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Primal-dual regression approach for Markov decision processes with
general state and action space
Denis Belomestny, John G. M. Schoenmakers

Abstract

We develop a regression based primal-dual martingale approach for solving finite time horizon MDPs
with general state and action space. As a result, our method allows for the construction of tight upper
and lower biased approximations of the value functions, and, provides tight approximations to the opti-
mal policy. In particular, we prove tight error bounds for the estimated duality gap featuring polynomial
dependence on the time horizon, and sublinear dependence on the cardinality/dimension of the possi-
bly infinite state and action space. From a computational point of view the proposed method is efficient
since, in contrast to usual duality-based methods for optimal control problems in the literature, the Monte
Carlo procedures here involved do not require nested simulations.

1 Introduction

Markov decision processes (MDPs) provide a general framework for modeling sequential decision-making
under uncertainty. A large number of practical problems from various areas such as economics, finance,
and machine learning can be seen as MDPs and can, in principle, be solved via a dynamic programming
approach. The objective usually is to find an optimal policy that maximizes the expected accumulated re-
wards (or minimizes the expected accumulated costs). These problems could be theoretically solved by
the dynamic programming approach; however, in practice, this method suffers from the so-called “curse of
dimensionality” and the “curse of horizon” meaning that the complexity of the program increases exponen-
tially in the dimension of the problem (dimensions of the state and action spaces) and the horizon (at least
for problems without discounting). While the curse of dimensionality is known to be unavoidable in general
cases, the possibility of beating the curse of the horizon remains an open issue.

A natural performance metric is given by the value function V π which is the expected total reward of the
agent following π. Unfortunately, even a precise knowledge of V π does not provide reliable information
on how far is the policy π from the optimal one. To address this issue a popular quality measure is the
regret of the algorithm which is the difference between the total sum of rewards accumulated when following
the optimal policy and the sum of rewards obtained when following the current policy π. In the setting of
finite state- and action space MDPs there is a variety of regret bounds for popular RL algorithms like Q-
learning Jin et al. [2018], optimistic value iteration Azar et al. [2017], and many others. Unfortunately, regret
bounds beyond the discrete setup are much less common in the literature. Even more crucial drawback
of the regret-based comparison is that regret bounds are typically pessimistic and rely on the unknown
quantities of the underlying MDP’s. A simpler, but related, quantity is the suboptimality gap (policy error)
∆π(x) := V ?(x)− V π(x). Since we do not know V ?, the suboptimality gap can not be calculated directly.
There is a vast amount of literature devoted to theoretical guarantees for ∆π(x), see e.g. Antos et al. [2007],
Szepesvári [2010], Pires and Szepesvári [2016] and references therein. However, these bounds share the
same drawbacks as the regret bounds. Moreover, known bounds do not apply to the general policy π and
depend heavily on the particular algorithm which produced it. For instance, in Approximate Policy Iteration
(API, Bertsekas and Tsitsiklis [1996]) all existing bounds for ∆π(x) depend on the one-step error induced
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by the approximation of the action-value function. This one-step error is difficult to quantify since it depends
on the unknown smoothness properties of the action-value function. Similarly, in policy gradient methods
(see e.g. Sutton and Barto [2018]), there is always an approximation error due to the choice of the family
of policies that can be hardly quantified. Though the accuracy of a suboptimal policy is generally unknown,
the lack of theoretical guarantees on a suboptimal policy can be potentially addressed by providing a dual
bound, that is, an upper bound (or lower bound) on the optimal expected reward (or cost).

The last decades have seen a high development of duality approaches for optimal stopping and control
problems, initiated by the works of Rogers [2002] and Haugh and Kogan [2004] in the context of pricing of
American and Bermudan options. Essentially, in the dual approach one minimizes a certain dual martingale
representation corresponding to the problem under consideration over a set of martingales or martingale
type elements. In stylized terms, the dual version of an optimal control problem V ∗0 = supα E[R (α)] for a
reward R depending on adapted policies α may be formulated as

V ∗0 = inf
martingales M(a)

E[ sup
a in control space

(R (a)−M (a))].

As such, in the dual approach one seeks for optimal minimizing martingales rather than optimal maximizing
policies. Andersen and Broadie [2004] showed how to compute martingales using stopping rules via nested
Monte Carlo simulations. In Rogers [2007] the dual representation for optimal stopping (hence American op-
tions) was generalized to Markovian control problems. Somewhat later Brown et al. [2010] presented a dual
representation for quite general control problems in terms of Ãnformation relaxation and martingale penal-
ties. On the other hand, the dual representation for optimal stopping was generalized to multiple stopping in
Schoenmakers [2012] and Bender et al. [2015]. As a numerical approach to Rogers [2007], Belomestny et al.
[2010] developed regression methods for such problems that can be seen, in a sense, as a generalization of
Andersen and Broadie [2004]. However, it should be noted that in the convergence analysis of Belomestny
et al. [2010] the primal value function estimates show exponential dependence on the finite horizon, and
their dual algorithm is based on nested simulation while its convergence is not analyzed there. Generally
speaking, to the best of our knowledge, all error bounds for the primal/dual value function estimates avail-
able in the literature so far show exponential dependence on the horizon at least in the case of finite horizon
undiscounted optimal control problems, e.g. see also Zanger [2013].

In this paper, we propose a novel approach to constructing valid dual upper bounds on the optimal value
function via simulations and pseudo regression in the case of finite horizon MDPs with general (possibly
continuous) state and action spaces. This approach includes the construction of primal value functions via
a backwardly structured pseudo regression procedure based on a properly chosen reference distribution
(measure). We thus avoid the delicate problem of inverting an empirical covariance matrix. We note that
in the context of optimal stopping a similar primal procedure was proposed in Bayer et al. [2021], though
with accuracy estimates exploding with the number of exercise dates or time horizon. As for the dual part
of our algorithm, we avoid nested Monte Carlo simulation (as used in many dual-type methods proposed in
the literature so far, see for instance the path-wise optimization approach for MDPs in Desai et al. [2012]
and Brown et al. [2022] for an overview). Instead, for constructing the martingale elements, we propose
to combine a point wise pseudo regression approach with a suitable interpolation method such that the
martingale property is preserved. Furthermore we provide a rigorous convergence analysis showing that the
stochastic error of approximating the true value function depends at most polynomially on the time horizon.
Moreover, we show that the stochastic part of the error depends sublinearly on the dimension (or cardinality
in the finite case) of the state and action spaces. Let us mention Zhu et al. [2017] for another approach to
avoid nested simulations for estimating the conditional expectations, hence the martingale elements, inside
the dual representation. However, Zhu et al. [2017] left the issue of bounding the duality gap in terms of the
error bounds on the value functions as an open problem. From this respect, we have solved this problem
within the context of the algorithm proposed in this paper.
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The paper is organized as follows. The basic setup of the Markov Decision Process and the well-known rep-
resentations for its maximal expected reward is given in Section 2. Section 3 recalls the dual representation
for an MDP from the literature. The primal pseudo regression algorithm for the value functions is described
in Section 4, whereas the dual regression algorithm is presented in Section 5. Section 6 and Section 7 are
dedicated to the convergence analysis of the primal and dual algorithm, respectively. Appendix A introduces
some auxiliary notions needed to formulate an auxiliary result in Appendix B stemming from the theory of
empirical processes.

2 Setup and basic properties of the Markov Decision Process

We consider the discrete time finite horizon Markov Decision Process, given by the setup

M = (S,A, (Ph)h∈]H], (Rh)h∈[H[, F,H),

made up by the following objects:

� a measurable state space (S,S), which may be finite or infinite;

� a measurable action space (A,A), which may be finite or infinite;

� an integer H which defines the horizon of the problem;

� for each h ∈]H], with ]H] := {1, . . . , H}1, a time dependent transition functionPh : S×A→ P(S),
where P(S) is the space of probability measures on (S,S);

� a time dependent reward function Rh : S × A → R, where Rh(x, a) is the immediate reward
associated with taking action a ∈ A in state x ∈ S at time step h ∈ [H[;

� a terminal reward F : S→ R.

Introduce a filtered probability space S :=
(
Ω,F , (Ft)t∈[H],P

)
with

Ω := (S× A)[H] , F := (S ⊗A)⊗[H] , (Ft)t∈[H] := ((S ⊗A)⊗t)t∈[H].
2 (2.1)

For a fixed policy π = (π0, . . . , πH−1) with πt : S → P(A), we consider an adapted controlled process(
St, At

)
t=h,...,H

on S satisfying S0 = x ∈ S, A0 ∼ π0(x), and

St+1 ∼ Pt+1( ·|St, At), At ∼ πt(St), t = 0, . . . , H − 1.

The expected reward of this so called Markov Decision Process due to the chosen policy π is given by

V π0 (x) := Eπ,x

[
H−1∑
t=0

Rt(St, At) + F (SH)

]
,

where Eπ,x stands for expectation induced by the policy π and transition kernels Pt, t ∈ [H], conditional on
the event S0 = x. The goal of the Markov decision problem is to determine the maximal expected reward:

V ?0 := sup
π

Eπ,x

[
H−1∑
t=0

Rt(St, At) + F (SH)

]
= sup

π
V π0 (x0). (2.2)

1We further write [H] := {0, 1, . . . ,H} etc.
2In order to avoid irrelevant measure theoretic technicalities it is assumed that our probability space is supported by discrete

time processes, rather than Wiener processes for instance. Nonetheless, it is possible to involve larger probability spaces without
essentially affecting the results in this paper.
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Let us introduce for a generic time h ∈ [H] , the value function due to the policy π,

V πh (x) := Eπ,x

[
H−1∑
t=h

Rt(St, At) + F (SH)

∣∣∣∣∣Sh = x

]
, x ∈ S.

Furthermore, let
V ?h (x) := sup

π
V πh (x)

be the optimal value function at h ∈ [H]. It is well known that under weak conditions there exists an optimal
policy which depends on St in a deterministic way. In this case we will write π? = (π?t (St)) for some
mappings π?t : S→ A, where Dirac measures δ{a} are identified with their supporting elements a ∈ A. One
has the following result, see Puterman [2014].

Theorem 2.1 Let x ∈ S be fixed. It holds V ?H(x) = F (x), and

V ?h (x) = sup
a∈A

(
Rh(x, a) + ESh+1∼Ph+1(·|x,a)

[
V ?h+1(Sh+1)

])
, h = H − 1, . . . , 0. (2.3)

Furthermore, ifRh is continuous and the action space is compact, the supremum in (2.3) is attained at some
deterministic optimal action a? = π?h(x).

Let us further introduce recursively Q?
H(x, a) = F (x), and

Q?
h(x, a) := Rh(x, a) + ESh+1∼Ph+1(·|x,a)

[
sup
a′∈A

Q?h+1(Sh+1, a
′)

]
, for h = H − 1, . . . , 0.

Then Q?
h(x, a) is called the optimal state-action value and one thus has

V ?h (x) = sup
a∈A

Q?
h(x, a), π?h(x) ∈ arg max

a∈A
Q?
h(x, a), for h ∈ [H].

Finally note that the optimal value function V ? satisfies due to Theorem 2.1,

V ?
h (x) = ThV

?
h+1(x), h ∈ [H[,

where ThV (x) := supa∈A
(
Rh(x, a) + P a

h+1V (x)
)

with P a
h+1V (x) := ESh+1∼Ph+1(·|x,a) [V (Sh+1)] .

3 Dual representation

Let us denote by a<t the deterministic vector of actions a<t = (a0, . . . , at−1) ∈ At, similarly a≤t etc., and
denote with St ≡ (St(a<t))t∈{0,...,H} the process defined (in distribution) via

S0 = x0, St+1 ≡ St+1(a<t+1) ∼ Pt+1(·|St, at), t = 0, . . . , H − 1.

Let us also denote by Ξ the class of H-tuples ξ = (ξt(·, ·), t ∈]H]) consisting of A⊗t × Ft measurable
random variables

ξt : (a<t, ω) ∈ At×Ω→R

satisfying

E [ξt(a<t, ω)| Ft−1] = 0, for all (a<t) ∈ At, t ∈ {1, . . . , H}.
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The next duality theorem, essentially due to Rogers [2007], may be seen as a generalization of the dual
representation theorem for optimal stopping, developed independently in Rogers [2002] and Haugh and
Kogan [2004], to Markov decision processes. For a more general dual representations in terms of information
relaxation, see Brown et al. [2010]. Let us further mention dual representations in the context of multiple
stopping developed in Schoenmakers [2012], Belomestny et al. [2009], and applications to flexible caps
studied in Balder et al. [2013].

Theorem 3.1 The following statements hold.

(i) For any ξ ∈ Ξ and any x ∈ S we have V up
0 (x; ξ) ≥ V ?

0 (x) with

V up
0 (x; ξ) := Eπ,x

[
sup

a≥0∈AH

(
H−1∑
t=0

(Rt(St(a<t), at)− ξt+1(a<t+1)) + F (SH(a<H))

)]
, (3.1)

where as usual we suppress the dependence on ω for notational simplicity. Hence V up
0 (x; ξ) is an

upper bound for V ?
0 (x).

(ii) If we set ξ? = (ξ?t , t ∈ [H]) ∈ Ξ with

ξ?t+1(a<t+1) := V ?
t+1(St+1(a<t+1))− ES′t+1∼Pt+1(·|St(a<t),at)

[
V ?
t+1(S

′
t+1)
]
, (3.2)

for t = 0, . . . , H − 1, then, almost surely,

V ?
0 (x0) = sup

a≥0∈AH

(
H−1∑
t=0

(
Rt(St(a<t), at)− ξ?t+1(a<t+1)

)
+ F (SH(a<H))

)
. (3.3)

Remark 3.2 In Theorem 3.1 and further below, supremum should be interpreted as essential supremum in
case it concerns the supremum over an uncountable family of random variables.

In principle Theorem 3.1 may be inferred from Rogers [2007] or Brown et al. [2010]. Nonetheless, also for
the convenience of the reader, we here give a concise proof in terms of the present setup and terminology.

Proof. (i) Since for any ξ ∈ Ξ and policy π in (2.2) one has that

Eπ,x [ξt+1(A≤t)] = Eπ,xEπ [ξt+1(A≤t)| Ft] = 0,

for t = h, ..., H − 1, it follows that

V ?0 (x) = sup
π

Eπ,x

[
H−1∑
t=0

(Rt(St(A<t), At)− ξt+1(A≤t)) + F (SH(A<H))

]
,

from which (3.1) follows immediately.

(ii) We may write for any a≥h ∈ AH−j ,

H−1∑
t=0

(
Rt(St (a<t) , at)− ξ?t+1(a≤t)

)
+ F (SH(a<H))

=
H−1∑
t=0

Rt(St (a<t) , at)−
H−1∑
t=0

V ?
t+1(St+1(a≤t))

+
H−1∑
t=0

ES′t+1∼Pt+1(·|St(a<t),at)

[
V ?
t+1(S

′
t+1)
]

+ F (SH(a<H)).
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Hence
H−1∑
t=0

(
Rt(St (a<t) , at)− ξ?t+1(a≤t)

)
+ F (SH(a<H)) = V ?

0 (x) + ∆(x),

with

∆(x) := F (SH(a<H))− V ?
H(SH(a<H))+

H−1∑
t=0

(
Rt(St (a<t) , at) + ES′t+1∼Pt+1(·|St,at)

[
V ?
t+1(S

′
t+1)
]
− V ?

t (St(a<t))
)
≥ 0

where the latter inequality follows from the Bellman principle, see Theorem 2.1. The statement (3.3) now
follows by taking the (essential) supremum over a≥0 ∈ AH on the left-hand-side, applying (3.1) and using
the sandwich property.

4 Primal regression algorithm for the value function

In Section 5 we will describe regression based martingale methods for computing dual upper bounds based
on Theorem 3.1. However, these methods require as input a sequence of (approximate) value functions Vh,
h ∈ [H]. Below we describe a regression-based regression algorithm for approximating the value functions
V ?
h , h ∈ [H], backwardly in time. In fact, unlike the usual regression, the proposed algorithm is based on

a kind of “pseudo” or “quasi” regression procedure with respect to some reference measure µh, which is
assumed to be such that Ph(·|x, a) is absolutely continuous w.r.t. µh for any h ∈]H], x ∈ S and a ∈ A.
Furthermore, we consider a vector of basis functions

γK := (γ1, . . . , γK)>, γk : S→ R, k = 1, ..., K,

such that the matrix
Σ ≡ Σh,K := EX∼µh

[
γK(X)γ>K(X)

]
is analytically known and invertible. The algorithm reads as follows. At h = H we set VH,N(x) = V ?

H(x) =
F (x). Suppose that for some h ∈ [H[ the approximations Vt,N of V ?

t , h + 1 ≤ t ≤ H, are already
obtained. We now approximate V ?

h via simulating independent drwas Xi ∼ µh, Y
a
i ∼ Ph+1(·|Xi, a),

a ∈ A, i = 1, . . . , N, and setting

Vh,N(x) = Th,NVh+1,N(x) := sup
a∈A

(Rh(x, a) + P̃ a
h+1,NV (x)), (4.1)

where

P̃ a
h+1,NV (x) := TL̃[β>N,aγK ](x) := max

(
−L̃,min

(
L̃, β>N,aγK(x)

))
.

Here L̃ is a fixed positive constant which will be defined later,

βN,a :=
1

N

N∑
i=1

Ua
i , Ua

i := Za
i Σ−1γK(Xi), Za

i := V (Y a
i ), i = 1, . . . , N.

Note that E [βN,a] = E [V (Y a
1 )Σ−1γK(X1)] =: βa, where βa solves the minimization problem

inf
βa∈RK

E
[(
V (Y a

1 )− β>a γK(X1)
)2]

.
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Thus function P̃ a
h+1,NVh+1,N(x) aims to approximate the conditional expectation

x→ ES′∼Ph+1(·|x,a)
[
V ?
h+1(S

′)
]
, a ∈ A.

After H steps of the above procedure we obtain the estimates VH,N , . . . , V0,N .3

5 Dual regression algorithm

In this section we outline how to construct an upper biased estimate based on Theorem 3.1 from a given
sequence of approximations Vt, t ∈ [H] to V ?

t , t ∈ [H], obtained as described in Section 4, for example.

Theorem 3.1-(ii) implies that we can restrict our attention to processes ξ = (ξt)t∈[H], where the t + 1
component of ξ is of the form

ξt+1(a≤t) = m(St+1(a≤t);St(a<t), at) (5.1)

for a deterministic real valued function m(·;x, a) satisfying∫
m(y;x, a)Pt+1(dy|x, a) = 0, (5.2)

for all (x, a) ∈ S× A. Note that the condition (5.2) is time dependent. We shall denote byMt+1,x,a the set
of “martingale” functions m on S that satisfy (5.2) for time t + 1, a state x, and a control a. In this section,
we develop an algorithm approximating ξ? via regression of Vt+1 on a properly chosen finite dimensional
subspace ofMt+1,x,a. The idea of approximating ξ? via regression can be explained as follows. Equation
(3.2) and (5.1) imply that, for a particular t ∈ [H[, the component ξ?t+1(a≤t) of the random vector ξ? is given
by ξ?t+1(a≤t) = m?

t+1(St+1(a≤t);St(a<t), at), where, for each (x, a) ∈ S × A, m?
t+1(·;x, a) solves the

optimization problem

arg inf
m∈Mt+1,x,a

ES′t+1∼Pt+1(·|x,a)

[(
V ?
t+1(S

′
t+1)−m(S ′t+1;x, a)

)2]
. (5.3)

By generating a sample Y x,a
1 , . . . , Y x,a

N from Pt+1(·|x, a) we readily obtain a computable approximation of
m?
t+1(·;x, a), that is, (5.3), by

arg inf
m∈M′t+1,x,a

{
1

N

N∑
i=1

(Vt+1(Y
x,a
i )−m(Y x,a

i ))2
}
, (5.4)

whereM′
t+1,x,a is some “large enough” finite-dimensional subset ofMt+1,x,a.

Let us now discuss possible constructions of the martingale functions m satisfying (5.2). Assume that S ⊆
Rd and that the conditional distribution Pt+1(·|x, a) possesses a smooth density pt+1(·|x, a) with respect
to the Lebesgue measure on Rd. Furthermore, assume that pt+1(·|x, a) doesn’t vanish on any compact set
in Rd, and that pt+1(y|x, a)→ 0 for |y| →∞. Now consider, for any fixed (x, a) functions of the form

mt+1,φ(·;x, a) := 〈∇ log(pt+1(·|x, a)), φ〉+ div(φ)

with φ : S → Rd being a smooth and bounded mapping with bounded derivatives. It is then not difficult to
check that∫

S

pt+1(y|x, a)φi(y)∂yi log(pt+1(y|x, a)) dy = −
∫
S

pt+1(y|x, a)∂yiφi(y) dy, i = 1, . . . , d,

3Actually, for computing V0(x0) we may replace the above procedure by a standard Monte Carlo simulation when going from
V1 to V0.
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and hence mt+1,φ satisfies (5.2) for all (x, a) ∈ S × A. This means that in (5.4) we can takeM′
t+1,x,a =

{mt+1,φ (·;x, a) : φ ∈ Φ}where Φ is the linear space of mappingsRd → Rd,which are smooth, bounded,
and with bounded derivatives. Since φ → mt+1,φ(·;x, a) is linear in φ we moreover have thatM′

t+1,x,a is
a linear space of real valued functions. So the problem (5.4) can be casted into a standard linear regression
problem after choosing a system of basis functions (mt+1,ϕk

(·;x, a))k∈N due to some basis (ϕk)k∈N in Φ.
Needles to say that the problem (5.4) can only be solved on some finite grid, (xl, al)l=1,...,L ∈ S × A say,
yielding solutions φk(·) := φ(·;xk, ak) and the corresponding martingale functions mt+1,φk (·;xk, ak). In
order to obtain a martingale functionmt+1 ≡ mt+1 (·;x, a) for a generic pair (x, a) we may apply some suit-
able interpolation procedure. Loosely speaking, if (x, a) is an interpolation between (xk, ak) and (xk′ , ak′)
we may interpolate φ(·;x, a) between φk and φk′ correspondingly, and set mt+1 = mt+1,φ (·;x, a) . For
details regarding suitable interpolation procedures we refer to Section 7.

Let now, for each t ∈ [H[, and (x, a) ∈ S × A, the martingale function mt+1(·;x, a) be an approximate
solution of (5.4). Then we can construct an upper bound (upper biased estimate) for V ?

0 (x0), via a standard
Monte Carlo estimate of the expectation

V up
0 (x) = Eπ,x

[
sup

a≥0∈AH

(
H−1∑
t=0

(Rt(St(a≥t), at)−mt+1(St+1(a≤t);St(a<t), at)) + F (SH)

)]
.

(5.5)

Another way of constructing ξ ∈ Ξ is to assume that the chain (St(a<t)) can be constructed using the
so-called random iterative functions:

St(a<t) = Kt(St−1(a<t−1), at−1, εt), t ∈]H], (5.6)

whereKt : S×A× E→ S, is a measurable map with E being a measurable space, and (εt, t ∈]H]) is an
i.i.d. sequence of E-valued random variables defined on a probability space (Ω,F ,P). In this setup we may

consider as the underlying probability space Ω := (E× A)[H] instead of (2.1), with accordingly modified
definitions of F and (Ft) .
Let PE be the distribution of ε1 on E, and assume that (ψk, k ∈ N0) is a an orthonormal system in
L2(E,PE) with ψ0 ≡ 1, that is, ∫

ψk(ε)ψk′(ε)dLE(ε) = δkk′ .

By then letting

ηt+1,K(x, a) ≡ ηt+1,K(x, a, εt+1) =
K∑
k=1

ck(x, a)ψk(εt+1) (5.7)

for some natural K > 0 and “nice” functions ck : S× A→ R, k = 1, . . . , K, we have that

ξt+1,K(a≤t) := ηt+1,K(St(a<t), at)

is Ft+1-measurable, and, since
∫
ψk(ε)dPE(ε) = 0 for k ∈ N, it holds that E [ξt+1,K(a≤t)| Ft] = 0.

Hence, we have that ξK = (ξt+1,K(a≤t), t ∈ [H[) ∈ Ξ. In this case we consider the least-squares problem

inf
(c1,...,cK)

E

(Vt+1(Z
x,a)−

K∑
k=1

ckψk(εt+1)

)2
 , Zx,a ≡ Kt+1(x, a, εt+1), (5.8)

for estimating the coefficients in (5.7). Let us further denote ΣE,K := Eε∼PE

[
ψK(ε)ψ>K(ε)

]
withψK(ε) :=

[ψ1(ε), . . . , ψK(ε)]>. The minimization problem (5.8) is then explicitly solved by

c̄K(x, a) := Σ−1E,KE [Vt+1(Z
x,a)ψK(ε)] . (5.9)
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In the sequel we assume that we know ΣE,K . This assumption is not restrictive as we choose the basis ψ
ourselves. In order to compute (5.9), we can construct a new sample Um(x, a) = Vt+1(Z

x,a
m )Σ−1E,KψK(εm)

with εm ∼ PE, m = 1, . . . ,M, and estimate its mean c̄K(x, a) by the empirical mean

cK,M(x, a) = [c1,M(x, a), . . . , cK,M(x, a)]> :=
1

M

M∑
m=1

Um(x, a). (5.10)

We so obtain as martingale functions in (5.7),

ηt+1,K,M := c>K,M(x, a)ψK(εt+1) =
K∑
k=1

ck,M(x, a)ψk(εt+1). (5.11)

Also the problem (5.8) may only numerically be solved on a grid in practice, and a suitable interpolation
procedure is required to obtain (5.11) for generic (x, a) ∈ S × A (for details see Section 7). Finally, an
upper biased upper bound for V ?

0 (x), is obtained via an independent standard Monte Carlo estimate of the
expectation

V up
0 (x) = Eπ,x

[
sup

a≥0∈AH

(
H−1∑
t=0

(Rt(St(a≥t), at)− ηt+1,K,M(St(a<t), at)) + F (SH)

)]
. (5.12)

In Section 7 we will give a detailed convergence analysis of the dual estimator (5.12). It is anticipated that
a similar analysis can be carried out for the dual estimator (5.5), but this analysis is omitted due to space
restrictions.

6 Convergence analysis of the primal algorithm

In this section, we carry out a convergence analysis of the primal algorithm designed in Section 4, under a
few mild assumptions.

Assumption 6.1 Assume that (5.6) holds, that is,

Y a = Kh(X, a, εh), h ∈]H]. (6.1)

In this case P a
h f(x) = E[f(Kh(x, a, ε))], (x, a) ∈ S× A. Also assume that the kernels Kh are Lipschitz

continuous:

|Kh(x, a, ε)−Kh(x′, a′, ε)| ≤ LK ρ((x, a), (x′, a′)), (x, a), (x′, a′) ∈ S× A, ε ∈ E, (6.2)

for some constant LK not depending on h. In (6.2), the metric ρ ≡ ρS×A on S × A is considered to be of
the form

ρS×A((x, a), (x′, a′)) = ‖(ρS(x, x′), ρA(a, a′))‖ ,
where ρS and ρA are suitable metrics on S and A, respectively, and ‖(·, ·)‖ is a fixed but arbitrary norm on
R2. In order to avoid an overkill of notation, we will henceforth drop the subscripts S, A, and S×A, whenever
it is clear from the arguments which metric is considered.

Assumption 6.2 Assume that sup(x,a)∈S×A{|Rh(x, a)| ∨ |F (x)|} ≤ Rmax and

sup
a∈A
|Rh(x, a)−Rh(x

′, a)| ≤ LRρ(x, x′)

for some constants Rmax and LR not depending on h ∈ [H[.
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Assumption 6.3 Assume that |Σ−1h,KγK(x)|∞ ≤ ΛK for all x ∈ S, h ∈ [H[, and

|γK(x)− γK(x′)| ≤ Lγ,Kρ(x, x′)

for a constant Lγ,K > 0, where | · | denotes the Euclidian norm.

Note that under Assumptions 6.1, 6.2 and 6.3,

|Th,NVh+1,N(x)− Th,NVh+1,N(x′)| ≤ LRρ(x, x′) + sup
a∈A
|P̃ a
h+1,NVh+1,N(x)− P̃ a

h+1,NVh+1,N(x′)|

≤ LRρ(x, x′) + sup
a∈A
|βN,a||γK(x)− γK(x′)|

≤ LRρ(x, x′) +
1

N

N∑
n=1

sup
a∈A
|Za

n||Σ−1γK(Xn)||γK(x)− γK(x′)|

≤ [LR + (L̃+Rmax)ΛK

√
KLγ,K ]ρ(x, x′).

We now specify L̃ := V ?
max−Rmax := HRmax, and denote LV,K := LR +V ?

maxΛKLγ,K
√
K. The above

estimates imply that Vh,N ∈ Lip(LV,K), and so the function f(x, a, ε) := Vh,N(Kh(x, a, ε)) satisfies

|f(x, a, ε)− f(x′, a′, ε)| ≤ LV,KLKρ((x, a), (x′, a′)) (6.3)

The next assumption concerns the measures µ1, . . . , µH .

Assumption 6.4 Consider for any h < l the Radon-Nikodym derivative

Rh,l(x
′|x,π) :=

P πh
h+1 . . . P

πl−1

l (dx′|x)

µl(dx′)
,

where for a generic policy π = (π1, . . . , πH),

P πh
h+1(dx

′|x) := Ph+1(dx
′|x, πh(x)).

Assume that

Rmax := sup
0≤h<l<H,π

(∫
µh(dx)

∫
R2
h,l(x

′|x,π)µl(dx
′
)

)1/2

<∞. (6.4)

The following theorem provides an upper bound for the difference between Vh,N and V ?
h .

Theorem 6.5 Suppose that EX∼µh [|γK(X)|2] ≤ %2γ,K for all h ∈ [H[. Then for h ∈ [H],

‖V ?
h − Vh,N‖L2(µ)

. 2Rmax

(
(H − h)%γ,KΛK(LV,KLKID(A) + LV,KLKD(A) + V ?

max)

√
K

N
+

H−1∑
l=h

RK,l

)
,

where . denotes ≤ up to a natural constant, ID(A) is the metric entropy of A, D(A) is the diameter of A
as defined in Appendix A, and

RK,h := sup
ζ∈RK×|A|

EX∼µh

[
sup
a∈A

(
β>a,ζγK(X)− P a

h+1Vh+1,ζ(X)
)2]1/2

,

where

βa,ζ := arg min
β∈RK

EX∼µh
[(
β>γK(X)− P a

h+1Vh+1,ζ(X)
)2]

and

Vt,ζ(x) := sup
a∈A

(
Rt(x, a) + TL̃[ζ>a γK(x)]

)
for 0 ≤ t < H, VH,ζ(x) := F (x).

DOI 10.20347/WIAS.PREPRINT.2957 Berlin 2022



Primal-dual regression for Markov decision processes 11

Discussion

� The quantitiesRK,h is the error of approximating the conditional expectation P a
h+1Vh+1,ζ via a linear

combination of γ1, . . . , γK in a worst case scenario, that is, for the most unfavourable choice of ζ.
Note that if γ1, γ2, . . . are bounded eigenfunction (corresponding to nonnegative eigenvalues) of the
kernel P a

h+1 not depending on a ∈ A, F (x) = β>γK(x) ≥ 0 for some β ∈ RK and Rt(x, a) =

R1,t(x)R2,t(a) with R1,t(x) = c>t γK(x) ≥ 0, then for L̃ large enough, RK,h = 0 (in this case
we can take ζa independent of a in the definition of Vh+1,ζ) and only the stochastic part of the error
remains

‖V ?
h − Vh,N‖L2(µ) . HRmax%γ,KΛK(LV,KLKID(A) + LV,KLKD(A) + V ?

max)

√
K

N
.

If, for example, A = [0, 1]dA for some dA ∈ N, then D(A) = 2
√
dA and ID(A) .

√
dA. This

example shows that the bound depends sub-linearly in dA.

� Let us remark on the assumption 6.4. Consider S = Rd and assume that the transition kernels are
absolutely continuous with respect to the Lebesgue measure on Rd, that is,

P πh
h+1 · . . . · P

πl−1

l (dy|x) = pπhh+1 · . . . · p
πl−1

l (y|x) dy.

Further assume that

sup
0≤h<l<H,π

pπhh+1 . . . p
πl−1

l (y|x) ≤ Ce−c|y−x|
2

for some C, c > 0,

and consider absolutely continuous reference measures µh(dx) = µh(x) dx. For the bound (6.4),
we then have

(Rmax)2 = sup
0≤h<l<H,π

∫ ∫
µh(x)

µl(y)

(
P πh
h+1 . . . P

πl−1

l (y|x)
)2
dxdy

≤ C2 max
0≤h<l<H

∫ ∫
µh(x)

µl(x+ u)
e−2c|u|

2

dxdu.

The latter expression can be easily bounded by choosing µh to be Gaussian with an appropriate
covariance structure depending on h. For example, take d = 1 and

µh(x) =

√
c

π(h+ 1)
e−

c
h+1

x2 , h ∈ [H[,

then straightforward calculations yield

Rmax ≤ C

√
max

0≤h<l<H

(l + 1)π

c
√

2(l − h)− 1
≤ C

√
Hπ

c
.

In this case the bound of Theorem 6.5 may grow inH asH3/2 (provided that all errorsRK,h, h ∈ [H],
are bounded) as opposed to the most bounds available in the literature. Also note that this bound is
obtained under rather general assumptions on the sets S and A. In particular, we don’t assume that
either S or A is finite.

Proof. One-step analysis: Suppose that after h steps of the algorithm the estimates VH,N , . . . , Vh+1,N

of the value functions V ?
H , . . . , V

?
h+1, respectively, are constructed using sampled data DN,h+1, such that

‖Vt,N‖∞ ≤ V ?
max a.s. for all t = h+ 1, . . . , H. Denote for a ∈ A,

`a(β) := EX∼µh
[
(Za − β>γK(X))2

]
, Za ∼ Vh+1,N(Y a,X), Y a,X ∼ Ph+1(·|X, a).
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The unique minimizer of `a(β) is given by βa := E [ZaΣ−1γK(X)] and we have

βa = EX∼µh
[
E [Za|X] Σ−1γK(X)

]
= EX∼µh

[
P a
h+1Vh+1,N(X)Σ−1γK(X)

]
.

It then holds that

E
[
sup
a∈A

(
(β>N,a − β>a )γK(X)

)2] ≤ E
[
sup
a∈A
|βN,a − βa|2

]
EX∼µh

[
|γK(X)|2

]
≤

K∑
k=1

E
[
sup
a∈A

(βN,a,k − βa,k)2
]
EX∼µh

[
|γK(X)|2

]
,

where according to Proposition B.1, (component wise applied to the vector function f(x, a, ε) =
Vh+1,N(Kh+1(x, a, ε))Σ

−1γK(x) with p = 2, see (6.3)) one has for k = 1, . . . , K,

E
[
sup
a∈A

(βN,a,k − βa,k)2
]
.

(LV,KLKID(A) + LV,KLKD(A) + V ?
max)

2Λ2
K

N
. (6.5)

Due to the very structure of Vh+1,N (see (4.1)), we have

EX∼µh

[
sup
a∈A

(β>a γ(X)− P a
h+1Vh+1,N(X))2

]
≤ R2

K,h, (6.6)

and we then get

EX∼µh

[
sup
a∈A

(P̃ a
h+1,NVh+1,N(X)− P a

h+1Vh+1,N(X))2
]1/2
≤ RK,h+

%γ,KΛK(LV,KLKID(A) + LV,KLKD(A) + V ?
max)

√
K

N
(6.7)

due to (6.5), (6.6), and the estimate

EX∼µh

[
sup
a∈A

(P̃ a
h+1,NVh+1,N(X)− P a

h+1Vh+1,N(X))2
]1/2
≤

EX∼µh

[
sup
a∈A

(β>N,aγK(X)− P a
h+1Vh+1,N(X))2

]1/2
≤

EX∼µh

[
sup
a∈A

(β>N,aγK(X)− β>a γK(X))2
]1/2

+ EX∼µh

[
sup
a∈A

(β>a γK(X)− P a
h+1Vh+1,N(X))2

]1/2
.

Multi step analysis: Let us denote for h ∈ [H[,

∆a
h,N(x) := P̃ a

h+1,NVh+1,N(x)− P a
h+1Vh+1,N(x) and ∆h(x) := sup

a∈A
|∆a

h,N(x)|. (6.8)

Note that

P πh
h+1P

πh′
h′+1(dx

′′|x) =

∫
S

P πh
h+1(dx

′|x)P
πh′
h′+1(dx

′′|x′).
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We then have

V ?
h (x)− Vh,N(x) = sup

a∈A

{
Rh(x, a) + P a

h+1V
?
h+1(x)

}
− sup

a∈A

{
Rh(x, a) + P̃ a

h+1,NVh+1,N(x)
}

= Rh(x, π
?
h(x)) +

∫
V ?
h+1(x

′)Ph+1(dx
′|x, π?h(x))

− sup
a∈A

{
Rh(x, a) + P̃ a

h+1,NVh+1,N(x)
}

≤
∫ (

V ?
h+1 − Vh+1,N

)
(x′)Ph+1(dx

′|x, π?h(x))

+ sup
a∈A

{
Rh(x, a) + P a

h+1Vh+1,N(x)
}
− sup

a∈A

{
Rh(x, a) + P̃ a

h+1,NVh+1,N(x)
}

≤ P
π?
h

h+1

(
V ?
h+1 − Vh+1,N

)
(x) + ∆h(x) (6.9)

and analogously,
V ?
h (x)− Vh,N(x) ≥ P

πh,N
h+1 [V ?

h+1 − Vh+1,N ](x)−∆h(x). (6.10)

By iterating (6.9) and (6.10) upwards, and using that VH,N = V ?
H , we obtain, respectively,

V ?
h (x)− Vh,N(x) ≤

H−h−1∑
k=1

P
π?
h

h+1 . . . P
π?
h+k−1

h+k [∆h+k](x) + ∆h(x), and

V ?
h (x)− Vh,N(x) ≥ −

H−h−1∑
k=1

P
πh,N
h+1 . . . P

πh+k−1,N

h+k [∆h+k](x)−∆h(x).

We thus have pointwise,

|V ?
h (x)− Vh,N(x)| ≤

H−h−1∑
k=1

P
π?
h

h+1 . . . P
π?
h+k−1

h+k [∆h+k](x)

+
H−h−1∑
k=1

P
πh,N
h+1 . . . P

πh+k−1,N

h+k [∆h+k](x) + ∆h(x)

which implies

‖V ?
h − Vh,N‖L2(µh)

≤ 2 sup
π

H−h−1∑
k=1

∥∥P πh
h+1 . . . P

πh+k−1

h+k [∆h+k]
∥∥
L2(µh)

+ ‖∆h‖L2(µh)
.

Hence we have

‖V ?
h − Vh,N‖L2(µh)

≤ 2Rmax

H−1∑
l=h

‖∆l‖L2(µl)

(note that Rmax ≥ 1), and then, by the definitions (6.8) and the estimate (6.7), the statement of the theorem
follows.

7 Convergence analysis of the dual algorithm

7.1 Convergence of martingale functions

For the dual representation (5.12) we construct an H-tuple of martingale functions η̃ :=
(η̃t+1,K,M(x, a), t ∈ [H[), see for instance (5.11), from a given pre-computed H-tuple of approximate
value functions (Vt+1,N , t ∈ [H[), based on sampled data, denoted by DN , as outlined in Section 5.
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Let us consider a fixed time t ∈ [H[ and suppress time subscripts where notationally convenient. We fix two
(random) grids SL := {x1, . . . , xL} and AL := {a1, . . . , aL} on S and A, respectively, and obtain values
of the coefficient functions ck,M on SL × AL due to M simulations. Next, we construct

ηt+1,K,M(x, a) ≡ ηt+1,K,M(x, a, ε) = c>K,M(x, a)ψ(ε) =:
K∑
k=1

ck,M(x, a)ψk(ε),

for (x, a) ∈ SL × AL. To approximate ηt+1,K,M(x, a) for (x, a) 6∈ SL × AL, we suggest to use an
appropriate interpolation procedure described below, which is particularly useful for our situation where the
function to be interpolated is only Lipschitz continuous (due to the presence of the maximum). The optimal
central interpolant for a function f ∈ Lipρ(L) on S× A with respect to some metric ρ on S× A is defined
as

I[f ](x, a) := (H low
f (x, a) +Hup

f (x, a))/2,

where

H low
f (x, a) := max

(x′,a′)∈SL×AL

(f(x′, a′)− Lρ((x, a), (x′, a′)),

Hup
f (x, a) := min

(x′,a′)∈SL×AL

(f(x′, a′) + Lρ((x, a), (x′, a′)).

Note that H low
f (x, a) ≤ f(x, a) ≤ Hup

f (x, a), H low
f , Hup

f ∈ Lipρ(L) and hence I[f ] ∈ Lipρ(L). An
efficient algorithm to compute the values of the interpolant I[f ] without knowing L in advance can be found
in Beliakov [2006]. The so constructed interpolant achieves the bound

‖f − I[f ]‖∞ ≤ LρL(S,A) (7.1)

:= L max
(x,a)∈S×A

min
(x′,a′)∈SL×AL

ρ((x, a), (x′, a′)).

The quantity ρL(S,A) is usually called covering radius (also known as the mesh norm or fill radius) of
SL × AL with respect to S× A. We set

η̃t+1,K,M(x, a) :=
K∑
k=1

c̃k,M(x, a)ψk(ε) with c̃k,M := I[ck,M ].

Furthermore, denote by cK(x, a) = [c1(x, a), . . . , cK(x, a)]> the unique solution of the minimization prob-
lem

inf
c1,...,cK

Eε∼PE

(V ?
t+1(Kt+1(x, a, ε))−

K∑
k=1

ckψk(ε)

)2
 (7.2)

for any (x, a) ∈ S× A, and define ηt+1,K(x, a) := c>K(x, a)ψK(ε). Let us make a few of assumptions.

Assumption 7.1 Assume that |Σ−1E,KψK(ε)|∞ ≤ ΛE,K for all ε ∈ E, and that Eε∼PE
[|ψK(ε)|2] ≤ %2ψ,K .

The following theorem provides a bound on the difference between the projection of the function
V ?
t+1(Kt+1(x, a, ·)) on span(ψ1, . . . , ψK) and its estimate η̃t+1,K,M .
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Theorem 7.2 Under Assumptions 6.1, 6.2, 6.3, and 7.1 it holds that

E

[
sup

(x,a)∈S×A
|ηt+1,K(x, a)− η̃t+1,K,M(x, a)|2

]
.

%2ψ,K
K(LV,KLKID(S× A) + LV,KLKD(S× A) + V ?

max)
2Λ2

E,K

M

+KΛ2
E,K%

2
ψ,K sup

(x,a)∈S×A

∥∥∥∥dPt+1(·|x, a)

dµt+1(·)

∥∥∥∥
∞
‖V ?

t+1 − Vt+1,N‖2L2(µt+1)

+K%2ψ,KL
2
V,KL

2
KΛ2

E,Kρ
2
L(S,A),

where. denotes≤ up to a natural constant, the constants LV,K , LK, and the measure µt+1 are defined in
Section 6.

Let us now consider the approximation error

E2K,t := Eε∼LE

[
sup

(x,a)∈S×A

∣∣ηt+1,K(x, a)− η?t+1(x, a)
∣∣]2

with

η?t+1(x, a) := V ?
t+1(Kt+1(x, a, ε))− E

[
V ?
t+1(Kt+1(x, a, ε))

]
, (x, a) ∈ S× A, t ∈ [H[.

Suppose that one has pointwise

η?t+1(x, a) =
∞∑
k=1

c?k,t+1(x, a)ψk(εt+1), (x, a) ∈ S× A, t ∈ [H[,

where (ψk)k∈N is a an orthonormal system in L2(E,PE) with ψ0 ≡ 1. If ‖ψk‖∞ ≤ ψ∗k for all k ∈ N, then

E2K,t = E

[
sup

(x,a)∈S×A

∣∣∣∣∣
∞∑

k=K+1

c?k,t+1(x, a)ψk(εt)

∣∣∣∣∣
]2

≤ sup
(x,a)∈S×A

(
∞∑

k=K+1

|c?k,t+1(x, a)|ψ∗k

)2

.

If

sup
(x,a)∈S×A

∞∑
k=1

kβ|c?k,t+1(x, a)|ψ∗k ≤ C <∞ (7.3)

for some β > 0, then E2K,t ≤ C2K−2β.

Discussion

� Let us discuss the quantity ρL(S,A). Let S = [0, 1]dS , A = [0, 1]dA for some dS, dA ∈ N and let the
points SL (AL) be uniformly distributed on S (A). Moreover set, ρ((x, a), (x′, a′)) = |x−x′|+|a−a′|.
Then, similarly to Reznikov and Saff [2016] it can be shown that

[EρpL(S× A)]1/p .
√
dS

(
p logL

L

)1/dS

+
√
dA

(
p logL

L

)1/dA

, (7.4)

where . stands for inequality up to a constant not depending on L.
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Proof. For the unique minimizer of (7.2) one has that

cK(x, a) := Σ−1E,K E
[
V ?
t+1(Kt+1(x, a, ε))ψK(ε)

]
. (7.5)

Likewise, the unique minimizer of the problem

inf
c∈RK

Eε∼PE

[(
Vt+1,N(Kt+1(x, a, ε))− c>ψK(ε)

)2 |DN]
is given by

c̄K(x, a) := Σ−1E,K E [Vt+1,N(Kt+1(x, a, ε))ψK(ε)|DN ] .

Now let cK,N(x, a) be the Monte Carlo estimate of c̄K(x, a) as constructed in Section 5, see (5.9) and
(5.10). We then have

E

∣∣∣∣∣ sup
(x,a)∈S×A

(cK,N − c̄K)>(x, a)ψK(ε)

∣∣∣∣∣
2

|DN


≤ E

[
sup

(x,a)∈S×A

∣∣(cN,K − c̄K)>(x, a)
∣∣2 |DN]Eε∼PE

[
|ψK(ε)|2

]
, (7.6)

where according to Proposition B.1 (applied componentwise with p = 2 to the vector function f(x, a, ε) =
Vt+1,N(Kt+1(x, a, ε))Σ

−1
E,KψK(ε), see (6.3))

E

[
sup

(x,a)∈S×A
|(cK,N − c̄K)(x, a)|2

]
≤
K(LV,KLKID(S× A) + LV,KLKD(S× A) + V ?

max)
2Λ2

E,K

M
.

(7.7)
Since for any pair (x, a) ∈ S× A,

|(cK − c̄K)(x, a)|2 =
∣∣E [(V ?

t+1(Kt+1(x, a, ε))− Vt+1,N(Kt+1(x, a, ε)
)

Σ−1E,KψK(ε)|DN
]∣∣2

≤
∫ ∣∣V ?

t+1(Kt+1(x, a, ε))− Vt+1,N(Kt+1(x, a, ε))
∣∣2 dPE(ε)

∫ ∣∣Σ−1E,KψK(ε)
∣∣2 dPE(ε)

≤ KΛ2
E,K sup

(x,a)∈S×A

∥∥∥∥dPt+1(·|x, a)

dµt+1(·)

∥∥∥∥
∞

∫ ∣∣V ?
t+1(y)− Vt+1,N(y)

∣∣2 µt+1(dy)

we have

E

[∣∣∣∣ max
(x,a)∈SL×AL

(cK − c̄K)>(x, a)ψK(ε)

∣∣∣∣2
]

≤ E
[

max
(x,a)∈SL×AL

|(cK − c̄K)(x, a)|2
]
Eε∼PE

[
|ψK(ε)|2

]
≤ K%2ψ,KΛ2

E,K sup
(x,a)∈S×A

∥∥∥∥dPt+1(·|x, a)

dµt+1(·)

∥∥∥∥
∞
‖V ?

t+1 − Vt+1,N‖2L2(µt+1)
. (7.8)

Next due to (6.3), we derive for any k ∈ [K],

|ck,M(x, a)− ck,M(x′, a′)|

≤ 1

M

M∑
m=1

|Vt+1,N(Kt+1(x, a, εm))− Vt+1,N(Kt+1(x
′, a′, εm))||Σ−1E,KψK(εm)|∞

≤ LV,KLKΛE,Kρ((x, a), (x′, a′))
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and so with I [cK,N ] := (I [c1,N ] , . . . , I [cK,N ])> we further have

E

[
sup

(x,a)∈S×A
|ηt+1,K,N(x, a)− η̃t+1,K,N(x, a)|2

]

= E

[
sup

(x,a)∈S×A

∣∣∣(cK,N − I [cK,N ])> (x, a)ψK(εt+1)
∣∣∣2]

≤ %2ψ,K sup
(x,a)∈S×A

|(cN,K − I [cN,K ]) (x, a)|2

= %2ψ,K sup
(x,a)∈S×A

K∑
k=1

(ck,N − I [ck,N ])2 (x, a)

≤ K%2ψ,KL
2
V,KL

2
KΛ2

E,Kρ
2
L(S,A), (7.9)

using (7.1). Finally note that

ηt+1,K − η̃t+1,K,N = (cK − c̄K)>ψK + (c̄K − cK,N)>ψK + ηt+1,K,N − η̃t+1,K,N

and then the result follows by the triangle inequality and gathering (7.6)–(7.9).

7.2 Convergence of upper bounds

Suppose that the estimates η̃ = (η̃t+1(x, a), t ∈ [H[) of the optimal martingale tuple η? = (η?t (x, a), t ∈
]H]) are constructed based on the sampled data DM,N such that Theorem 7.2 holds. Consider for ξ̃ :=
(η̃t+1(St(a<t), at), t ∈ [H[) ∈ Ξ, the upper bias

V up
0 (x; ξ̃)− V ?

0 (x) = Ex

[
sup

a≥0∈AH

(
H−1∑
t=0

(Rt(St(a<t), at)− η̃t+1(St(a<t), at)) + F (SH)

)]

− Ex

[
sup

a≥0∈AH

(
H−1∑
t=0

(
Rt(St(a<t), at)− η?t+1(St(a<t), at)

)
+ F (SH)

)]

≤ Ex

[
sup

a≥0∈AH

∣∣∣∣∣
H−1∑
t=0

η?t+1(St(a<t), at)−
H−1∑
t=0

η̃t+1(St(a<t), at)

∣∣∣∣∣
]

≤
H−1∑
t=0

Ex

[
sup

(x,a)∈S×A

∣∣η?t+1(x, a)− η̃t+1(x, a)
∣∣]

≤
H−1∑
t=0

Ex

[
sup

(x,a)∈S×A

∣∣η?t+1(x, a)− η̃t+1(x, a)
∣∣2]1/2 .

Furthermore, similarly,

Var

[
sup

a≥0∈AH

(
H−1∑
t=0

(Rt(St(a<t), at)− η̃t+1(St(a<t), at)) + F (SH)

)]

= Var

 supa≥0∈AH

(∑H−1
t=0 (Rt(St(a<t), at)− η̃t+1(St(a<t), at)) + F (SH)

)
− supa≥0∈AH

(∑H−1
t=0

(
Rt(St(a<t), at)− η?t+1(St(a<t), at)

)
+ F (SH)

) 
≤ E

(H−1∑
t=0

sup
(x,a)∈S×A

∣∣η?t+1(x, a)− η̃t+1(x, a)
∣∣)2
 .
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Hence for the standard deviation we get by the triangle inequality,

Dev

[
sup

a≥0∈AH

(
H−1∑
t=0

(Rt(St(a<t), at)− η̃t+1(St(a<t), at)) + F (SH)

)]

≤
H−1∑
t=0

E

[
sup

(x,a)∈S×A

∣∣η?t+1(x, a)− η̃t+1(x, a)
∣∣2]1/2 .

Thus, for the Monte Carlo estimate of V up
0 (x; ξ̃),

V up
0,Ntest

(x; ξ̃) =
1

Ntest

Ntest∑
n=1

sup
a≥0∈AH

(
H−1∑
t=0

(
Rt(S

(n)
t (a<t), at)− η̃t+1(S

(n)
t (a<t), at)

)
+ F (S

(n)
H )

)
with

S
(n)
t (a<t) = Kt(S(n)

t−1(a<t−1), at−1, ε
(n)
t ), t ∈]H], S

(n)
0 = x,

we obtain

E
[
|V up

0,Ntest
(x; ξ̃)− V ?

0 (x)|2
]1/2
≤ E

[
|V up

0,Ntest
(x; ξ̃)− V up

0 (x; ξ̃)|2
]1/2

+ V up
0 (x; ξ̃)− V ?

0 (x)

≤ 1√
Ntest

H−1∑
t=0

E

[
sup

(x,a)∈S×A

∣∣η?t+1(x, a)− η̃t+1(x, a)
∣∣2]1/2

+
H−1∑
t=0

Ex

[
sup

(x,a)∈S×A

∣∣η?t+1(x, a)− η̃t+1(x, a)
∣∣]

≤ (
1√
Ntest

+ 1)
H−1∑
t=0

Ex

[
sup

(x,a)∈S×A

∣∣η?t+1(x, a)− η̃t+1(x, a)
∣∣2]1/2 .

A Some auxiliary notions

The Orlicz 2-norm of a real valued random variable η with respect to the function ϕ(x) = ex
2 − 1, x ∈ R,

is defined by ‖η‖ϕ,2 := inf{t > 0 : E [exp (η2/t2)] ≤ 2}. We say that η is sub-Gaussian if ‖η‖ϕ,2 <∞.
In particular, this implies that for some constants C, c > 0,

P(|η| ≥ t) ≤ 2 exp

(
− ct2

‖η‖2ϕ,2

)
and E[|η|p]1/p ≤ C

√
p‖η‖ϕ,2 for all p ≥ 1.

Consider a real valued random process (Xt)t∈T on a metric parameter space (T , d). We say that the
process has sub-Gaussian increments if there exists K ≥ 0 such that

‖Xt −Xs‖ϕ,2 ≤ Kd(t, s), ∀t, s ∈ T .

Let (Y, ρ) be a metric space and X ⊆ Y. For ε > 0, we denote by N (X, ρ, ε) the covering number of the
set X with respect to the metric ρ, that is, the smallest cardinality of a set (or net) of ε-balls in the metric ρ
that covers X. Then logN (X, ρ, ε) is called the metric entropy of X and

ID(X) :=

∫ D(X)

0

√
logN

(
X, ρ, u

)
du

with D(X) := diam(X) := maxx,x′∈X ρ(x, x′), is called the Dudley integral. For example, if |X| <∞ and
ρ(x, x′) = 1{x 6=x′} we get ID(X) =

√
log |X|.
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B Estimation of mean uniformly in parameter

The following proposition holds.

Proposition B.1 Let f be a function on X× Ξ such that

|f(x, ξ)− f(x′, ξ)| ≤ Lρ(x, x′) (B.1)

with some constant L > 0. Furthermore assume that ‖f‖∞ ≤ F < ∞ for some F > 0. Let ξn,
n = 1, . . . , N, be i.i.d. sample from a distribution on Ξ. Then we have

E1/p

[
sup
x∈X

∣∣∣∣∣ 1

N

N∑
n=1

(f(x, ξn)− Ef(x, ξn))

∣∣∣∣∣
p]
.
LID + (LD + F )

√
p

√
N

,

where . may be interpreted as ≤ up to a natural constant.

Proof. Denote

Z(x) :=
1√
N

N∑
n=1

(f(x, ξn)−Mf (x))

with Mf (x) = E[f(x, ξ)], that is, Z(x) is a centered random process on the metric space (X, ρ). Below
we show that the process Z(x) has sub-Gaussian increments. In order to show it, let us introduce

Zn = f(x, ξn)−Mf (x)− f(x′, ξn) +Mf (x
′).

Under our assumptions we get

‖Zn‖ψ2 . Lρ(x, x′),

that is, Zn is subgaussian for any n = 1, . . . , N. Since

Z(x)− Z(x′) = N−1/2
N∑
n=1

Zn,

is a sum of independent sub-Gaussian r.v, we may apply [Vershynin, 2018, Proposition 2.6.1 and Eq. (2.16)])
to obtain that Z(x) has sub-Gaussian increments with parameter K � L. Fix some x0 ∈ X. By the
triangular inequality,

sup
x∈X
|Z(x)| ≤ sup

x,x′∈X
|Z(x)− Z(x′)|+ |Z(x0)| .

By the Dudley integral inequality, e.g. [Vershynin, 2018, Theorem 8.1.6], for any δ ∈ (0, 1),

sup
x,x′∈X

|Z(x)− Z(x′)| . L
[
ID + D

√
log(2/δ)

]
holds with probability at least 1−δ. Again, under our assumptions,Z(x0) is a sum of i.i.d. bounded centered
random variables with ψ2-norm bounded by F . Hence, applying Hoeffding’s inequality, e.g. [Vershynin, 2018,
Theorem 2.6.2.], for any δ ∈ (0, 1),

|Z(x0)| . F
√

log(1/δ).
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