise. Having obtained the bifurcation points for a fixed value of σv, we show in Fig. 2(b)
the corresponding bifurcation curves in the parameter plane (σu,σv). The green dash-dotted curve
corresponds to the transcritical instability of the synchronous state. The region of stable periodic
solitary states (shaded, hatched region) is bounded by the fold bifurcation curve (red solid) and the
period-doubling curve (blue dashed). Stable solitary states with higher periodicity are found in the rather
small region (blue / light shaded), before chaos takes over (yellow / darker shaded). This region was
obtained by scanning for a positive leading Lyapunov exponent.

Chaotic solitary states: Next, we study the period doubling cascade of solitary states for a fixed
value of σv = 0.15 and decreasing coupling strength σu in the thermodynamic limit and for a finite size
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Figure 2: Bifurcations in the thermodynamic limit (2). (a) Branches of synchronous and solitary states
for varying σu and fixed σv = 0.15. Synchronous branch (dotted horizontal line) with transcritical
instability (TC green triangle). Bifurcating solitary branch (stable/unstable parts are solid/dashed)
with fold bifurcation (LP / red square), period doublings (PD1 / dark and PD2 / light blue (shaded)
diamonds, see inset panel), and onset of chaos (PD∞ yellow (light shaded) diamond). (b) Parameter
plane (σu,σv) with curves of fold (red solid), period-doubling (blue dashed), and transcritical bifurcations
(green dash-dotted). Regions of stable solitary states (red hatched shading), period doubled solitary
states (blue (light) shading) and chaotic solitary states (yellow (dark) shading). The densly dotted
horizontal line indicates the σv value of panel (a). Other parameters are: ε = 0.1, a = 0.5.

system with N = 100. To this end, we analyze the sampled solution values us at a suitable Poincaré
section (Fig. 3 top panel) and the two largest Lyapunov exponents (bottom panel). For the finite size
system we observe a slight shift to lower values of σu. In both cases at a critical value of σu the chaotic
attractor collapses in an attractor crisis and the system falls back onto the synchronous state. In order
to validate the results of Fig. 2, we indicate the values of σu of the first and second period doubling and
the onset of chaos both for the thermodynamic limit (densly dotted vertical lines) and the finite-size
system (dashed vertical lines).

Chimera states: In addition to the chaotic solitary states that we have established so far, where a
single oscillator behaves chaotically and incoherent to the bulk, we demonstrate now solutions with
more than one incoherent oscillator. We call a solution chimera state if all the oscillators apart from
a large bulk cluster behave incoherent, i.e. all clusters except the bulk have size one. In this sense,
a solitary state is a chimera state with only one incoherent oscillator. It turns out that chimera states
appear in company with the chaotic solitary state and both the parameter values and initial conditions
found in our bifurcation analysis of the thermodynamic limit are a good starting point to find them. Our
strategy here is to pick a point (ūb, v̄b, ūs, v̄s) = (−1.746619,−0.029879,−0.999828,−0.774970)
on the chaotic solitary trajectory of the thermodynamic limit system, which we found for σu = 0.118,
σv = 0.15 and generate an initial condition for a finite size system by initializing a large numberN−K
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Figure 3: Period doubling cascade leading to a chaotic solitary state. Top: Sampled values of us at
Poincaré section ub = 0 for the thermodynamic limit N =∞ (black) and for the finite size system with
N = 100 (red (gray)). Bottom: first and second Lyapunov exponent for N =∞ (black) and N = 100
(red (gray)). The vertical lines indicate the first two period doublings and the onset of chaos for the
thermondynamic limit (dotted) and the finite size system (dashed, with names in top panel). Colors
(shading) as in Fig. 2. Attractor crisis at σu ≈ 1.1504 (N =∞) and σu ≈ 0.1153 (N = 100).

of bulk oscillators at (ūb, v̄b). For the remainingK potentially incoherent oscillators we use independent
small random perturbations of (ūs + δ, v̄s + δ), equally distributed in a range of δ ∈ [−0.01, 0.01]. In
order to compensate the shift in σu for finite size systems that we have noticed before (cf. Fig. 3) we
use in the simulations a smaller value σu = 0.115. In this way we indeed obtain four different chimera
trajectories in systems with sizeN ∈ {50, 100, 200, 400} andK ∈ {1, 2, 4, 8} incoherent oscillators,
respectively. We observe that the solitary state withN = 50 andK = 1 upon doubling the system size
induces chimera states where the number K of incoherent oscillators is doubled as well. In Fig. 4(a)
we show the leading part of the Lyapunov spectra for these states. We observe that the number of
positive exponents coincides with the number K of incoherent oscillators. This extensive behavior for
large N is also reflected by the Lyapunov dimension, which we estimated by the Kaplan-Yorke formula.
The fact that the dimensions, given in the figure legend, are always bigger than K can be explained
by the fact that each incoherent oscillator, performing an independent chaotic motion in the plane can
make a contribution of sightly more than one to the total attractor dimension. This is different to the
case of phase oscillators studied in [24], where the Lyapunov dimension almost exactly coincides with
the number of incoherent oscillators.

Coexisting chimera states with different Lyapunov dimensions: In order to find coexisting chimera
states with different numbers K of incoherent oscillators, we repeated the numerical calculations for
N = 400 with a slightly different paradigm for the choice of the initial conditions. To allow also for
a larger number of incoherent oscillators, we initialize only N − KI oscillators at the bulk values
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Figure 4: (a) Lyapunov spectra of chimera states demonstrating extensive chaos for various N (see
inset) and K with fixed K/N = 0.02. (b) Lyapunov spectra and attractor dimensions D (see inset)
of coexisting chimera states for N = 400 and various K, σu = 0.115. (c) Probability distribution
p(K) for 100 random initial conditions, σu = 0.115. Colored bins: chaotic chimera states, hatched:
other states. (d), (e) show the same as (b),(c) for σu = 0.112. Other paramters: KI = 15, ε = 0.1,
a = 0.5.

(ūb, v̄b) = (−1.746619,−0.029879). For the remaining KI initially incoherent oscillators, we pick
again random perturbations of (ūs + δ, v̄s + δ), but now with the perturbations chosen equally dis-
tributed in a larger interval δ ∈ [−0.12, 0.12]. During a transient, which we took in our simulations as
Tt = 5000, some of these initially incoherent oscillators will be absorbed by the bulk cluster. In some
cases, they may also form small clusters, such that the final state is not a chimera state according to
our definition above. In most cases, however, we obtain a chimera state, now with different numbers
K ∈ {5, . . . , 11} of incoherent oscillators. Note that our choice of σu = 0.115 is already beyond the
region of existence of the chaotic solitary state for the thermodynamic limit shown in Fig. 3, such that it
is no surprise that we do not find a state with K = 1 here.

In Fig. 4(b) we show the leading part of the Lyapunov spectra for these coexisting states. Again,
the number of positive exponents coincides with the number K of incoherent oscillators. Whenever
two different random initial conditions lead to the same K, we observe that the spectra and the
corresponding Lyapunov dimensions coincide up to numerical accuracy. A histogram with the relative
number of counts p(K) is given in panel (c). Only in a small part (hatched part of the histogram) of the
resulting states is not a chimera state. In these cases, some of the K oscillators not belonging to the
bulk form smaller clusters and the dynamics may be not chaotic, but periodic with a high period.
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Fig. 4(d) and (e) show the same information for a slightly smaller parameter value σu = 0.112. We see
a qualitatively similar scenario where the number of incoherent oscillators ranges inK ∈ {10, . . . , 14}
and we obtained chimera states for all initial conditions. We conclude that changing σu towards smaller
values shifts both the upper and the lower bound of possible numbers K to larger values. Within this
range we observe a unimodal Gaussian-like distribution p(K), compare [25], where a similar effect
has been shown for coexisting twisted waves in a system of coupled phase oscillators. Interestingly, we
see that the Lyapunov dimension may even decrease towards larger K, indicating that each single
incoherent oscillator behaves “less chaotic” close to the upper bound of possible K and hence the total
dimension may decrease for an increasing number of incoherent oscillators.

All these coexisting chimera states can, in principle, be found from initial conditions chosen completely
randomly, as presented in Fig. 1. However, exploring fully this rich scenario of coexisting states of
different types, some of them with very small basins of attraction and hard to find from random initial
conditions, goes beyond the scope of this paper, where we decided to focus our attention on the
emergence of chimera states and their coexistence.

Conclusion and outlook: While it is well known that self-organized wave patterns typically coexist
within an interval of possible different wave numbers (Busse ballon [26], Eckhaus stability region
[27, 28]), and also regular cluster solutions in globally coupled oscillator systems coexist for different
cluster sizes [29, 30], we show here the coexistence of coherence-incoherence patterns with different
numbers of incoherent oscillators, which are in fact coexisting chaotic attractors with different Lyapunov
dimensions. The incoherent oscillators in these coexisting attractors show extensive chaos of different
dimensions. The total share of incoherent oscillators in a chimera state is a macroscopic quantity.
Hence, within the range of such shares, where stable chimera states exist, we find, for large systems, an
increasing number of coexisting attractors with their numbers of incoherent oscillators increasing as well.
We showed that, varying the coupling parameter, this extensive scenario is linked to the thermodynamic
limit of the solitary regime, where the range of admissible numbers of incoherent oscillators shrinks
down to one single oscillator in an infinitely large system. For this case, the emergence of the chaotic
motion of the single incoherent oscillator could be shown in a period doubling cascade.

Acknowledgements We thank Everton S. Medeiros for fruitful discussions.
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