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Numerical analysis of a finite volume scheme for charge
transport in perovskite solar cells

Dilara Abdel, Claire Chainais-Hillairet, Patricio Farrell, Maxime Herda

Abstract

In this paper, we consider a drift-diffusion charge transport model for perovskite solar cells,
where electrons and holes may diffuse linearly (Boltzmann approximation) or nonlinearly (e.g.
due to Fermi-Dirac statistics). To incorporate volume exclusion effects, we rely on the Fermi-
Dirac integral of order −1 when modeling moving anionic vacancies within the perovskite layer
which is sandwiched between electron and hole transport layers. After non-dimensionalization,
we first prove a continuous entropy-dissipation inequality for the model. Then, we formulate a
corresponding two-point flux finite volume scheme on Voronoi meshes and show an analogous
discrete entropy-dissipation inequality. This inequality helps us to show the existence of a discrete
solution of the nonlinear discrete system with the help of a corollary of Brouwer’s fixed point
theorem and the minimization of a convex functional. Finally, we verify our theoretically proven
properties numerically, simulate a realistic device setup and show exponential decay in time with
respect to the L2 error as well as a physically and analytically meaningful relative entropy.

1 Introduction

In recent years, Perovskite Solar Cells (PSCs) have become one of the fastest growing photovoltaic
technologies [1, 2]. Two advantages of PSCs stand out: On the one hand, certain architectures have
significantly lower production costs than conventional solar cells. On the other hand, silicon-perovskite
tandem cells have become more efficient than classical single-junction silicon solar cells. However, the
commercialization of PSCs is still in its early stages and several challenges need to be overcome, the
most prominent being the relatively fast degradation of these devices. Apart from solar cells, perovskite
materials also show promise for use in LEDs, photodetectors and memristors.

There is well-established mathematical literature concerning drift-diffusion mathematical models to
describe charge transport in classical or organic semiconductors and similar physical systems (see for
instance and non-exhaustively [3–8]). In the perovskite material, a major difference is that apart from
electrons and holes, ion migration plays a fundamental role. Therefore, to correctly reflect the physical
behavior, perovskite models must contain additional freely moving ion species. In PSCs, the various
charge carrier species live in different parts of the domain, evolve on different time scales and obey
different diffusion laws. Moreover, one must take into account the photogeneration effect. Because
of the differences and new features compared to classical semiconductors, there is a need for new
mathematical and numerical modeling and analysis for these devices. Several models have been
proposed recently in the literature – with the exception of [9], nearly all of them are in one dimension
[10, 11].

In this paper, we consider a three-layer drift-diffusion perovskite charge transport model for three dif-
ferent charge carriers. Within the entire device electrons and holes may diffuse linearly (Boltzmann
approximation) or nonlinearly. The nonlinear diffusion may be governed, for example, by Fermi-Dirac
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statistics [12] but our model allows even more general statistical relationships between densities and
potentials. In the middle perovskite region, we include anion vacancies. It has been demonstrated
that the ion migration despite being considerably slow cannot be neglected [10]. To correctly incor-
porate volume exclusion effects, we rely on Fermi-Dirac statistics of order −1. All three drift-diffusion
equations are coupled self-consistently to a nonlinear Poisson equation.

Given that perovskite models are relatively new, the arising Partial Differential Equations (PDE) model
has not been studied yet mathematically. In comparison, classical drift-diffusion models have been
studied in detail [3–7]. For drift-diffusion models, an essential a priori estimate is based on the evo-
lution of the physical free energy or a related functional. It allows to study the well-posedness of the
equations as well as the asymptotic behavior of its solution [3, 7, 13]. The techniques relying on a
well-chosen physically relevant Lyapunov functional have been used for many systems of dissipative
PDEs and are usually referred to as entropy methods (see [14] and references therein), which is why
in the following we will use the term entropy instead of free energy.

The design of numerical schemes for drift-diffusion models is also an mature but still very active field of
research (see for instance [7, 15–22]). In order to ensure the quality of the numerical simulation and the
stability of the numerical method, efforts have been made towards the design of structure preserving
schemes [20, 23–26]. Their aim is to preserve physical features of the original model such as the
decay of free-energy or non-negativity of solutions. Because of the stiffness in drift-diffusion models
arising from small parameters such as the Debye length, fully implicit in time numerical methods are
usually preferred. They yield robustness of the scheme as well as asymptotic preserving properties
[24, 27]. Finally, the treatment of nonlinear diffusion to handle general statistics function has also been
investigated [17, 28, 29].

The main goal of this paper is the analysis of an implicit in time two-point flux approximation (TPFA)
finite volume scheme for the perovskite model. The model and the scheme originate from [9]. The
scheme relies on the the excess chemical potential flux scheme which appears to be used for the first
time in [22] and was later numerically analyzed in [16, 30] and compared in [18, 31].

The main tool for our analysis is an entropy-dissipation inequality for the perovskite model. After non-
dimensionalizing the perovskite model, we establish such an inequality in the continuous setting in
Theorem 4. Then, we adapt the arguments to show in Theorem 10 that the discrete counterpart of this
inequality also holds for a solution of the implicit finite volume scheme. This a priori estimate on the
scheme allows us to prove the existence of a discrete solution at each time step in Theorem 16. The
proof relies on a corollary of Brouwer’s fixed point theorem for the quasi Fermi potentials, coupled with
the minimization of a convex functional for the electric potential.

We illustrate and complement our theoretical results with numerical experiments. We investigate the
convergence in space and witness second order accuracy, as expected. By introducing a relative free
energy with respect to the steady solution, we illustrate the long time behavior of transient solutions
and their convergence towards steady state solutions exponentially fast in time. Finally, we investigate
the large time behavior of the perovskite model at a constant applied voltage which physically corre-
sponds to investigating the influence of preconditioning a PSC before current-voltage measurements.

The remainder of the paper is organized as follows: In Section 2, we introduce the original and the
non-dimensionalized perovskite model for general statistics functions and the underlying free energy.
In Section 3, we then prove a continuous entropy-dissipation inequality for the perovskite model. In
Section 4, we present the corresponding finite volume scheme, for which we prove a discrete entropy-
dissipation inequality. This inequality will allow us to deduce the existence of a discrete solution in
Section 5. Finally, in Section 6, we corroborate and complement our theoretical observations numeri-
cally before we conclude and discuss future research in Section 7.
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Numerical analysis of a finite volume scheme for charge transport in perovskites 3

2 Charge transport model for perovskite solar cells

Let Ω ⊆ Rd, d ≤ 3, be an open, connected and bounded spatial domain, which is partitioned into
three pairwise disjoint, open subdomains Ω =

(
∪kΩk

)◦
, k ∈ {intr,HTL,ETL}. Here, Ωintr refers

to the intrinsic perovskite region and ΩHTL,ΩETL to the doped electron and hole transport layers,
respectively. We denote the interface between the transport layers and the perovskite layer by ΣHTL =
∂ΩHTL ∩ ∂Ωintr and ΣETL = ∂ΩETL ∩ ∂Ωintr. The boundaries of the hole and electron transport layer
do not intersect, ∂ΩHTL ∩ ∂ΩETL = ∅, see Figure 1 for a potential device geometry. The unknowns of
the charge transport model are given by the electric potential ψ(x, t) and the quasi Fermi potentials
(frequently called electrochemical potentials) of moving charge carriers, denoted by ϕα(x, t), α ∈
{n, p, a}. Here, the quantities n, p and a refer to the electrons, holes and anion vacancies. Unlike
quasi Fermi potentials for electrons and holes ϕn, ϕp, which are defined for any x ∈ Ω, the quasi
Fermi potential of anion vacancies ϕa is defined only in the intrinsic domain Ωintr. The density of a
charge carrier is denoted by nα, α ∈ {n, p, a}. We examine the model for the charge transport in
PSCs formulated in [9], where for t ≥ 0 the mass balances are given by

znq∂tnn +∇ · jn = znq
(
G(x)−R(nn, np)

)
, x ∈ Ω, t ≥ 0, (1a)

zpq∂tnp +∇ · jp = zpq
(
G(x)−R(nn, np)

)
, x ∈ Ω, t ≥ 0, (1b)

zaq∂tna +∇ · ja = 0, x ∈ Ωintr, t ≥ 0, (1c)

self-consistently coupled with the nonlinear and region-wise defined Poisson equation

−∇ · (εs∇ψ) =

q
(
znnn + zpnp + C(x)

)
, x ∈ ΩHTL ∪ΩETL, t ≥ 0,

q
(
znnn + zpnp + zana + C(x)

)
, x ∈ Ωintr, t ≥ 0.

(2)

The charge numbers of the three moving charge carriers are given by zn, zp and za, the elementary
charge is denoted by q and εs refers to the region-dependent dielectric permittivity. Throughout this
paper, we assume the standard charge numbers zn = −1 and zp = 1 for electrons and holes.
For the anionic vacancies, we will simply assume za > 0 and later for the numerical experiments
we set za = 1. Note that all of the following computations can be extended to include movement of
cation vacancies, i.e. movement of negative ion vacancy charge numbers. However, this case seems
to be of less physical interest for PSCs. The charge carrier densities are linked to the set of unknowns
(ψ, ϕn, ϕp, ϕa) by the state equations [32]

nα = NαFα
(
ηα(ϕα, ψ)

)
, ηα = zα

q(ϕα − ψ) + Eα
kBT

, α ∈ {n, p, a}, (3)

where Fα is called statistics function which will be discussed in Section 2.2. The quantities Nn, Np

denote the effective conduction and valence density of states, whereasNa is given by the maximal va-
cancy concentration. The argument ηα of the statistics function is called chemical potential. It depends
on the band-edge energies Eα, a constant temperature T and the Boltzmann constant kB . Moreover,
the electric currents jα for each species are given by

jα = −z2
αµαnα∇ϕα, α ∈ {n, p, a}, (4)

with the carrier mobility µα. Concerning the right-hand side of the continuity equations (1a), (1b) and
Poisson equation (2) we assume that the doping profile C is bounded, i.e. C ∈ L∞(Ω) and that the
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photogeneration rate satisfies 0 ≤ G ∈ L∞(Ω). In other words the carrier dependent doping profile
and the photogeneration rate are constant in time. It is common to assume a Beer-Lambert generation
profile, describing an exponential decay in the z direction, see Figure 1,

G(x) = Fphαg exp(−αgz), x = (x, y, z)T ,

where Fph denotes the incident photon flux and αg the material absorption coefficient. Lastly, the
recombination rate R is of the form [32]

R(nn, np) = r(nn, np)nnnp

(
1− exp (ϕn − ϕp)

)
, r(nn, np) =

∑
r

rr(nn, np),

where rr(nn, np) ≥ 0 is given by the sum of all present recombination processes, which, for PSCs,
are radiative and trap-assisted Shockley-Read-Hall recombination

rrad = r0 and rSRH =
1

τp(nn + nn,τ ) + τp(np + np,τ )
,

where r0 is a constant rate coefficient, τn, τp are the carrier life times and nn,τ , np,τ the reference
carrier densities. Furthermore, we supply the system (1) with initial conditions for t = 0

ϕn(x, 0) = ϕ0
n(x), ϕp(x, 0) = ϕ0

p(x) for x ∈ Ω, (5a)

ϕa(x, 0) = ϕ0
a(x), for x ∈ Ωintr, (5b)

where we assume ϕ0
n, ϕ

0
p ∈ L∞(Ω) and ϕ0

a ∈ L∞(Ωintr). Correspondingly, we define initial densities
n0
α(x) = NαFα(ηα(ϕ0

α, ψ(x, 0))).

2.1 Boundary conditions

The outer boundary of Ω is decomposed into two ohmic contacts modeled by Dirichlet conditions ΓD

and an isolated interface ΓN , where we impose no flux Neumann boundary conditions. We assume
ΓD ∩ Ωintr = ∅, i.e. the ohmic contacts are solely located at the outer boundary of transport layers.
More precisely, let the Dirichlet values ψD, ϕD ∈ W 1,∞(Ω) be given. Then, the outer boundary
conditions are modeled via

ψ(x, t) = ψD(x), ϕn(x, t) = ϕp(x, t) = ϕD(x), x ∈ ΓD, t ≥ 0, (6a)

∇ψ(x, t) · ν(x) = jn(x, t) · ν(x) = jp(x, t) · ν(x) = 0, x ∈ ΓN , t ≥ 0, (6b)

where ν is the outward pointing unit normal to ΓN . Note that the same Dirichlet value ϕD is im-
posed on both quasi Fermi potentials. Concerning the anion vacancies, we impose no flux Neumann
boundary conditions on the whole intrinsic boundary, namely

ja(x, t) · ν intr(x) = 0, x ∈ ∂Ωintr, t ≥ 0, (7)

where ν intr is the outward pointing unit normal to ∂Ωintr.

DOI 10.20347/WIAS.PREPRINT.2958 Berlin 2022



Numerical analysis of a finite volume scheme for charge transport in perovskites 5

Figure 1: A two-dimensional three-layer device with the relevant potentials stated per subdomain.

The traces of the potentials ψ, ϕn and ϕp coincide on both sides of the internal boundaries ΣHTL

and ΣETL. Moreover, the corresponding fluxes are also continuous across internal boundaries. More
precisely, for t ≥ 0(

εs∇ψ(x, t; k)− εs∇ψ(x, t; intr)
)
· ν intr(x) = 0, x ∈ Σk, k ∈ {HTL,ETL}, (8a)(

jn(x, t; k)− jn(x, t; intr)
)
· ν intr(x) = 0, x ∈ Σk, k ∈ {HTL,ETL}, (8b)(

jp(x, t; k)− jp(x, t; intr)
)
· ν intr(x) = 0, x ∈ Σk, k ∈ {HTL,ETL}. (8c)

Here, we use the notation that for any function f the expression f(x, t; k) denotes the trace of f ,
restricted onto Ωk, k ∈ {HTL,ETL, intr}, evaluated at the respective interface between transport and
perovskite layer.

Remark 1 (Conservation of mass for anion vacancies). Observe that by integrating (1c) over Ωintr and
using the Neumann boundary conditions (7) the total mass of anionic vacancies is conserved, namely∫

Ωintr

na(x, t) dx =

∫
Ωintr

n0
a(x) dx, for all t ≥ 0.

An equivalent condition does not hold for electron and hole densities due to the boundary conditions
and the recombination/generation terms.

2.2 Statistics functions

Lastly, we need to discuss the choice of statistics functions Fα in (3) depending on the charge carrier
species α ∈ {n, p, a}. Our results will hold under general abstract assumptions on these functions.
However, we also provide specific examples below.

Electric Charge Carriers α ∈ {n, p} For electrons and holes α ∈ {n, p} we assume{
Fn,Fp : R→ (0,∞) are C1- diffeomorphisms;

0 < F ′α(η) ≤ Fα(η) ≤ exp(η), η ∈ R, α ∈ {n, p}.
(H1)

There are two important statistics functions, satisfying assumption (H1), which are commonly used for
modeling electric charge transport in PSCs. The first one is given by the Fermi-Dirac integral of order
1/2 defined as

F1/2(η) =
2√
π

∫ ∞
0

ξ1/2

exp(ξ − η) + 1
dξ, (9)
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which is fundamental in the simulation of inorganic three-dimensional semiconductors [32, 33]. The
function F1/2 behaves like η3/2 when the chemical potential η tends to +∞, namely in the large
density limit. In the low density limit, when the chemical potential η tends to −∞, it behaves like the
Boltzmann statistics function

FB(η) = exp(η), (10)

which is another important statistics functions for electrons and holes. Observe that the choice Fn =
Fp = F1/2 leads to nonlinear diffusion in the electric currents (4), whereas Fn = Fp = FB yields
linear diffusion.

Ionic Charge Carriers α = a We assume that the statistics function for ionic charge carriers satis-
fies the following assumption{

Fa : R→ (0, 1) is a C1- diffeomorphism;

0 < F ′a(η) ≤ Fa(η) ≤ exp(η), η ∈ R.
(H2)

Observe that the boundedness of the image ofFa reflects the boundedness of the anion vacancy den-
sity. Such a choice necessarily leads to nonlinear diffusion for the densities in (1a). For anion vacancies
in PSCs the Fermi-Dirac integral of order−1 is chosen to reflect the limitation of ion concentration by
the lattice sites available in the crystal [9]. This particular statistics function reads

F−1(η) =
1

exp(−η) + 1
. (11)

Note that for both assumptions (H1) and (H2), the positivity of the statistics functions reflects the
positivity of the number densities of charge carriers.

2.3 Thermodynamic free energy

The thermodynamic free energy for the discussed model is given by the sum of different energy con-
tributions. Following [19, 34], on the one hand, the contribution of electrons and holes can be derived
from a quasi-free Fermi gas. On the other hand, the electric contribution to the total energy is given by
the electrostatic field energy. Lastly, assuming an ideal lattice gas [9] we can derive a consistent en-
ergy contribution of anion vacancies which extends the electric free energy formulation in [19]. Hence,
in total the free energy functional for the PSC model reads

Ef (t) =
1

2

∫
Ω

εs|∇ψ|2 dx +
∑

α∈{n,p}

∫
Ω

[
kBTNαΦα

(
nα
Nα

)
− zαEαnα

]
dx

+

∫
Ωintr

[
kBTNaΦa

(
na
Na

)
− zaEana

]
dx,

where Φα is an antiderivative of F−1
α and where for the sake of simplicity we neglected external

interaction effects of the electric potential. Thus, for non-degenerate semiconductors, i.e. for Fn =
Fp = exp and Fa chosen as Fermi-Dirac integral of order −1 the free energy simplifies to

Ef (t) =
1

2

∫
Ω

εs|∇ψ|2 dx +
∑

α∈{n,p}

∫
Ω

[
kBTnα

(
log

(
nα
Nα

)
− 1

)
− zαEαnα

]
dx

+

∫
Ωintr

[
kBT

(
nα log

(
nα
Nα

)
+ (Nα − nα) log

(
1− nα

Nα

))
− zaEana

]
dx.

(12)
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Numerical analysis of a finite volume scheme for charge transport in perovskites 7

2.4 Non-dimensionalization of the model

In this subsection, we derive the relevant non-dimensional parameters of the model, following [11] and
[5, Section 2.4]. Starting from the charge transport model in (1)-(4), we rewrite the equations in terms
of the scaled variables given as the ratio of the unscaled physical quantity and the scaling factors
defined in Table 1 (where UT = kBT/q shall denote the thermal voltage).

In the following we make several simplifications in order to simplify the presentation and the forth-
coming computations. More precisely, we assume from now on and until the end of Section 5 that the
mobilities µn and µp, the dielelectric permittivity εs, and the effective conduction and valence density of
states Nn and Np are constant in the domain Ω. Moreover, we assume that µn = µp and Nn = Np.
In practice, the previous quantities vary in each subdomain. Finally, the band-edge energy Eα is as-
sumed to be null for all moving charge carriers α. In Section 6.2, we perform numerical simulations
with heterogeneous parameters and non-zero band-edge energies. All the analysis of Section 3 and
Section 4 can be adapted without the previous simplifications. However, apart from creating notational
overhead, the key ideas remain the same.

Symbol Meaning Scaling factor Order of magnitude

x space variable l 10−5 cm

ψ, ψD , ϕα, ϕD electric and quasi Fermi potentials UT 10−2 V

nn, np densities of electrons and holes Ñ 1018 cm−3

na density of anion vacancies Ña 1021 cm−3

C doping profile Ñ 1018 cm−3

µn, µp electron and hole mobility µ̃ 100 cm2V−1s−1

µa anion vacancy mobility µ̃a 10−12 cm2V−1s−1

t time variable
l2

µ̃aUT
104 s

jn, jp current density for electrons and holes
qUT Ñ µ̃

l
102 Acm−2

ja current density for anion vacancies
qUT Ñaµ̃a

l
10−7 Acm−2

R recombination rate
µ̃UT Ñ

l2
1026 cm−3s−1

G photogeneration rate Fphαg 1022 cm−3s−1

Table 1: Scaling factors for a PSC device based on the default parameters of [35] at T = 298K .

In Table 1, the time scale is chosen to be that of the anion vacancies. By replacing µ̃a with µ̃ in the
scaling factor of the time variable, one could write the dimensionless version adapted to the electrons
and holes time scale. We assume that the scaling factor Ñ is exactly equal to Nn = Np and that
Ña = Na. Similarly, since we assumed, for simplicity, that the mobilities are constant in the domain,
we take µ̃a = µa and µ̃ = µn = µp. By denoting the scaled quantities with the same symbol as the
corresponding unscaled quantities the dimensionless version of the model (1)-(4) reads

ν zn∂tnn +∇ · jn = zn

(
γ G(x)−R(nn, np)

)
, x ∈ Ω, t ≥ 0, (13a)

ν zp∂tnp +∇ · jp = zp

(
γ G(x)−R(nn, np)

)
, x ∈ Ω, t ≥ 0, (13b)

za∂tna +∇ · ja = 0, x ∈ Ωintr, t ≥ 0, (13c)
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coupled to the Poisson equation

−λ2∆ψ =

{
δ(znnn + zpnp + C(x)), x ∈ ΩHTL ∪ΩETL, t ≥ 0,

zana + δ(znnn + zpnp + C(x)), x ∈ Ωintr, t ≥ 0.
(14)

The state equation can be rewritten as

nα = Fα
(
zα(ϕα − ψ)

)
, α ∈ {n, p, a}, (15)

and we have the following expressions for the charge carrier currents

jα = −z2
αnα∇ϕα, α ∈ {n, p, a}. (16)

There are four dimensionless parameters, the rescaled Debye length, which is taken with respect to
the anion vacancies

λ =

√
εsUT

l2qÑa

, (17)

the relative mobility of anion vacancies with respect to the mobility of electrons and holes

ν =
µ̃a
µ̃
, (18)

the relative concentration of electric carriers with respect to the anion vacancy concentration

δ =
Ñ

Ña

, (19)

and the rescaled photogeneration rate

γ =
Fphαgl

2

µ̃UT Ñ
. (20)

The parameter ν can also be interpreted as the ratio between the electric and ionic carrier time scale.
In a typical device all of these parameters are small. More precisely, ν ≈ 10−12, λ ≈ 10−2, δ ≈ 10−3

and γ ≈ 10−5. In particular, the parameters ν and λ2 generate important stiffness in the model, which
motivates the use of a robust implicit-in-time numerical scheme (see Section 4).

3 Continuous entropy-dissipation inequality

For drift-diffusion systems in semiconductor modeling, the natural a priori estimate [3, 4] is based on
the evolution of a global quantity which has the physical meaning of a free energy. In the following, we
call this quantity (relative) entropy, in the sense of entropy method for PDEs rather than in the physical
sense.

3.1 Entropy functions

For α ∈ {n, p, a}, we define the relative entropy function Φα, associated with the statistics Fα, to be
an anti-derivative of the inverse statistics function namely

Φ′α(x) = F−1
α (x), x ≥ 0. (21)

DOI 10.20347/WIAS.PREPRINT.2958 Berlin 2022



Numerical analysis of a finite volume scheme for charge transport in perovskites 9

Observe that (H1) and (H2) imply that the statistics function is strictly increasing and therefore Φα is
strictly convex. Of course equation (21) does not define Φα uniquely, but the value of the constant is
not crucial for α = n, p in what follows because we will introduce relative entropies. The constant may
be taken in general to ensure that Φα is non-negative and vanishes at only one point, which is indeed
necessary for α = a.

We also define the relative entropy Hα by

Hα(x, y) = Φα(x)− Φα(y)− Φ′α(y)(x− y), x ≥ 0. (22)

Observe that Hα is non-negative due to the convexity of Φα.

Examples. Let us give two examples for the typical statistics functions of the electric and ionic charge
carriers. In the case of the Boltzmann statistics, one has

Fn(η) = Fp(η) = eη, Φn(x) = Φp(x) = x log(x)− x+ 1.

In the case of the Fermi-Dirac integral of order −1 for Fa, one has

Fa(η) =
1

exp(−η) + 1
, Φa(x) = x log(x) + (1− x) log(1− x) + log(2).

Note that both examples for the mathematical entropy functions coincide with the respective physical
free energy contributions in (12).

Properties of the entropy and relative entropy function. Let us state some useful results for the
entropy functions. The proofs may be found in Appendix A.

Lemma 2. One has the following bounds on the entropy functions (21) and (22).

(i) Let Fα be a statistics function satisfying (H1) and Hα be the associated relative entropy func-
tion. Then, for any ε > 0 and y0 ≥ 0, there exists a constant cy0,ε > 0 such that

x ≤ cy0,ε + εHα(x, y), for all x ≥ 0, y ∈ [0, y0].

(ii) Let Fa be a statistics function satisfying (H2) and Φa be the associated entropy function. Then,
for any ε > 0, there exists a constant cε > 0 such that

x ≤ cε + εΦa(x), for all x ≥ 0. (23)

Under a last assumption on the statistics functions for electrons and holes

lim
x→+∞

Hα(x, y0)

F−1
α (x)

= +∞, for y0 ≥ 0 and α = n, p, (H3)

we have the following result.

Lemma 3. Let Fα with α = n, p be a statistics function satisfying (H1) and (H3). Then, for any ε > 0
and y0 ≥ 0, there exists a constant cy0,ε > 0 such that

max(F−1
α (x), 0) ≤ cy0,ε + εHα(x, y), for all x ≥ 0, y ∈ [0, y0].

We will also show in Appendix A that the Boltzmann statistics and the Fermi-Dirac statistics of order
1/2 both satisfy (H1), (H3), while the Fermi-Dirac statistics of order −1 satisfies (H2).

DOI 10.20347/WIAS.PREPRINT.2958 Berlin 2022



D. Abdel, C. Chainais-Hillairet, P. Farrell, M. Herda 10

3.2 Proof of the entropy-dissipation inequality

The thermodynamic free energy introduced in Subsection 2.3 is of physical interest. Now, however, we
would like to prove an entropy-dissipation inequality whose discrete counterpart will allow us to prove
the existence of a discrete solution and the stability of the scheme. For this reason, we introduce a
variation of this functional which from now we will refer to as total relative entropy in agreement with
the mathematical literature. Adapting the functional of [27, 36] to our system, the total relative entropy
with respect to the Dirichlet boundary values ψD, ϕD is given by

E(t) =
λ2

2

∫
Ω

|∇(ψ − ψD)|2 dx +

∫
Ωintr

Φa(na) dx + δ
∑

α∈{n,p}

∫
Ω

Hα(nα, n
D
α ) dx, (24)

where the entropy functions Φa, Hn and Hp are given by (21), (22) and nDα can be calculated by
inserting ϕD, ψD into the state equation (3). Note that due to our specific choice for Φa the middle
term is non-negative as well which implies that the entropy is non-negative. Taking into account the
fact that z2

α = 1 for α ∈ {n, p}, the associated non-negative dissipation D is defined as

D(t) =
δ

ν

∫
Ω

R(nn, np) (ϕp − ϕn) dx +
z2
a

2

∫
Ωintr

na|∇ϕa|2 dx +
δ

2ν

∑
α∈{n,p}

∫
Ω

nα|∇ϕα|2 dx.

(25)

Theorem 4. (Continuous entropy-dissipation inequality) Consider a smooth solution to the model
(13)–(16), with initial conditions (5) and boundary conditions (6), (7), (8). Then, for any ε > 0, there is
a constant cε,Ω > 0

d

dt
E(t) + D(t) ≤ cε,Ω + εE(t), (26)

where the entropy is defined in (24) and the dissipation of entropy in (25). The constant cε,Ω depends
only on ε, Ω, on the boundary data and the photogeneration term via the norms ‖G‖L∞ , ‖ϕD‖W 1,∞

and ‖ψD‖W 1,∞ , on za and on the dimensionless parameters δ, γ and ν.

Remark 5 (Thermodynamic equilibrium). If the boundary data is at thermodynamic equilibrium, i.e.
∇ϕD = ∇ψD = 0 and without external generation of electric carriers, i.e. G = 0, then the entropy-
dissipation inequality simplifies to

d

dt
E(t) + D(t) ≤ 0.

Indeed, while we do not specify precisely the dependencies of the constant on the data it is clear
from the proof of Theorem 4 that the right hand-side of (26) vanishes in this setting. In this case the
entropy decays in time and the solution is expected to converge exponentially fast towards the thermo-
dynamic equilibrium (ϕeq

n , ϕ
eq
p , ϕ

eq
a , ψ

eq). This thermodynamic equilibrium is such that the quasi Fermi
potentials for electrons and holes are constant on Ω

ϕeq
p = ϕeq

n = ϕD

and ϕeq
a is constant on Ωintr, determined by the conservation of mass for anion vacancies∫

Ωintr

na(ϕ
eq
a , ψ

eq) dx =

∫
Ωintr

na(x, 0) dx,

DOI 10.20347/WIAS.PREPRINT.2958 Berlin 2022



Numerical analysis of a finite volume scheme for charge transport in perovskites 11

where the electric potential ψeq satisfies the following nonlinear Poisson equation

−λ2∆ψeq =

{
δ
(
np(ϕ

eq
p , ψ

eq)− nn(ϕeq
n , ψ

eq) + C(x)
)
, x ∈ ΩHTL ∪ΩETL,

zana(ϕ
eq
a , ψ

eq) + δ
(
np(ϕ

eq
p , ψ

eq)− nn(ϕeq
n , ψ

eq) + C(x)
)
, x ∈ Ωintr.

The system is supplemented with the Dirichlet and Neumann boundary conditions (6a) and (6b) for
the electric potential. The proof of this asymptotic behavior is beyond the scope of the present paper
but could be investigated following the lines of the seminal work of Gajewski [3].

Proof of Theorem 4. First, let us take the derivative of (24) with respect to time

d

dt
E(t) = λ2

∫
Ω

(∂t∇ψ) · ∇(ψ − ψD) dx +

∫
Ωintr

F−1
a (na)∂tna dx

+ δ
∑

α∈{n,p}

∫
Ω

(
F−1
α (nα)−F−1

α (nDα )
)
∂tnα dx.

(27)

By integrating the first term by parts and using the Poisson equation (2) one obtains

λ2

∫
Ω

(∂t∇ψ)·∇(ψ−ψD) dx = δ

∫
Ω

(zn∂tnn+zp∂tnp)(ψ−ψD) dx+

∫
Ωintr

za∂tna(ψ−ψD) dx,

where all the boundary terms cancel thanks to the boundary conditions (6) and (8a). Plugging this
back into (27) and using the state equation (15), we have

d

dt
E(t) =

∫
Ωintr

za
(
ϕa − ψD

)
∂tna dx+ δ

∑
α∈{n,p}

∫
Ω

zα
(
ϕα − ϕD

)
∂tnα dx.

Next, we insert the balance equations (13) and the definition of the current densities (16)

d

dt
E(t) =−

∫
Ωintr

∇ · ja
(
ϕa − ψD

)
dx− δ

ν

∑
α∈{n,p}

∫
Ω

∇ · jα
(
ϕα − ϕD

)
dx

+
δ

ν

∑
α∈{n,p}

∫
Ω

zα (γG−R)
(
ϕα − ϕD

)
dx

=−
∫

Ωintr

z2
ana∇ϕa · ∇

(
ϕa − ψD

)
dx− δ

ν

∑
α∈{n,p}

∫
Ω

nα∇ϕα · ∇
(
ϕα − ϕD

)
dx

+
δ

ν

∫
Ω

(γG−R) (ϕp − ϕn) dx,

where we used zn = −1 = −zp and integrated by parts with boundary terms vanishing again thanks
to (6b), (7), (8b) and (8c). By expanding the first terms and using Young’s inequality we get

d

dt
E(t)+D(t) ≤ δγ

ν

∫
Ω

G (ϕp − ϕn) dx+
z2
a

2

∫
Ωintr

na|∇ψD|2 dx+
δ

2ν

∑
α∈{n,p}

∫
Ω

nα|∇ϕD|2 dx.

(28)
It remains to bound the terms of the right-hand side. For the first term on the right hand side of (28)
we use the state equation (15) and Lemma 3 to find for some ε > 0

δγ

ν

∫
Ω

G (ϕp − ϕn) dx =
δγ

ν

∑
α∈{n,p}

∫
Ω

GF−1
α (nα) dx ≤ δγ

ν
||G||∞

∑
α∈{n,p}

∫
Ω

max(F−1
α (nα), 0) dx

≤ δγ

ν
||G||∞

∑
α∈{n,p}

(
cyDα ,ε|Ω|+ ε

∫
Ω

Hα

(
nα, n

D
α

)
dx

)
,
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where Hα is defined in (22) and cyDα ,ε is the corresponding constant introduced in Lemma 3, where
for any species α ∈ {n, p} we introduce

yDα = Fα(‖ϕD‖∞ + ‖ψD‖∞).

With help of Lemma 2 the second remainder term of (28) is estimated by

z2
a

2

∫
Ωintr

na|∇ψD|2 dx +
δ

2ν

∑
α∈{n,p}

∫
Ω

nα|∇ϕD|2 dx

≤ z2
a

2
||∇ψD||2∞

∫
Ωintr

na dx +
δ

2ν
||∇ϕD||2∞

∑
α∈{n,p}

∫
Ω

nα dx

≤ max

{
z2
a

2
||∇ψD||2∞,

δ

2ν
||∇ϕD||2∞

}(
(cyDn ,ε + cyDp ,ε + cε)|Ω|+ 3εE

)
since the first term in (24) is non-negative. Plugging these estimates back into (28) proves the entropy-
dissipation estimate (up to a redefinition of ε).

Using Grönwall’s lemma, an immediate consequence of Theorem 4 is that, as functions of time, the en-
tropy t 7→ E(t) and the dissipation t 7→ D(t) are respectively locally bounded and locally integrable.
More precisely, one has the following result.

Corollary 6. For any ε > 0, one has

E(t) +

∫ t

0

D(s)ds ≤ eεtE(0) +
cε,Ω
ε

(eεt − 1) , t ≥ 0.

4 Discrete version of charge transport model

In this section, we introduce our numerical scheme for (13)-(16). It is a finite volume scheme with a
two-point flux approximation of the fluxes and a backward Euler scheme in time. As in the continuous
setting, we will show that an entropy-dissipation relation also holds at the discrete level, ensuring
stability and preservation of the physical structure of the model.

4.1 Definition of discretization mesh

First, we introduce the time discretization and the spatial mesh of the domain Ω. The mesh, given by
the triplet (T , E , {xK}K∈T ), will be assumed to be admissible in the sense of [37]. Let T denote a
family of non-empty, convex, open and polygonal control volumes K ∈ T , whose Lebesgue measure
is denoted by mK . For K,L ∈ T with K 6= L we assume that the intersection is empty. Also, we
infer that the union of the closure of all control volumes is equal to the closure of the domain, i.e.

Ω =
⋃
K∈T

K.

The subset of cells contained in the intrisic domain is denoted by Tintr ⊂ T . It is assumed that the
closure of the control volumes in the intrinsic domain form a partition of Ωintr, namely

Ωintr =
⋃

K∈Tintr

K.
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Numerical analysis of a finite volume scheme for charge transport in perovskites 13

Further, we call E a family of faces, where σ ∈ E is a closed subset of Ω contained in a hyperplane
of Rd. Each σ has a strictly positive (d − 1)-dimensional measure, denoted by mσ. We use the
abbreviation σ = K|L = ∂K ∩ ∂L for the intersection between two distinct control volumes which
is either empty or reduces to a face contained in E . Also, for any K ∈ T we assume that there exists
a subset EK of E such that the boundary of a control volume can be described by ∂K =

⋃
σ∈EK σ

and, consequently, it follows that E =
⋃
K∈T EK . The set of faces contained in the intrinsic domain

are denoted by
Eintr = {σ ∈ E s.t. σ ⊂ Ωintr}.

Now, we distinguish the faces that are on the boundary of Ω by the notations

ED = {σ ∈ E s.t. σ ⊂ ΓD}, EN = {σ ∈ E s.t. σ ⊂ ΓN}.

These sets form partitions of ΓD and ΓN , respectively. We also introduce the set of interior faces in
the whole and the intrinsic domain, respectively

E int = {σ ∈ E s.t. σ 6⊂ ∂Ω}, E int
intr = {σ ∈ Eintr s.t. σ 6⊂ ∂Ωintr}.

To each control volume K ∈ T we assign a cell center xK ∈ K and we assume that the family of
cell centers (xK)K∈T satisfies the orthogonality condition: If K and L share a face σ = K|L, then
the vector

xKxL is orthogonal to σ = K|L.
For each edge σ ∈ E , we define dσ as the Euclidean distance between xK and xL, if σ = K|L or be-
tween xK and the affine hyperplane spanned by σ, if σ ⊂ ∂Ω. Lastly, we introduce the transmissibility
of the edge σ:

τσ =
mσ

dσ
.

The notations are illustrated in Figure 2.

(a) (b)

Figure 2: Neighboring control volumes (a) in the interior of the domain and (b) near outer boundaries
ΓD and ΓN .

We assume that the mesh is regular in the following sense. There is a constant ξ > 0, which does not
depend on the size of the mesh hT = maxK(diam(K)) such that

∀K ∈ T , ∀σ ∈ EK ,
{
dσ ≥ ξ diam(K) ,
mK ≥ ξ

∑
σ∈EK mσdσ .

The regularity assumptions have to be understood as an asymptotic property as hT → 0 which are
always satisifed on a given mesh due to the finite number of cells. We remark that Voronoi meshes
satisfy all the assumptions stated in this section.
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For the time discretization we decompose the interval [0, tF ], for a given end time tF > 0 into a finite
and increasing number of time steps 0 = t1 < . . . < tM = tF with a step-size τm = tm − tm−1 at
time step m = 2, . . . ,M . We finally introduce ∆t = maxm=2,...,M τm.

4.2 Finite volume discretization

Now, we introduce the finite volume discretization for (13)–(16). In what follows, the quantity umK rep-
resents an approximation of the mean value of u(x, t) on the cell K at time tm, where u is one of the
potentials ϕn, ϕp, ψ. In this case, we define um = (umK)K∈T . For ϕa the approximation is only given
for K ∈ Tintr, so that we define ϕma = (ϕma,K)K∈Tintr . The discretizations of the doping profile C , the
photogeneration rate G and the boundary data ϕD, ψD are given by

χK =
1

mK

∫
K

χ(x)dx, K ∈ T , χ = C, G, ψD or ϕD,

and

χσ =
1

mσ

∫
σ

χ(γ)dγ, σ ∈ ED, χ = ψD, ϕD.

We discretize in the same way the initial conditions ϕ0
n, ϕ0

p, ϕ
0
a, which lead to the corresponding

vectors ϕ0
n, ϕ0

p and ϕ0
a. The finite volume scheme is formulated as follows. First, the discrete mass

balance equations for the three charge carriers are given by

νznmK

nmn,K − nm−1
n,K

τm
+
∑
σ∈EK

Jmn,K,σ = znmK

(
γGK −R(nmn,K , n

m
p,K)

)
, K ∈ T , m ∈ N,

(29a)

νzpmK

nmp,K − nm−1
p,K

τm
+
∑
σ∈EK

Jmp,K,σ = zpmK

(
γGK −R(nmn,K , n

m
p,K)

)
, K ∈ T , m ∈ N,

(29b)

zamK

nma,K − nm−1
a,K

τm
+
∑
σ∈EK

Jma,K,σ = 0, K ∈ Tintr, m ∈ N.

(29c)

They are coupled via the discrete Poisson equation

−λ2
∑
σ∈EK

τσDK,σψ
m =

{
δmK(znn

m
n,K + zpn

m
p,K + CK), K ∈ T \ Tintr, m ∈ N,

mKzan
m
a,K + δmK(znn

m
n,K + zpn

m
p,K + CK), K ∈ Tintr, m ∈ N.

(30)
In the previous equation, the notation DK,σ denotes the finite difference operator acting on vectors of
unknowns u = (uK)K and is given by

DK,σu =


uL − uK , if σ = K|L,
uDσ − uK , if σ ∈ ED,
0, otherwise.

(31)

The discrete densities are given by the state equation (15) inside the domain and at the Dirichlet
boundary, namely

nmα = Fα (zα(ϕmα −ψm)) , α ∈ {n, p, a}, m ∈ N, (32a)

nDα = Fα
(
zα(ϕDα −ψD)

)
, α ∈ {n, p}, (32b)

nDα,σ = Fα
(
zα(ϕDσ − ψDσ )

)
, α ∈ {n, p}, σ ∈ ED, (32c)
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where the statistics function is applied pointwise to the input vector. Let us remark that the discrete
values of the boundary densities, defined by (32b) and (32c), are bounded but that the upper bound
may differ from ‖nDα ‖∞. Indeed, for α ∈ {n, p}, we have

max
(

max
K∈T

nDα,K ,max
σ∈ED

nDα,σ

)
≤ Fα(‖ϕD‖∞ + ‖ψD‖∞) = yDα . (33)

We use the excess chemical potential scheme (frequently called Sedan scheme) as TPFA scheme for
Jmα,K,σ. The earliest reference, we could find for this thermodynamically consistent flux discretization
scheme is [22]. The definition of the numerical flux is based on the following reformulation of the
currents:

jα = −zα (∇nα + nα∇(zαϕα − log nα))

and on the approximation of convection-diffusion fluxes by Scharfetter-Gummel numerical fluxes, see
[16, 21]. For the electrons and holes, it reads

∀α ∈ {n, p}, Jmα,K,σ =


−zατσ

(
B
(
−Qm

α,K,σ

)
nmα,L −B

(
Qm
α,K,σ

)
nmα,K

)
, if σ = K|L,

−zατσ
(
B
(
−Qm

α,K,σ

)
nDα,σ −B

(
Qm
α,K,σ

)
nmα,K

)
, if σ ∈ ED,

0, otherwise.
(34)

For the anion vacancies it is given by

Jma,K,σ =

{
−zaτσ

(
B
(
−Qm

a,K,σ

)
nma,L −B

(
Qm
a,K,σ

)
nma,K

)
, if σ = K|L ∈ E int

intr,

0, otherwise.
(35)

The quantity Qm
α,K,σ is defined as

Qm
α,K,σ = DK,σ (zαϕ

m
α − lognmα ) (36)

with K ∈ T , σ ∈ EK ∩ (E int ∪ ED) for electrons and holes (α ∈ {n, p}) and K ∈ Tintr, σ ∈
EK ∩ E int

intr in the case of anion vacancies (α = a). In the previous formula, the logarithm is applied
componentwise. Lastly, the function B denotes the Bernoulli function

B(x) =
x

exp(x)− 1
, for x 6= 0 and B(0) = 1. (37)

Note that the fluxes are locally conservative in the sense that for σ = K|L

0 = Jmα,K,σ + Jmα,L,σ = Qm
α,K,σ +Qm

α,L,σ = DK,σψ
m +DL,σψ

m = DK,σϕ
m
α +DL,σϕ

m
α . (38)

Since the fluxes Jmα,K,σ and Jmα,L,σ agree up to sign for any interior edge, we introduce the notation

Dσu = |DK,σu| for σ ∈ EK , for u = ψm,ϕmα , α ∈ {n, p, a}.

Remark 7 (Boundary conditions). Observe that all the boundary conditions have been considered in
the definition of the scheme. The external boundary conditions (6) for the electric potential are han-
dled in the definition of (31). For the quasi Fermi potentials of electrons and holes external boundary
conditions are included in the definition of (32c) and (34) as well as (31) and (36). The Neumann
boundary conditions for anion vacancies (7) are included in the definition of (35). Finally, observe that
the continuity of fluxes of electrons, holes and electric potential through the interfaces ΣETL and ΣHTL

is automatically ensured thanks to (38).
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Remark 8 (Mobilities, permittivity and band-edge energies). As explained at the beginning of Sec-
tion 2.4, we made several simplifications concerning the mobilities, permittivity and band-edge energy
in order to lighten the presentation. The generalization of the present scheme to take into account
non-constant mobilities µn, µp and permittivity εs amounts to introducing a consistent prefactor de-
pending on the edge σ in formula (34) and in the sum of the left hand side of (30) respectively. To take
into account non-zero band-edge energies Eα one needs to add the corresponding term to the quasi
Fermi potential ϕα in (36).

At first glance, it might not be obvious why the fluxes (34) and (35) are discrete versions of (16). It
turns out that one can define

nmα,σ :=


B(−Qm

α,K,σ)nmα,L −B(Qm
α,K,σ)nmα,K

zα(ϕmα,L − ϕmα,K)
, σ = K|L, α ∈ {n, p},

B(−Qm
α,K,σ)nDα,σ −B(Qm

α,K,σ)nmα,K
zα(ϕDσ − ϕmα,K)

, σ ∈ ED ∩ EK , α ∈ {n, p},
(39)

and

nma,σ :=
B(−Qm

a,K,σ)nma,L −B(Qm
a,K,σ)nma,K

zα(ϕma,L − ϕma,K)
, σ = K|L ∈ E int

intr, (40)

so that the fluxes can be rewritten to

Jmα,K,σ = −τσz2
αn

m
α,σDK,σϕ

m
α , for all α ∈ {n, p, a}. (41)

Observe that nmα,σ is well-defined in the sense that thanks to (38) it depends only on the edge (and not
nodal values) as well as the fact that a boundary edge has only one associated control volume. The
reformulation of the fluxes (41) now is closer to (16) but the analogy would not be complete, if nmα,σ
is not consistent with the density at the interface σ. This is actually the case as the following lemma
shows. It is adapted from [16, Lemma 3.1].

Lemma 9. The interface value nmα,σ defined by (39) is a convex combination of nmα,K and nmα,L (resp.
nDα,σ), if σ = K|L (resp. σ ∈ ED). In particular it is framed between the minimum and maximum of
the two values. The same result holds for nma,σ defined by (40) for σ = K|L ∈ E int

intr.

Proof. It suffices to observe that for σ = K|L (the boundary case can be readily adapted),

nmα,σ =
B(y)−B(x)

x− y
nmα,L +

B(−x)−B(−y)

x− y
nmα,K ,

with x = DK,σ lognmα and y = −Qm
α,K,σ. To see this, use the expression of the Bernoulli function

B to get that the coefficients are non-negative and sum to 1. We refer to [16] for additional details
concerning this computation.

4.3 Discrete entropy-dissipation inequality

In the following, we derive a discrete counterpart of (26) for the discrete relative entropy (m ∈ N)

EmT =
λ2

2

∑
σ∈E

τσ
(
Dσ(ψm −ψD)

)2
+
∑
K∈Tintr

mKΦa(n
m
a,K)

+ δ
∑

α∈{n,p}

∑
K∈T

mKHα(nmα,K , n
D
α,K). (42)
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We recall that the entropy functions Φa and Hα are defined in (21) and (22). The corresponding
discrete non-negative dissipation Dm

T for m ∈ N is given by

Dm
T =

z2
a

2

∑
σ∈E int

intr

τσn
m
a,σ(Dσϕ

m
a )2 +

δ

2ν

∑
α∈{n,p}

∑
σ∈E

τσn
m
α,σ(Dσϕ

m
α )2

+
δ

ν

∑
K∈T

mKR(nmn,K , n
m
p,K)

(
ϕmp,K − ϕmn,K

)
. (43)

Theorem 10. (Discrete entropy-dissipation inequality) For any solution to the finite volume scheme
(29)–(36) one has the following entropy-dissipation inequality: For any ε > 0, there is a constant
cε,Ω,ξ > 0 such that for any m ∈ N, one has

EmT − Em−1
T

τm
+ Dm

T ≤ cε,Ω,ξ + εEmT . (44)

The constant cε,Ω,ξ depends solely on ε, the measure of Ω, the mesh regularity ξ > 0, the boundary
data and the photogeneration term via the norms ‖G‖L∞ , ‖ϕD‖W 1,∞ and ‖ψD‖W 1,∞ , as well as on
za and the dimensionless parameters δ, γ and ν. If G = 0 and ∇ϕD = ∇ψD = 0, then the right
hand-side of (44) vanishes.

Proof. Let us start by considering the difference of the entropies at time tm and tm−1, that is

EmT − Em−1
T =

λ2

2

∑
σ∈E

τσ

((
Dσ(ψm −ψD)

)2 −
(
Dσ(ψm−1 −ψD)

)2
)

+
∑
K∈Tintr

mK

(
Φa(n

m
a,K)− Φa(n

m−1
a,K )

)
+ δ

∑
α∈{n,p}

∑
K∈T

mK

(
Φα(nmα,K)− Φα(nm−1

α,K )− Φ′α
(
nDα,K

)
(nmα,K − nm−1

α,K )
)
.

Using a convexity inequality in every sum one finds

EmT − Em−1
T ≤λ2

∑
σ∈E

τσDK,σ

(
ψm −ψD

)
DK,σ

(
ψm − ψm−1

)
+
∑
K∈Tintr

mKF−1
a (nma,K)

(
nma,K − nm−1

a,K

)
+ δ

∑
α∈{n,p}

∑
K∈T

mK

(
F−1
α (nmα,K)−F−1

α

(
nDα,K

)) (
nmα,K − nm−1

α,K

)
.

In order to compute the first sum, we use a discrete integration by parts (consisting in reordering sums
by using the conservativity relations on fluxes) and the discrete Poisson equation (30) to get

λ2
∑
σ∈E

τσDK,σ

(
ψm −ψD

)
DK,σ

(
ψm −ψm−1

)
=− λ2

∑
K∈T

∑
σ∈EK

τσDK,σ

(
ψm −ψm−1

) (
ψmK − ψDK

)
= δ

∑
α∈{n,p}

∑
K∈T

mKzα
(
nmα,K − nm−1

α,K

) (
ψmK − ψDK

)
+
∑
K∈Tintr

mKza
(
nma,K − nm−1

a,K

) (
ψmK − ψDK

)
.
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Plugging this relation back into the initial estimate and using the relation in (32), we obtain

EmT − Em−1
T ≤ δ

∑
α∈{n,p}

∑
K∈T

mKzα
(
ϕmα,K − ϕDK

) (
nmα,K − nm−1

α,K

)
+
∑
K∈Tintr

mKza
(
ϕma,K − ψDK

) (
nma,K − nm−1

a,K

)
.

Now, divide by the time step size τm and insert the mass balances in (29)

EmT − Em−1
T

τm
≤ − δ

ν

∑
α∈{n,p}

∑
K∈T

∑
σ∈EK

Jmα,K,σ
(
ϕmα,K − ϕDK

)
−
∑
K∈Tintr

∑
σ∈EK

Jma,K,σ
(
ϕma,K − ψDK

)
+
δ

ν

∑
α∈{n,p}

∑
K∈T

zαmK

(
γGK −R(nmn,K , n

m
p,K)

) (
ϕmα,K − ϕDK

)
.

Next, we insert the formulas for the fluxes (41) with z2
α = 1, α = n, p, and perform a discrete

integration by parts to deduce

EmT − Em−1
T

τm
≤− δ

ν

∑
α∈{n,p}

∑
σ∈E int∪ED

τσn
m
α,σDK,σϕ

m
αDK,σ

(
ϕmα −ϕD

)
− z2

a

∑
σ∈E int

intr

τσn
m
a,σDK,σϕ

m
a DK,σ

(
ϕma −ψD

)
− δ

ν

∑
K∈T

mKR(nmn,K , n
m
p,K)

(
ϕmp,K − ϕmn,K

)
+
δγ

ν

∑
K∈T

mKGK

(
ϕmp,K − ϕmn,K

)
.

After using the inequality −a(a− b) ≤ −(a2 − b2)/2 in the first two sums, we obtain

EmT − Em−1
T

τm
+ Dm

T ≤
δ

2ν

∑
α∈{n,p}

∑
σ∈E int∪ED

τσn
m
α,σ (Dσϕ

D)2 +
z2
a

2

∑
σ∈E int

intr

τσn
m
a,σ (Dσψ

D)2

+
δγ

ν

∑
K∈T

mKGK

(
ϕmp,K − ϕmn,K

)
.

(45)

Observe that at this stage it is obvious that, if G = 0 and ∇ϕD = ∇ψD = 0, then the entropy-
dissipation inequality of the theorem holds for a vanishing right hand-side. In the general case, it
remains to estimate the different remainder terms in the right-hand-side of (45).

For the first and second remainder terms in (45) we need the following intermediate result. Let σ =
K|L ∈ E int, then

Dσϕ
D

dσ
≤ 1

dσmKmL

∫
K

∫
L

|ϕD(x)− ϕD(y)| dx dy

≤ diam(K) + diam(L)

dσ
‖∇ϕD‖L∞ ≤

2

ξ
‖∇ϕD‖L∞ .

The last inequality holds also, if σ ∈ ED or by replacing ϕD with ψD. Let us now go back to the first
remainder term of (45). We set

S1 =
δ

2ν

∑
α∈{n,p}

∑
σ∈E int∪ED

τσn
m
α,σ (Dσϕ

D)2.
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Since nmα,σ is the convex combination of two non-negative unknowns (see Lemma 9) it is bounded
from above by the sum of these unknowns. It yields

S1 ≤
2δ

νξ2
‖∇ϕD‖2

L∞

∑
α∈{n,p}

∑
σ∈E int∪ED

mσ dσn
m
α,σ

≤ 2δ

νξ2
‖∇ϕD‖2

L∞

∑
α∈{n,p}

(
2
∑
K∈T

nmα,K
∑
σ∈EK

mσ dσ +
∑
σ∈ED

mσ dσy
D
α

)

≤ 2δ

νξ2
‖∇ϕD‖2

L∞

∑
α∈{n,p}

(
2

ξ

∑
K∈T

mKn
m
α,K + |Ω|yDα

)

≤ 2δ

νξ2
‖∇ϕD‖2

L∞

2

ξ
εEmT +

∑
α∈{n,p}

(
2

ξ
|Ω|cyDα ,ε + |Ω|yDα

) ,

where yDα has been defined in (33) and cyDα ,ε > 0 is the constant of the inequality (i) in Lemma 2.
Similarly, by using (ii) in Lemma 2 we obtain that the second remainder term satisfies

S2 =
z2
a

2

∑
σ∈E int

intr

τσn
m
a,σ (Dσψ

D)2 ≤ 4z2
a

ξ3
‖∇ψD‖2

L∞(εEmT + cε|Ω|) .

For the last remainder term coming from the photogeneration we set

S3 =
δγ

ν

∑
K∈T

mKGK

(
ϕmp,K − ϕmn,K

)
=
δγ

ν

∑
K∈T

mKGK

(
F−1
n (nmn,K) + F−1

p (nmp,K)
)
,

and we use the state equation (32a) and Lemma 3 to estimate

S3 ≤
δγ

ν

(
max
K∈T

GK

)∑
K∈T

mK

(
max(F−1

n (nmn,K), 0) + max(F−1
p (nmp,K), 0)

)
≤ δγ

ν
||G||L∞

∑
α∈{n,p}

∑
K∈T

mK

(
cyDα ,ε + εHα(nmα,K , n

D
α,K)

)
≤ δγ

ν
||G||L∞

(
|Ω|cyDα ,ε + εEmT

)
.

For the last step it is important to remember that each term in the definition of the entropy is non-
negative. Therefore, if we combine everything back into (45) we find

EmT − Em−1
T

τm
+ Dm

T ≤ c1,ξ

(
εEmT + c2,ε,Ω

)
,

for some constants c1,ξ, c2,ε,Ω > 0 depending on all the aforementioned quantities. Since c1,ξ does
not depend on ε, this is equivalent to the desired inequality (44) up to a redefinition of ε.

From the discrete entropy-dissipation inequality (44), we can deduce some bounds on the entropy EmT
and on the cumulated dissipation

∑m
k=1 τ

kDk
T for anym > 0 thanks to a discrete Grönwall’s Lemma.

Corollary 11 states the discrete counterpart of Corollary 6.

Corollary 11. Provided that ε < (∆t)−1, one has for any m ≥ 1 that

EmT +
m∑
k=1

τ kDk
T ≤ (E0

T + cε,Ω,ξt
m)(1− ε∆t)−m. (46)
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Proof. For j ∈ N, we define

wj = EjT
j∏

k=1

(1− ετ k).

Using (44), we obtain that

wj − wj−1 + τ jDj
T

j−1∏
k=1

(1− ετ k) ≤ cε,Ω,ξτ
j

j−1∏
k=1

(1− ετ k)

and summing over m, we get

wm − w0 +
m∑
j=1

τ jDj
T

j−1∏
k=1

(1− ετ k) ≤ cε,Ω,ξ

m∑
j=1

τ j
j−1∏
k=1

(1− ετ k).

We can now multiply the last inequality by
∏m

k=1(1 − ετ k)−1 in order to come back to the discrete
entropy. It yields

EmT +
m∑
j=1

τ jDj
T

m∏
k=j

(1− ετ k)−1 ≤
m∏
k=1

(1− ετ k)−1E0
T + cε,Ω,ξ

m∑
j=1

τ j
m∏
k=j

(1− ετ k)−1.

But, since ε∆t < 1, we have

1 ≤
m∏
k=j

(1− ετ k)−1 ≤
m∏
k=1

(1− ετ k)−1 ≤ (1− ε∆t)−m,

which yields (46) as
∑m

j=1 τ
j = tm.

5 Existence of a discrete solution

In this section, we will now establish the existence of a solution to the finite volume scheme (29)–(36),
which consists of a nonlinear system of equations at each time step. Knowing the solution at step
m − 1, we want to establish the existence of a solution at time step m. We may consider that the
unknowns of the nonlinear system of equations are the quasi Fermi potentials and the electrostatic
potential, as the densities of electrons, holes and anion vacancies are defined as functions of these
potentials through (32). The proof consists of three main parts: we start in Section 5.1 showing the
existence and uniqueness of a discrete electric potential for given quasi Fermi potentials associated
to the Poisson equation and continue in Section 5.2 with proving some a priori estimates on the quasi
Fermi and electrostatic potentials, obtained as consequences of the bounds on the entropy and the
dissipation. Then, in Section 5.3 the existence of quasi Fermi potentials is shown which finalizes the
proof. For this, forgetting the superscript m, we denote by X the vector containing the unknown quasi
Fermi potentials which is defined by

X =
(

(ϕn,K − ϕDn,K)K∈T , (ϕp,K − ϕDp,K)K∈T , (ϕa,K − ψDK)K∈Tintr

)
. (47)
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5.1 Existence of electric potential

The aim of the first lemma is to show the existence of a unique ψ = (ψK)K∈T dependent on X.

Lemma 12. Let X denote the vector containing the unknown quasi Fermi potentials as defined in (47).
Then, there exists a unique solution ψ(X) to the discrete nonlinear Poisson equation (30). Further,
the mapping X 7→ ψ(X) is continuous.

Proof. Let us define the discrete functional

J (Ψ) =
λ2

2

∑
σ∈E

τσ|DσΨ|2 + δ
∑

α∈{n,p}

∑
K∈T

mKGα(zα(ϕα,K −ΨK)) +
∑
K∈Tintr

mKGa(za(ϕa,K −ΨK))

− δ
∑
K∈T

mKCKΨK ,

where Gα denotes the primitive of Fα which vanishes at−∞. We can compute∇J , where the K-th
component is given by

∂J
∂ΨK

=



− λ2
∑
σ∈EK

τσDK,σΨ− δmK

(
CK +

∑
α∈{n,p}

zαFα(zα(ϕα,K −ΨK))
)
, K ∈ T \ Tintr,

− λ2
∑
σ∈EK

τσDK,σΨ− δmK

(
CK +

∑
α∈{n,p}

zαFα(zα(ϕα,K −ΨK))
)

−mKzaFa(za(ϕa,K − ψK)), K ∈ Tintr.

We conclude that a solution ψ to the discrete Poisson equation (30) satisfies ∇J (ψ) = 0. The
existence of a global minimum of J is guaranteed through its continuity and coercivity. The coerciv-
ity follows from the coercivity of Ψ 7→ λ2

2

∑
σ∈E τσ|DσΨ|2 − δ

∑
K∈T mKCKΨK (by a discrete

Poincaré inequality [37]) and the boundedness from below of the two other contributions. The strict
convexity of J , due to being a sum of a strictly convex and convex functions, gives the uniqueness of
this global minimumψ. Lastly, the continuity of X 7→ ψ(X) follows from the implicit function theorem
applied to∇J since the Hessian of J with respect to Ψ is strictly row diagonally dominant.

As a consequence of Lemma 12 we can interpret in the following the electric potential as a continuous
map ψ = ψ(X).

5.2 A priori estimates

The discrete entropy defined by (42) can be denoted by ET (X) and its associated dissipation defined
by (43) can be denoted by DT (X). In this dissipation, we may distinguish the contributions of elec-
trons, holes, anion vacancies and of the recombination-generation terms. Therefore, we introduce the
following notations

DT ,a(X) =
z2
a

2

∑
σ∈E intintr

τσna,σ(Dσϕa)
2, (48)

DT ,α(X) =
δ

2ν

∑
σ∈E

τσnα,σ(Dσϕα)2, for all α ∈ {n, p}. (49)

In this section, the letter R refers to a positive number, not to the recombination term.
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Lemma 13. Assume that there exists ME > 0, such that ET (X) ≤ ME . Then, there exists some
R > 0 depending on ME , λ and on the mesh T , such that

−R ≤ ψK − ψDK ≤ R, ∀K ∈ T . (50)

Proof. As the entropy contributions of anion vacancies and of the relative entropies for electrons and
holes are non-negative, the bound on ET (X) directly implies a bound on the electric energy,

λ2

2

∑
σ∈E

τσ(Dσ(ψ −ψD))2 ≤ME.

For each edge σ ∈ ED, such that σ ∈ EK , we deduce a bound on |ψK − ψDK | depending on ME ,
λ and on the mesh. The same bound applies to |(ψK − ψDK) − (ψL − ψDL )| for any interior edge
σ = K|L. From these bounds, and by using the connectedness of the mesh and the finite number of
control volumes one can inductively get a uniform finite bound for all (ψK − ψDK)K∈T .

Lemma 14. Assume that there exists MD > 0 such that DT ,a(X) ≤ MD and that there also exists
n̄ ∈ (0, 1), such that

1

|Ω|
∑
K∈Tintr

mKna,K = n̄. (51)

Then, there exists some R > 0 depending on MD, n̄ and T , such that

−R ≤ ϕa,K ≤ R, ∀K ∈ Tintr. (52)

Let us first note that due to hypothesis (H2) on Fa, the result stated in Lemma 14 is equivalent to the
fact that there exists an ε ∈ (0, 1) satisfying

ε ≤ na,K ≤ 1− ε, ∀K ∈ Tintr.

This result is a direct consequence of [16, Lemma 3.2]. Its proof follows the main lines of the proof of
Lemma 3.7 in [16] and is left to the reader. Lastly, we prove bounds on the quasi Fermi potentials of
electric charge carriers.

Lemma 15. Let α ∈ {n, p}. Assume that there exists ME > 0, such that ET (X) ≤ ME and
MD > 0 such that DT ,α(X) ≤ MD. Then, there exists some R > 0 depending on ME , MD, Ω,
T , ψD, ϕD, such that

−R ≤ ϕα,K ,≤ R, ∀K ∈ T . (53)

Proof. In order to prove Lemma 15, we will still stay close to the proof of Lemma 3.7 in [16]. It needs
an adaptation of Lemma 3.2 in [16] due to the different hypotheses on the statistics function Fα and
the different kind of boundary conditions.

Let us first rewrite DT ,α(X) by using the reformulation of the fluxes (41) based on the definition (39)
of nα,σ

DT ,α(X) = − δ

2ν

∑
σ∈E

Jα,K,σDK,σϕα,

where the flux discretization is defined through (34) and (36). Introducing the functionKα : R×R→
R defined by

Kα(x, a) = log(Fα(x− a))− x, ∀(x, a) ∈ R× R,
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we note that
Qα,K,σ = Kα(zαϕα,K , zαψK)−Kα(zαϕα,K,σ, zαψK,σ),

where ϕα,K,σ and ψK,σ stand for ϕα,L, ψL, if σ = K|L ∈ E int and for ϕDσ , ψ
D
σ , if σ ∈ ED. Thus,

DT ,α(X) can be rewritten as

DT ,α(X) =
δ

2ν

∑
σ∈E

τσDα
(
zαϕα,K , zαϕα,K,σ, zαψK , zαψK,σ

)
,

with Dα : R4 → R defined by

Dα(x, y, a, b) = (x−y)
[
B
(
Kα(x, a)−Kα(y, b)

)
Fα(x−a)−B

(
Kα(y, b)−Kα(x, a)

)
Fα(y−b)

]
.

Following the strategy of proof of Lemma 3.7 in [16], we introduce ΥΦ,Ψ : R→ R defined by

ΥΦ,Ψ(x) = inf
{
Dα(x, y, a, b); −Φ ≤ y ≤ Φ,−Ψ ≤ a, b ≤ Ψ

}
and we establish (see Appendix B, Lemma 21) that

lim
x→−∞

ΥΦ,Ψ(x) = +∞ and lim
x→+∞

ΥΦ,Ψ(x) = +∞. (54)

Then, we use that the discrete values of the electrostatic potential are bounded thanks to Lemma 13
and that the Dirichlet boundary conditions ensure that there exists at least one ϕα,K,σ = ϕDσ which is
bounded. Lastly, the bound on DT ,α(X) implies that the value ϕα,K is also bounded thanks to (54),
where this property propagates from cell to cell, such that it holds on the whole domain.

5.3 Existence of quasi Fermi potentials

Finally, we can formulate and prove the existence of discrete solutions in Theorem 16.

Theorem 16. For all m ≥ 1, the finite volume scheme (29)–(36) for the perovskite model has at least
one solution (ϕmn ,ϕ

m
p ,ϕ

m
a ,ψ

m) ∈ Rθ with θ = 3Card(T ) + Card(Tintr). Moreover, this solution
satisfies the following L∞ bounds. There exists R > 0 depending on the data and on the mesh such
that

−R ≤ ϕmn ,ϕmp ,ϕma ,ψm ≤ R, for all m ≥ 1,

holds component-wise.

The discrete mass balances in (29) at step m constitute a nonlinear system of equations which we
aim at finding a zero denoted by Xm. More precisely, we can introduce a continuous vector field
Pm : RθX → RθX with θX = 2Card(T ) + Card(Tintr) such that Pm(Xm) = 0 is equivalent to (29),
where Xm is defined by (47), noting that we have omitted the superscriptm there. In order to formulate
the electron and hole components of Pm(Xm) = 0, we put every term of the equations (29a) and
(29b) on the left-hand side and rescale by a factor δτm/ν. The anion related components are given
by (29c) rescaled by τm. In order to prove Theorem 16, we apply a corollary of Brouwer’s fixed point
theorem [38, Section 9.1] to a regularized version of Pm, and then take limits in the regularization
parameter. The fixed point lemma reads as follows.

Lemma 17. Let N ∈ N and P : RN → RN be a continuous vector field. Assume that there exists
R > 0, such that P(X) ·X ≥ 0, if ‖X‖ = R. Then, there exists X∗ ∈ RN such that P(X∗) = 0
and ‖X‖ ≤ R.
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Proof of Theorem 16. First, we prove the existence of quasi Fermi potentials X, where for the sake
of readability, we omit the superscript m. We recall that Lemma 12 guarantees the existence of a
continuous and uniquely determined map X 7→ ψ(X) solving the nonlinear Poisson equation (30)
for any given quasi Fermi potentials X. Thus, Pm is well-defined and continuous. The scalar product
Pm(X) ·X is given by

Pm(X) ·X =
∑

α∈{n,p}

∑
K∈T

(
δzαmK(nα,K − nm−1

α,K )(ϕα,K − ϕDK) +
δτm

ν

∑
σ∈EK

Jα,K,σ(ϕα,K − ϕDK)

)

+
δτm

ν

∑
K∈T

mKR(nn,K , np,K)(ϕp,K − ϕn,K)− δγτm

ν

∑
K∈T

mKGK(ϕp,K − ϕn,K)

+
∑
K∈T

zamK(na,K − nm−1
a,K )(ϕa,K − ψDK) + τm

∑
K∈T

∑
σ∈EK

Ja,K,σ(ϕa,K − ψDK).

We have established the following inequality within the proof of Theorem 10 for ε > 0

Pm(X) ·X ≥ (1− ετm)ET (X)− ET (Xm−1) + τmDT (X)− τmcε,Ω,ξ,

where Xm−1 denotes the known solution at the previous time step m− 1. For suitable ε, there exists
M > 0, such that

Pm(X) ·X ≥ 1

2
ET (X) + τmDT (X)−M.

Our goal is to use Lemma 17 to show the existence of a solution at time step tm. Instead of show-
ing now the non-negativity of the scalar product Pm(X) · X, we introduce a parameter-dependent
regularization of Pm which satisfies the assumptions of Lemma 17. For a given µ > 0, we define
Pµ
m(X) = Pm(X) + µX, which satisfies

Pµ
m(X) ·X = Pm(X) ·X + µ‖X‖2 ≥ µ‖X‖2 −M ≥ 0, for ‖X‖ ≥

√
M/µ.

Then, Lemma 17 shows the existence of Xm,µ ∈ B(0,
√
M/µ), such that Pµ

m(Xm,µ) = 0. Next,
we need to show Xm,µ is actually uniformly bounded in µ. Let us check the hypotheses of Lemmas
13, 14 and 15. We take the scalar product of Pµ

m(Xm,µ) with the vector V = (0T ,0T ,1Tintr). Since
the sum over all fluxes in the intrinsic region vanishes, we obtain∑

K∈Tintr

zamKn
m,µ
a,K −

∑
K∈Tintr

zamKn
m−1
a,K + µXm,µ ·V = 0,

and therefore, after rescaling with the measure of Ω, we have∣∣∣∣∣ 1

|Ω|
∑

K∈Tintr

zamKn
m,µ
a,K −

1

|Ω|
∑

K∈Tintr

zamKn
m−1
a,K

∣∣∣∣∣ ≤ µ

|Ω|
‖Xm,µ‖‖V‖ ≤

√
Mµ

|Ω|
‖V‖. (55)

But since the solution at the previous time step exists and hence is bounded, there exists ε(m−1) ∈
(0, 1), such that 1

|Ω|
∑

K∈Tintr mKn
m−1
a,K ∈ (ε(m−1), 1− ε(m−1)). Thus, we deduce from (55) that, for

µ sufficiently small, Xm,µ satisfies for ε(m) = ε(m−1)/2

1

|Ω|
∑

K∈Tintr

mKn
m,µ
a,K ∈ (ε(m), 1− ε(m)).

Moreover, as Pµ
m(Xm,µ) ·Xm,µ = 0 ≥ 1

2
ET (Xm,µ) + τmDT (Xm,µ)−M , we see that ET (Xm,µ)

and DT (Xm,µ) are uniformly bounded in µ by M . Hence, we can apply Lemmas 13, 14, 15 to
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deduce that ‖Xm,µ‖ is bounded uniformly in µ (for µ sufficiently small). Finally, we can extract
a subsequence, which converges to a limit denoted by Xm as µ tends to 0. This limit satisfies
P0
m(Xm) = Pm(Xm) = 0. Thus, we have found quasi Fermi potentials which solve the discrete

system (29). It remains to show the existence of a uniquely determined ψ(Xm) which solves (30).
However, this follows from Lemma 12, which ends the proof of Theorem 16.

6 Numerical experiments

The numerical examples were performed with ChargeTransport.jl, a Julia package for the
simulation of charge transport in semiconductors [39]. In a first step the aim is to verify properties
of the finite volume scheme (29)-(36) such as a special case of the entropy-dissipation inequality in
Theorem 10 as well as the spatial convergence rate. In a second step, the charge transport model (13)-
(20) is simulated for a physical meaningful set of parameters. In all simulation setups we are interested
in the large time behavior of the model. For this reason, we introduce an entropy with respect to the
steady state

E∞(t) =
λ2

2

∫
Ω

|∇(ψ − ψ∞)|2 dx +

∫
Ωintr

Ha(na, n
∞
a ) dx + δ

∑
α∈{n,p}

∫
Ω

Hα(nα, n
∞
α ) dx, (56)

where Hα is defined in (22). The non-negative functional E∞ can be seen as a measure of the
distance between a solution at time t and the steady state of the model which vanishes, if and only if
the solution at time t and the steady state coincide almost everywhere. Furthermore, from an analytical
point of view E∞ may help to prove the convergence of the discrete solution to the discrete steady
state [24].

6.1 Verifying the properties of the scheme

Within this section we assume a one-dimensional domain Ω = (0, 6) and set ΩHTL = (0, 2),Ωintr =
(2, 4),ΩETL = (4, 6). We choose 513 nodes per subdomain, resulting in a total number of 1537
nodes with a grid spacing h ≈ 3.9× 10−3. The time domain is given by [0, 80] which we discretize
with a time step of ∆t = 1.0× 10−1. We set the rescaled Debye length to λ = 1, the relative mobility
of anion vacancies to ν = 1, the relative concentration to δ = 1, and the rescaled photogeneration
rate to γ = 1.

Thermal Equilibrium boundary conditions Let us first study the implications of the assumptions in
Remark 5. To this end, we assume a constant doping C = 0.1 and no generation and recombination,
i.e. G = R = 0. The Dirichlet functions (6a) are chosen as constant functions ϕD = 0.5 and ψD =
arcsinh(C/2) + 0.5. The sinusoidal initial conditions for electrons, holes and the electric potential
as well as the constant initial condition for anion vacancies along with the steady state solutions are
depicted in Figure 3 on the left panel. On the right panel we show the steady state densities. Since
for these specific choices, we have 0 = ∇ϕD = ∇ψD and G = 0 the discrete entropy-dissipation
inequality in Theorem 10 indicates that the relative entropy with respect to the Dirichlet boundary
values (42) does not increase in time. This result can be numerically verified, see Figure 4. Due to a
non-constant electric potential ψ∞ we observe that the relative entropy (42) (in blue on the left panel)
levels off after an initial decrease. Furthermore, the relative entropy with respect to the steady state
(56) (in green on the left panel of Figure 4) as well as the quadratic L2 errors between the steady
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Figure 3: Steady state solutions (ϕ∞n , ϕ
∞
p , ϕ

∞
a , ψ

∞) with the respective initial conditions as dotted
lines (left) and the associated steady state densities of charge carriers (right) calculated via (3).

state and a solution at time t (right panel) decay exponentially with a similar slope, reaching machine
precision at a similar time.
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Figure 4: Left: Time evolution of the relative entropy with respect to the Dirichlet boundary functions
(24) as well as the relative entropy with respect to the steady state (56). Right: Time evolution of the
quadratic L2 errors between the computed and the steady state solutions.

Non-constant boundary values Next, we adjust the doping and the boundary values. Let us as-
sume that the doping C is a piecewise constant function given by 0.5 in ΩETL and by −0.5 in
ΩHTL ∪ Ωintr. The boundary values are set to ϕ|Dx=0 = 1, ϕ|Dx=6 = 0, ψ|Dx=0 = arcsinh(−0.5/2) +
1, ψ|Dx=6 = arcsinh(0.5/2). We choose quadratic initial conditions for ϕn, ϕp, ψ and a constant initial
condition for ϕa. The initial conditions are additionally to the steady state solutions depicted in Figure 5
as dotted lines. Again, the relative entropy with respect to the steady state and the quadratic L2 errors
decay exponentially and reach machine precision with a similar slope, see Figure 6 in the left and
middle panel.

Finally, we complete this section with an investigation of the spatial convergence behavior. Suppose
n∗ ∈ N is given, then n = 2 · 2n∗−1 + 1 nodes are chosen in each of the three subdomain, i.e.
in total we have ntot = 3 · 2 · 2n∗−1 + 1 nodes. We calculate a reference solution on a grid with
n∗ = 9 corresponding to 1537 nodes with a grid spacing h∗ ≈ 3.9× 10−3. The L2 errors between
the solution un∗ , for n∗ = 2, . . . , 8, and the reference solution projected onto the coarser mesh
evaluated at the final time are shown in Figure 6, right panel. Since for the final time tF = 80 the
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Figure 5: Steady state potentials with the corresponding initial conditions (left) and the associated
steady state densities of charge carriers (right) calculated via the state equation (3).

system is already within machine precision of the steady state, the error shown is purely due to the
spatial discretization. We observe second order experimental convergence.
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Figure 6: Time evolution of the relative entropy with respect to steady state (56) for non-constant
boundary values (left) and of the quadratic L2 errors between steady state and solutions at time t
(middle). On the right, the L2 error with respect to the grid spacing h is shown.

6.2 PSC simulation setup

In the final simulation setup, we choose the rescaling factors and non-dimensionalized parameters
in such a way that the resulting solutions correspond to a realistic PSC device. All parameters are
chosen in agreement with Section 2.4 and with non-zero band-edge energies. Apart from the additional
non-scaled parameters Na = 1.0× 1021 cm−3 and Ea = −4.45 eV, we used the parameter set
provided in [40]. The mesh is given by 385 nodes with a uniform grid spacing in each layer, namely
hETL ≈ 7.8× 10−8cm, hHTL ≈ 1.6× 10−7cm in the transport layers and hintr ≈ 3.1× 10−7cm
in the perovskite layer. The uniform time mesh is built with a step size of ∆t = 0.5 s and the final
time is given by tF = 220 s. Usually a PSC device is held for several seconds at a constant voltage,
ensuring that ionic charges equilibrate. This procedure is often called preconditioning protocol [35].
Afterwards, scan protocols with a time-dependent applied voltage – incorporated via time-dependent
Dirichlet boundary conditions – are performed to study the device physics. Thus, the steady potentials
and their respective densities depicted in Figure 7 can be regarded as the solutions after a successful
preconditioning scan. Within the presented configuration the applied voltage is chosen such that the
steady state electric potential ψ∞ is constant which can be observed well in Figure 7. The depicted
initial conditions correspond to a solution of the charge transport model with a non-constant vacancy
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Figure 7: Steady state potentials with the respective initial conditions (left) and the associated densities
of charge carriers (right) for a PSC three-layer device at an applied voltage 0.9 V.

concentration. As before, we consider the large time behavior of the quadratic L2 errors and the
relative entropy with respect to the steady state. Taking the thermodynamic free energy (12) into
account, we can reformulate the dimensional relative entropy with respect to the steady state (56)

E∞(t) =
1

2

∫
Ω

εs|∇(ψ − ψ∞)|2 dx +

∫
Ωintr

Ha(na, n
∞
a ) dx +

∑
α∈{n,p}

∫
Ω

Hα(nα, n
∞
α ) dx, (57)

where Hα(x, y) = Φα(x)− Φα(y)− Φ′α(y)(x− y), as defined in (22), but with

Φn(x) = kBTx

(
log

(
x

Nn

)
− 1

)
− znEnx, Φp(x) = kBTx

(
log

(
x

Np

)
− 1

)
− zpEpx,

(58)

Φa(x) = kBT

(
x log

(
x

Na

)
+ (Na − x) log

(
1− x

Na

))
− zaEax, (59)

i.e. we extend the contributions of the relative entropy with respect to the steady state such that they
are consistent with the thermodynamic free energy (12). As before, Figure 8 indicates an exponential
decay towards zero of the relative entropy (57) as well as of the quadratic L2 errors with respect to
time. In contrast to the observations made in previous section, the relative entropy with respect to the
steady state (57) vanishes faster than the quadratic L2 errors. This may be explained by the additional
terms in (58) due to non-zero band-edge energies which influence the convergence behavior. Still, we
see a similar convergence rate of the two introduced measures for the deviation of a solution at time t
from the steady state.

7 Conclusion and outlook

For a charge transport model for perovskite solar cells, we discussed and proved a continuous entropy-
dissipation inequality. We allowed general statistics function for the electric charge carriers. Moreover,
we proved an analogous entropy-dissipation inequality for a finite volume scheme based on the ex-
cess chemical potential flux. The entropy-dissipation inequality helped us to prove the existence of a
discrete solution at every time step. Furthermore, for a model in thermodynamic equilibrium we proved
the decay of the continuous and discrete relative entropy with respect to the boundary conditions and
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Figure 8: Time evolution of the relative entropy with respect to the steady state (57) (left) and of the
quadratic L2 errors between the computed and the steady state solutions (right).

numerically verified this result. A spatial convergence of order 2 was also numerically shown. In the
last experiment, we studied the numerical convergence towards the steady state for a setup which
can be physically interpreted as preconditioning a PSC device before applying a measurement proto-
col. Especially the relative entropy with respect to the steady state for non-zero band-edge energies
decays exponentially towards zero. Studying the model behavior with non-zero and even irregular
band-edge energies is from a mathematical and physical point of view of interest in the future. Also
time-dependent Dirichlet functions coinciding with physically realistic measurement techniques for per-
ovskite solar cells can be a topic of future research. Finally, deriving reduced models by ignoring small
dimensionless parameters could also be investigated.

A Estimates on statistics and entropy functions

In this section we deal with the estimates concerning statistics and entropy functions. First, we provide
the proof of Lemma 2 and Lemma 3 which are stated under abstract assumptions (H1), (H2) and/or
(H3) on the statistics. Then, we show that the examples of Fermi-Dirac and Boltzmann statistics (9),
(10) and (11) satisfy these assumptions.

A.1 Proof of Lemma 2

Let us show point (i) of the Lemma. Let Fα with α = n, p be a statistics function satisfying (H1) and
Hα be the associated relative entropy function. Let ε > 0 and y0 ≥ 0. For x ≥ 0 and y ∈ [0, y0] one
has

x ≤ sup
x∈R

(x− εHα(x, y)) + εHα(x, y).

The first term on the right-hand side is the Legendre transform of x 7→ εHα(x, y) evaluated at 1. It is
exactly given by x̄− εHα(x̄, y) with x̄ = Fα

(
1
ε

+ F−1
α (y)

)
. In turn, one has

x ≤ cy0,ε + εHα(x, y), for all x ≥ 0, y ∈ [0, y0],

for cy0,ε = Fα
(

1
ε

+ F−1
α (y0)

)
, since Fα is increasing.
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For point (ii), whereFa is a statistics function satisfying (H2) and Φa is the associated entropy function,
an analogous calculation will prove the estimate with cε = Fa(1

ε
)

x ≤ cε + εΦa(x), for all x ≥ 0.

A.2 Proof of Lemma 3

Now, let us consider Fα with α = n, p as a statistics function satisfying (H1) and (H3). Let ε > 0 and
y0 ≥ 0. On the one hand, because of (H3) there exists x0 = x0(y0, ε) ≥ 0 such that

0 ≤ F−1
α (x) ≤ εHα(x, y0), for all x ≥ x0.

Further, the calculation ∂yHα(x, y) = −Φ′′α(y)(x− y) reveals that y 7→ Hα(x, y) is non-increasing
for all y ∈ [0, y0], y ≤ x, due to the convexity of Φα. Hence,

0 ≤ F−1
α (x) ≤ εHα(x, y) ≤ εHα(x, y0), for all y ∈ [0, y0], x ≥ max{x0, y0} =: x̄.

On the other hand, for 0 ≤ x ≤ x̄

F−1
α (x) ≤ F−1

α (x̄).

Hence, in total the claim is proven with cy0,ε = F−1
α (x̄)

max(F−1
α (x), 0) ≤ cy0,ε + εHα(x, y), for all x ≥ 0, y ∈ [0, y0].

A.3 Boltzmann and Fermi-Dirac entropy functions

We now relate the statistics (9), (10) to the hypotheses (H1) and (H3), and the statistics (11) to the
hypothesis (H2). We only give a proof in the case of the Fermi-Dirac statistics of order 1/2 since the
results are essentially trivial for the other statistics.

Lemma 18 (Boltzmann). Assume that the statistics for electrons and holes is the Boltzmann statistics
(10), namely

Fα(η) = FB(η) = eη , η ∈ R , α ∈ {n, p}.
Then, Fα satisfies (H1) and (H3).

Lemma 19 (Fermi-Dirac of order −1). Assume that the statistics for anion vacancies is the Fermi-
Dirac integral of order −1 in (11), namely

Fa(η) = F−1(η) =
1

exp(−η) + 1
, η ∈ R .

Then, Fa satisfies (H2).

Lemma 20 (Fermi-Dirac of order 1/2). Assume that the statistics for electrons and holes is the Fermi-
Dirac integral of order 1/2 in (9), namely

Fα(η) = F1/2(η) =
2√
π

∫ ∞
0

ξ1/2

exp(ξ − η) + 1
dξ , η ∈ R , α ∈ {n, p}.

Then, Fα satisfies (H1) and (H3).
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Proof. First, observe that Fα is smooth and strictly increasing with limits 0 and +∞, when η → −∞
and η → +∞ respectively. Then,

F1/2(η) exp(−η) =
2√
π

∫ ∞
0

ξ1/2

exp(ξ) + exp(η)
dξ ≤ 2√

π

∫ ∞
0

ξ1/2 exp(−ξ) dξ = 1.

Moreover,

F ′1/2(η) =
2√
π

∫ ∞
0

ξ1/2 exp(ξ − η)

(exp(ξ − η) + 1)2
dξ ≤ F1/2(η).

This proves (H1). Now let us focus on the behavior at infinity of F1/2. We claim the existence of
constants c1, c2 > 0, such that

c1η
3/2 ≤ F1/2(η) ≤ c2η

3/2, for η ≥ 1. (60)

With (60) we can conclude F−1
1/2(s) = O(s2/3) for s→∞. Therefore, the associated entropy function

behaves likeO(s5/3) and (H3) readily follows. To see that (60) is indeed satisfied, let us consider (9) on
the two intervals [0, η] and [η,∞), where the respective integrals are denoted by I1, I2 and substitute
z = ξ − η. This yields F1/2(η) = 2√

π
(I1 + I2) with

I1 =

∫ η

0

ξ1/2

exp (ξ − η) + 1
dξ and I2 =

∫ ∞
0

(z + η)1/2

exp z + 1
dz.

We bound I1 and I2 separately. On the one hand, since 0 ≤ exp (ξ − η) ≤ 1 for ξ ≤ η, we obtain

1

3
η3/2 ≤ I1 ≤

2

3
η3/2.

On the other hand, we split I2 into an integral over [0, η] and one over [η,+∞) and bound each term

I2 =

∫ η

0

(z + η)1/2

exp z + 1
dz+

∫ ∞
η

(z + η)1/2

exp z + 1
dz ≤ 21/2η1/2

∫ η

0

1

exp z + 1
dz+21/2

∫ ∞
η

z1/2

exp z + 1
dz.

But,∫ η

0

1

exp z + 1
dz ≤

∫ η

0

exp(−z)dz ≤ 1 and

∫ ∞
η

z1/2

exp z + 1
dz ≤

∫ ∞
0

z1/2

exp z
dz = Γ(3/2),

where Γ is the Euler’s Gamma function, satisfying Γ(3/2) =
√
π

2
. Hence, assuming η ≥ 1, we receive

for I2

0 ≤ I2 ≤
√

2
(
η1/2 +

√
π

2

)
≤
√

2η3/2
(

1 +

√
π

2

)
.

And the claim in (60) is shown with the constants c1 = 2
3
√
π

and c2 = 2√
π

(
2
3

+
√

2
(

1 +
√
π

2

))
.

B A technical result

In this section, we establish a technical result, stated in Lemma 21, which is crucial for the proof of
bounds satisfied by the quasi Fermi potentials of electrons and holes, see Lemma 15.
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Lemma 21. Assume that the statistics function Fα satisfies the hypothesis (H1). Let us define the
functions Kα : (x, a) ∈ R2 7→ Kα(x, a) ∈ R and Dα : (x, y, a, b) ∈ R4 7→ Dα(x, y, a, b) ∈ R by

Kα(x, a) = log(Fα(x− a))− x,

Dα(x, y, a, b) = (x− y)
[
B
(
Kα(x, a)−Kα(y, b)

)
Fα(x− a)−B

(
Kα(y, b)−Kα(x, a)

)
Fα(y − b)

]
.

Then, for all Φ,Ψ ∈ R, the function ΥΦ,Ψ : R→ R defined by

ΥΦ,Ψ(x) = inf
{
Dα(x, y, a, b); −Φ ≤ y ≤ Φ,−Ψ ≤ a, b ≤ Ψ

}
verifies

lim
x→−∞

ΥΦ,Ψ(x) = +∞ and lim
x→+∞

ΥΦ,Ψ(x) = +∞.

Proof. Let us first remark that the function Kα is non-increasing with respect to its both variables x
and a and that the Bernoulli function B is also non-increasing on R. We assume that Φ and Ψ are
given. The regularity of the functions ensure that there exist positive constants λ, µ, µ such that, for

y ∈ [−Φ,Φ] and a, b ∈ [−Ψ,Ψ], we have

−λ ≤ Kα(y, b) ≤ λ and µ ≤ Fα(y − b) ≤ µ, for all − Φ ≤ y ≤ Φ, −Ψ ≤ b ≤ Ψ.

This implies the following inequalities, for x ∈ R, y ∈ [−Φ,Φ] and a, b ∈ [−Ψ,Ψ],

B
(
Kα(x,−Ψ) + λ

)
≤ B

(
Kα(x, a)−Kα(y, b)

)
≤ B

(
Kα(x,Ψ)− λ

)
,

−B
(
−λ−Kα(x,−Ψ)

)
≤ −B

(
Kα(y, b)−Kα(x, a)

)
≤ −B

(
λ−Kα(x,Ψ)

)
,

yielding

B
(
Kα(x,−Ψ) + λ

)
Fα(x−Ψ)−B

(
−λ−Kα(x,−Ψ)

)
µ ≤ Dα(x, y, a, b)

x− y
≤

B
(
Kα(x,Ψ)− λ

)
Fα(x+ Ψ)−B

(
λ−Kα(x,Ψ)

)
µ. (61)

Let us first consider that x ≤ −Φ. Then, we deduce from (61), that

Dα(x, y, a, b)

x− y
≤ B

(
Kα(−Φ,Ψ)− λ

)
Fα(x+ Ψ)−B

(
λ−Kα(−Φ,Ψ)

)
µ

But, due to (H1), lim
x→−∞

Fα(x+ Ψ) = 0, which implies that, for−x large enough, the right-hand-side

of the last inequality is negative. Therefore, for such an x with x ≤ y we have

Dα(x, y, a, b) ≥ (x− y)
[
B
(
Kα(−Φ,Ψ)− λ

)
Fα(x+ Ψ)−B

(
λ−Kα(−Φ,Ψ)

)
µ
]

and, taking the infimum in y ∈ [−Φ,Φ], we obtain

ΥΦ,Ψ(x) ≥ (x+ Φ)
[
B
(
Kα(−Φ,Ψ)− λ

)
Fα(x+ Ψ)−B

(
λ−Kα(−Φ,Ψ)

)
µ
]
.

As the first product in the right-hand-side tends to 0, while the second one tends to +∞, we deduce
that

lim
x→−∞

ΥΦ,Ψ(x) = +∞.
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We may now consider that x ≥ Φ. From (61), we deduce that

Dα(x, y, a, b)

x− y
≥
(
B
(
Kα(Φ,−Ψ) + λ

)
Fα(x−Ψ)−B

(
−λ−Kα(Φ,−Ψ)

)
µ
)
.

For x sufficiently large, the right-hand-side of the last inequality is positive and

ΥΦ,Ψ(x) ≥ (x− Φ)
(
B
(
Kα(Φ,−Ψ) + λ

)
Fα(x−Ψ)−B

(
−λ−Kα(Φ,−Ψ)

)
µ
)
.

Therefore, we get
lim

x→+∞
ΥΦ,Ψ(x) = +∞.
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