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Abstract 

For the plane elasticity problem a standard scheme of the finite element method 
with the use of piecewise linear elements on triangles is discussed. For its solution 
on a sequence of embedded triangulations, a cascadic arrangement of two iterative 
algorithms is used, which gives the simplest version of multigrid methods without 
preconditioning and restriction onto a coarser grid. The cascadic algorithm begins 
on the coarsest grid where the grid problem is solved by direct method. To obtain 
approximate solutions on finer grids, the iterative method is used; interpolation 
of the approximate solution from the preceding coarser grid is taken as the initial 
guess. It is proved that the convergence rate of this algorithm does not depend on 
the number of unknowns and grids. 

1. Introduction 

Originally the cascadic conjugate-g_radient method was presented by P.Deufihard in the 
papers [1] and [2] where high convergence was shown computationally. The papers [3], 
[4] prove optimal computational complexity of this algorithm for elliptic equation of the 
second order with smooth solution. The papers [5] and [6] establish optimal complexity 
for the elliptic equation, the solution of which is not sufficiently smooth since the domain 
has angles in excess of 7r. The paper [7] extends the proof to the case of this problem in 
the domain with curvilinear boundary, where the embedded Galerkin subspaces are used 
without st~ict embedding of sequence of triangulations. 

Besides, in the paper [6] F. A. Bornemann set up estimates of convergence rate of other 
iterative smoothing operators in two- and three-dimensional boundary-value problems 
for elliptic equation of the second order. In the two-dimensional case of the smooth-
ing operators he analyzed, only the conjugate-gradient method gave optimal arithmetic 
complexity. From the papers [3], · [4] this optimality follows also for Jacobi-type method 
with the Chebyshev iterative parameters. In the three-dimensional case, several more 
smoothing operators ensure optimal complexity. 

The present paper investigates application of cascadic conjugate-gradient method and 
Jacobi-type one with the Chebyshev parameters to a sequence of grid problems for the 
system of second-order elliptic equations arising in the plane elasticity theory. 

2. Formulation of the differential problem 

Consider the plane elasticity problem on the bounded convex polygon n C R2 with the 
boundary r: 

- µf::..u - (A+µ) grad div u = f 
'U = 0 

in n, 
on r, 

(2.1) 
(2.2) 

where A,µ> 0 are the Lame coefficients, u is the desired vector-function of displacement 
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f is the known vector-function of mass forces with two components 

I= [ ~~]. 
Iritroduce the inner product and the norm for the vector-function from 
(L2(0))2: 

Let 

(u., v)n =Ju.· vdx, llu.llo,n = (u., u)W2. 
n 

(2.3) 

then on the base of [9] there exists an unique solution of problem (2.1)-(2.2) for which 

(2.4) 

Introduce norms for the vector-functions from (W2(0))2 by the formula 

using standard notation for the norms of scalar functions v E W2(0): 

With the cc;mstraint (2.3), problem (2.1)-(2.2) obeys the estimate 

llu.112,n ~ c1 II/ llo,n· (2.5) 

In accordance with [9] we formulate for (2.1)-(2.2) the generalized problem: 

0 

find u E (Wi (0) )2, satisfying the equality 
0 

.C(u,v) = (f,v)n V v E (Wi (0))2 (2.6) 

where the bilinear form .C is defined by the relation 

(2.7) 

For f E (L2 (0))2 problem (2.6) also has an unique solution [8], [9]. 
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3. Formulation of the discrete problem 

To construct the Bubnov-Galerkin scheme, we triangulate the polygon n. We first divide 
n into a small number of closed triangles, in so doing the resulting triangulation To to be 
consistent, i.e., each of the triangle couples either has a common side or has a common 
vertex or does not have common points. Denote the maximum side length of all triangles 
by h0 • Put Ni = 2i, hi= ho/Ni. For i = 1, ... , l we divide every initial triangle into Nl 
equal triangles. Denote the set of all vertices of the resulting consistent triangulation Ti 
by ni. Introduce ni = ni n n and denote by ni the number of points of set ni. For every 

0 

node y E ni we form the basis function cp~ EWi (n) which equals 1 at node y, equals O 
at all the other nodes from ni and is linear on each elementary triangle of triangulation 
Ti,. Denote by Hi the linear span of functions cp~, y E ni. 

0 

Consider problem (2.6) on the subspace Hi= (Hi)2 E (Wi (0)) 2 • We obtain the discrete 
problem: 

find Vi E Hi, satisfying the equality 
.C(vi, v) = (!, v)n V v E Hi. (3.8) 

Assume Mi to be the 2ni-space consisting of vectors W with ni components W(x) = 

[ W1 (x) .] x E ni. Problem (3.8) is then equivalent to the block system of linear 
W2 (x) ' 

algebraic equations 

(3.9) 

where Vi E Mi is the vector of unknowns with ni components Vi ( x) [ 
Vi,1 (x)] 
Vi,2 (x) ' 

n D M h t D ( ) [ Fi,1 (x) ] [ (Ji, cp~) ] x E Hi; L'i E ·i as ni componen s ri x = Fi,
2 

(x) = (!2, cp~) ' 
Li is 2ni x 2ni-block matrix with 2 x 2-blocks 

. __:_ ( .C ( cp~, O; cp~, 0) .C (0, cp~, cp~, 0) ) Li x y - . . ( . . ) , x, y E Oi. ' ' .C ( cp~, O; 0, cp~) .C 0, cp~; 0, cp~ 
(3.10) 

From (2.7) it is evident that matrix Li is symmetric. Using the bilinearity of functional 
.C and its positive definiteness [3], the matrix Li can be shown to be positive definite and, 
hence, nonsingular. 
To the vector VE Mi we associate the interpolant in Hi: 

[ 
Vi (y) ] i -v(x) = L v: ( ) c,oy(x), x En. 

yEO.i 2 y 
(3.11) 

It is obvious that 

V(y) = v(y), y E Oi. 

Thus we determined an isomorphism between vectors V E Mi and vector-functions 
v E Hi. 
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Introduce the energy norm for vector-functions 

0 

lllvllln = .C(v, v) 1l2
, v E (Wi (0))2

, 

as well as the scalar product and norms of vectors 

(V, W)i = L V(x)W(x) = L Vi(x)W1(x) + L V2(x)W2(x), 

{
' }1/2 { }1/2 

llVll; = x~, IV(x)l2 = x~, (Vi.(x))
2 + x~, (V2(x))

2 
, 

lllVllli = (LiV, V)i12 , V, WE Mi. 

Taking into account of (3.10), (3.11) and the bilinearity of functional .C, for isomorphic 
couple VE Mi, v E Hi we have 

xEn· xEn· V Y 
( [ 

.C( 2: Vi (x )cp~, 2: V2(x )cp~; <pt, 0) ] [ 1( ) ] ) 
(L;V; V); = .C(xti: Vi.(x)cp~, xti: V2(x)cp~; 0, cp~) ' v2(y) i 

= .C( L Vi(x)cp~, L V2(x)cp~; L Vi(y)cp~, L V2(y)cp~) = .C(v,v), 

i.e., 

lllVllli = lllvllln· (3.12) 

When studying one elliptic equation for vectors Z of dimension ni with elements Z(x), 
x E Oi we introduced in [4] the norm 

( ) 
1/2 

llZI!; = x~, (Z(x))2 . 

It is equivalent with multiplier hi to the norm llzllo,n of interpolant z from Hi [3], i.e., 

From the fact that 
2 

llvll~,n = L lvil~,n' 
j=l 

we have that for the isomorphic couple V E Mi and v E Hi the norm llVlli is also 
equivalent to the norm llvllo,n with multiplier hi: 

(3.13) 
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Introduce the prolongation operator Ii : Mi -+ Mi+1 as follows. Let x', x" E ni be two 
neighbouring nodes of the ith triangulation Ti,. The prolongation W = Ii V, V E Mi is 
then defined by the formulae 

W(x') = V(x'), W(x") = V(x"), 

(
x' + x") = V(x') + V(x") w 2 2 . 

Note that the interpolants of vectors V and W coincide, i.e., v = w. Thus the operator 
Ii corresponds to the identical operator on subspace Hi with respect to the isomorphism 
defined above . 

. Lemma 1. For f E (L2(D))2 the problem (3.8) has an unique solution. It obeys the 
estimate 

(3.14) 

0 

Proof. Since Hi E (WJ (0) )2 , from (2.6) it follows that 

.C( u, v) = (!, v )n V v E Hi. 

From (3.8) we have 

Putting v = vi - w where w is an arbitrary function from Hi, the last relation can be 
recasted as 

Hence it follows that 

.C(u -vi,u -vi)= .C(u -vi,u -w) V w E Hi. 

Using the Cauchy-Bunyakovski inequality, we have 

or 

(3.15) 

Show the equivalence of norms 111 • llln and II · II 1,n· In [8] it has been shown that the bilinear 
form .C is positive definite, i.e., 

. .C(v,v) ~ dsllvlli,n 
and bounded, i.e., 
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It is obvious that 

i.e., these norms are equivalent. Then from (3.15) it follows that 

(3.16) 

In [10] it has been proved that there exist functions Wj E Hi, j = 1, 2, which obey the 
estimates 

where uj, j = 1, 2, are the components of vector-function u. Then, obviously, the estimate 

is valid, where w E Hi is the vector-function with the components Wj, j = 1, 2. 

From (3.16), (3.17), and (3.15) we have 

lllu - villln ~ d12hillull2,n ~ d13hillfllo,n, 

i.e., the validity of estimate (3.14) has been proved. D 
Note that the eigenvalues of matrix Li obey the estimate 

where .\i' is the maximum eigenvalue of matrix Li [11]. 

(3.17) 

(3.18) 

Let us sum up. On a sequence of grids ni, i = 0, ... , l, we obtained the sequence of 
problems: 

for given Fi E Mi find Vi E Mi so that 

(3.19) 

For their sequential solving, we use the cascadic iterative method and prove its conver-
gence. 

4. Formulation of the cascadic algorithm 

We first formulate the cascadic algorithm with some abstract iterative process Si (smooth-
ing operator). 

The cascadic algorithm: 

1. Uo = L01Fo; 
2. for i = 1, 2, ... , l do 
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begin 

2.i. wi == 1i-1ui-1; 

2.2. put Ui == Si(Li, Wi, Fi); 
end. 

We consider two iterative processes as smoothing operators. 
The conjugate-gradient method (mi iterations); 

procedure Si( Li, Wi, Fi): 

3. Yo == Wi; Po == Ro == Fi - LiYo; cro == (Ro, Ro)i; 
4. fork== 1, 2, ... , mi do 

begin 

end; 

if O"k-1 == 0 then Ymi == Yk-1 and go to 5; 
ak-1 == ak-i/(Pk-i, LiPk-1)i; 
Yk == Yk-1 + ak-1Pk-1i 
Rk == Rk-1 - ak-1LiPk-1i 
O"k = (rk,rk)i; f3k == ak/ak-1; 
Pk == Rk + f3kPk-1; 

5. put Si= Ymi· 

The Jacobi-type method (mi iterations); 

procedure Si(Li, Wi, Fi): 
3. Yo= Wi; 
4. for k = 1, 2, ... , mi do 

begin 

end; 

5. put Si== Ymi· 

( 4.20) 

( 4.21) 

Here Ai is an upper estimate of eigenvalues A of operator Li in space Mi : Li~== A~. In 
Jacobi-type method this value is required to be in explicit form and so it is found subject 
to Gershgorin's Lemma [12] and satisfies the inequality 

A; = max A ~ A; ~ c1 max A == c1 A;. 
>.eSp(Li) >.eSp(Li) 

( 4.22) 

In the conjugate-gradient method it is supposed to equal Ai, i.e., ( 4.22) is fulfilled with 
the constant c1 = 1. 
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5. Proof of the convergence of cascadic algorithm 

. In [3] the convergence criterion has been formulated as follows: 

there exists a constant c* > 0 such that V i = 1, . . . , l 

where Ai is the upper estimate of the maximum eigenvalue of operator Li. 

(5.23) 

Lemma 2. For f E (£2 (0))2 criterion (5.23) is fulfilled with the constant c* = 2c4Fs/c2 . 

Proof. Consider the auxiliary problem: 
0 

find a vector-function w E (Wi (0))2 such that 

0 

.C(w,v) =(vi -vi-1,v)n V v E (Wi (0))2
• (5.24) 

According to (2.5) we have 

Use the Bubnov-Galerkin method: 

.C(wi-1,V) =(vi -Vi-1,V)n \IVS: Hi-l. 

From Lemma 1 there follows the estimate 

(5.25) 

Putting in (5.24) v =Vi - Vi-l gives 

.C(w,vi - vi-1) = llvi -vi-111~,n· (5.26) 

Considering that any function from subspace Hi-l is contained in subspace Hi, from (3.8) 
~h~ ' 

Subtracting from here the identity 

.C(vi-1' v) = (!, v)n V v E Hi-1, 

we have 

(5.27) 

Putting v = wi-l and taking account of the symmetry of .C, we subtract this equality 
from (5.26): 
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Using the Cauchy-Bunyakovski inequality and (5.25), we get 

llvi - vi-1 ll~,n ~ lllw - wi-dln · lllvi - Vi-din 
~ c4hi-1 llvi - vi-1 llo,n · lllvi - Vi-1 llln· 

Hence, from (3.12) and (3.13), it follows that 

c2h&vi - Ii-1 Vi-1 Iii ~ llvi - Vi-1 llo,n ~ c4hi-dlvi - vi-din 

= c4hi-1lllVi - li-1 Vi-ilk 

Using ( 4.22) or (5.23) together with (3.18) yields the inequality 

C4~6 llVi - li-1 Vi-1 lli ~ 2- A* lllVi - li-1 Vi-1 llli· 
C2 i 

0 

Thus from [3] (Theorem 4.1) it is evident that the estimate 

(5.28) 

is fulfilled, where Vi iS the exact solution of algebraic problem (3.9); Ui is its approximation 
obtained by the cascadic algorithm; mi is the number of iterations in the conjugate-
gradient algorithm ( 4.20) or in the Jacobi-type one ( 4.21) on the jth step. These two 
methods differ from each other only by different constants c*. 

To have this estimate in an easier form, we prove the inequality 

lllvi -vi-din~ lllu -vi-din· 

Subject to (2.6) and (3.8) at v =Vi - Vi-1' we have 

£(u, Vi - vi-1) =£(vi, v - Vi-1· 

(5.29) 

Taking int.a account of the symmetry of£ and putting in (5.27) v = vi-i, we subtract 
(5.27) from both sides of the last equality 

.C(u - Vi-1, Vi - Vi-1) = .C(v - Vi-1, Vi - Vi_i). 

Apply the Cauchy-Bunyakovski inequality to the left-hand side: 

lllvi - vi-1 Ill~ ~ lllu - vi-1 llln · lllvi - "i-1 llln· 
Hence there follows the inequality (5.29). (5.28) can therefore be recast as 

i 1 
lllV; - U; Ill; ~ c* ~ 2m; + 1 lllu - v;-1 llln 

or, from (3.14), as 

(5.30) 

Among these inequalities for i = 1, ... , l, the estimate relating to the finest triangulation 
Tz is most useful. We express it as 
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Theorem 1. Assume for the problem (2.1) - (2.2) on the bounded convex polygon n that 
condition (2.3) holds. Then for the solution U1 of the cascadic algorithm with one of the 
iterative smoothers ( 4.20) or ( 4.21) on every level j == 1, ... , l, we have the estimate 

(5.31) 

6. Optimization of the number of iterations 

By analyzing the sequence of computations in view of the sparsity of matrices Li, the upper 
estimate of the number of arithmetic operations in the cascadic algorithm is established 
as follows: 

l 

Si - d2 2:(mi + d3)ni + d4. (6.32) 
j=l 

Here the constants d2 , d3 , d4 are independent of ni and mi but different for iterative 
processes ( 4.20) and ( 4.21). It is obvious that these constants are smaller for the latter 
process. 

We now propose to choose the number of iterations m1 , ... , mz_1 to minimize Sz as a 
function of m1 , ... , m1_ 1 when the right-hand side of inequality (5.31) is fixed. Applying 
the Lagrange multiplier method gives 

Following this equality gives non-integer mi. Therefore we put mz == m and choose mi on 
the succeeding levels as the least integer, satisfying the inequality 

(6.33) 

Theorem 2. When the conditions of Theorem 1 are satisfied, the error of the cascadic 
algorithm with conjugate-gradient iterations ( 4.20) or Jacobi-type smoother ( 4.21) is esti-
mated as 

(6.34) 

The piecewise-linear interpolant Uz E H 1 of vector U1 obeys the estimate 

(6.35) 

The number of arithmetic operations is estimated above by the value 

(6.36) 

with the constants c3 - c6 independent of m and nz. 
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Proof. From the Euler formula for polygons, there follows the inequality ni-l ~ ni / 4. 
Therefore 

(6.37) 

Subject to COD:struction of grids, 

(6.38) 

Using these relations together with (6.33) in (5.31), we get a sequence of inequalities 

l l . 17) 

lll"Vi - Uzlllz ~ 2d1hz L nihi-l ~ 2d1hz L 2U-Z)/2 ~ hz 2
V 

2d1 . 
i=l nzhz-1 i=l v'2 - 1 

Therefore the constant c3 in (6.34) can be assumed to equal c*c42v'2/( v'2 - 1). 
From the triangle inequality, the equivalence of norms (3.12) and estimate (3.14), we 
arrive at the inequality 

llluz - ullln ~ llluz - vzllln + lllvz - ullln ~ lllUz - Vllllz + c4hzll/llo,n-
Together with the inequality (6.34) already proved, this leads to (6.35). 
To estimate the number of arithmetical .operations, it will be remembered that mi is 
chosen as the least integer satisfying the condition (6.33). Therefore 

whence 

mi :::; (m + 1/2h/nzhi-i/nihz-1+1/2. (6.39) 

Use this inequality in (6.32):. 

l 

Sz :::; d2 L::((m + 1/2)nzJnihi-i/nzhz-1 + (d3 + lj2)4i-Znz) + d4. 
j=l 

From relations (6.37), (6.38) we get 

l 
Sz :::; d2 L::((m + 1/2)nz~(j-Z)/2 + (d3 + 1/2)4i-Znz) + d4. 

j=l 

We replace the sums of two geometrical progressions with infinite series sums: 

Hence there follows (6.36) with the constants 

c5 = d2.J2/(.J2 - 1) and c6 = cs/2+2(2d3+1)/3 + d4. D 

It is apparent that the number of iterations m on the highest level should be chosen 
subject to the condition c4 ~ c3/(2m+l). Although the constants c3, c4 are unknown, it is 
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seen that mis independent of the number oflevels and unknowns. Therefore (6.34)-(6.36) 
characterize the property: under finite number of arithmetic operations per one unknown, 
the error of the iterative process is of the same order as the error of the discretization. 
When doing practical calculations, e.g. for the Poisson equation, mis small. However as 
the level index decreases, the number of iterations increases exponentially. Therefore some 
disadvantages of iterative processes (4.20) and (4.21) are seen [6]: a loss of orthogonality 
of sequences rk, Pk in ( 4.20) and considerable accumulation of the error of intermediate 
iterations in (4.21). It should also be noted that the method (4.21) is less efficient than the 
method ( 4.20). All this leads to the following recommendation. On the highest levels, m 
iterations of method ( 4.20) should be done; on the succeeding levels method ( 4.21) should 
be realised with the number of iterations (6.39), where m = 3mz, and with the use of one 
of the mixing procedures of parameters Tk-l to ensure stability {13}, {14}. 
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