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Fine properties of geodesics and geodesic λ-convexity for the
Hellinger–Kantorovich distance

Matthias Liero, Alexander Mielke, Giuseppe Savaré

Abstract

We study the fine regularity properties of optimal potentials for the dual formulation of the Hellinger–
Kantorovich problem (HK), providing sufficient conditions for the solvability of the primal Monge formulation.
We also establish new regularity properties for the solution of the Hamilton–Jacobi equation arising in the
dual dynamic formulation of HK, which are sufficiently strong to construct a characteristic transport-growth
flow driving the geodesic interpolation between two arbitrary positive measures.

These results are applied to study relevant geometric properties of HK geodesics and to derive the
convex behaviour of their Lebesgue density along the transport flow.

Finally, exact conditions for functionals defined on the space of measures are derived that guarantee the
geodesic λ-convexity with respect to the Hellinger–Kantorovich distance. Examples of geodesically convex
functionals are provided.
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1 Introduction

In [LMS16, LMS18] the Hellinger–Kantorovich distance (in [KMV16, CP∗15, CP∗18] it is also called
Wasserstein–Fisher–Rao distance or Kantorovich–Fisher–Rao distance in [GaM17]) was introduced to
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describe the interaction between optimal transport and optimal creation and destruction of mass in a
convex domain of Rd. Here we further investigate the structure of (minimal) geodesics, and we fully
analyze the question of geodesic λ-convexity of integral functionals with respect to this distance.

The Hellinger–Kantorovich distance can be considered as a combination, more precisely the inf-
convolution, of the Hellinger–Kakutani distance on the set of all measures (cf. e.g. [Sch97]) and the L2

Kantorovich–Wasserstein distance, which is well-known from the theory of optimal transport, see e.g.
[AGS08, Vil09]. Throughout this text, we denote by M(Rd) all nonnegative and finite Borel measures
endowed with the weak topology induced by the canonical duality with the continuous functions
C0(Rd) decaying at infinity. While the L2 Kantorovich–Wasserstein distance W(µ0, µ1) of measures
µ0, µ1 ∈ M(Rd) requires µ0 and µ1 to have the same mass to be finite, the Hellinger–Kakutani
distance, which is defined via

H(µ0, µ1)
2 =

∫
Rd

(√
θ0 −

√
θ1
)2
d(µ0+µ1), where θj =

dµj

d(µ0+µ1)
,

has the upper bound H(µ0, µ1) ≤ µ0(Rd) + µ1(Rd), with equality if µ0 and µ1 are mutually singular.

As a generalization of the dynamical formulation of the Kantorovich–Wasserstein distance (see [BeB00]),
the Hellinger–Kantorovich distance HKα,β can be defined in a dynamic way via

HKα,β(µ0, µ1)
2 = inf

{∫ 1

t=0

∫
Rd

(
α|Υ(t, x)|2+βξ(t, x)2

)
dµt(x)dt (1.1)∣∣∣∣ µ ∈ C

(
[0, 1];M(Rd)

)
, µt=0 = µ0, µt=1 = µ1, (gCE) holds

}
,

where Υ : (0, 1)×Rd → Rd and ξ : (0, 1)×Rd → R are Borel maps characterizing the generalized
continuity equation

(gCE)
∂

∂t
µ+ α div

(
µΥ
)
= β ξµ,

formulated in a distributional sense. The parameters α > 0 and β > 0 allow us to control the relative
strength of the Kantorovich–Wasserstein part and the Hellinger–Kakutani part, i.e. HKα,β is the inf-con-
volution of HKα,0 =

1√
α
W and HK0,β = 1√

β
H, see [LMS18, Rem. 8.19]. Subsequently, we will restrict

to the standard case α = 1 and β = 4, since the general case can easily be obtained by scaling the
underlying space Rd. We will shortly write HK instead of HK1,4.

It is a remarkable fact, deeply investigated in [LMS18], that the HK distance has many interesting
equivalent characterizations, which highlight its geometric and variational character. A first one arises
from the dual dynamic counterpart of (1.1) in terms of subsolutions of a suitable Hamilton–Jacobi
equation:

1

2
HK2(µ0, µ1) = sup

{∫
Rd

ξ(τ, ·)dµ1 −
∫
Rd

ξ(0, ·)dµ0

∣∣∣ ξ ∈ C∞
c ([0, 1]× Rd),

∂

∂t
ξ +

1

2
|∇ξ|2 + 2ξ2 ≤ 0 in [0, 1]× Rd

}
.

(1.2)

By expressing solutions of (1.2) in terms of a new formula of Hopf–Lax type, one can write a static
duality representation

HK2(µ0, µ1) = sup
{∫

Rd

(1− e−2φ1)dµ1 −
∫
Rd

(e2φ0 − 1)dµ0

∣∣∣
φ0, φ1 ∈ Cb(Rd), φ1(x1)−φ0(x0) ≤ L1(x1−x0)

}
(1.3)
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associated with the convex cost function L1(z) := 1
2
log(1 + tan2(|z|)) which forces |z| < π/2.

Notice that it is possible to write (1.3) in a symmetric form with respect to φ0, φ1 just by changing the
sign of φ1.

It is remarkable that (1.3) can be interpreted as the dual problem of the static Logarithmic Entropy
Transport (LET) variational formulation of HK. By introducing the logarithmic entropy density F :
[0,∞[ → [0,∞[ via

F (s) := s log s− s+ 1 for s > 0 and F (0) := 1, (1.4)

we get

HK2(µ0, µ1) = min
{∫

Rd

F (σ0)dµ0 +

∫
Rd

F (σ1)dµ1 +

∫∫
Rd×Rd

2L1(x0−x1)dη
}

(1.5)

where the minimum is taken over all positive finite Borel measures η in Rd × Rd whose marginals
(πi)♯η = σiµi are absolutely continuous with respect to µi.

The subdifferential
DL1(z) = ∂L1(z) = tan(z) := tan

(
|z|) z

|z|
and its inverse w 7→ arctan(w) will play an important role. We continue to use bold function names
for vector-valued functions constructed from real-valued ones as follows:

for a map f : R → R with f(0) = 0 we set f : Rd → Rd via f(x) := f(|x|) x
|x|
. (1.6)

A fourth crucial formula, which we will extensively study in the present paper, is related to the primal
Monge formulation of Optimal Transport, and clarifies the two main components of HK arising from
transport and growth or decay effects. Its main ingredient is the notion of transport-growth pair (T , q) :
Rd → Rd × [0,∞) acting on measures µ ∈ M(Rd) as

(T , q)⋆µ := T♯(q
2 · µ),

(
(T , q)⋆µ

)
(A) :=

∫
T−1(A)

q2dµ for every Borel set A ⊂ Rd. (1.7)

The Monge formulation of HK then looks for the optimal pair (T , q) among the ones transforming µ0

into µ1 by (T , q)⋆µ0 = µ1 which minimizes the conical cost

C(T , q;µ0) :=

∫
Rd

(
1 + q2(x)− 2q(x) cosπ/2

(
|T (x)−x|

))
dµ0(x), (1.8)

where cosπ/2(r) := cos
(
min{r, π/2}

)
. As for the usual Monge formulation of optimal transport,

the existence of an optimal transport-growth pair (T , q) minimizing (1.8) requires more restrictive
properties on µ0, µ1 which we will carefully study. It is worth noticing that the integrand in (1.8) has a
relevant geometric interpretation as the square distance d2π,C, where dπ,C is the distance on the cone
space C over Rd (cf. (2.5)) between the points [x, 1] and [T (x), q(x)] and suggests that HK induces
a distance in M(Rd) which plays a similar role than the L2 Kantorovich–Rubinstein–Wasserstein
distance in P2(Rd). The dynamic formulation (1.1), moreover, suggests that its minimizers (µt)t∈[0,1]
should provide minimal geodesics in (M(Rd),HK) which behave like transport-growth interpolations
between µ0 and µ1.

Inspired by the celebrated paper [McC97], we want to study the structure of such minimizers and to
characterize integral functionals which are convex along such kind of interpolations.
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1.1 Improved regularity of potentials and geodesics

In the first part of the paper we will exploit the equivalent formulations of HK in order to obtain new
information on the regularity and on the fine structure of the solutions to (1.3), (1.2), and (1.8).

More precisely, we will initially prove in Section 3 that the optimal HK potential φ0 is locally semi-
convex outside a closed (d−1)-rectifiable set, so that when µ0 ≪ Ld and µ1 is concentrated in a
neighborhood of supp(µ0) of radius π/2 the Monge formulation (1.8) has a unique solution.

After the transformation ξ0 :=
1
2
(eφ0 − 1) (which linearizes the second integrand in the duality formula

(1.3)), we also obtain a family of maps, for t ∈ [0, 1],

T0→t(x) = x+ arctan
( t∇ξ0
1+2tξ0(x)

)
, q20→t(x) := (1+2tξ0(x))

2 + t2|∇ξ0(x)|2, (1.9)

with the following properties:

1 (T0→1, q0→1) is the unique solution of (1.8) and provides the beautiful formula

HK2(µ0, µ1) =

∫
Rd

(
4ξ20 + |∇ξ0|2

)
dµ0, (1.10)

showing that the (closure of the) space of C1
c(Rd) functions with respect to the Hilbertian norm

∥ξ∥2H1,2(Rd,µ) =

∫
Rd

(
4ξ2 + |∇ξ|2

)
dµ (1.11)

provides the natural notion of tangent space TanµM(Rd) and a nonsmooth Riemannian formal-
ism in (M(Rd),HK) as for the Otto calculus in (P2(Rd),W2).

2 The curve µt = (T0→t, q0→t)⋆µ0 is an explicit characterization of the geodesic interpolation
solving (1.1). A crucial fact is that for µ0-a.e.x the curve [T0→t(x), q0→t(x)] is a geodesic in
the cone space C interpolating the points [x, 1] and [T0→1(x), q0→1(x)].

It is then natural to investigate if the potential ξ0 can be used to build an optimal solution ξt of (1.2),
which should at least formally solve the Hamilton-Jacobi equation

∂tξt +
1

2
|∇ξt|2 + 2ξ2t = 0 on the support of µ in (0, 1)× Rd. (1.12)

This problem will be investigated in Section 4, by a detailed analysis of the regularity of the forward
solutions to (1.2) provided by the generalized Hopf–Lax formula (see (4.2))

ξt(x) = ξ(t, x) =
(
Ptξ0

)
(x) =

1

t
P1

(
tξ0(·)

)
(x) = inf

y∈Rd

1

2t

(
1−

cos2π/2(|x−y|)
1 + 2tξ0(y)

)
. (1.13)

It is well known that one cannot expect smoothness of such a solution; however, the particular structure
of transport duality suggests that the final value ξ1 given by (1.13) corresponds to the optimal potential
φ1 of the dual formulation (1.3) via the transformation ξ1 =

1
2
(1− e−2φ1), so that the initial and final

optimal potentials ξ0 and ξ1 are simultaneously linked by the forward-backward relation

ξ1 = P1ξ0, ξ0 = R1(ξ1) where Rt(η) := −Pt(−η) is the backward flow. (1.14)

DOI 10.20347/WIAS.PREPRINT.2956 Berlin, August 30, 2022/rev. September 29, 2023
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Following the approach of [Vil09, Cha. 7] (see also [LMS18, Sec. 8]) and using the reversibility in time
of geodesics, we can add to the family of forward potentials ξt given by (1.13) the crucial information
provided by the backward solutions ξ̄t starting from ξ1:

ξ̄t := R1−tξ1 = −P1−t

(
−ξ1

)
for t ∈ [0, 1]. (1.15)

In general, ξt and ξ̄t do not coincide for t ∈ (0, 1) but still satisfy

ξt(x) ≥ ξ̄t(x) in (0, 1)× Rd, ξ0 = ξ̄0, ξ1 = ξ̄1. (1.16)

The crucial fact arising from the optimality condition (1.14), and the geometric property of the geodesic
(µt)t∈[0,1] is that for every t ∈ [0, 1]

the support of µt is contained in the contact set Ξt :=
{
x ∈ Rd

∣∣ ξt(x) = ξ̄t(x)
}
.

On the contact set (Ξt)t∈[0,1], we can combine the (delicate) first- and second-order super-differen-
tiability properties of ξt arising from the inf-convolution structure of (1.13) with the corresponding
sub-differentiability properties exhibited by ξ̄t.

Using tools from nonsmooth analysis, we are then able to give a rigorous meaning to the characteristic
flow associated with (1.12), i.e. to the maps t 7→ T (t, ·) = Ts→t(·), t 7→ q(t, ·) = qs→t(·) solving
(we omit to write the explicit dependence on x when not needed){

Ṫ (t) = ∇ξt(T (t)),

q̇(t) = 2ξt(T (t))q(t),
in (0, 1), T (s, x) = x, q(s, x) = 1. (1.17)

Moreover, we will prove that Ts→t is a family of bi-Lipschitz maps on the contact sets obeying a natural
concatenation property. As can be expected, the maps Ts→t, qs→t provide a precise representation of
the geodesics via µt = (Ts→t, qs→t)⋆µs for all s, t ∈ (0, 1). In particular (Ts→t, qs→t) is an optimal
transport-growth pair between µs and µt minimizing the cost of (1.8).

Using this valuable information, in Section 5 we obtain various relevant structural properties of geodesics
in (M(Rd),HK) such as non-branching, localization, and regularization effects. In particular, indepen-
dently of the regularity of µ0 and µ1, we will show that for s ∈ (0, 1) the Monge problem between µs

and µ0 or between µs and µ1 always admit a unique solution, a property which is well known in the
Kantorovich–Wasserstein framework.

Surprisingly enough, despite the lack of global regularity, we will also establish precise formulae for
the first and second derivative of the differential of Ts→t (and thus the second order differential of ξt)
along the flow, which coincides with the equations that one obtains by formally differentiation using the
joint information of the Hamilton–Jacobi equation (1.12) and (1.17) assuming sufficient regularity. For
instance, differentiating in time the first equation of (1.17) and differentiating in space (1.12) one finds

T̈ (t) = ∂t∇ξt(T (t)) + D2ξt∇ξt(T (t)), ∂t∇ξt = −D2ξt∇ξt + 4ξt∇ξt,

which yield
T̈ (t) = 4ξt(T (t))∇ξt(T (t)). (1.18a)

For q(t), B(t) := DTs→t, and its determinant δ(t) := detB(t) similar, just more involved, calculations
yield the crucial second order equations

q̈(t) = |∇ξt(T (t))|2q(t), (1.18b)

B̈(t) = −4
(
∇ξt ⊗∇ξt + ξtD

2ξt

)
◦ T (t) · B(t), (1.18c)

δ̈(t) =
(
(∆ξt)

2 − |D2ξt|2 − 4|∇ξt|2 − 4ξt∆ξt

)
◦ T (t) · δ(t). (1.18d)
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In our case, even though we do not have enough regularity to justify the above formal computations, we
can still derive them rigorously by a deeper analysis using the variational properties of the contact set.
Even if our discussion is restricted to the Hellinger–Kantorovich case and uses the particular form of
the Hopf–Lax semigroup (1.13) and its characteristics (1.9), we think that our argument applies to more
general cases and may provide new interesting estimates also in the typical balanced case of Optimal
Transport.

Such regularity and the related second order estimates are sufficient to express the Lebesgue density
ct of the measures µt and thus to obtain crucial information on its behavior along the flow. In particular,
Corollary 5.5 shows that c(t, ·) is given by

c(t, y)
∣∣
y=Ts→t(x)

= c(s, x)
αs(t, x)

δs(t, x)
with (1.19a)

αs(t, x) = (1+2(t−s)ξs(x))2 + (t−s)2|∇ξs(x)|2 = qs→t(x) (1.19b)

δs(t, x) := det(DTs→t(x)), (1.19c)

and the time-dependent transport-growth mapping Ts→t, qs→t are given in terms of ξ via (1.17) and
the analog of (1.9). In particular, we will show that if µs ≪ Ld for some s ∈ (0, 1) then µt ≪ Ld

for every t ∈ (0, 1) and combining (1.18b), (1.18c), and (1.19a) we will also prove that ct is a convex
function along the flow maps Ts→t.

1.2 Geodesic λ-convexity of functionals

The second part of the paper is devoted to establish necessary and sufficient conditions for geodesic
λ-convexity of energy functionals E defined for a closed and convex domain Ω ⊂ Rd with non-empty
interior in the form

E (µ) =
∫
Ω
E(c(x))dx+ E ′

∞µ
⊥(Ω) for µ = cLd+µ⊥ with µ⊥ ⊥ Ld, (1.20)

where E ′
∞ := limc→∞E(c)/c ∈ R ∪ {+∞} is the recession constant and E(0) = 0 holds.

In [LMS16, Prop. 19] it was shown that the total-mass functional M : µ 7→ µ(Rd) has the surprising
property that it is exactly quadratic along HK geodesics γ : [0, 1] → M(Rd), namely

M (γ(t)) = (1−t)M (γ(0)) + tM (γ(1))− t(1−t)HK(γ(0), γ(1))2 for t ∈ [0, 1]. (1.21)

Thus, as a first observation we see that a density function E generates a geodesically λ-convex
functional E if and only if E0 : c 7→ E(c) − λc generates a geodesically convex functional (i.e.
geodesically 0-convex). Hence, subsequently we can restrict to λ = 0.

To explain the necessary and sufficient conditions on E for E to be geodesically convex, we first look
at the differentiable case, and we define the shorthand notation

ε0(c) = E(c), ε1(c) = cE ′(c), ε2(c) = c2E ′′(c).

For the Kantorovich–Wasserstein distance W the necessary and sufficient conditions are the so-called
McCann conditions [McC97]:

ε2(c) ≥
d−1

d

(
ε1(c)− ε0(c)

)
≥ 0 for all c > 0

⇐⇒

{
r 7→ rdE(r−d) is lower semi-continuous and convex and

r 7→ (d−1)rdE(r−d) is non-increasing on ]0,∞[,

(1.22)
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see also [AGS08, Prop. 9.3.9]. For the Hellinger–Kakutani distance we simply need the condition

2ε2(c) + ε1(c) ≥ 0 ⇐⇒
(
r 7→ E(r2) is convex

)
. (1.23)

In the case of differentiable E, our main result yields the following necessary and sufficient conditions
for geodesic convexity of E on (M(Rd),HK), see Proposition 6.1,

(d−1)
(
ε1(c)− ε0(c)

)
≥ 0 and B(c) ≥ 0 for all c > 0, (1.24)

where the matrix B(c) ∈ R2×2
sym is given by

B(c) :=

(
ε2(c)− d−1

d

(
ε1(c)−ε0(c)

)
ε2(c)− 1

2

(
ε1(c)−ε0(c)

)
ε2(c)− 1

2

(
ε1(c)−ε0(c)

)
ε2(c) +

1
2
ε1(c)

)
.

We immediately see that the non-negativity of the diagonal element B11(c) gives the first McCann
condition in (1.22), and B22(c) ≥ 0 gives (1.23). However, the condition B(c) ≥ 0 is strictly stronger,
since e.g. it implies that the additional condition (d+2)ε1(c) − 2ε0(c) ≥ 0 holds, see (6.2). This
condition means that c 7→ c−2/(d+2)E(c) has to be non-decreasing, which will be an important building
block for the main geodesic convexity result.

Indeed, our main result in Theorem 7.2 is formulated for general lower semi-continuous and convex
functions E : [0,∞[ → R ∪ {∞} without differentiability assumptions. The conditions on E can be
formulated most conveniently in terms of the auxiliary function NE : ]0,∞[2 → R ∪ {∞} defined via

NE(ρ, γ) =
(ρ
γ

)d
E
(γ2+d

ρd

)
. (1.25a)

Then, E defined in (1.20) is geodesically convex if and only if NE satisfies

NE : ]0,∞[2 → R ∪ {∞} is convex, and (1.25b)

ρ 7→ (d−1)NE(ρ, γ) is non-increasing. (1.25c)

The McCann conditions (1.22) are obtained by looking at NE(·, γ) for fixed γ, while the Hellinger–
Kakutani condition (1.23) follows by looking at s 7→ NE(sρ, sγ) for fixed (ρ, γ).

The proof of the sufficiency and necessity of condition (1.25) for geodesic convexity of E is based on
the explicit representation (1.19) of the geodesic curves giving

E (µ(t)) =

∫
Ω

E(c(t, y))dy =

∫
Ω

e(t, x)dx where e(t, x) := δs(t, x)E
(
cs(x)

αs(t, x)

δs(t, x)

)
.

By definition, we have αs(t, x) ≥ 0, and Corollary 5.5 guarantees δs(t, x) > 0. Hence, we can
introduce the two functions

γ(t, x) =
(
cs(x)αs(t, x)

)1/2
and ρ(t, x) =

(
cs(x)αs(t, x)

)1/2
δs(t, x)

1/d,

which connect the densities e(t, x) with the function NE defined in (1.25a) in the form

e = δ E
(
c
α

δ

)
= NE(ρ, γ).

For smooth E we have smooth NE and may show convexity of t 7→ e(t, x) via

∂2t e(t, x) =: ë =
〈
D2NE(ρ, γ)

(
ρ̇

γ̇

)
,

(
ρ̇

γ̇

)〉
+
〈
DNE(ρ, γ),

(
ρ̈

γ̈

)〉
≥ 0.
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By convexity of NE , the term involving D2NE is non-negative, so it remains to show

∂ρNE(ρ, γ)ρ̈+ ∂γNE(ρ, γ)γ̈ ≥ 0. (1.26)

To establish this, we use first that the scaling property NE(s
1+d/2ρ, sγ) = s2NE(ρ, γ) for all s > 0

(which follows from the definition of NE via E) and the convexity of NE imply

(1−4/d2)ρ∂ρNE(ρ, γ) + γ ∂γNE(ρ, γ) ≥ 0, (1.27)

see Proposition 6.2. Second, we rely on a nontrivial curvature estimate for (ρ, γ), namely

γ̈(t, x)

γ(t, x)
≥ 0 and

ρ̈(t, x)

ρ(t, x)
≤
(
1− 4

d

) γ̈(t, x)
γ(t, x)

. (1.28)

Estimates (1.28) are provided in Proposition 5.7 and strongly rely on the explicit representation and the
regularity properties of the geodesics developed in Sections 4 and 5.

Combining (1.28) with ∂ρNE(ρ, γ) ≤ 0, the desired relation (1.26) easily follows, see Section 7. Finally,
a simple integration over Rd provides the convexity of t 7→ E (µ(t)). Note that we have indeed the
larger factor (1−4/d2) in (1.27) while the curvature estimate in (1.28) has the smaller and hence
“better” factor (1−4/d).

As a consequence, we find that the power functionals Em with Em(c) = cm with m > 1 are all
geodesically convex, see Corollary 7.3. This result was already exploited in [DiC20, Thm. 2.14]. We
can study the discontinuous “Hele–Shaw case” E(c) = −λc for c ∈ [0, 1] and E(c) = ∞ for
c > 1. Moreover, in dimensions d = 1 or 2 the densities Eq(c) = −cq with q ∈ [ d

d+2
, 1
2
] also lead to

geodesically convex functionals Eq, see again Corollary 7.3.

Two important differences with the balanced Kantorovich–Wasserstein case are worth noting: First, the
Boltzmann logarithmic entropy functional corresponding to E(c) = c log c is not geodesically λ-convex
for any value of λ, see Example 6.5. Second, if the space dimension d is larger than or equal to 3, then
there are no geodesically convex power functionals of the form E(x) = −cm with exponent m < 1,
see Example 6.4. Some of these statements follow easily by observing that µt = t2µ1 is the unique
geodesic connecting µ0 = 0 and µ1.

1.3 Applications and outlook

The JKO scheme (minimizing movement scheme) for a gradient system (M(Ω),HKα,β,E ) is consid-
ered in [Fle21, LaM22], i.e., for τ > 0 we iteratively define

µkτ ∈ ArgMin
{ 1

2τ
HK2

α,β(µ(k−1)τ , µ) + E (µ)
∣∣∣ µ ∈ M(Ω)

}
(1.29)

and consider the limit τ ↓ 0 (along subsequences) to obtain generalized minimizing movements
(GMM) (cf. [AGS05]). Under suitable conditions, including the assumption E (µ) =

∫
Ω

(
E(c)+cV

)
dx

with µ = cLd and E superlinear, it is shown in [Fle21, Thm. 3.4] that all GMM µ have the form
µ(t) = c(t)Ld, and the density c is a weak solution of the reaction-diffusion equation

∂tc = α div
(
c∇(E ′(c)+V )

)
− β u

(
E ′(c)+V

)
in Ω, c∇(E ′(c)+V ) · n = 0 on ∂Ω.

In [Li06], the equation ut = 0 = ∆u+ au log u+ bu is studied, whose solutions are steady states
for HK gradient flows for E (u) =

∫
Rd u log udx. We also refer to [PQV14, DiC20], where equation
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(1.29) was studied for E(c) = 1
m
cm − λc and V ≡ 0. The linear functional Φ(µ) =

∫
Rd V (x)dµ for

a given potential V ∈ C0(Rd) can easily be added, as its geodesic λ-convexity is characterized in
[LMS16, Prop. 20]. Note that our main convexity result, proved here for the first time, plays an important
role in the existence and uniqueness results of [DiC20], cf. Thm. 2.14 there.

In [LaM22] it is shown that the GMM for the gradient system (M(Ω),HKα,β,E ) are EVIλ solutions in
the sense of [MuS20]. Again the main ingredient is the geodesic λ-convexity of E in the form (1.20)
contained in our main Theorem 7.2.

Main notation

M(X), M2(X) finite positive Borel measures on X (with finite quadratic moment)

P(X), P2(X) Borel probability measures on X (with finite quadratic moment)

T♯µ push forward of µ ∈ M(X) by a map T : X → Y : (2.1)

µ = cLd + µ⊥ Lebesgue decomposition of a measure µM(Rd)

Cb(X) continuous and bounded real functions on X

cosa(r) truncated function cos
(
min{a, r}

)
, a > 0 (typically a = π/2)

WX(µ1, µ2) Kantorovich–Wasserstein distance in P2(X)

sin, tan,arctan, · · · vector-valued version of the usual scalar functions, see (1.6)

HK(µ1, µ2) Hellinger–Kantorovich distance in M(X): Section 2

(C, da,C), o metric cone on Rd and its vertex, see Subsection 2.1.2

Wa,C L2-Kantorovich–Wasserstein distance on P2(C) induced by da,C
x, r coordinate maps on C, see Subsection 2.1.2

π0, π1 coordinate maps on a Cartesian product X0 ×X1, πi(x0, x1) = xi
h homogeneous projection from M2(C) to M(Rd), see (2.8)

Si, S
′
i, S

′′
i , S

π/2
i , µ′

i, µ
′′
i see (2.12)-(2.13)

(T , q)⋆ action of a transport-growth map, Def. 2.7

ACp([0, 1];X) space of curves x : [0, 1] → X with p-integrable metric speed

φL→
0 , φ�L

1 forward and backward L-transform for cost function L, see (3.3)

D′
i, D

′′
i domains of ∇φi and D2φi, see Theorem 3.2

ξs = Ps ξ, ξ̄s = Rs ξ̄ for- and backward solution of Hamilton–Jacobi equation, (4.2), (4.3)

Ξs contact set of forward and backward solutions ξs, ξs, see (4.39)

(Ts→t, qs→t) transport-growth map induced by for/backward solutions, Theorem 4.3

2 The Hellinger–Kantorovich distance

In this section, we recall a few properties and equivalent characterizations of the Hellinger–Kantorovich
distance from [LMS16, LMS18], that will turn out to be crucial in the following.

First, we fix some notation that we will extensively use: Let (X, dX) be a complete and separable
metric space. In the present paper X will typically be Rd with the Euclidean distance, a closed convex
subset thereof, the cone space C on Rd (see Subsection 2.1.2), product spaces of the latter two, etc.
We will denote by M(X) the space of all non-negative and finite Borel measures on X endowed with
the weak topology induced by the duality with the continuous and bounded functions of Cb(X). The
subset of measures with finite quadratic moment will be denoted by M2(X). The spaces P(X) and
P2(X) are the corresponding subsets of probability measures.

If µ ∈ M(X) and T : X → Y is a Borel map with values in another metric space Y , then T♯µ
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denotes the push-forward measure on M(Y ), defined by

T♯µ(B) := µ(T−1(B)) for every Borel set B ⊂ Y . (2.1)

We will often denote elements of X ×X by (x0, x1) and the canonical projections by πi : (x0, x1) →
xi, i = 0, 1. A coupling on X is a measure γ ∈ M(X×X) with marginals γi := πi

♯γ.

Given two measures µ0, µ1 ∈ M2(X)with equal mass µ0(X) = µ1(X), their (quadratic) Kantorovich–
Wasserstein distance WX is defined by

WX(µ0, µ1)
2 := min

{∫∫
dX(x0, x1)

2dγ(x0, x1)
∣∣∣

γ ∈ M(X×X), πi
♯γ = µi, i = 0, 1

}
.

(2.2)

We refer to [AGS08] for a survey on the Kantorovich–Wasserstein distance and related topics.

2.1 Equivalent formulations of the Hellinger–Kantorovich distance

The Hellinger–Kantorovich distance was introduced in [LMS18, LMS16] and independently in [KMV16]
and [CP∗18, CP∗15]. It is a generalization of the Kantorovich–Wasserstein distance to arbitrary non-
negative and finite measures by taking creation and annihilation of mass into account. Indeed, the
latter can be associated with a different notion of distance, namely the Hellinger–Kakutani distance,
see [Hel09] and [Sch97]. In this sense, the Hellinger–Kantorovich distance should be viewed as an
infimal convolution of the Kantorovich–Wasserstein and the Hellinger–Kakutani distance, cf. [LMS18,
Rem. 8.19].

In [LMS18], five different equivalent formulations of the Hellinger–Kantorovich distance are given: (i)
the dynamical formulation, (ii) the cone space formulation, (iii) the optimal entropy-transport problem,
(iv) the dual formulation in terms of Hellinger–Kantorovich potentials, and (v) the formulation using
Hamilton–Jacobi equations. We will present and briefly discuss each of them below, as all are useful for
our analysis of geodesic convexity.

In the following, we consider the Hellinger–Kantorovich distance for measures on the domain Rd.
However, it is easy to see that all arguments also work in the case of a closed and convex domain
Ω ⊂ Rd. In particular, the latter is a complete, geodesic space.

2.1.1 Dynamic approach

A first approach to the Hellinger–Kantorovich distance is related to the dynamic formulation, which
naturally depends on two positive parameters α, β > 0: they control the relative strength of the
Kantorovich–Wasserstein part and of the Hellinger-Kakutani part (see [LMS18, Section 8.5]).

Definition 2.1 (The dynamic formulation) For every µ0, µ1 ∈ M(Rd) we set

HKα,β(µ0, µ1)
2 = min

{∫ 1

0

∫
Rd

(
α |Υ(t, x)|2+βξ(t, x)2

)
dµt(x)dt

∣∣∣
µ ∈ C([0, 1];M(Rd)), µt=i = µi, (gCE) holds

}
,

(2.3)
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where the generalized continuity equation for the Borel vector and scalar fields Υ : (0, 1)× Rd → Rd

and ξ : (0, 1)× Rd → R reads

(gCE)
∂

∂t
µ+ α div(µΥ) = β ξµ in D′((0, 1)×Rd).

Notice that (2.3) yields in particular that µΥ and ξµ are (vector and scalar) measures with finite total
mass, so that the canonical formulation of (gCE) in D′((0, 1)×Rd) makes sense. For optimal solutions
one has Υ(t, x) = ∇ξ(t, x) and the dual potential solves the generalized Hamilton–Jacobi equation

∂tξ +
α

2
|∇ξ|2 + β

2
ξ2 = 0 (2.4)

in a suitable sense [LMS18, Theorem 8.20].

A simple rescaling technique shows that it is sufficient to restrict ourselves to a specific choice of the
parameters α and β. In fact, it is easy to see that for every θ > 0 we have

HKα,β(µ0, µ1)
2 = θHKθα,θβ(µ0, µ1)

2.

Moreover, if λ > 0 and we consider the spatial dilation H : x 7→ λx in Rd, we find

HKα,β(µ0, µ1)
2 = HKα/λ2,β(H♯µ0, H♯µ1)

2.

Choosing λ :=
√

4α/β, θ = 4/β, and setting HK := HK1,4 we get

HKα,β(µ0, µ1)
2 =

4

β
HK4α/β,4(µ0, µ1)

2 =
4

β
HK(H♯µ0, H♯µ1)

2.

Therefore, in order to keep simpler notation, in the remaining paper we will mainly consider the case
α = 1 and β = 4.

2.1.2 Cone space formulation

There is a second characterization that connects HK with the classic Kantorovich–Wasserstein distance
on the extended cone C := (Rd × [0,∞[)/∼, where ∼ is the equivalence relation which identifies
all the points (x, 0) with the vertex o of C. More precisely, we write (x0, r0) ∼ (x1, r1) if and only if
x0 = x1 and r0 = r1 or r0 = r1 = 0 and introduce the notation [x, r] to denote the equivalence class
associated with (x, r) ∈ Rd × [0,∞[. The cone C is a complete metric space endowed with the cone
distances

da,C(z0, z1)
2 := r20 + r21 − 2r0r1 cosa(|x1−x0|), zi = [xi, ri], a ∈ (0, π], (2.5)

see e.g. [BBI01, Sect. 3.6.2], where we use the abbreviation cosa(r) := cos
(
min{a, r}

)
. Notice that

the projection map (x, r) 7→ [x, r] is bijective from Rd × (0,∞) to C∗ := C \ {o}; we will denote by
(x, r) its inverse, which we extend to o by setting x(o) = 0, r(o) = 0.

The most natural choice of the parameter a in (2.5) is a := π: in this case the cone (C, dπ,C) is a
geodesic space, i.e., given zi = [xi, ri], i = 0, 1, there exists a curve zt = [xt, rt] = geot

(
z0, z1

)
,

t ∈ [0, 1], connecting z0 to z1 and satisfying

∀ 0 ≤ s, t ≤ 1 : dπ,C(zs, zt) = |t−s| dπ,C(z0, z1). (2.6)
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If one of the two points coincides with o, e.g. for z0 = o, it is immediate to check that zt = [x1, tr1]. If
r0, r1 > 0 and |x1−x0| < π/2 then the unique geodesic curve reads (recall the convention in (1.6))

rt := r0

(
(1+tu)2 + t2|v|2

)1/2
, xt := x0 + arctan

( tv

1+tu

)
,

where u =
r1
r0

cos(|x1−x0|)− 1 and v :=
r1
r0

sin(x1−x0).
(2.7)

For example, if we operate the same construction starting from the one-dimensional setΩ = [0, L] ⊂ R
with 0 < L ≤ π we can isometrically identify the cone space over Ω with the two-dimensional sector
ΣΩ =

{
y = (r cosx, r sinx) ∈ R2

∣∣ r ≥ 0, x ∈ [0, L]
}

endowed with the Euclidean distance.
For L ∈ ]π, 2π[ the identification with the sector still holds, but the sector ΣΩ is no more convex and for
x0, x1 ∈ Ω with |x0−x1| ≥ π the cone distance corresponds to the geodesic distance on the sector
ΣΩ, i.e. the length of the shortest path in ΣΩ connecting two points.

On the one hand, we can define a homogeneous projection h : M2(C) → M(Rd), via

hλ := x♯(r
2λ) =

∫ ∞

r=0

r2 λ(·, dr), (2.8)

i.e. for every λ ∈ M2(C) and ζ ∈ Cb(Rd) we have∫
Rd

ζ(x)d(hλ) =

∫
C

r2ζ(x)dλ(x, r).

On the other hand, measures in M(Rd) can be “lifted” to measures in M2(C), e.g. by considering the
measure µ⊗ δ1 for µ ∈ M(Rd). More generally, for every Borel map r : Rd → ]0,∞[ and constant
m0 ≥ 0, the measure λ = m0δo + µ⊗ 1

r(·)2 δr(·) gives hλ = µ.

Now, the cone space formulation of the Hellinger–Kantorovich distance between two measures µ0,
µ1 ∈ M(Rd) is given as follows, see [LMS16, Sec. 3].

Theorem 2.2 (Optimal transport formulation on the cone) For µ0, µ1 ∈ M(Rd) we have

HK(µ0, µ1)
2 = min

{
Wπ,C(λ0, λ1)

2
∣∣∣λi ∈ P2(C), hλi = µi

}
(2.9a)

= min
{∫∫

C×C

dπ,C(z0, z1)
2dλ(z0, z1)

∣∣∣ hiλ = µi

}
, (2.9b)

where h is defined in (2.8) and hiλ := h(πi
♯λ) for λ ∈ M2(C×C) and i = 0, 1.

The cone space formulation is reminiscent of classical optimal transport problems. Here, however, the
marginals λi of the transport plan λ ∈ M(C× C) are not fixed, and it is part of the problem to find
an optimal pair of measures λi satisfying the constraints hλi = µi and having minimal Kantorovich–
Wasserstein distance on the cone space.

Remark 2.3 (Hellinger–Kantorovich space as cone) In [LaM19] it is shown that the space (M(Rd);HK)
can be understood as a cone space over the geodesic space (P(Rd), SHK) where the spherical
Hellinger–Kantorovich distance in P(Rd) reads SHK(ν0, ν1) := arccos

(
1− 1

2
HK(ν0, ν1)

2
)
. It would

be interesting to analyze geodesic convexity properties of functionals E as in (1.20) on this space; see
[LaM22] for a first result.
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The cone space formulation in (2.9) reveals many interesting geometric properties of the Hellinger–
Kantorovich distance, e.g. Hellinger–Kantorovich geodesics are directly connected to geodesic curves
in the cone space C, see below. Moreover, it can be deduced that a sharp threshold exists, which
distinguishes between transport of mass and pure growth (i.e. creation or destruction) of mass.

Remark 2.4 The link between the dynamical formulation in (2.3) and the cone-space formulation in
(2.9) of the Hellinger–Kantorovich distance can be best seen from a Lagrangian point of view. Let
Lagα,β(X, r;V, ϱ) =

r2

α
|V |2 + 4

β
ϱ2 denote the rescaled Lagrangian in the definition of the dynamical

functional (2.3) corresponding to a curve of the form µt := r2(t)δX(t) and consider for fixed r0, r1 > 0
and x0, x1 ∈ Rd the minimization problem

Mα,β(x0, r0;x1, r1) := min
{∫ 1

0

Lagα,β
(
X(s), r(s); Ẋ(s), ṙ(s)

)
ds
∣∣∣

(X, r) ∈ C1
(
[0, 1];Rd×R+

)
, X(i) = xi, r(i) = ri,

}
.

It is not hard to check [LMS16, Sec. 3.1] that we obtain for (α, β) = (1, 4) the explicit formula

HK(µ0, µ1)
2 =M1,4(x0, r0;x1, r1) = dπ,C([x0, r0], [x1, r1])

2,

which is the Hellinger–Kantorovich distance of the two Dirac measures µ0 = r20δx0 and µ1 = r21δx1 in
the case that |x0−x1| < π/2.

When |x0−x1| ≥ π/2, one can always connect µ0 to µ1 by the curve µt :=
(
(1−t)r0

)2
δx0 + t

2r21δx1

(whose support is no longer concentrated on a single point) obtaining

HK(µ0, µ1)
2 = 2 = dπ/2,C([x0, r0], [x1, r1])

2,

and showing the role of the threshold π/2 instead of π in the computation of HK.

The explicit computation of the previous remark is in fact a particular case of a general result [LMS18,
Lem. 7.9+7.19].

Theorem 2.5 (Effective π/2-threshold in the cone distance) Let µ0, µ1 ∈ M(Rd), ifλ ∈ M2(C×C)
is an optimal plan for the cone-space formulation (2.9) then λ (C×C) \ {(o, o)} is still optimal and

λ
({

([x0, r0], [x1, r1]) ∈ C×C
∣∣∣ r0r1 > 0 and |x0−x1| >

π

2

})
= 0, (2.10)

so that

HK(µ0, µ1)
2 = min

{
Wπ/2,C(λ0, λ1)

2
∣∣∣λi ∈ P2(C), hλi = µi

}
(2.11a)

= min
{∫∫

C×C

dπ/2,C(z0, z1)
2dλ(z0, z1)

∣∣∣ hiλ = µi

}
. (2.11b)

Moreover, setting for i = 0, 1

Si := supp(µi), S
π/2
i :=

{
x ∈ Rd

∣∣ dist(x, Si) < π/2
}
,

S ′
i := Si ∩ Sπ/2

1−i , and S ′′
i := Si \ Sπ/2

1−i ,
(2.12)
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suppµ′
1 suppµ′′

1

suppµ′
0su

pp
µ
′′ 0π/2

π/2

S
π/2
0

S
π/2
1

Figure 2.1: The decomposition of the closed supports Si = suppµi of the measures µi = µ′
i + µ′′

i

as given in (2.13) with cut-off at π/2. The open sets Sπ/2
0 and Sπ/2

1 denote the π/2-neighborhoods

of the supports S1 and S0, respectively, and µ′
i = µi (S

π/2
1−i ∩ Si), µ′′

i = µi (Si \ Sπ/2
1−i) are the

corresponding restrictions of the measures µi.

(see Figure 2.1) with the related decomposition

µi := µ′
i + µ′′

i , µ′
i := µi S ′

i = µi S
π/2
1−i , and µ′′

i := µi S ′′
i , (2.13)

then we have that

HK(µ0, µ1)
2 = HK(µ′

0, µ
′
1)

2 + HK(µ′′
0, µ

′′
1)

2, (2.14a)

HK(µ′′
0, µ

′′
1)

2 = µ′′
0(Rd) + µ′′

1(Rd) = µ0(Rd \ S ′
0) + µ1(Rd \ S ′

1). (2.14b)

Note that (2.14a) shows that the decomposition in (2.13) is extremal with respect to the subadditivity
property in Lemma 7.8 of [LMS18], and (2.14b) shows that the computation of HK2 between µ′′

0 and
µ′′
1 is trivial, so that no information is lost if one restricts the evaluation of HK2 to µ′

0 = µ0 S ′
0 and

µ′
1 = µ1 S ′

1. Motivated by the above properties, we introduce the following definition of reduced pairs,
which will play a crucial role in our analysis of geodesic curves.

Definition 2.6 (Reduced pairs) A pair (µ0, µ1) ∈ M(Rd)2 is called reduced (resp. strongly reduced)

if µi(S
′′
i ) = 0, i.e.µi = µ′

i for i = 0 and 1 (resp. if Si ⊂ S
π/2
1−i ).

By definition the sets Si = supp(µi) are closed and Sπ/2
i are open, so that S ′′

i = Si \ Sπ/2
1−i is closed

as well, but S ′
i = Si ∩Sπ/2

1−i may be neither closed nor open. In the strongly reduced case the condition

Si ⊂ S
π/2
1−i means that, at least locally, the closed set Si has a positive distance to the boundary of the

open set Sπ/2
1−i .

Notice that for every (µ0, µ1) ∈ M(Rd)2 the corresponding pair (µ′
0, µ

′
1) defined according to (2.12)–

(2.13) is reduced by construction. In fact, if x ∈ S ′
0 then there exists y ∈ supp(µ1) with |x−y| < π/2:

clearly y ∈ S ′
1 so that dist(x, supp(µ′

1)) ≤ dist(x, S ′
1) < π/2.

2.1.3 Transport-growth maps

It is useful to express (2.11b) in an equivalent way, which extends the notion of transport maps to the
unbalanced case. It relies on special families of plans in λ ∈ M2(C

2) with hiλ = µi generated by
transport-growth systems.
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Fine properties of geodesics and geodesic λ-convexity for the Hellinger–Kantorovich distance 15

Definition 2.7 (Transport-growth maps) Let ν ∈ M(Y ), where Y is some Polish space. A transport-
growth map is a ν-measurable map (T , q) : Y → X × [0,∞) with q ∈ L2(Y, ν). It acts on ν
according to this rule:

(T , q)⋆ν := T♯(q
2ν) = h((T , q)♯ν), (2.15)

where the last identity involves the obvious generalization of the definition (2.8) of homogeneous
projection h from M2(X × [0,∞)) to M(X).

We notice that transport-growth maps obey the composition rule

(T2, q2)⋆(T1, q1)⋆ν = (T , q)⋆ν where T := T2 ◦ T1, q := (q2 ◦ T1)q1. (2.16)

Transport-growth maps provide useful upper bounds for the HK metric, playing a similar role of transport
maps for the Kantorovich–Wasserstein distance. In fact, for every choice of maps (Ti, qi) : Y →
Rd × [0,∞), i = 0, 1, associated with the measure ν ∈ M(Y ), we have

HK2(µ0, µ1) ≤
∫
Y

(
q20 + q21 − 2q0q1 cosπ/2(|T0−T1|)

)
dν µi := (Ti, qi)⋆ν. (2.17)

In order to show (2.17) it is sufficient to check that the measure λ ∈ M2(C
2) defined by

λ := (T0, q0;T1, q1)♯ν, satisfies hiλ = µi

so that (2.17) follows from (2.11b) and the identity∫
C2

dπ/2,C(z0, z1)
2dλ =

∫
Y

(
q20 + q21 − 2q0q1 cosπ/2(|T0−T1|)

)
dν. (2.18)

On the other hand, choosing Y = C×C and an optimal plan ν = λ ∈ M2(C×C) for (2.11b)

and setting Ti([x0, r0], [x1, r1]) := xi and qi([x0, r0], [x1, r1]) = ri, we immediately find

HK2(µ0, µ1) =

∫
C×C

(
q20 + q21 − 2q0q1 cosπ/2(|T0−T1|)

)
dλ, µi := (Ti, qi)⋆λ, (2.19)

and therefore equality holds in (2.17).

Corollary 2.8 (HK via transport-growth maps) For every µ0, µ1 ∈ M(Rd) we have

HK2(µ0, µ1) = min
{∫

C×C

(
q20 + q21 − 2q0q1 cosπ/2(|T0−T1|)

)
dλ
∣∣∣λ ∈ M(Y ),

Y Polish, (Ti, qi) : Y → Rd×[0,+∞), µi := (Ti, qi)⋆λ
}
;

(2.20)

moreover, it is not restrictive to choose Y = C×C in (2.20).

Inspired by the so-called Monge formulation of Optimal Transport, it is natural to look for similar
improvement of (2.20), when Y = Rd, ν = µ0, T0(x0) = x0 is the identity map, and q(x0) ≡ 1.

Problem 2.9 (Monge formulation of HK problem) Given µ0, µ1 ∈ M(Rd) such that µ1 = µ′
1, µ′′

1 =
0 (recall (2.12) and (2.13)), find an optimal transport-growth pair (T , q) : Rd → Rd × [0,∞)
minimizing the cost

C(T , q;µ0) :=

∫
Rd

(
1 + q2(x)− 2q(x) cosπ/2(|T (x)−x|)

)
dµ0(x) (2.21)

among all the transport-growth maps satisfying (T , q)⋆µ0 = µ1
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By (2.17) we have the bound

HK(µ0, µ1)
2 ≤ inf

{
C(T , q;µ0)

∣∣∣(T , q)⋆µ0 = µ1

}
. (2.22)

When µ0 ≪ Ld and the support of µ1 is contained in the closed neighborhood of radius π/2 of
the support of µ0, the results of the next section (cf. Corollary 3.5), which are a consequence of the
optimality conditions in Theorem 2.14, show that the minimum of Problem 2.9 is attained and realizes
the equality in (2.22).

2.1.4 Entropy-transport problem

A third point of view, typical of optimal transport problems, characterizes the Hellinger–Kantorovich
distance via the static Logarithmic Entropy Transport (LET) variational formulation.

We define the logarithmic entropy density F : [0,∞[ → [0,∞[ via

F (s) := s log s− s+ 1 for s > 0 and F (0) := 1,

and the cost function L1 : Rd → [0,∞] via

L1(x) :=
1

2
ℓ(|x|), ℓ(r) :=

{
− log(cos2(r)) = log

(
1+ tan2(r)

)
for r < π/2,

+∞ otherwise.
(2.23)

For given µ0, µ1 ∈ M(Rd) the entropy-transport functional ET( · ;µ0, µ1) : M(Rd×Rd) → [0,∞]
reads

ET(η;µ0, µ1) :=

∫
Rd

F (σ0)dµ0 +

∫
Rd

F (σ1)dµ1 +

∫∫
Rd×Rd

2L1(x0−x1)dη (2.24)

with (πi)♯η = σiµi ≪ µi. As usual, we set ET(η;µ0, µ1) := +∞ if one of the marginals (πi)♯η of
η is not absolutely continuous with respect to µi. With this definition, the equivalent formulation of the
Hellinger–Kantorovich distance as entropy-transport problem reads as follows.

Theorem 2.10 (LET formulation) For every µ0, µ1 ∈ M(Rd) we have

HK(µ0, µ1)
2 = min

{
ET(η;µ0, µ1)

∣∣η ∈ M(Rd × Rd)
}
. (2.25)

Moreover, recalling the decomposition (2.12)–(2.13),

(1) the pairs (µ0, µ1) and (µ′
0, µ

′
1) share the same optimal plans η

(2) if we set g0(x0) := ([x0, 1], o) and g1(x1) := (o, [x1, 1]), every optimal plan η ∈ M(Rd×Rd)
for the entropy-transport formulation in (2.25) induces optimal plans β (resp. β′) in M(C×C) for
the pair (µ0, µ1) (resp. the reduced pair (µ′

0, µ
′
1)) via

β′ := (x0, σ
−1/2
0 ;x1, σ

−1/2
1 )♯η, β := β′ + (g0)♯ µ

′′
0 + (g1)♯ µ

′′
1. (2.26)

An optimal transport plan η, which always exists, gives the effective transport of mass. Note, in particular,
that the finiteness of ET only requires (πi)♯η = ηi ≪ µi (which is considerably weaker than the usual
transport constraint (πi)♯η = µi) and the cost of a deviation of ηi from µi is given by the entropy
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Fine properties of geodesics and geodesic λ-convexity for the Hellinger–Kantorovich distance 17

functionals associated with F . Moreover, the cost function ℓ is finite in the case |x0−x1| < π/2, which
highlights the sharp threshold between transport and pure creation/destruction. Notice that we could
equivalently use the truncated function cos2π/2(r) = cos2(min{r, π/2}) instead of cos2(r) in (2.23).

As we have already seen, the function r 7→ cos2π/2(r) plays an important role in many formulae.

In general, optimal entropy-transport plans η ∈ M(Rd×Rd) are not unique. However, due to the strict
convexity of F , their marginals ηi are unique so that the non-uniqueness of the plan η is solely a
property of the optimal transport problem associated with the cost function (x0, x1) 7→ 2L1(x1−x0) =
ℓ
(
|x1−x0|

)
.

Remark 2.11 Besides (2.26), the connection between the cone-space formation and the logarithmic
entropy-transport problem is given by the homogeneous marginal perspective function, namely

dπ/2,C([x0, r0], [x1, r1])
2 = inf

{
r20F (

θ
r20
) + r21F

(
θ
r21

)
+ 2θL1(x0−x1)

∣∣ θ > 0
}
,

where r2i plays the role of the reverse densities 1/σi and θ is a scaling parameter, see [LMS18, Sec. 5].

We highlight that the logarithmic entropy-transport formulation (2.25) can be easily generalized by
considering convex and lower semi-continuous functions F0 and F1 and cost functions ℓ, see [LMS18,
Part I].

Applying the previous Theorem 2.10 we can refine formula (2.18) by providing an optimal pair of
transport-growth maps solving (2.20) in the restricted set Y = S0 × S1 ⊂ Rd×Rd. Indeed, we can
choose arbitrary points x̄i ∈ Si and

ν := η + µ′′
0⊗δx̄1 + δx̄0⊗µ′′

1,

Ti(x0, x1) := xi, qi(x0, x1) :=

{
σ
−1/2
i (xi) if (x0, x1) ∈ S ′

0×S ′
1,

1 if (x0, x1) ∈ (S0×S1) \ (S ′
0×S ′

1)

(2.27)

which satisfies

(Ti, qi)⋆ν = µi, HK2(µ0, µ1) =

∫
Y

(
q20 + q21 − 2q0q1 cosπ/2(|T0−T1|)

)
dν. (2.28)

2.1.5 Dual formulation with Hellinger–Kantorovich potentials

In analogy to the Kantorovich–Wasserstein distance, we can give a dual formulation in terms of
Hellinger–Kantorovich potentials. We slightly modify the notation of [LMS18], in order to be more
consistent with the approach by the Hamilton–Jacobi equations (and the related Hopf–Lax solutions) of
Section 4 and to deal with rescaled distances. As we will study segments of constant-speed geodesics
t → µt of length τ = t−s for 0 ≤ s < t ≤ 1, it will be convenient to introduce a scaling parameter
τ > 0 that in certain parts will be replaced by 1, namely if we consider a whole geodesic. With this
parameter, we set

Fτ (s) :=
1

2τ
F (s), Lτ (x) =

1

2τ
ℓ(|x|), ETτ (η;µ0, µ1) =

1

2τ
ET(η;µ0, µ1) (2.29)

and the corresponding

1

2τ
HK2(µ0, µ1) = min

{
ETτ (η;µ0, µ1)

∣∣η ∈ M(Rd×Rd)
}
. (2.30)
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It is clear that minimizers η of (2.30) are independent of the coefficient 1
2τ

in front of HK and coincide
with solutions to (2.25) if µτ = µ1. The role of τ just affects the rescaling of the potentials φ and ξ we
will introduce below.

We also introduce the Legendre transform of Fτ

Ǧτ (φ) := F ∗
τ (φ) = sup

s>0
φs− Fτ (s) =

e2τφ − 1

2τ
, Gτ (φ) :=

1− e−2τφ

2τ
= −Ǧτ (−φ), (2.31)

extended to [−∞,+∞] by

Gτ (+∞) = −Ǧτ (−∞) =
1

2τ
, Gτ (−∞) = −Ǧτ (+∞) = +∞, (2.32)

and their inverses

Ǧ−1
τ (ξ) :=

1

2τ
log(1+2τξ), G−1

τ (ξ) := − 1

2τ
log(1−2τξ) = −Ǧ−1

τ (−ξ), (2.33)

defined for ξ ∈ [− 1
2τ
,+∞] and ξ ∈ [−∞, 1

2τ
] respectively, with the obvious convention induced by

(2.32). With Theorem 6.3 in [LMS18] (see also Section 4 therein), we have the equivalent characteriza-
tion of HK via the dual formulation

1

2τ
HK(µ0, µ1)

2 = sup
{∫

Rd

Gτ (φ1)dµ1 −
∫
Rd

Ǧτ (φ0)dµ0

∣∣∣
φ0, φ1 ∈ Cb(Rd), φ1(x1)−φ0(x0) ≤ Lτ (x1−x0)

}
(2.34a)

= sup
{∫

Rd

ξ1dµ1 −
∫
Rd

ξ0dµ0

∣∣∣ ξi ∈ Cb(Rd), sup
Rd

ξ1 <
1

2τ
, inf

Rd
ξ0 > − 1

2τ(
1−2τξ1(x1)

)(
1+2τξ0(x0)

)
≥ cos2π/2(|x0−x1|)

}
. (2.34b)

Note that the formulations in (2.34a) and (2.34b) are connected by the transformation ξ1 = Gτ (φ1), ξ0 =
Ǧτ (φ0) and the last condition in (2.34b) is equivalent to

G−1
τ

(
ξ1(x1)

)
−Ǧ−1

τ

(
ξ0(x0)

)
≤ Lτ (x1−x0). (2.35)

It is not difficult to check that one can also consider Borel functions in (2.34a) and (2.34b), e.g. for all
Borel functions φi : Rd → [−∞,+∞] with∫

Rd

e−2τφ1 dµ1 <∞,

∫
Rd

e2τφ0 dµ0 <∞,

φ1(x1) ≤ Lτ (x1−x0) + φ0(x0) for all x0, x1 ∈ Rd with |x0−x1| < π/2,

(2.36)

we have
1

2τ
HK(µ0, µ1)

2 ≥
∫
Rd

Gτ (φ1)dµ1 −
∫
Rd

Ǧτ (φ0)dµ0. (2.37)

If we allow extended valued Borel functions, the supremum in (2.34a) and (2.34b) are attained.

Theorem 2.12 (Existence of optimal dual pairs) For all µ0, µ1 ∈ M(Rd) and τ > 0 there exists an
optimal pair of Borel potentials φ0, φ1 : Rd → [−∞,+∞] which is admissible according to (2.36)
and realizes equality in (2.37), namely

1

2τ
HK(µ0, µ1)

2 =

∫
Rd

Gτ (φ1)dµ1 −
∫
Rd

Ǧτ (φ0)dµ0. (2.38)
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The transformations ξ0 := Ǧτ (φ0) : Rd → [−1/(2τ),+∞], and ξ1 := Gτ (φ1) : Rd →
[−∞, 1/(2τ)], give an optimal pair for (2.34b) (dropping ξi ∈ Cb(Rd)) satisfying∫

Rd

|ξi|dµi <∞, i = 0, 1, (2.39)

(1−2τξ1(x1))(1+2τξ0(x0)) ≥ cos2π/2(|x0−x1|) if ξ0(x0) <∞, ξ1(x1) > −∞, (2.40)

1

2τ
HK(µ0, µ1)

2 =

∫
Rd

ξ1dµ1 −
∫
Rd

ξ0 dµ0. (2.41)

Remark 2.13 Denoting by Si := supp(µi) the support of µi for i = 0 and 1, we remark that it is
always sufficient to find Borel potentials φi : Si → [−∞,+∞] satisfying (2.36) on S0×S1 instead of
Rd×Rd. By setting φ̃1 := −∞ in Rd \ S1 and φ̃0 := +∞ in Rd \ S0 we obtain a pair still satisfying
(2.36) and (2.38). This freedom will be useful in Theorem 2.14 below.

Moreover, notice that (2.34b) can be rewritten as

1

2τ
HK(µ0, µ1)

2 = sup

{∫
Rd

Pτξ0dµ1 −
∫
Rd

ξ0dµ0

∣∣∣ ξ0 ∈ Cb(Rd), ξ0 > − 1

2τ

}
,

where Pτ ξ is defined in (1.13). In particular, the operator Pτ is directly connected to the dynamical
formulation in (2.3), and we will thoroughly study its properties in Section 4.

2.2 First order optimality for HK

From the above discussion, we have already seen that there is never any transport over distances
larger than π/2. This transport bound will also be seen in the following optimality conditions for the
marginal densities σi defined in (2.24).

Theorem 2.14 (Optimality conditions [LMS18, Thm. 6.3]) Let µ0, µ1 ∈ M(Rd) and letSi, S
′
i, S

′′
i , µ

′
i

be defined as in (2.12)–(2.13). The following holds:

(1) A plan η ∈ M(Rd × Rd) is optimal for the logarithmic entropy-transport problem in (2.30) if and
only if

-
∫∫

ℓdη <∞
- its marginals ηi are absolutely continuous with respect to µ′

i (equivalently, ηi are absolutely
continuous with respect to µi and ηi(S ′′

i ) = 0),

- there exist Borel densities σi : Rd → [0,∞] such that ηi = σiµ
′
i and

σi = 0 on S ′′
i , (2.42a)

0 < σi <∞ on S ′
i, (2.42b)

σi = +∞ on Rd \ Si, (2.42c)

σ0(x0)σ1(x1) ≥ cos2π/2(|x0−x1|) on S0 × S1, (2.42d)

σ0(x0)σ1(x1) = cos2π/2(|x0−x1|) η-a.e. on S0 × S1. (2.42e)

In particular, the marginals ηi are unique and the densities σi are unique µ′
i-a.e.
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(2) If η is optimal and Si, S
′
i, S

′′
i and σi are defined as above, the pairs of potentials defined by

φ1 :=


− 1

2τ
log σ1 in S ′

1,

+∞ in S ′′
1 ,

−∞ in Rd \ S1;

φ0 :=


1
2τ

log σ0 in S ′
0,

−∞ in S ′′
0 ,

+∞ in Rd \ S0;

(2.43)

ξ1 :=


1−σ1

2τ
in S ′

1,
1
2τ

in S ′′
1 ,

−∞ in Rd \ S1;

ξ0 :=


σ0−1
2τ

in S ′
0,

− 1
2τ

in S ′′
0 ,

+∞ in Rd \ S0;

(2.44)

are optimal in the respective dual relaxed characterizations of Theorem 2.12 and satisfy η-a.e. in
Rd × Rd

φi(xi) ∈ R, φ1(x1)− φ0(x0) = Lτ (x1−x0), (2.45a)

−ξ0(x0), ξ1(x1) ∈
( 1

2τ
,∞
)
, (1+2τξ0(x0))(1−2τξ1(x1)) = cos2π/2(|x0−x1|). (2.45b)

(3) Conversely, if η is optimal and (φ0, φ1) (resp. (ξ0, ξ1)) is an optimal pair according to Theorem 2.12,
then (2.45a) (resp. (2.45b)) holds η-a.e. and

σ1 = e−2τφ1 = 1−2τξ1 µ1-a.e. in S ′
1, φ1 = +∞, ξ1 =

1

2τ
µ1-a.e. in S ′′

1 ,

σ0 = e2τφ0 = 1+2τξ0 µ0-a.e. in S ′
0, φ0 = −∞, ξ0 = − 1

2τ
µ0-a.e. in S ′′

0 .
(2.46)

3 Regularity of static HK potentials φ0 and φ1

In this section, we will carefully study the regularity of a pair (φ0, φ1) of optimal HK potentials arising
in (2.43) of Theorem 2.14. We will improve the previous approximate differentiability result of [LMS18,
Thm. 6.6(iii)] (see also [AGS08, Thm. 6.2.7]) by adapting the argument of [FiG11] and extending the
classical result of [GaM96] to the HK setting. In fact, this section is largely independent of the specific
HK setting but relies purely on the theory of L-transforms. As we are interested in the special case of
continuous, extended values cost functions L = Lτ = 1

τ
L1 : Rd → [0,+∞] which attain the value

+∞ outside a ball, we cannot rely on existing results and have to provide a careful analysis of this case
(but see also [GaO07, McP09, JiS12, BeP13, BPP18] for different situations of discontinuous costs
taking the value +∞).

We will use the notion of locally semi-concave and semi-convex functions; recall that a function
φ : U → R defined in some open set U of Rd is locally semi-concave if for every point x̄ ∈ U there
exists ρ > 0 and a constant C > 0 with

x 7→ φ(x)− C

2
|x|2 is concave in Bρ(x̄). (3.1)

A function φ is locally semi-convex if −φ is locally semi-concave. Let us recall that locally semi-concave
functions are locally Lipschitz and thus differentiable almost everywhere. We will denote by dom(∇φ)
the domain of their differential. By Alexandrov’s Theorem (see [AGS08, Thm. 5.5.4]), there exists for
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almost every x ∈ dom(∇φ) a symmetric matrix A =: D2φ(x) such that

lim
y→x

φ(y)− φ(x)− ⟨∇φ(x), y−x⟩ − 1
2
⟨A(y−x), y−x⟩

|y−x|2
= 0, (3.2a)

and lim
y→x

y∈dom(∇φ)

∇φ(y)−∇φ(x)− A(y−x)
|y−x|

= 0. (3.2b)

We will denote by dom(D2φ) the subset of density points in dom(∇φ) where (3.2a) and (3.2b) hold.

As the optimality of potential pairs (φ0, φ1) is closely related to the theory of L-transforms, we give the
basic definitions first and then derive the associated regularity properties under additional smoothness
assumptions.

For simplicity, we restrict the analysis of the remaining text to continuous functions L : Rd → [0,∞]
satisfying dom(L) =

{
z ∈ Rd

∣∣ L(z) ∈ R
}

= BR(0) for some R > 0, i.e. L(z) < ∞ for
|z| < R and L(z) = +∞ for |z| ≥ R. By continuity of L this behavior implies L(zk) → +∞ if
lim infk→∞ |zk| ≥ R.

We define the forward L-transform φL→
0 of a l.s.c. function φ0 and the backward L-transform φ�L

1 of
an u.s.c. function φ1 via

φL→
0 (x1) := inf

x0∈BR(x1)
φ0(x0) + L(x1−x0) and

φ�L
1 (x0) := sup

x1∈BR(x0)

φ1(x1)− L(x1−x0),
(3.3)

where the restriction of the infimum and supremum in (3.3) to the balls BR(xi), corresponding to the
shifted proper domain of L, is important to avoid the expression “∞−∞”. It will turn out that φL→

0 is
u.s.c. and φ�L

1 is l.s.c. Of course, these transformations are related by

φL→
0 (x) = −(−φ0)

�L(x), (3.4)

and for arbitrary functions ψi : Rd → [−∞,+∞] we have the general relations

ψL→
0 =

((
ψL→
0

)�L
)L→

and ψ�L
1 =

((
ψ�L
1

)L→)�L
, (3.5)

see [Vil09, Ch. 5]. For later usage, we consider the following elementary example.

Example 3.1 (Forward and backward L-transform) We consider the potentials

φ0(x0) =

{
a0 for x0 = y0,

+∞ otherwise,
and φ1(x1) =

{
a1 for x1 = y1,

−∞ otherwise,

where −∞ ≤ a0 < +∞, −∞ < a1 ≤ +∞ and y0, y1 ∈ Rd are fixed. For a0, a1 ∈ R we find the
transforms

φL→
0 (x1) =

{
a0+L(x1−y0) for x1 ∈ BR(y0),

+∞ otherwise,

φ�L
1 (x0) =

{
a1−L(y1−x0) for x0 ∈ BR(y1),

−∞ otherwise.
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S

RR
R

Figure 3.1: Visualization of bdryR(S) (thick)
as subset of the boundary ∂S of the set S
(light red).

For a0 = −∞ and a1 = +∞, we obtain the transforms

φL→
0 (x1) =

{
−∞ for x1 ∈ BR(y0),

+∞ otherwise,
and φ�L

1 (x0) =

{
+∞ for x0 ∈ BR(y1),

−∞ otherwise,

As BR(yi) is open, we see that φL→
0 is u.s.c. and φ�L

1 is l.s.c. Moreover, observe that
(
φL→
0

)�L
= φ0

and
(
φ�L
1

)L→
= φ1, so that (3.5) is true for ψ0 ∈

{
φ0, φ

�L
1

}
and ψ1 ∈

{
φ1, φ

L→
0

}
, respectively.

For R > 0 and sets S ⊂ Rd, we introduce the notation

SR :=
{
x ∈ Rd

∣∣ dist(x, S) < R
}
,

extR(S) :=
⋃

x: dist(x,S)>R

BR(x), bdryR(S) := ∂S ∩ ∂
(
extR(S)

)
. (3.6)

In particular, extR(S) is the open subset of Rd \ S obtained by taking the union of all the open
balls of radius R that do not intersect S. If S is closed and satisfies an exterior sphere condition of
radius R at every point of its boundary (e.g. if S is convex) then extR(S) coincides with Rd \ S and
bdryR(S) = ∂S.

In general, bdryR(S) is a subset of the boundary of S, precisely made by all points of ∂S satisfying
an exterior sphere condition of radius R with respect to S:

x ∈ bdryR(S) ⇐⇒ x ∈ ∂S and ∃ y ∈ Rd : |x−y| = R, BR(y) ∩ S = ∅. (3.7)

In fact, if x ∈ bdryR(S) then there exist sequences xn, yn such that xn → x, |xn−yn| < R and
BR(yn) ∩ S = ∅. Possibly extracting a subsequence, we can assume that yn → y, BR(y) ∩ S = ∅,
and |x−y| ≤ R. Since x ∈ ∂S, it is not possible that |x−y| < R, so that the left-to-right implication of
(3.7) holds. On the other hand, if x ∈ ∂S, |x−y| = R, and BR(y) ∩ S = ∅, it is immediate to check
that x ∈ ∂(extR(S)), see also Figure 3.

In Theorem 3.3(2) we will use that for arbitrary sets S the boundary part bdryR(S) is countably
(d−1)-rectifiable, see [Vil09, Th. 10.48(ii)], and hence has Ld measure 0.

The following result shows how the properties of L provide regularity of the backward transform φ�L.
Of course, an analogous statement holds for the forward transform using (3.4). The important fact is
that the upper bounds on the second derivatives of L generate semi-convexity of φ0 (i.e. lower bounds
on D2φ0), see Assertions 5 and 6. As D2L(z) blows up at the boundary of BR(0), it is essential to
use the fact that L(zk) → +∞ for |zk| ↑ R.

Theorem 3.2 (Regularity of the L-transform) Let L : Rd → [0,+∞] satisfy

L : Rd → [0,+∞] is continuous and L(0) = 0, (3.8a)

L
∣∣
BR(0)

∈ C2(BR(0)) and L(z) = +∞ if |z| ≥ R, (3.8b)

L is uniformly convex, i.e. ∃λ∗ > 0 ∀ z ∈ BR(0) : D2L(z) ≥ λ∗I. (3.8c)
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For an u.s.c. function φ1 : Rd → [−∞,+∞], we consider the backward L-transform φ0 = φ�L
1 and

set
O0 = {φ0 > −∞}, Q0 = {φ0 < +∞},
O1 = {φ1 < +∞}, Q1 = {φ1 > −∞}, and Ω0 = O0 ∩ int(Q0).

(3.9)

Then, the following assertions hold:

(1) The function φ0 is l.s.c. and satisfies

inf φ0 ≥ inf φ1 and supφ0 ≤ supφ1, (3.10)

(Q1)
R ⊂ O0 and

(
φ0(x0) = −∞ ⇔ BR(x0) ⊂ extR(Q1) ⊂ {φ1 = −∞}

)
. (3.11)

The sets O0, O1, and Ω0 are open.

(2) The set Q0 satisfies an external sphere condition of radius R, namely

Rd \ cl(Q0) = extR(Q0) and ∂Q0 = bdryR(Q0), (3.12)

so that the topological boundary of Q0 is countably (d−1)-rectifiable.

(3) The “contact set” M :=M−∞ ∪M+∞ ∪Mfin ⊂ Rd × Rd defined via

Mfin :=
{
(x0, x1)

∣∣ φi(xi) ∈ R, φ1(x1) = L(x0−x1) + φ0(x0)
}
,

M−∞ :=
{
(x0, x1)

∣∣ φ0(x0) = −∞, |x1−x0| ≥ R
}
,

M+∞ :=
{
(x0, x1)

∣∣ φ1(x1) = +∞, |x1−x0| ≥ R
}
,

(3.13)

is closed.

(4) For every x̄0 ∈ Ω0, the section M0→1[x̄0] :=
{
x1
∣∣ (x̄0, x1) ∈ Mfin

}
of Mfin is nonempty,

compact, and included in Q1. Moreover, for every compact K ⊂ Ω0 there exists θ ∈ (0,R) and
a′, a′′ ∈ R such that

|x1−x̄0| ≤ θ and a′ ≤ φ1(x1) ≤ a′′ whenever x̄0 ∈ K and x1 ∈M0→1[x̄0]. (3.14)

(5) The restriction of φ0 to the open set Ω0 is locally semi-convex, and in particular locally Lipschitz
and thus continuous.

(6) If D′
0 := dom(∇φ0) ⊂ Ω0, D′′

0 = dom(D2φ0) ⊂ D′
0, then D′′

0 has full Lebesgue measure in
Ω0. For every x ∈ D′

0, the set M0→1[x] contains a unique point y = T0→1(x). The induced map
T0→1 : D

′
0 → Rd is differentiable according to (3.2b) in D′′

0 and satisfies the following properties:

(a) |x−T0→1(x)| < R and ∇φ0(x) = (∇L)
(
x−T0→1(x)

)
for all x ∈ D′

0, (3.15)

(b) D2φ0(x) ≥ −D2L
(
x−T0(x)

)
for all x ∈ D′′

0 , (3.16)

(c) DT0→1(x) is diagonalizable with nonnegative eigenvalues on D′′
0 . (3.17)

Proof. We divide the proof in various steps, corresponding to each assertion.

Assertion (1). To check that φ0 is l.s.c. we assume φ0(x0) > a for some a ∈ [−∞,+∞), then
there exists y ∈ BR(x0) such that φ1(y) − L(y−x0) > a. As L is continuous, we can find δ ∈
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(0,R − |y−x0|) such that φ1(y) − L(y−x) > a for every x ∈ Bδ(x0). By definition of φ0 this
estimate implies φ0(x) > a on Bδ(x0), and lower semi-continuity is shown.

The estimates in (3.10) are elementary following from L(0) = 0 and L(z) ≥ 0, respectively. The
relation in (3.11) follows from the fact that φ0(x0) = −∞ implies φ1(y) ≡ −∞ in BR(x0). The
openness of O0 and O1 follows because φ0 is l.s.c. and φ1 is u.s.c. This property in turn implies that
Ω0 = O0 ∩ int(Q0) is open.

Assertion (2). Recalling Q0 = {φ0 < +∞} it is sufficient to notice that

x̄ ∈ Rd \Q0 ⇔ φ0(x̄) = +∞ ⇒ ∃ ȳ : |x̄−ȳ| ≤ R and φ1(ȳ) = +∞, (3.18a)

where we used L ≥ 0 and the upper semicontinuity of φ1. However, using dom(L) = BR(0) we
obtain

φ1(ȳ) = +∞ ⇒ φ0(x) = +∞ for all x ∈ BR(ȳ). (3.18b)

This implication means that if x̄ ∈ Rd \ Q0 then x̄ ∈ cl(extR(Q0)), so that ∂Q0 = ∂(Rd \ Q0) =
∂ cl(extR(Q0)) = ∂ extR(Q0).

Assertion (3). The closedness of M±∞ follows easily by the semi-continuities of φi. For Mfin we
consider a sequence (x0,n, x1,n) ∈ Mfin to (x0, x1). If |x0−x1| < R, then we have φ1(x1) ≥
L(x1−x0) + φ0(x0) by the semi-continuities. As the opposite inequality is always satisfied, we
obtain the equality. We can also exclude that φ0(x0) = φ1(x1) = +∞ (resp.−∞), since otherwise
φ0(x) ≡ +∞ in BR(x1) by (3.18b) which contains a neighborhood of x0 (resp.φ1(x) ≡ −∞ in
BR(x0) by (3.11), which contains a neighborhood of x1), so that (x0, x1) ∈ Mfin. If |x1−x0| ≥ R
and (x0, x1) does not belong to M−∞ then we have lim infn→∞ φ0(x0,n) ≥ φ0(x0) > −∞ so that

φ1(x1) ≥ lim sup
n→∞

φ1(x1,n) = lim sup
n→∞

L(x1,n − x0,n) + φ1(x0,n) = +∞

and (x0, x1) ∈M+∞. Hence, M =Mfin ∪M+∞ ∪M−∞ is closed.

Assertion (4). Let us first show that φ0 is locally bounded from above in the interior of Q0, i.e. the
open set Q0 \ ∂Q0. In fact, if a sequence xn is converging to x̄ ∈ Q0 \ ∂Q0 with φ0(xn) ↑ +∞,
by arguing as before and using φ0(xn) = supy∈BR(xn) φ1(y)− L(y−xn), we find ȳ ∈ BR(x̄) with
φ1(ȳ) = +∞. Now (3.18b) gives φ0(x) = +∞ for all x ∈ BR(ȳ), which contradicts the fact that
φ0(x) < +∞ in a neighborhood of x̄, because of |x̄−ȳ| ≤ R.

We fix now a compact subset K of the open set Ω0, a point x̄ ∈ K , and consider the section M0→1[x̄]
of the contact set Mfin. Let η > 0 be sufficiently small so that Kη :=

{
x ∈ Rd

∣∣ dist(x,K) ≤
η
}
⊂ Ω0 and let a := supKη

φ0, where a < +∞ by the previous claim. By l.s.c. of φ0, we also have
a := infKη φ0 > −∞.

By the definition of φ0 = φ�L
1 , for every ε ∈ (0, 1] the sets

M ε(x̄) :=
{
y ∈ BR(x̄)

∣∣∣ φ1(y) ≥ L(y−x̄) + φ0(x̄)− ε
}
, (3.19)

are non-empty. We choose y ∈ M1(x̄) and set xϑ := ϑx̄ + (1−ϑ)y with ϑ = 1 − η/R, which
implies |xϑ−x̄| ≤ η, and hence xϑ ∈ Kη. Moreover, we have |xϑ−y| ≤ R − η. Therefore, for
y ∈M1(x̄) ⊂ BR(x̄) we find

φ1(y) ≤ L(y−xϑ) + φ0(xϑ) ≤ a′′ := a+ ℓ̂(R−η) <∞,

φ1(y) ≥ φ0(x̄) + L(y−x̄)− 1 ≥ a′ := a > −∞,
(3.20)
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where ℓ̂(ϱ) := supz∈Bϱ(0) L(z). Combining the last two estimates we additionally find

L(y−x̄) ≤ φ1(y)− φ0(x̄) ≤ a′′ − a =: ℓ̂(θ) with θ ∈ (0,R). (3.21)

Hence, all elements y ∈M1(x̄) satisfies |x̄−y| ≤ θ and (3.20).

We now consider a sequence yε ∈ M ε(x̄) ⊂ M1(x̄), then a standard compactness argument and
the upper semi-continuity of φ1 show that any limit point ȳ is an element of M0→1[x̄], which is therefore
not empty. The compactness of M0→1[x̄] and (3.14) again follow by (3.21)

Assertion (5). Let us now fix x̄0 ∈ Ω0 and δ > 0 such that K := Bδ(x̄0) ⊂ Ω0. The previous
assertion yields θ < R and a′, a′′ ∈ R such that |x′−x| ≤ θ and a′ ≤ φ1(x

′) ≤ a′′ whenever
x ∈ K and x′ ∈M0→1[x]. By possibly reducing δ, we can also assume that 3δ + θ < R. For every
x ∈ K , we now have by construction

φ0(x) = max
x′∈Bδ+θ(x̄0)

φ1(x
′)− L(x′−x) (3.22)

which is bounded and semi-convex in K because it is a supremum over a family of uniformly semi-
convex functions, where we use |x′−x| ≤ |x′−x̄0|+ |x̄0−x| ≤ 2δ+θ and that −L is semi-convex
on B2δ+θ(x̄0) by (3.8b).

Assertion (6). This assertion follows in the standard way by using the extremality conditions in the
contact set, see e.g. [AGS08, Thm. 6.2.4 and 6.2.7]. We give the main argument to show how the
assumptions in (3.8) enter. By Alexandrov’s theorem and Assertion (5) the set D′′

0 has full Lebesgue
measure. To obtain the optimality conditions, we fix x0 ∈ Q0 ∩ D′′

0 and know from (3.22) that
there exists x̄1 such that φ0(x0) = φ1(x̄1) − L(x̄1−x0). However, for all x ∈ Bδ(x0) we have
φ0(x) + L(x̄1−x) ≥ φ1(x̄1) with equality for x = x0. Thus, we obtain the optimality conditions

∇φ0(x0)−∇L(x̄1−x0) = 0 in Rd and D2φ0(x0) + D2L(x̄1−x0) ≥ 0 in Rd×d
sym .

This result gives the conditions (a) to (c), if we observe that x̄1 is unique. But this property follows from
the first optimality condition by using (3.8c) which allows us to write

x̄1 = T0→1(x0) := x0 +
(
∇L
)−1

(∇φ0(x0)),

i.e. x̄1 is uniquely determined by x0. Moreover, DT0→1(x0) exists and satisfies

D2φ0(x0) = (D2L)(T0→1(x0)−x0)
(
DT0→1(x0)−I

)
,

which implies the diagonalization result.

The previous result can now be applied to the solution of the LET problem in Theorem 2.10 using
L = L1; thus in this case R = π/2. Using the notations for supp(µi) = Si = S ′

i + S ′′
i and

µi = µ′
i + µ′′

i from Theorem 2.5 we can compare these to the sets Oi, Qi, D′
i, and D′′

i defined for an
optimal pair (φ0, φ1) as in Theorem 3.2. So far we constructed optimal pairs (φ0, φ1) satisfying

φ0 ≥ φ�L1
1 on Rd, φL1→

0 ≥ φ1 on Rd, φ0 = φ�L1
1 µ0-a.e., φL1→

0 = φ1 µ1-a.e. (3.23)

However, following [Vil09, Ch. 5], we will show that it is possible to restrict to “tight optimal pairs”
satisfying φ0 = φ�L1

1 and φ1 = φL1→
0 , which implies that φ0 is l.s.c. and φ1 is u.s.c. This possibility

leads to the following refinement of the results in [LMS18, Thm. 6.6(iii)].
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Theorem 3.3 (Regularity of optimal HK potentials) Let µ0, µ1 be nontrivial measures in M(Rd)
with decompositions given by (2.12)–(2.13).

(1) There exists an optimal pair of potentials φ0, φ1 : Rd → [−∞,+∞] with φ0 being l.s.c. and φ1

u.s.c., solving the dual problem of Theorem 2.12 and

φ0 = φ�L1
1 and φ1 = φL1→

0 on Rd, (3.24)

Si ⊂ Qi, S ′
0 ⊂ S

π/2
1 ⊂ O0, S ′

1 ⊂ S
π/2
0 ⊂ O1, (3.25)

φ0 = −∞ on S ′′
0 , and φ1 = +∞ on S ′′

1 , (3.26)

where the sets Oi and Qi are as in (3.9).

(2) If η is an optimal solution of the LET problem (2.25), the functions σ0 := e2φ0 and σ1 := e−2φ1

provide lower semi-continuous representatives of the densities of the marginals ηi = πi
♯η with

respect to µi, i.e., ηi = σiµi, and η is concentrated on the contact setMfin so that supp(η) ⊂M
(see Theorem 3.2). The marginals ηi are concentrated on the open sets Oi.

Conversely, if η̃ satisfies supp(η̃) ⊂M and η̃i = σiµi, then η̃ is an optimal solution of the LET
problem (2.25).

(3) If µ0 (resp. µ′
0) does not charge (d−1)-rectifiable sets, e.g. in the case that µ0 ≪ Ld or if

µ0(bdryπ/2(S0)) = 0 (resp. µ′
0(bdryπ/2(S0)) = 0), then for every optimal pair (φ0, φ1) with

φ0 = φ�L1
1 and φ1 u.s.c., the measure µ0 is concentrated on the open set int(Q0) (resp. µ′

0 is
concentrated on the open set Ω0).

(4) If µ′
0 is concentrated on D′

0 = dom(∇φ0) (in particular if µ′
0 ≪ Ld) then the optimal transport

plan η solving the LET formulation is unique, it is concentrated on D′
0 × S

π/2
0 , and it is induced by

the graph of T0→1, i.e.η = (Id,T0→1)♯η0 with T0→1 from Theorem 3.2(6).

(5) If µ′
0, µ

′
1 ≪ Ld then µ′

0 is concentrated on D′′
0 ∩ T−1

0→1(D
′′
1), where D′′

i = dom(D2φi), and
T0→1 is µ′

0-essentially injective with detDT0→1 > 0 µ0-a.e. in D′′
0 .

Proof. Assertion (1). Let (ϕ0, ϕ1) be an optimal Borel pair according to Theorem 2.14(2), see (2.43),
satisfying

ϕi ∈ R µi-a.e. in S ′
i, ϕ0 = −∞ µ0-a.e. in S ′′

0 , ϕ1 = +∞ µ1-a.e. in S ′′
1 . (3.27)

With this pair, we set φ0 := ϕ�L1
1 , and recalling (3.3) we easily obtain

φ0 ≤ ϕ0 in Rd, ϕ1(x1) ≤ L1(x1−x0) + φ0(x0) if x0, x1 ∈ Rd, |x1−x0| < π/2. (3.28)

Looking at the dual problem (2.34a) with the more general admissible set of Borel pairs as described in
(2.36), we see that (φ0, ϕ1) is still optimal.

Repeating the argument, we can set φ1 = φL1→
0 to find a new optimal pair satisfying φ1 ≥ ϕ1.

However, exploiting (3.5) we see that the tightness relation (3.24) holds for the optimal pair (φ0, φ1).
This fact implies that φ0 is l.s.c. and φ1 is u.s.c.

By the construction of ϕi in Theorem 2.14(2) we have

{ϕi ∈ R} = S ′
i, {ϕ0 = −∞} = S ′′

0 , and {ϕ1 = +∞} = S ′′
1 .
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Together with ϕ0 ≥ φ0 and ϕ1 ≤ φ1 we find

S ′′
0 = {ϕ0 = −∞} ⊂ {φ0 = −∞} and S0 = {ϕ0 < +∞} ⊂ {φ0 < +∞} = Q0,

S ′′
1 = {ϕ1 = +∞} ⊂ {φ1 = +∞} and S1 = {ϕ1 > −∞} ⊂ {φ1 > −∞} = Q1.

Clearly, S ′
0 = S0 ∩ Sπ/2

1 ⊂ S
π/2
1 . Moreover, for x0 ∈ S

π/2
1 we find y1 ∈ S1 with |y1−x0| < π/2,

i.e. L1(y1−x0) < ∞. With this we have φ0(x0) = φ�L1
1 (x0) ≥ φ1(y1)− L1(y1−x0) > −∞ and

conclude x0 ∈ O0. Thus, S ′
0 ⊂ S

π/2
1 ⊂ O0 is shown and S ′

1 ⊂ S
π/2
0 ⊂ O1 follows similarly. Hence,

(3.25) and (3.26) are established.

Assertion (2). The claim follows immediately from Theorem 2.14.

Assertion (3). We just consider the case of µ0, since the argument for µ′
0 is completely analogous and

eventually uses the fact that Ω0 = O0 ∩ int(Q0) and µ′
0 is also concentrated on O0 by (3.25).

By Theorem 3.2 (cf. (3.12)) we know that ∂Q0 = bdryπ/2(Q0). Since ∂Q0 is (d−1)-rectifiable and
µ0 does not charge (d−1)-rectifiable sets, we conclude µ0(∂Q0) = 0.

If µ0(bdryπ/2(S0)) = 0, we also obtain µ0(∂Q0) = 0 via the following arguments: By (3.25) we
have S0 ⊂ Q0, which implies that a point x ∈ ∂S0 ∩ bdryπ/2(Q0) also lies bdryπ/2(S0). Using
∂Q0 = bdryπ/2(Q0) we obtain ∂S0 ∩ ∂Q0 ⊂ bdryπ/2(S0) and find

µ0(∂Q0)
(i)
= µ0(∂Q0 ∩ S0)

(ii)
= µ0(∂Q0 ∩ ∂S0) ≤ µ0

(
bdryπ/2(S0)

)
= 0,

where we used S0 = sppt(µ0) in
(i)
= and S0 ⊂ Q0 in

(ii)
=. Thus, we have shown that µ0 is concentrated

on int(Q0).

Assertion (4). If µ′
0 ≪ Ld then µ′

0 is concentrated on Ω0 by Claim 3 and µ0(Ω0 \D′
0) = 0 by 3.2(6).

By the previous claim 2, we know that the first marginal η0 of η is given by e2φ0µ0 = e2φ0µ′
0 =

e2φ0µ′
0 D′

0 (in particular η0(Rd \D′
0) = 0) so that η is concentrated on Mfin ∩ (D′

0 ×Rd) which is
the graph of the map T0→1 given by Theorem 3.2(6).

Assertion (5). Let us first recall that for i = 0, 1 the marginal ηi of η and the measure µ′
i are

mutually absolutely continuous. Since µ′
i ≪ Ld we know by Theorem 3.2(6) and the third claim that

µ′
i(Rd\D′′

i ) = µ′
i(Ωi\D′′

i ) = 0, so that ηi(Rd\D′′
i ) = 0 and η0(T

−1
0→1(Rd\D′′

1)) = η1(Rd\D′′
1) =

0; we deduce that η0 and µ′
0 are concentrated on D′′

0 ∩ T−1
0→1(D

′′
1).

We can apply Theorem 3.2(6), inverting the order of the pair (φ0, φ1) and obtaining that for every
x1 ∈ D′

1 there is a unique element x0 ∈ Rd in the section M1→0(x1), i.e. such that (x0, x1) ∈Mfin.
This result precisely shows that the restriction of T0→1 to D′

0 ∩ T−1
0→1(D

′
1) ⊃ D′′

0 ∩ T−1
0→1(D

′′
1) is

injective. Since (T0→1)♯η0 = η1 ≪ Ld, we can eventually apply [AGS08, Lemma 5.5.3] which shows
that detDT0→1 > 0 µ0-a.e. in D′′

0 .

It is important to realize that the tightness condition (3.24) is strictly stronger than the optimality
conditions (3.23). However, even for tight optimal pairs there is some freedom outside the supports of
the measures µ0 and µ1, as is seen in the following simple case.

Example 3.4 (Tight optimal pairs for two Diracs) This example lies in-between Examples 3.1 and
4.5. For two points z0, z1 ∈ Rd with ϱ = |z1−z0| = π/3, such that cosπ/2(ϱ) = 1/2. We consider
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two measures µi = δzi . With si = S ′
i = {zi} we easily find the two optimal potential (ϕ0, ϕ1)

according to Theorem 2.14, see (2.43):

ϕ0(x0) =

{
− log 2

2
for x0 = z0,

+∞ otherwise,
and ϕ1(x1) =

{
log 2
2

for x1 = z1,

−∞ otherwise,

In particular, we have ϕ1(z1)− ϕ0(z0) = log 2 = L1(z1−z0) = 1
2
ℓ(ϱ).

Proceeding as in Step 1 of the above proof with φ0 = ϕ�L1
1 and taking into account the calculations of

Example 3.1, we obtain a first tight optimal pair

(φ
(1)
0 , φ

(1)
1 ) with φ(1)

0 (x0) =

{
log 2
2

− L1(z1−x0) for x0 ∈ Bπ/2(z1),

−∞ otherwise,
and φ

(1)
1 = ϕ1.

Interchanging the roles of ϕ0 and ϕ1 we arrive at a second tight optimal pair

(φ
(2)
0 , φ

(2)
1 ) with φ(2)

0 = ϕ0 and φ
(2)
1 (x1) =

{
− log 2

2
+ L1(x1−z0) for x1 ∈ Bπ/2(z0),

∞ otherwise.

A third case is obtained by choosing z∗1 ̸= z1 and considering an optimal pair (ϕ0, ϕ̃1) with ϕ0 from
above and

ϕ̃1(x1) =


log 2
2

for x1 = z1,

a1 for x1 = z∗1 ,

−∞ otherwise.

where a1 ≤ − log 2

2
+ L1(z

∗
1−z0).

We obtain φ(3)
0 : x0 7→ max{ log 2

2
− L1(z1−x0), a1 − L1(z

∗
1−x0)} and the tight optimal pair(

φ
(3)
0 , (φ

(3)
0 )L1→

)
.

With the notation of Theorem 3.2 we have O(3)
0 = {φ(3)

0 > −∞} = Bπ/2(z1) ∪Bπ/2(z
∗
1) = Q̃

π/2
1 ,

since Q̃1 = {ϕ̃1 > −∞} = {z1, z∗1}, i.e. (3.11) holds. Because of Q(3)
0 = {φ(3)

1 < +∞} = R2,
also (3.12) is true.

The following corollary shows that in the case of an absolutely continuous reduced pair (µ0, µ1) the
density of µ1 can be written in terms of the optimal pair (σ0, σ1), the transport map T , and the density
of µ0, and vice versa.

Corollary 3.5 (Monge solutions) Let µ0, µ1 ∈ M(Rd)2 with µ′′
1 = 0, and let (φ0, φ1) be a tight

optimal pair of potentials according to Theorem 3.3. If µ′
0 is concentrated on D′

0 = dom(∇φ0) (in
particular if µ′

0 ≪ Ld), then there exists a “unique” (up to µ0-negligible sets) optimal transport-growth
pair (T , q) attaining the minimum for the Monge Problem 2.9, namely

(T , q)⋆µ0 = µ1 and C(q,T ;µ0) = HK2(µ0, µ1). (3.29)

If σi, φi, D
′
i, D

′′
i ,η, T0→1,T1→0 are given as in Theorem 3.2 and 3.3, the pair (T , q) can be obtained

in the following way:

(1) The restriction of T to D′
0 coincides with the map T0→1 (and the plan η) as in Theorem 3.2,

whereas T (x) := x for every x ∈ Rd \D′
0 (in particular in S ′′

0 ).
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(2) q(x) ≡ 0 for x ∈ Rd \D′
0 (in particular in S ′′

0 ) and

q2(x) =
σ0(x)

σ1(T0→1(x))
= σ2

0(x) +
1

4
|∇σ0(x)|2 for x ∈ D′

0. (3.30)

Moreover, T satisfies

|T (x)−x| < π/2 and σ0(x)σ1(T (x)) = cos(|x−T (x)|)2 in D′
0. (3.31)

If µ0 ≪ Ld, then µ1 ≪ Ld if and only if detDT (x) > 0 for µ0-a.e.x ∈ D′′
0 . In this case, setting

µi = ciL
d ≪ Ld we have

c1 =
(
c0

q2

detDT

)
◦ T−1 Ld-a.e. in T (D′′

0) ⊂ Ω1. (3.32)

To obtain the second identity in (3.30), we exploit the first-order optimality (3.15) and σ0 = e2φ0 giving
1

2σ0
∇σ0 = ∇φ0(x) = tan(x−T (x)) by (3.15). Thus, using the optimality condition (3.31) (coming

from (2.42e)) we find

q2(x) =
σ2
0(x)

cos2(|x−T (x)|)
= σ2

0(x)(1+ tan2(|x−T (x)|)) = σ2
0(x) +

1

4
|∇σ0(x)|2. (3.33)

We can also rephrase the above results in terms of the optimal Kantorovich potential ξ0 in (2.34b). This
potential, which satisfies the relations ξ0 =

1
2
(σ0−1) = G1(φ0) =

1
2
(e2φ0−1), will be the best choice

for characterizing the densities of the Hellinger–Kantorovich geodesic curves. Indeed, the transport
map T on D′′

0 takes the form

T (x) = x+ arctan
( ∇ξ0(x)
1+2ξ0(x)

)
= x+ arctan

(
∇φ0(x)

)
,

q2(x) = (1+2ξ0(x))
2 + |∇ξ0(x)|2.

(3.34)

If µ0, µ1 have full support S0 = S1 = Rd, then Theorem 3.3 immediately yields Ωi = Oi∩ int(Qi) =
Rd, so that φ0 and φ1 take values in R, are locally Lipschitz, and locally semi-convex and semi-concave,
respectively. Another important case where the properties of φ0, φ1 can be considerably refined is
when µ0, µ1 are strongly reduced (cf. Definition 2.6) and have compact support.

Theorem 3.6 (Improved regularity in case of strongly reduced pairs) Let us assume that the sup-
ports S0, S1 of µ0, µ1 are compact and satisfy Si ⊂ S

π/2
1−i , so that µ0, µ1 is a strongly reduced pair (cf.

Definition 2.6). Then it is possible to find a pair of optimal potentials φ0, φ1 as in Theorem 3.3 satisfying
the additional properties:

(1) φi are uniformly bounded (in particular Ωi = Rd and M = Mfin): there exist constants ϕmin <
ϕmax ∈ R such that

ϕmin ≤ φi ≤ ϕmax in Rd. (3.35)

(2) If θ ∈ [0, π/2[ satisfies cos2(θ) = e2(ϕmin−ϕmax) then for every x0, x1 ∈ Rd

(x0, x1) ∈M ⇒ |x1−x0| ≤ θ. (3.36)

(3) φi are Lipschitz, φ0 is semi-convex, φ1 is semi-concave.
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Proof. Assertion (1). Let φ′
0, φ

′
1 be an optimal pair as in Theorem 3.3. Since φ′

1 is u.s.c and φ′
1 < +∞

on Sπ/2
0 , we have ϕmax := maxS1 φ

′
1 < +∞. We can then define ζ1 := min{φ′

1, ϕmax} observing
that ζ1 ≤ ϕmax in Rd and (φ′

0, ζ1) is still optimal since ζ1 = φ′
1 on S1.

Arguing as in the proof of Theorem 3.3, we define ζ0 := (ζ1)
�L1 , observing that ζ0 ≤ ϕmax as well. On

the other hand, ζ0 is l.s.c. and ζ0 > −∞ on Sπ/2
1 ⊃ S0, so that ϕmin := minS0 ζ

′
0 > −∞. Setting

ζ ′0 := max{ζ0, ϕmin} we obtain a new optimal pair (ζ ′0, ζ1) with ϕmin ≤ ζ0 ≤ ϕmax. Hence, with
ζ ′1 := (ζ ′0)

L1→ we get the desired optimal pair (ζ ′0, ζ
′
1) satisfying ϕmin ≤ ζ ′i ≤ ϕmax as well.

Assertion (2). This assertion is now an easy consequence of the definition of contact set (3.13) and the
fact that φ1(x1)− φ0(x0) ≤ ϕmax − ϕmin.

Assertion (3). The last assertion follows as Theorem 3.2(5).

4 Dynamic duality and regularity properties of
the Hamilton–Jacobi equation

In the previous section, the regularity properties of the optimal HK pairs (φ0, φ1) were studied, which
can be understood via the static formulations of HK as only the measures µ0 and µ1 are involved. Now,
we consider the dual potentials ξt(x) = ξ(t, x) along geodesics (µt)t∈[0,1]. At this stage, the present
Section 4 is completely independent of the previous Section 3. Only in the upcoming Section 5, we will
combine the two results to derive the finer regularity properties of the geodesics µt.

In [LMS18, Sect. 8.4], it is shown that the optimal dual potentials ξ in the dynamic formulation in (2.3)
(but now for α = 1 and β = 4) are subsolutions to a suitable Hamilton–Jacobi equation, namely

1

2τ
HK(µ0, µτ )

2 = sup

{∫
Rd

ξ(τ, ·)dµτ −
∫
Rd

ξ(0, ·)dµ0

∣∣∣ ξ ∈ C∞
c ([0, τ ]× Rd),

∂

∂t
ξ +

1

2
|∇ξ|2 + 2ξ2 ≤ 0 in [0, τ ]× Rd

}
.

(4.1)

Theorem 8.11 in [LMS18] shows that the maximal subsolutions of the generalized Hamilton–Jacobi
equation (2.4) for t ∈ (0, τ) are given by the following generalized Hopf–Lax formula

ξt(x) = ξ(t, x) =
(
Ptξ0

)
(x) =

1

t
P1

(
tξ0(·)

)
(x) = inf

y∈Rd

1

2t

(
1−

cos2π/2(|x−y|)
1 + 2tξ0(y)

)
, (4.2)

where ξ0 ∈ C1(Rd) is fixed and such that infRd ξ0(·) > − 1
2τ

, compare with (1.13).

In the spirit of the previous section, it is possible to derive some semi-concavity properties of ξt from
this formula. However, these are not enough as we need more precise second order differentiability. To
obtain the latter, we use the fact that a geodesic curve is not oriented, meaning that t 7→ µ1−t is still a
geodesic, or in other words that t 7→ ξ1−t has to also solve a Hamilton–Jacobi equation. Thus, our
strategy will be the following: For an optimal pair (ξ0, ξ̄1) in (2.34b), we construct a forward solution ξt
starting from ξ0 and backward solutions starting from ξ̄1 via

ξt = Ptξ0 for t ∈ (0, 1] and ξ̄t = Rt ξ̄1 := −Pt (−ξ̄1) for t ∈ [0, 1). (4.3)

In Section 5, optimality will be used to guarantee that ξt and ξ̄t are essentially the same so that
semi-concavity of ξt and semi-convexity of ξ̄t provide the desired smoothness.
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4.1 Exploiting the generalized Hopf–Lax formula for regularity

In this section, we study in detail the regularity properties of the function ξt arising in (4.2). Assuming
that infx∈Rd ξ0(x) ≥ − 1

2τ
we see that Ptξ0 is well-defined for t ∈ (0, τ) and can be equivalently

characterized by

(
Ptξ0

)
(x) = inf

y∈Bπ/2(x)

1

2t

(
1−

cos2π/2(|x−y|)
1 + 2tξ0(y)

)
. (4.4)

We can extend (4.4) at t = τ if we define the quotients a/0 := +∞, a/(+∞) := 0 for every a > 0.
Moreover, since t 7→ Ptξ0(x) is decreasing, we easily get

ξt(x) =
(
Ptξ0

)
(x) = lim

s↑t

(
Psξ0

)
(x) for every x ∈ Rd, t ∈ (0, τ ] (4.5)

so that many properties concerning the limiting case t = τ can be easily derived by continuity as t ↑ τ .

If ξ0 is l.s.c. and
(
Ptξ0

)
(x) < 1

2t
, the infimum in (4.4) it attained at a compact set denoted by

Mtξ0(x) := argminy

1

2t

(
1−

cos2π/2(|x−y|)
1 + 2tξ0(y)

)
⊂ Bπ/2(x). (4.6)

Notice that
(
Ptξ0

)
(x) = 1

2t
only if ξ0 is identically +∞ in Bπ/2(x) and in this case any element of

Bπ/2(x) is a minimizer. For later usage we also define M0ξ(x) = {x}.

We also observe that if ξ0(x) = a is constant then Ptξ0 is constant in x, namely

Ptξ0(x) = Pta(x) = Pa(t) :=
a

1 + 2at
, with P∞(t) :=

1

2t
. (4.7)

A crucial property of (4.2) is the link with the classical Hopf–Lax formula on the cone C for a function
ζ : C → R satisfying ζ([x, r]) ≥ − 1

2τ
r2. For t ∈ (0, τ) the Hopf–Lax formula on C reads

Qtζ([x, r]) := inf
[x′,r′]∈C

ζ([x′, r′]) +
1

2t
d2C
(
[x, r], [x′, r′]

)
. (4.8)

For ξ0 satisfying ξ0 ≥ − 1
2τ

and t ∈ (0, τ) we set ζ([x, r]) := ξ0(x)r
2 and find (cf. [LMS18,

Thm. 8.11])
ξt = Ptξ0 ⇐⇒ ξt(x)r

2 = Qtζ([x, r]) for all x ∈ Rd; (4.9)

Moreover, if ξ0 is lower semi-continuous the infimum in (4.8) is attained and we have

ξt(x)r
2 = ζ([x′, r′])+

1

2t
d2C
(
[x, r], [x′, r′]

)
⇐⇒

{
x′ ∈ Mtξ0(x) and

(1+2tξ0(x
′))(r′)2 = (1−2tξt(x))r

2
(4.10)

(where [x′, r′] = o if r′ = 0, corresponding to the case 1−2tξt(x) = 0). From (4.8) and (4.9) we also
deduce the estimate(

1−2tξt(x)
)
r2 +

(
1+2tξ0(x

′)
)
(r′)2 ≥ 2rr′ cosπ/2(|x−x′|) (4.11)

for every x, x′ ∈ Rd and r, r′ ≥ 0. Optimizing with respect to r, r′ we find(
1−2tξt(x)

)(
1+2tξ0(x

′)
)
≥ cos2π/2(|x−x′|) for every x, x′ ∈ Rd (4.12)
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and arrive at the following characterization: For all x ∈ Rd with 1−2tξt(x) > 0 we have

x′ ∈ Mtξ0(x) ⇐⇒
(
1−2tξt(x)

)(
1+2tξ0(x

′)
)
= cos2π/2(|x−x′|). (4.13)

To treat the factor of r and r′ in (4.11) efficiently, we define the function

Zt(u
′, u) :=

1−2tu

1+2tu′
for 1+2tu′, 1−2tu ≥ 0 and Zt(+∞, u) ≡ 0. (4.14)

Using (4.13), the optimal r′ in (4.10) can now be equivalently characterized by

(r′)2 = Zt(ξ0(x
′), ξt(x)) =

(1−2tξt(x))
2

cos2π/2(|x−x′|)
= (1−2tξt(x))

2(1 + tan2(|x−x′|)). (4.15)

The following result collects the properties of Pt that will be needed in the sequel.

Proposition 4.1 (Properties of the generalized Hopf–Lax operator Pt ) Let ξ0 : Rd → [a, b] with
−1/2 ≤ a ≤ b ≤ +∞ be lower semi-continuous and set ξt := Ptξ0 for t ∈ [0, 1].

(1) Lower/upper bounds. The functions ξt are well defined and satisfy (cf. (4.7) for Pa)

− 1

2(1−t)
≤ Pa(t) ≤ ξt ≤ Pb(t) ≤

1

2t
for every t ∈ (0, 1), x ∈ Rd. (4.16)

Moreover, it holds that

ξ0(x) = −1/2 ⇔ ξt(x) = − 1

2(1−t)
. (4.17)

(2) Semi-concavity. Setting Λa(t) :=
1

t(1+2at)
≤ 1

t(1−t)
the functions ξt are Λa(t)-Lipschitz and Λa(t)

semi-concave, i.e. x 7→ ξt(x)− Λa(t)
2

|x|2 is concave.

(3) Semigroup property. For every 0 ≤ s < t ≤ 1 we have

ξt = Pt−sξs (4.18)

(4) Concatenation of optimal points. For s, t with 0 ≤ s < t < 1 and x ∈ Rd we define the set-valued
function Mt→s via Mt→s(x) := Mt−sξs(x). For all 0 ≤ t0 < t1 < t2 < 1 and all x0, x1, x2 ∈ Rd

we have:

If x1 ∈ Mt2→t1(x2) and x0 ∈ Mt1→t0(x1), then x0 ∈ Mt2→t0(x2) and

Zt2−t0(ξt0(x0), ξt2(x2)) = Zt1−t0(ξt0(x0), ξt1(x1))Zt2−t1(ξt1(x1), ξt2(x2)).
(4.19)

(5) Geodesics on C. If 0 ≤ t0 < t1 < t2 < 1, x0 ∈ Mt2→t0(x2), r0 = Zt2−t0(ξt0(x0), ξt2(x))r2,
and [x1, r1] = geoθ

(
[x0, r0], [x2, r2]

)
for θ = t1−t0

t2−t0
, then x1 ∈ Mt2→t1(x2).

(6) Characterization of optimality. For all x, y ∈ Rd and 0 ≤ s < t < 1 with τ := t−s we have

(1−2τξt(x))(1+2τξs(y)) ≥ cos2π/2(|x−y|), (4.20)

y ∈ Mt→s(x), ξt(x) <
1

2τ
⇔ (1−2τξt(x))(1+2τξs(y)) = cos2π/2(|x−y|). (4.21)
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Proof. Assertion (1). The first assertion follows by the monotonicity property of Pt and (4.7). Note that
(4.17) is a simple consequence of the property

1

2t

(
1−

cos2π/2(|x−y|)
1 + 2tξ(y)

)
≥ − 1

2(1−t)

with equality if and only if x = y and ξ(y) = −1/2.

Assertion (2). It is sufficient to observe that for every y ∈ Rd

x 7→ cos2π/2(|x−y|) is 2-Lipschitz, x 7→ cos2π/2(|x−y|)− |x|2 is concave, (4.22)

so that

x 7→ 1

2t

(
1−

cos2π/2(|x−y|)
1 + 2tξ0(y)

)
is Λa(t)-Lipschitz (4.23)

and

x 7→ 1

2t

(
1−

cos2π/2(|x−y|)
1 + 2tξ0(y)

)
− Λa(t)

2
|x|2 is concave. (4.24)

Assertion (3). If t < 1 the semigroup property for Pt can be derived by the link with the Hopf–Lax
semigroup in C given by (4.9) and the fact that (C, dπ,C) is a geodesic space. The case t = 1 follows
by approximation and (4.5).

Assertion (4). We set τ0 := t1 − t0, τ1 := t2 − t1, r > 0,

r1 = Zτ1(ξt1(x1), ξt2(x))r, r0 = Zτ0(ξt0(x0), ξt1(x1))r1

and use (4.10) and (4.18):

ξt2(x)r
2 = ξt1r

2
1 +

1

2τ1
d2π,C([x1, r1], [x, r])

= ξt0r
2
0 +

1

2τ0
d2π,C([x0, r0], [x1, r1]) +

1

2τ1
d2π,C([x1, r1], [x, r]).

On the other hand

ξt2(x)r
2 ≤ ξt0r

2
0 +

1

2τ
d2π,C([x0, r0], [x, r]) (4.25)

so that we obtain

1

2τ0
d2π,C([x0, r0], [x1, r1]) +

1

2τ1
d2π,C([x1, r1], [x, r]) ≤

1

2τ
d2π,C([x0, r0], [x, r]); (4.26)

since τ = τ0 + τ1 the opposite inequality always hold in (4.26), and we deduce the equality, which
implies that the equality holds in (4.25) as well, showing (4.19) thanks to (4.10).

Assertion (5). We can argue as in the previous assertion, starting from the characterization of x0, r0

ξt2(x)r
2 = ξt0r

2
0 +

1

2τ
d2π,C([x0, r0], [x, r]) (4.27)

and using the identity along the geodesic in C connecting [x0, r0] to [x, r], namely

1

2τ0
d2π,C([x0, r0], [x1, r1]) +

1

2τ1
d2π,C([x1, r1], [x, r]) =

1

2τ
d2π,C([x0, r0], [x, r]). (4.28)

Assertion (6). The final assertion follows from (4.12) and (4.13).
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4.2 Backward generalized Hopf–Lax flow and contact sets

Let us now consider the backward version of the generalized Hopf–Lax semigroup. By the simple
structure of the generalized Hamilton–Jacobi equation (2.4), we immediately see that time reversal
leads to the same effect as the sign reversal ξ ⇝ −ξ. Hence, the backward semigroup Rt is defined
for ξ̄ with ξ̄ ≤ 1/(2τ) via

Rt ξ̄ := −Pt (−ξ̄) for t ∈ (0, τ ]. (4.29)

The corresponding properties of Rt follow easily from Proposition 4.1, but observe that we use
ξ̄t = R1−t ξ̄1 to go backward in time.

Corollary 4.2 (Properties of Rt ) Let ξ̄1 : Rd → [−b̄,−ā] with −∞ ≤ −b̄ ≤ −ā ≤ 1/2 be upper
semi-continuous and set

ξ̄t := R1−t ξ̄1 for t ∈ [0, 1]. (4.30)

(1) Lower/upper bounds. The functions ξ̄t are well-defined and satisfy

− 1

2t
≤ P b̄(1−t) ≤ ξ̄t ≤ Pā(1−t) ≤

1

2(1−t)
for all t ∈ (0, 1), x ∈ Rd. (4.31)

Moreover, we have the equivalence

ξ̄1(x) = 1/2 ⇔ ξ̄t(x) =
1

2t
. (4.32)

(2) Semi-convexity. The functions ξ̄t are Λā(1−t)-Lipschitz and Λā(1−t) semi-convex, i.e. x 7→
ξ̄t(x) +

Λā(1−t)
2

|x|2 is convex (cf. Proposition 4.1(2) for Λa).

(3) Time-reversed semigroup property. For every 0 ≤ s < t ≤ 1 we have

ξ̄s = Rt−s ξ̄t. (4.33)

(4) Concatenation of optimal points. Setting Ms�t(x) := Mt−s(−ξ̄t)(x) for every 0 < s < t ≤ 1
and x ∈ Rd, the set-valued function Ms�t satisfies the concatenation property for 0 < t0 < t1 <
t2 ≤ 1 and x0, x1, x2 ∈ Rd:

If x1 ∈ Mt0�t1(x0) and x2 ∈ Mt1�t2(x1), then x2 ∈ Mt0�t2(x0) and

Zt2−t0(ξ̄t0(x0), ξ̄t2(x2)) = Zt1−t0(ξ̄t0(x0), ξ̄t1(x1)) · Zt2−t1(ξ̄t1(x1), ξ̄t2(x2)).
(4.34)

(5) Characterization of optimality. For all x, y ∈ Rd and 0 < s < t ≤ 1 with τ := t− s

(1−2τ ξ̄t(x)) (1+2τ ξ̄s(y)) ≥ cos2π/2(|x−y|), (4.35)

x ∈ Ms→t(y), ξ̄s(y) > − 1

2τ
⇔ (1−2τ ξ̄t(x)) (1+2τ ξ̄s(y)) = cos2π/2(|x−y|). (4.36)

Proof. We just observe that the second statement in (4.34) follows by the corresponding statement in
(4.19) which now reads as

Zt2−t0(−ξ̄t2(x2),−ξ̄t0(x0)) = Zt1−t0(−ξt1(x1),−ξt0(x0)) · Zt2−t1(−ξ̄t2(x2),−ξ̄t1(x1)), (4.37)
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and the property Zτ (−u′,−u) = Z−τ (u
′, u) = Z−1

τ (u, u′). Equations (4.35) and (4.36) follow by
(4.20) and (4.21) changing ξs(y) with −ξ̄t(x) and ξt(x) with −ξ̄s(y).

We are now in the position to compare the forward solution ξt and the backward solution ξ̄t. The main
philosophy is that in general we only have RtPtξ0 ≤ ξ0 (cf. (4.38) below), but equality holds µt-a.e. if
(ξ0,P1ξ0) is an optimal pair. In the following result, we still stay in the general case comparing arbitrary
forward solutions ξt = Ptξ0 and backward solutions ξ̄t = R1−t ξ̄1 only assuming ξ1 ≥ ξ̄1. Along the
contact set Ξt where ξt and ξ̄t coincide, we can then derive differentiability and optimality properties of
ξt and ξ̄t.

Theorem 4.3 (Contact set Ξt) Let ξ0 : Rd → [a,+∞] be l.s.c. with a ≥ −1/2 and ξ̄1 : Rd →
[−∞,−ā] u.s.c. with ā ≤ 1/2. Assume P1ξ0 ≥ ξ̄1 and set

ξt := Ptξ0 and ξ̄t := R1−t ξ̄1 for t ∈ [0, 1]. (4.38)

Then, the following assertions hold:

(1) For every t ∈ [0, 1] we have ξt ≥ ξ̄t and the contact set

Ξt :=
{
x ∈ Rd : ξ̄t(t) = ξt(x)

}
is closed. (4.39)

(2) For every t ∈ (0, 1) and x ∈ Ξt there exists a unique p = gt(x) satisfying

ξt(y)− ξt(x)−
1

2
Λā(1−t)|x−y|2 ≤ ⟨p, y − x⟩ ≤ ξ̄t(y)− ξ̄t(x) +

1

2
Λa(t)|x−y|2 (4.40)

so that in particular ξt and ξ̄t are differentiable at x with gradient gt(x) (cf. Proposition 4.1(2) for
Λa).

(3) The map x 7→ gt(x) is bounded and C(t)-Lipschitz with C(t) ≤ 2(Λa(t) + Λā(1−t)) ≤ 4
t(1−t)

on Ξt. Moreover, the sets

Ξ−
t :=

{
x ∈ Rd

∣∣∣ ξ0 = −1

2

}
=
{
x ∈ Ξt

∣∣∣ ξt = −1

2(1−t)

}
Ξ+
t :=

{
x ∈ Rd

∣∣∣ ξ̄1 = 1

2

}
=
{
x ∈ Ξt

∣∣∣ ξ̄t = 1

2t

} (4.41)

are independent of t, are contained in Ξt for every t ∈ [0, 1], and the critical set Ξ0
t := {x ∈ Ξt :

gt(x) = 0} of gt contains Ξ±
t :

Ξ0
t ⊃ Ξ−

t ∪ Ξ+
t for every t ∈ (0, 1). (4.42)

(4) Let s ∈ (0, 1), t ∈ [0, 1], and τ := t − s ̸= 0. Then, for every xs ∈ Ξs with 1+2τξs(xs) > 0
the set Ms→t(xs) consists of a unique element xt =: Ts→t(xs) satisfying

xt ∈ Ξt and xs ∈ Mt�s(xt),

xt = Ts→t(x) = x+ arctan
( τgs(x)

1+2τξs(x)

)
,(

1−2τξt(Ts→t(x))
) (

1+2τξs(x)
)
= cos2π/2

(
|x−Ts→t(x)|

)
.

(4.43)
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(5) For every x ∈ Ξ0
s ⊃ Ξ±

s we have Ts→t(x) = x (and thus we set Ts→t(x) := x also for t = 0 or
t = 1). Let s ∈ (0, 1) and define Ts→s(x) = x, then for all x ∈ Ξs the mappings t 7→ Ts→t(x)
are analytic in [0, 1].
For s, t ∈ (0, 1) the mappings Ts→t : Ξs → Rd are Lipschitz. If t = 0 (resp. t = 1) then Ts→t is
locally Lipschitz in Ξs \ Ξ+

s (resp. in Ξs \ Ξ−
s ).

(6) Setting

q2s→t(x) :=
1 + 2τξs(x)

1−2τξt(Ts→t(x))
= (1+2τξs(x))

2 + τ 2|gs(x)|2 (4.44)

for every x ∈ Ξs, the map t 7→ qs→t(x) is analytic in [0, 1], qt→s is bounded and Lipschitz with
respect to x, and qs→t(x) > 0 for t ∈ (0, 1) or t = 0 and x ̸∈ Ξ+

s (resp. t = 1 and x ̸∈ Ξ−
s ).

Moreover, qs→t(x) = 1 + 2(t−s)ξs(x) for x ∈ Ξ±
s .

(7) For all t0, t1 ∈ (0, 1), t2 ∈ [0, 1], the maps Tti→tj are Lipschitz on Ξti for i ∈ {0, 1}, and we
have

Tt1→t2 ◦ Tt0→t1 = Tt0→t2 , qt1→t2(Tt0→t1(x)) · qt0→t1(x) = qt0→t2(x). (4.45)

Proof. Assertion (1). The inequality

ξs ≥ Rt−s

(
Pt−sξs

)
= Rt−sξt for 0 < s < t < 1 (4.46)

can be derived by the link with the Hopf–Lax semigroup in C given by [LMS18, Theorem 8.11] and
arguing as in [Vil09, Thm. 7.36]. We prove it by a direct computation as follows: Set τ = t−s, observe
that inf Pτ ξs = inf ξt ≤ 1

2t
< 1

2τ
, and use ξt = Pτ ξs to obtain

1

1−2τξt(y)
= inf

z∈Bπ/2(y)

1 + 2τξs(z)

cos2π/2(|y−z|)
≤ 1 + 2τξs(x)

cos2π/2(|y−x|)
if |x−y| < π/2. (4.47)

With this estimate, we find

Rτ ξt(x)
def
= sup

y∈Bπ/2(x)

1

2τ

(cos2π/2(|x−y|)
1− 2τξs(y)

− 1
)

(4.47)
≤ sup

y∈Bπ/2(x)

1

2τ

(cos2π/2(|x−y|)
cos2π/2(|x−y|)

(1+2τξs(x))− 1
)

= ξs(x).

Using ξt ≥ ξ1 ≥ ξ̄1 we thus get (4.46). Passing to the limit as t ↑ 1 in (4.46), we arrive at ξs ≥
R1−s ξ̄1 = ξ̄s.

The closedness of Ξt follows from the semi-continuities of ξt and ξ̄t and the estimate ξt ≥ ξ̄t. Indeed,
assume yk → y with yk ∈ Ξt, then we have y ∈ Ξt because of

ξt(y)
l.s.c.
≤ lim inf

k→∞
ξt(yk) = lim inf

k→∞
ξ̄t(yk) ≤ lim sup

k→∞
ξ̄t(yk)

u.s.c.
≤ ξ̄t(y) ≤ ξt(y).

Assertion (2). Let us fix x ∈ Ξt, Λ := Λa(t) and Λ̄ := Λā(1−t), and let p (resp.p′) be an element
of the superdifferential of x 7→ ξt(x)− 1

2
Λ|x|2 (resp. of the subdifferential of x 7→ ξ̄t(x) +

1
2
Λ̄|x|2).

DOI 10.20347/WIAS.PREPRINT.2956 Berlin, August 30, 2022/rev. September 29, 2023



Fine properties of geodesics and geodesic λ-convexity for the Hellinger–Kantorovich distance 37

The superdifferential (subdifferential) is not empty, since the function is concave (convex) and finite
everywhere. For every x, y ∈ Rd with x ∈ Ξt we have

⟨p, y−x⟩ ≥ ξt(y)− ξt(x)−
1

2
Λ|x−y|2 and ⟨p′, y−x⟩ ≤ ξ̄t(y)− ξ̄t(x) +

1

2
Λ̄|x−y|2.

Subtracting the two inequalities and using ξt(x) = ξ̄t(x) and ξ̄t(y) ≤ ξt(y) yields

⟨p′ − p, y − x⟩ ≤ ξ̄t(y)− ξt(y) +
1

2
(Λ+Λ̄)|y−x|2 ≤ 1

2
(Λ+Λ̄)|y−x|2 for every y ∈ Rd,

so that p = p′ is uniquely determined and (4.40) holds.

Assertion (3). The fact that Ξ±
t are independent of t and contained in Ξt follows from (4.17) and (4.32).

Moreover, (4.42) follows easily since ξt takes its minimum at Ξ−
t and its maximum at Ξ+

t .

Let us now fix t ∈ (0, 1), x0, x1 ∈ Ξt, pi = gt(xi) + Λ̄xi, and set ζ̄(x) := ξ̄t(x) +
1
2
Λ̄|x|2,

ζ(x) := ξt(x) +
1
2
Λ̄|x|2. Notice that ζ̄(x) is convex and ζ(x) is C = Λ + Λ̄ semi-concave with

ζ̄(x) ≤ ζ(x). We get

ζ̄(x0) ≤ ζ̄(x)− ⟨p0, x− x0⟩ ≤ ζ(x)− ⟨p0, x− x0⟩

≤ ζ(x1) + ⟨p1, x− x1⟩ − ⟨p0, x− x0⟩+
C

2
|x−x1|2

= ζ̄(x1) + ⟨p1 − p0, x− x1⟩ − ⟨p0, x1 − x0⟩+
C

2
|x−x1|2.

Minimizing with respect to x we find ζ̄(x0) ≤ ζ̄(x1)− ⟨p0, x1−x0⟩ − 1
4C

|p1−p0|2. Inverting the role
of x0 and x1 and summing up gives 1

2C
|p1−p0|2 ≤ ⟨p1−p0, x1−x0⟩ and therefore

|p1−p0| ≤ 2C |x1−x0|. (4.48)

The boundedness of gt on Ξt follows by the fact that ξt is Lipschitz.

Assertion (4). Let us first consider the case s > t with τ := s−t and let y ∈ Ms→t(x). If ξs(x) > − 1
2τ

then y satisfies the identity (4.21). Since ξ̄t(y) ≤ ξt(y), (4.35) and ξ̄s(x) = ξs(x) yields ξ̄t(y) = ξt(y)
so that y ∈ Ξt as well with x ∈ Mt�s(y) since ξ̄t(y) ≥ − 1

2(1−t)
> − 1

2τ
.

Since the function x′ 7→ (1+2τξs(x
′)) (1−2τξt(y))− cos2π/2(|x′−y|) has a global minimizer at x,

we arrive at the Euler–Lagrange equations

2τ(1−2τξt(y)) gs(x) + 2 cosπ/2(|x−y|) sin(x−y) = 0

Since we can assume |x−y| < π/2 we obtain

x− y = −arctan
( τgs(x)

1+2τξs(x)

)
, (4.49)

which characterizes y uniquely and establishes (4.43).

The case t > s follows by the same arguments.

Assertion (5). This assertion is an immediate consequence of (4.43) and (4.42).

Assertion (6). The claims are simple consequences of the identity (4.15) and the definition of qs→t of
(4.44).

Assertion (7). The final assertion follows by (4.19) (and the corresponding (4.34)).
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Remark 4.4 (Strongly reduced pairs) It is worth noticing that if inf ξ0 > −1
2

and sup ξ̄1 <
1
2
, then

the sets Ξ±
t in (4.41) are empty and many properties of ξt, Ts→t and qs→t become considerably

simpler. This situation is, e.g., the case of the solution induced by a strongly reduced pair with compact
support, see Theorem 3.6.

We close this subsection by giving a small example for ξt and ξ̄t and their contact set Ξt derived from
an optimal pair (ξ0, ξ̄1) for the transport between two Dirac measures.

Example 4.5 (The contact set for two Dirac measures) For points z0, z1 ∈ Rd and r0, r1 > 0 we
consider the Dirac measures µj = r2j δzj . We have

HK2(µ0, µ1) = r20 + r21 − 2r0r1 cosπ/2(ϱ) with ϱ = |z1−z0|,

and all geodesic curves are known, see [LMS16, Sec. 5.2]. For ϱ < π/2 we have a unique geodesic
µt = r(t)2δz(t) defined by transport, and for ϱ > π/2 the unique geodesic µt = (1−t)2r20δz0 +
t2r21δz1 consists of growth (annihilation and decay) only. For ϱ = π/2 there is an infinite-dimensional
convex set of geodesics, and we will see that this property is also reflected by a larger contact set.

Using the simple one-point supports of µj it is easy to calculate the optimal potentials and the transport
plan η in Theorem 2.14(ii). We obtain

s0 := σ0(z0) =
r1
r0

cosπ/2(ϱ), s1 := σ1(z1) =
r0
r1

cosπ/2(ϱ), η = r0r1 cosπ/2(ϱ) δ(z0,z1).

Thus, we will distinguish the case cosπ/2(ϱ) > 0 and cosπ/2(ϱ) = 0.

Case ϱ < π/2: By (2.44) the optimal pair (ξ0, ξ̄1) reads

ξ0(x) =

{
s0−1
2

for x = z0,

+∞ for x ̸= z0;
and ξ1(x) =

{
1−s1
2

for x = z1,

−∞ for x ̸= z1.

From these identities, we obtain the forward and backward solutions ξt = Ptξ0 and ξ̄t = R1−t ξ̄1:

ξt(x) =
1−t+ts0 − cos2π/2(|x−z0|)

2 t (1−t+ts0)
and ξ̄t(x) =

cos2π/2(|x−z1|)− t−(1−t)s1
2 (1−t) (t+(1−t)s1)

. (4.50)

The following optimality conditions can be checked by direct computation:

(a) ξ0 ≥ ξ̄0 and ξ1 ≥ ξ̄1 on Rd

(b) ξ0 = ξ̄0 µ0-a.e. and ξ1 = ξ̄1 µ1-a.e.

As ξ0(x) = +∞ for x ̸= z0 and ξ1(x) = −∞ for x ̸= z1 statement (a) follows from (b). For (b)
observe

ξ̄0(z0) =
cos2 ϱ− s1

2s1
=

cos2 ϱ− (r0/r1) cos ϱ

2(r0/r1) cos ϱ
=

1

2

(r1
r0

cos ϱ− 1
)
=
s0−1

2
= ξ0(z0).

Similarly, ξ1(z1) = ξ̄1(z1) follows, which provides a first result on the contact sets Ξt :=
{
x ∈

Rd
∣∣ ξt(x) = ξ̄t(x)

}
, namely Ξ0 = {z0} and Ξ1 = {z1}.

The general theory in Theorem 4.3(i) guarantees ξt ≥ ξ̄t. A lengthy computation shows that Ξt is a
singleton also for t ∈ (0, 1), i.e. Ξt = {a(t)} from µt = r(t)2δz(t) and Ξ± = ∅. We refer to Figure
4.5, where x 7→ (ξt(x), ξ̄t(t)) is plotted.
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t = 0.15
x

z0 z1
ξ̄t

ξt

t = 0.35
x

z0 z1

ξ̄t

ξt

t = 0.55
x

z0 z1 ξ̄t

ξt

Figure 4.1: For the case ϱ =
|z1−z0| = 0.9 < π/2 the func-
tions ξt(x) (red) and ξ̄t(x) (blue) from
(4.50) are displayed for the different
times t = 0.15, 0.35, and 0.55 (with
parameter r1/r0 = 2). We always
have ξt(x) ≥ ξ̄t(x) with equality
at the one-point contact set Ξt =
{z(t)}, where z(t) = T0→t(z0)
moves continuously from z0 to z1.

Case ϱ ≥ π/2: Now we have s0 = s1 = 0 and ξt and ξ̄t simplify accordingly:

ξt(x) =
1− t− cos2π/2(|x−z0|)

2 t (1−t)
and ξ̄t(x) =

cos2π/2(|x−z1|)− t

2 t (1−t)
. (4.51)

The contact sets are easily found depending on ϱ = π/2 or ϱ > π/2, namely

ϱ > π/2 : Ξt = Ξ− ∪ Ξ+
t with Ξ− = {z0} and Ξ+

t = {z1},
ϱ = π/2 : Ξt = [z0, z1] and Ξ− = {z0} and Ξ+ = {z1},

where [z0, z1] denotes the segment
{
(1−θ)z0+θz1

∣∣ θ ∈ [0, 1]
}

, see Figure 4.2.

The interesting fact that for ϱ = |z1−z0| = π/2 the contact set Ξt is constant and consists of a full
segment reflects the observation in [LMS16, Sec. 5.2] that µ0 and µ1 can be connected by geodesics
satisfying sppt(µt) = [z0, z1] for all t ∈ [0, 1].

4.3 Geodesic flow and characteristics

Finally, we study the differentiability of gs = ∇ξs and Tt→s on Ξs. Let us denote by Ξ̃t the subset of
density points of the contact set Ξt, which is closed by (4.39):

x ∈ Ξ̃t ⇔ lim
ϱ↓0

Ld(Ξt ∩Bϱ(x))

Ld(Bϱ(x))
= 1. (4.52)
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|z1−z0| = π/2

t = 0.35
x

z0 z1

ξ̄t

ξt

|z1−z0| = 2.5

t = 0.35
x

z0 z1

ξ̄t

ξt

Figure 4.2: For ϱ = |z1−z0| ≥
π/2 the contact set Ξt for the func-
tions ξt(x) (red) and ξ̄t(x) (blue) from
(4.51) is no longer a singleton. For
ϱ = π/2 (upper figure) we obtain
Ξt = [z0, z1]. For ϱ > π/2 (lower
figure), we have Ξt = Ξ+

t ∪ Ξ− with
Ξ−
t = {z0} and Ξ+

t = {z1}.

Notice that Ξ̃t is just the set of Lebesgue points of the characteristic functions of Ξt, so that [AFP00]
Ld(Ξt \ Ξ̃t) = 0. By [Buc92, Thm. 1], the family of sets (Ξ̃t)t∈(0,1) is invariant with respect to the

action of the bi-Lipschitz maps Ts→t, i.e., Ts→t(Ξ̃s) = Ξ̃t for every s, t ∈ (0, 1).

Given a locally Lipschitz function F : Ξt → Rd and x ∈ Ξ̃t, we say that F is differentiable at x if there
exists a matrix A = DF (x) ∈ Rd×d such that

|F (y)− F (x)− A(y − x)| = o(|y − x|) as y → x, y ∈ Ξt. (4.53)

Since x belongs to the set Ξ̃t of density points of Ξt, the matrix A is unique and every (locally) Lipschitz
extension of F is differentiable at x with the same differential A (e.g. one can argue as in the proof of
[AFP00, Thm. 2.14]).

We call domt(DF ) the set of differentiability points x ∈ Ξ̃t of F . If F is locally Lipschitz in Ξt,
considering an arbitrary Lipschitz extension of F and applying Rademacher’s theorem, we know that
Ld(Ξt \ domt(DF )) = 0. We will use the simple chain-rule property that if y = F (x) is a density
point of F (Ξt) and H : F (Ξt) → Rk is differentiable at y, then

D(H ◦ F )(x) = DH(F (x)) ·DF (x). (4.54)

In the proof of the following lemma we will denote by ∂ξs the Fréchet subdifferential of ξs, which
coincides with ∇ξs whenever ξs is differentiable, in particular in x ∈ Ξs.

Lemma 4.6 Let s ∈ (0, 1) and let x ∈ Ξ̃s be a density point of Ξs where gs = ∇ξs is differentiable
in the sense of (4.53) with p = gs(x) and A = D∇ξs(x). Then

A = D∇ξs(x) is symmetric, (4.55a)

sup
z∈∂ξs(y)

|z − p− A(y−x)| = o (|y−x|) as y → x, (4.55b)

ξs(y)− ξs(x)− ⟨p, y−x⟩ − 1

2
⟨A(y−x), y−x⟩ = o (|y−x|2) as y → x, (4.55c)

Analogous results hold for ξ̄s. We will denote D∇ξs by D2ξs.
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Notice that the points y in the limits in (4.55b) and (4.55c) are not restricted to Ξs.

Proof. We adapt some ideas of [BCP96, AlA99] to our setting, and we consider the case of ξ̄s (to deal
with a semi-convex function, instead of semi-concave). We will assume x = 0 and will shortly write
ξ̄ and Ξ for ξ̄s and Ξs omitting the explicit dependence on the parameter s. For h > 0 we define the
blowup set Ξh := h−1Ξ. Up to an addition of a quadratic term, it is also not restrictive to assume that
ξ̄ is convex.

For h > 0 we set ωh(y) :=
1
h2

(
ξ̄(hy) − ξ̄(x) − h⟨p, y⟩

)
so that ωh is a convex and nonnegative

function. By (4.40) there exists a positive constant C such that

0 ≤ ωh(y) ≤ C|y|2 for every y ∈ Ξh. (4.56)

Since x = 0 is a density point of Ξ, Ld(Br(0) \ Ξh) → 0 as h ↓ 0 so that every point of z ∈ Br(0)
is a limit of a sequence in zh ∈ Ξh ∩ Br(0). Therefore, for h sufficiently small we can find points
yh,i ∈ Ξh ∩ B4d(0), i = 1, · · · , 2d, such that B2(0) ⊂ conv({ yh,i | i = 1, · · · , 2d }). For this
it is sufficient to approximate the (rescaled) elements of the canonical basis ±ei, i = 1, · · · , d. If
y ∈ B2(0) we then find coefficients αh,i ≥ 0,

∑
i αh,i = 1 such that

ωh(y) ≤
∑
i

αh,iωh(yh,i) ≤ C
∑
i

αh,i|yh,i|2 ≤ 2dC

so that ωh is uniformly bounded in B2(0) and therefore is also uniformly Lipschitz in B1(0). Every
infinitesimal sequence hn ↓ 0 has a subsequencem 7→ hn(m) such that ωhn(m)

is uniformly convergent

to a nonnegative, convex Lipschitz function ω : B1(0) → R. We want to show that any limit point ω
coincides with the quadratic function induced by the differential A, namely ω(y) = ωA(y) =

1
2
⟨Ay, y⟩

Let ω be the uniform limit of ωh along a subsequence hn ↓ 0. If yn ∈ Ξhn ∩ B1(0) is converging to
y ∈ B1(0) we know that any limit point of pn = ∇ωhn(yn) belongs to ∂ω(y). On the other hand,
pn = 1

hn
(∇ξ̄(hnyn)−p) = Ayn+o(1) thanks to the differentiability assumption, so that Ay ∈ ∂ω(y).

Since we can approximate every point of B1(0) we conclude that Ay ∈ ∂ω(y) for every y ∈ B1(0).
On the other hand, ω is Lipschitz, so that it is differentiable a.e. in B1(0) with ∇ω(y) = Ay and
therefore the distributional differential of ∇ω coincides with A. We conclude that A is symmetric and
ω(y) = 1

2
⟨Ay, y⟩. The fact that ωh uniformly converges to ω eventually yields (4.55b) and (4.55c).

We now use the second-order differentiability of ξs to derive differentiability of Ts→t by using the formula
(4.43) with gs(x) = ∇ξs(x). For s ∈ (0, 1) we define

Ds = doms(D∇ξs)) ∩ Ξ̃s = doms(D
2ξs) ∩ Ξ̃s. (4.57)

As we already observed, since gs is Lipschitz on Ξs, Ld(Ξs \Ds) = 0 for every s ∈ (0, 1).

For t ∈ (0, 1) and τ = t−s we also have 1+2τξs ≥ (1−t)/(1−s) > 0 so that

x 7→ τ

1+2τξs(x)
∇ξs(x) = ∇ϕs,t(x) with ϕs,t(x) =

1

2
log
(
1+2τξs(x)

)
.

is again Lipschitz on Ξs. Thus, Lemma 4.6 can be applied and ϕs,t is differentiable in the sense of
(4.53) on Ds. Finally, we exploit the explicit representation of Ts→t via (4.43), namely for all x ∈ Ξs we
have

Ts→t(x) = x+ arctan
( τ∇ξs(x)
1+2τξs(x)

)
= x+ arctan

(
∇ϕs,t(x)

)
. (4.58)

Now the chain rule (4.54) guarantees the differentiability of Ts→t on the set Ds:
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Lemma 4.7 (Differentiability of T ) For all s, t ∈ (0, 1) the mapping Ts→t is differentiable on Ds,
and we have

DTs→t(x) = T
(
t−s, ξs(x),∇ξs(x),D2ξs(x)

)
with

T(τ, ξ, g,A) := I+
(
D2L1(z)

)−1∣∣z=arctan(
τg

1+2τξ
)

( τ A

1+2τξ
− 2τ 2 g⊗g

(1+2τξ)2

)
.

(4.59a)

Ts→t(Ds) = Dt and DTt→s(Ts→t(x))DTs→t(x) = I for x ∈ Ds. (4.59b)

For every t0, t1 ∈ (0, 1), t2 ∈ [0, 1] we also have

DTt1→t2(Tt0→t1(x))DTt0→t1(x) = DTt0→t2(x) for x ∈ Dt0 . (4.59c)

Proof. Recall τ = t−s, then the explicit formula (4.59a) follows from differentiating∇L1

(
x−Ts→t(x)

)
=

− τ
1+2τξs

∇ξs. Since T−1
s→t = Tt→s there exists a constant L such that

L−1|x−x′| ≤ |Ts→t(x)− Ts→t(x
′)| ≤ L|x−x′| for every x, x′ ∈ Ξs. (4.60)

If x ∈ Ds and A = DTs→t(x), choosing ε > 0 we can find ϱ > 0 such that

|Ts→t(x
′)− Ts→t(x)− A(x′−x)| ≤ ε|x′−x| for every x′ ∈ Ξt ∩Bϱ(x), (4.61)

so that choosing ε < 1
2L

and x′ = x+ v we get

|Av| ≥ |Ts→t(x+v)− Ts→t(x)| − ε|v| ≥ 1

2L
|v| for every v ∈ Bϱ(0) ∩ (Ξt − x)

Using the fact that 0 is a density point of Ξt − x we conclude that A is invertible with |A−1| ≤ 2L. For
every y′ ∈ Ξt with L|y′−y| < ϱ and x′ = Tt→s(y

′), we get |x′−x| < ϱ and (4.61) yields

|Tt→s(y
′)− Tt→s(y)− A−1(y′−y)| =

∣∣A−1
(
A(x′−x)− Ts→t(x

′) + Ts→t(x)
)∣∣

≤ 2Lε|x′−x| ≤ 2L2ε|y′−y|

showing that y ∈ Dt and A−1 = DTt→s(y). Hence, (4.59b) is established.

Equation (4.59c) then follows by the concatenation property (4.45).

The explicit formula (4.59a) shows that DTs→t is the product of the positive matrix D2L1(z)
−1 and a

symmetric matrix, hence it is always real diagonalizable. The following result shows that the determinant
and hence all eigenvalues stay positive for s, t ∈ (0, 1). In fact, we now derive differential equations
with respect to t ∈ (0, 1) for the transport-growth pairs (Ts→t(x), qs→t(x)) ∈ Rd×(0,+∞) as well
as for DTs→t(x) ∈ Rd×d and detDTs→t(x). Recall that t 7→ (Ts→t(x), qs→t(x)) is analytic for
t ∈ (0, 1) by Theorem 4.3(5) and (6).

The following relations will be crucial to derive the curvature estimate needed for our main result on
geodesic HK-convexity.

Theorem 4.8 (The characteristic system on the contact set Ξs) We fix s ∈ (0, 1), x ∈ Ξs, and
y ∈ Ds (cf. (4.57)) and define the maps

T (t) := Ts→t(x), q(t) := qs→t(x), B(t) := DTs→t(y), and δ(t) := detB(t).
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Then, we have the initial conditions T (s) = x, q(s) = 1, B(s) = I, and δ(s) = 1, and for t ∈ (0, 1)
the following differential equations are satisfied:

Ṫ (t) = ∇ξt(T (t)) and T̈ (t) = −4ξt(T (t))∇ξt(T (t)), (4.62a)

q̇(t) = 2ξt(T (t)) q(t) and q̈(t) = |∇ξt(T (t))|2 q(t), (4.62b)

Ḃ(t) = D2ξt(T (t))B(t) and B̈(t) = −4
(
∇ξt⊗∇ξt + ξtD

2ξt

)
◦T (t) · B(t), (4.62c)

δ̇(t) = ∆ξt(T (t)) δ(t),
δ̈(t)

δ(t)
=
(
(∆ξt)

2−|D2ξt|2−4|∇ξt|2−4ξt∆ξt

)
◦T (t), (4.62d)

where ∆ξt(z) = tr
(
D2ξt(z)

)
and |D2ξt(z)|2 =

∑
i,j

(
∂xi
∂xj

ξt(z)
)2

.

Proof. We use (4.45) and the Taylor expansion

arctan
( hg

1+2hξ

)
= hg − 2h2ξg +O(h3) as h→ 0.

Setting y = T (t) = Ts→t(x) and using the fact that y ∈ Ξt, (4.58) yields

Tt→t+h(y) = y + h∇ξt(y)− 2h2ξt(y)∇ξt(y) +O(|h|3) as h→ 0.

With the composition rule (4.45) we have Ts→t+h(x) = Tt→t+h(y) and compute

Ṫ (t) = lim
h→0

Ts→t+h(x)− Ts→t(x)

h
= lim

h→0

Tt→t+h(y)− y

h
= ∇ξt(y).

This identity yields the first equation in (4.62a). For the second relation in (4.62a) we use

T̈ (t) = lim
h→0

Ts→t+h(x)− 2Ts→t(x) + Ts→t−h(x)

h2

= lim
h→0

Tt→t+h(y)− 2y + Tt→t−h(y)

h2
= −4ξt(y)∇ξt(y).

The relations (4.62b) for q(t) = qs→t follow similarly, using the scalar product rule for qs→t in (4.45)
and by taking the square root of (4.44), namely

qt→t+h(y) = 1 + 2hξt(y) +
h2

2
|∇ξt(y)|2 + o(h2) as h→ 0.

To show that B(t) satisfies (4.62c), we exploit the matrix product rule (4.59c) and expand DTt→t+h(y)
in (4.59a) to obtain

DTt→t+h(y) = I+ hD2ξt − 2h2
(
∇ξt⊗∇ξt + ξtD

2ξt

)
+ o(h2) as h→ 0. (4.63)

For this note that y − Tt→t+h(y) = O(|h|) so that D2L1

(
y−Tt→t+h(y)

)
= I + O(|h|2) as L1 is

even. Thus, (4.62c) follows as in the previous two cases.

For the determinant δ(t)we again have a scalar product rule, and it suffices to expand det(DTt→t+h(x))
at h = 0. For this we can use the classical expansion det(I+hA) = 1 + h trA + 1

2
h2
(
(trA)2 −

tr(A2)
)
+O(h3), and obtain

detDTt→t+h = 1 + h∆ξt +
1

2
h2
(
(∆ξt)

2 − |D2ξt|2 − 4|∇ξt|2 − 4ξ∆ξt

)
+ o(h2). (4.64)
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As before this shows (4.62d), and the theorem is proved.

In this section, we have studied the forward solutions t 7→ ξt for t ∈ (0, 1) and its contact sets Ξt

with a corresponding backward solution ξ̄t. We obtained differentiability properties in these sets or
in the slightly smaller sets Dt and derived transport relations for important quantities such as qs→t

and δs(t) = detDTs→t(x). In the following section, we still have to show that the contact sets Ξt are
sufficiently big, if we define ξt = Ptξ0 and ξ̄t = R1−tξ1 for an optimal pair (ξ0, ξ1). This will be done
in Theorem 5.1.

5 Geodesic curves

In this section, we improve the characterization of Hellinger–Kantorovich geodesic curves as discussed
already in [LMS18, Sec. 8.6]. More precisely, we consider constant-speed geodesics µ : [0, 1] →
M(Rd) that satisfy

∀ s, t ∈ [0, 1] : HK(µ(s), µ(t)) = |s−t|HK(µ0, µ1).

We first show the optimality of potentials ξt and ξ̄t obtained from the forward or backward Hamilton–
Jacobi equation in Theorem 5.1. With this, we are able to show in Theorem 5.2 that for subparts
(s, t) ⊂ [0, 1] with τ = t−s < 1 the corresponding LET problem has a unique solution in Monge form,
which implies that (M(Rd),HK) has the strong non-branching property. Finally, in Theorem 5.4 and
Corollary 5.5 we provide restrictions and splittings of geodesic curves needed for the main theorem in
Section 7.

5.1 Geodesics and Hamilton–Jacobi equation

The next result clarifies the connection with the forward and backward Hopf–Lax flows ξt and ξ̄t studied
in Theorem 4.3 and the importance of the contact set Ξt defined in (4.39) (see also [LMS18, Thm. 8.20]
and [Vil09, Chap. 7] for a similar result in the framework of Optimal Transport and displacement
interpolation). We emphasize that despite the non-uniqueness of the geodesics (µt)t∈[0,1] (see [LMS16,
Sec. 5.2]) in the following result, ξt and ξ̄t only depend on µ0 and µ1 and the optimal potentials φ0 and
φ1.

The result brings together the results of Sections 3 and 4 by starting with an optimal pair (φ0, φ1)
from Section 3 and considering the corresponding solutions ξt and ξ̄t of the forward and backward
Hamilton–Jacobi equation starting with ξ0 = Ǧ1(φ0) and ξ̄1 = G1(φ1), respectively. First, we observe
that “intermediate” pairs (ξs, ξt) or (ξ̄s, ξ̄t) are optimal for connecting the intermediate points µs and
µt on an arbitrary geodesic connecting µ0 and µ1. Second, we observe that certain results obtained in
Section 4 for s, t ∈ (0, 1) also hold in the limit points s, t ∈ {0, 1}. Finally, we show that the contact
set Ξt is large enough in the sense that it contains supp(µt) (see Example 4.5 for some instructive
case with ϱ = π/2).

Theorem 5.1 For µ0, µ1 ∈ M(Rd) consider a tight optimal pair (φ0, φ1) of (lower,upper) semi-
continuous potentials as in Theorem 3.3. With ξ0 := Ǧ1(φ0) =

1
2
(e2φ0 − 1) and ξ̄1 := G1(φ1) =

1
2
(1−e−2φ1) we define ξt = Ptξ0 and ξ̄t = R1−t ξ̄1 as in (4.30) and the contact sets Ξt = {ξt = ξ̄t}

as in (4.39). Finally, consider an arbitrary geodesic (µt)t∈[0,1] connecting µ0 to µ1. Then, the following
holds:
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(1) For all s, t ∈ [0, 1] with s < t both pairs (ξs, ξt) and (ξ̄s, ξ̄t) are optimal for (2.40) and (2.41) for
connecting µs to µt, viz.

1

2(t−s)
HK2(µs, µt) =

∫
ξtdµt −

∫
ξsdµs =

∫
ξ̄tdµt −

∫
ξ̄sdµs (5.1)

(2) St = supp(µt) ⊂ Ξt for every t ∈ [0, 1].

Proof. Assertion (1). It is sufficient to consider the forward flow Pt . Fixing

t ∈ (0, 1) we have

1

2t
HK2(µ0, µt) ≥

∫
ξtdµt −

∫
ξ0dµ0 and

1

2(1−t)
HK2(µt, µ1) ≥

∫
ξ1dµ1 −

∫
ξtdµt. (5.2)

On the other hand, the geodesic property and the optimality of (ξ0, ξ1) yield∫
ξ1dµ1 −

∫
ξ0dµ0 =

1

2
HK2(µ0, µ1) =

1

2t
HK2(µ0, µt) +

1

2(1−t)
HK2(µt, µ1)

showing that the inequalities in (5.2) are in fact equalities, in particular (5.1) with s = 0. For s > 0 we
still get (5.1) since 1

2(t−s)
HK2(µs, µt) =

1
2t
HK2(µ0, µt)− 1

2s
HK2(µ0, µs) if 0 < s < t ≤ 1.

Assertion (2). Equation (5.1) for s = 0 yields
∫
(ξt − ξ̄t)dµt = 0 for all t ∈ (0, 1), so that ξt ≤ ξ̄t and

the continuity of ξt, ξ̄t yield ξt = ξ̄t on St = suppµt. The cases t = 0 and 1 follow by the relations
between ξi and φi and the fact that φ0 = φ�L1

1 , φ1 = φ�L1
0 .

Note that the inclusion St = supp(µt) ⊂ Ξt is in general a strict inclusion. This can be seen for the
case |z1−z0| = π/2 in Example 4.5, where Ξt = [z0, z1], however, there exists a pure Hellinger
geodesic with supp(µt) = {z0, z1} for t ∈ (0, 1).

We can now exploit all the regularity features of the maps Ts→t and qs→t on the contact set Ξt (cf.
Theorem 4.3). A first important consequence is that, given an HK geodesic (µt)t∈[0,1] and s ∈ (0, 1),
the HK problem between µs and µt for any t ∈ [0, 1] has only one solution, which can be expressed in
Monge form (see [AGS08, Lem. 7.2.1] for the corresponding properties for the L2-Wasserstein distance
in Rd).

Theorem 5.2 (Regularizing effect along geodesics) Under the assumptions of Theorem 5.1, if s ∈
(0, 1) and t ∈ [0, 1], then the transport-growth pair (Ts→t, qs→t) of Theorem 4.3 is the unique solution
of the Monge formulation (2.21) of the Entropy-Transport problem between µs and µt. In particular, the
optimal Entropy-Transport problem between µs and µ0 or between µs and µ1 has a unique solution,
and this solution is in Monge form.

Proof. Let us consider the case 0 < s < t ≤ 1, τ = t− s < t. By Theorem 5.1, the pair (ξ̄s, ξ̄t) is
optimal for (µs, µt) and supp(µs) ⊂ Ξs. Using the transformations

φ0 :=
1

2τ
log(1+2τ ξ̄s) and φτ := − 1

2τ
log(1−2τ ξ̄t), (5.3)

we see that (φ0, φτ ) is a pair of potentials satisfying the assumptions of Theorem 3.3(2). Since
1− 2τξt ≥ 1− τ/t > 0 we deduce that φτ is bounded from above, so that µ′′

t = 0 thanks to (3.26)
(where the measures µ′

t and µ′′
t are defined as in (2.13)).
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Moreover, we know that µ′
s is concentrated on {φ0 > −∞}; since it is also concentrated on Ξs we

deduce that µ′
s is concentrated on D′

0 = dom(∇φ0), so that we can apply Corollary 3.5, recalling the
expression of T , q given by (3.34).

The above theorem allows us to deduce the fact that (M(Rd),HK) has a strong non-branching property.
It is shown in [LMS16, Sec. 5.2] that the set of geodesics connecting two Dirac measures δy0 and δy1 is
very large if |y1−y0| = π/2: it is convex but does not lie in a finite-dimensional space. The following
result shows that all these geodesics are mutually disjoint except for the two endpoints µ0 and µ1.

Corollary 5.3 (Strong non-branching) If for some s ∈ (0, 1) we have HK(µ0, µs) = sHK(µ0, µ1)
and HK(µs, µ1) = (1−s)HK(µ0, µ1), then there exists a unique geodesic curve t 7→ µ(t) such that
µ(0) = µ0, µ(s) = µs, and µ(1) = µ1.

The next result shows that from a given geodesic we may construct new geodesics by multiplying the
measures µt by a suitably transported function. This will be useful in the proof of the main Theorem 7.2.

Theorem 5.4 (Restriction of geodesics) Let (µt)t∈[0,1] be an HK geodesic. For a given s ∈ (0, 1)
let νs ∈ M(Rd) with supp(νs) ⊂ supp(µs). Then the curve [0, 1] ∋ t 7→ νt := (Ts→t, qs→t)⋆νs is
also an HK geodesic. If in addition νs = ϱsµs for some Borel function ϱs : supp(µs) → [0,+∞], then
ν ′t = ϱtµt with ϱt(y) = ϱs(Tt→s(y)) for every t ∈ (0, 1).

Proof. We keep the same notation of Theorem 5.1, let 0 < t1 < s < t2 < 1, and set τ1 := s− t1,
τ2 := t2 − s, and τ = τ1+τ2. We clearly have

1

2τ
HK2(νt2 , νt1) ≥

∫
ξt2 dνt2 −

∫
ξt1 dνt1

=
(∫

ξt2 dνt2 −
∫
ξsdνs

)
+
(∫

ξsdνs −
∫
ξt1 dνt1

)
The conclusion then follows, if we show

∫
ξt2 dνt2 −

∫
ξs dνs ≥ 1

2τ2
HK2(νt2 , νs) and

∫
ξs dνs −∫

ξt1 dνt1 ≥ 1
2τ2

HK2(νs, νt1). We check the first inequality, the second follows similarly.

Define q2 := qs→t2 and T2 := Ts→t2 . Using the fact that (i) νt2 = (T2, q2)⋆νs and (ii) identity (4.44)
we obtain∫

(1−2τ2ξt2)dνt2
(i)
=

∫ (
1−2τ2ξt2

(
Ts→t2(x)

))
q2s→t2

(x)dνs(x)
(ii)
=

∫
(1+2τ2ξs)dνs.

Combining (4.43) and (4.44), we arrive at∫ (
1− 2τξt2

)
dνt2 =

∫ (
1 + 2τ2ξs

)
dνs =

∫
q2 cos(|x−T2(x)|)dνs. (5.4)

With this we find

HK2(νt2 , νs)
(2.17)
≤
∫ (

q22 + 1− 2q2 cos(|x−T2(x)|
)
dνs

(5.4)
= νt2(Rd) + νs(Rd)−

∫
(1−2τξt2)dνt2 −

∫
(1+2τ2ξs)dνs

= 2τ
(∫

ξt2 dνt2 −
∫
ξsdνs

)
.
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Hence, we have shown 1
2τ
HK2(νt2 , νt1) =

∫
ξt2 dνt2 −

∫
ξs dνs, which implies that (νt)t∈(0,1) is a

geodesic as well.

We can then pass to the limits t1 ↓ 0 and t2 ↑ 1 as follows. Notice that the curve t 7→ νt, t ∈ (0, 1), is
converging in (M(Rd),HK) to a limit ν0 and ν1 for t ↓ 0 and t ↑ 1, since (νt) is a geodesic. Moreover,
for every ζ ∈ Cb(Rd) we can pass to the limit t ↑ 1 in∫

ζ dνt =

∫
ζ(Ts→t(x))q

2
s→t(x)dνs(x), (5.5)

since limt↑1 Ts→t(x) = Ts→1(x) and limt↑1 qs→t(x) = qs→1(x) and q is uniformly bounded. A
similar argument holds for the case t ↓ 0.

In order to check the identity concerning the density ϱ′t of νt, we use (5.5) and find∫
ζ dνt =

∫
ζ(Ts→t(x))q

2
s→t(x)dνs =

∫
ζ(Ts→t(x))q

2
s→t(x)ϱs(x)dµs

=

∫
ζ(Ts→t(x))q

2
s→t(x)ϱt(Ts→t(x))dµs(x) =

∫
ζ(y)ϱt(y)dµt(y).

The case t ∈ [0, s] is analogous.

The next result provides the fundamental formula for the representation of densities along geodesics.
Generalizing the celebrated formulas for the Kantorovich–Wasserstein geodesics, the densities are
again obtained by transport along geodesics, but now with non-constant speed and an additional
growth factor as(t, x) = q2s→t(x) to account for the annihilation and creation of mass. Recall that
Ds = dom(D2ξs) ⊂ Ξs has full Lebesgue measure in Ξs, i.e. Ld(Ξs \Ds) = 0.

Corollary 5.5 (Representation of densities along geodesics) For µ0, µ1 ∈ M(Rd) consider a
geodesic (µt)t∈[0,1] connecting µ0 to µ1. Assume that at least one of the following properties holds:

(a) there exists s ∈ (0, 1) such that µs = csL
d ≪ Ld;

(b) µ0 = c0L
d ≪ Ld and µ′′

1 ≪ Ld.

Then, we have

(1) µt ≪ Ld for every t ∈ (0, 1), viz. µt = c(t, ·)Ld.

(2) For every s ∈ (0, 1) the density c(t, ·) can be expressed via the formula

c(t, y)
∣∣
y=Ts→t(x)

= c(s, x)
αs(t, x)

δs(t, x)
for every x ∈ Ds, t ∈ (0, 1), (5.6a)

with Ds = doms(D∇ξs)) = doms(D
2ξs) (cf. (4.57)) and

αs(t, x) :=
(
1 + 2(t−s)ξs(x)

)2
+ (t−s)2|∇ξs(x)|2, δs(t, x) := detDTs→t(x). (5.6b)

Moreover, we have D2ξs(x) = 0 and δs(t, x) = 1 for Ld-a.e.x ∈ Ξ0
s ⊃ Ξ±; in particular

c(t, x) =
t2

s2
c(s, x) for x ∈ Ξ+ and c(t, x) =

(1−t)2

(1−s)2
c(s, x) for x ∈ Ξ−. (5.7)
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(3) If µ0 ≪ Ld (resp.µ1 ≪ Ld) (5.6) and (5.7) hold up to t = 0 (resp. up to t = 1).

(4) If µ′′
1 = 0 the representations in (5.6) also hold for s = 0 by restricting x in D′′

0 = dom(D2φ0),
and we have the formula

DT0→t(x) = T
(
t, ξ0(x),∇ξ0(x),D2ξ0(x)

)
for every x ∈ D′′

0 , (5.8)

where T is defined in (4.59a).

Proof. Assertion (1). In the case (a) holds for s ∈ (0, 1), there exists a bi-Lipschitz map Ts,t : Ξs → Ξt

and bounded growth factors qs,t : Ξs → [a, b] with 0 < a < b <∞ such that µt = (Ts→t, qs→t)⋆µs.
In particular, for every Borel set A we have

µt(A) ≤ b2µs(T
−1
s→t(A)) = b2µs(Tt→s(A)). (5.9)

If Ld(A) = 0 then Ld(Tt→s(A)) = 0 because Tt→s is Lipschitz. Hence, using µs ≪ Ld we find
µs(Tt→s(A) = 0, such that (5.9) gives µt(A) = 0. With this we conclude µs ≪ Ld.

In the case of assumption (b), we argue as before but with µ0 = c0L
d for s = 0. Using the fact that

qt→0 is locally bounded from below and that Tt→0 is locally Lipschitz on At := Ξt \ Ξ+, we deduce
that µt At ≪ Ld. On the other hand we have µ′′

1 ≪ Ld and the restriction of Tt→1 to Ξ+ coincides
with the identity and qt→1 is bounded from below thanks to (4.44). Thus, we obtain µt ≪ Ld.

Assertion (2). The representation (5.6a) follows by Theorem 5.2 and Corollary 3.5.

Relation (5.7) can be deduced directly by Theorem 5.2. In order to prove that D2ξs = 0 µs-a.e. in Ξ± it
is sufficient to consider density points of Ξ±, since µs ≪ Ld, and to compute the differential of ∇ξs on
Ξ±, where it is constant.

Assertions (3) and (4). Both assertions follow from Corollary 3.5.

As a last application, we will also discuss the propagation of the singular part with respect to Ld, which
will be needed in the proof of the main result in Theorem 7.2.

Corollary 5.6 (Propagation of the singular part) Let µ0, µ1 ∈ M(Rd) and let (µt)t∈[0,1] be a geode-
sic connecting µ0 to µ1 and let µs = µa

s+µ
⊥
s be the decomposition of µs with respect to the Lebesgue

measure Ld at some point s ∈ (0, 1). For every t ∈ [0, 1] we set

µ̃t := (Ts→t, qs→t)⋆µ
a
s and µ̂t := (Ts→t, qs→t)⋆µ

⊥
s . (5.10)

Then, the curves (µ̃t)t∈(0,1) and (µ̂t)t∈(0,1) are HK geodesics, we have µ̂t ⊥ Ld for t ∈ [0, 1] and
µt = µ̃t + µ̂t provides the Lebesgue decomposition for t ∈ (0, 1), viz. µa

t = µ̃t and µ⊥
t = µ̂t.

Proof. Let us decompose Ξs in the disjoint union of two Borel sets A,B such that µa
s = µs A and

µ⊥
s = µs B with Ld(B) = 0. By Theorem 5.4 we clearly have µt = µ̃t + µ̂t. On the one hand,
µ̃t ≪ Ld by Corollary 5.5 for all t ∈ (0, 1). On the other hand, for all t ∈ [0, 1] the measure µ̂t

is concentrated on the set Ts→t(B) which is Ld-negligible, since Ts→t is Lipschitz. If follows that
µ̂t ⊥ Ld, so that µ̂t = µa

t and µ̂t = µ⊥
t for all t ∈ (0, 1).

The fact that (µa
t ) and (µ⊥

t ) are geodesics follows by Theorem 5.4 as well.
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5.2 Convexity of the Lebesgue density along HK-geodesics

In this subsection, we consider geodesics (µt)t∈[0,1] such that µs ≪ Ld for some, and thus for all,
s ∈ (0, 1). We fix s and introduce the functions αs, δs as in (5.6b) and the functions

γs(t, x) := α1/2
s (t, x) = qs→t(x),

ρs(t, x) := α1/2
s (t, x)δ1/ds (t, x) = qs→t(x)

(
detDTs→t(x)

)1/d
}

for x ∈ Ds. (5.11)

We now exploit the explicit differential relations for γs(t, x) = qs→t(x) and δs(t, x) = detDTs→t(x)
provided in Theorem 4.8 and derive lower estimates for γ̈s and ρ̈s. It remains unclear whether the
given choice for γs and ρs is the only possible, however it turns out that for these variables the
following curvature estimates are relatively simple and hence the final convexity calculus goes through.
For comparison, we mention that in the Kantorovich–Wasserstein case we have γKW(t) ≡ 1 and

ρKW(t) =
(
δKW(t)

)1/d
with δKW(t) = det((1−t)I+tDTKW(x)), such that ρ̈KW(t) ≤ 0 since

DTKW(x) is diagonalizable with nonnegative real eigenvalues, see [AGS08, Eqn. (9.3.12)].

Proposition 5.7 (Curvature estimates for (ρ, γ)) Let (ρs, γs) : (0, 1)×Ds → [0,∞[2 be defined
as above along a geodesic. Then, we have for all t ∈ (0, 1) the relations

γ̈s(t, x)

γs(t, x)
≥ 0 and


ρ̈s(t)

ρs(t)
≤
(
1−4

d

) γ̈s(t)
γs(t)

for d ≥ 2,

ρ̈s(t)

ρs(t)
=
(
1−4

d

) γ̈s(t)
γs(t)

for d = 1.
(5.12)

Proof. As s ∈ (0, 1) and x ∈ Ds are fixed, we will simply write ρ(t) instead of ρs(t, x) and similarly
for the other variables. Using the specific definition of ρ we obtain

ρ̈

ρ
=
γ̈

γ
+

2

d

γ̇

γ

δ̇

δ
+

1

d

δ̈

δ
+

1

d

(1
d
− 1
)( δ̇
δ

)2
.

We can now use the formulas provided in (4.62a)–(4.62d) giving γ̇ = 2ξtγ and γ̈ = |∇ξt|2γ, where ξt
and its derivatives are evaluated at y = Ts→t(x). Inserting this and (4.62d) for δ̇ and δ̈ into the above
relation for δ̈/δ we observe significant cancellations and obtain

γ̈

γ
= |∇ξt|2 and

ρ̈

ρ
=

1

d2
(
(∆ξt)

2−d|D2ξt|2
)
+
(
1− 4

d

)
|∇ξt|2. (5.13)

For d = 1 we have D2ξ = ∆ξ, while for d ≥ 2 all matrices A ∈ Rd×d satisfy d|A|2 =

d
∑d

i,j=1A
2
ij ≥ (trA)2 =

(∑d
1Aii

)2
. Thus, the curvature estimates (5.12) follow.

The above curvature estimates will be crucial in Section 7 for deriving our main result on geodesic
convexity. We remark that for d ≥ 2 they are even slightly better that the “sufficient curvature estimates”
given in (7.3) because of 1− 4/d ≤ 1− 4/d2 (with equality only for d = 1).

We finally derive a useful result concerning the convexity of the density t 7→ c(t, x) along geodesics.
This provides a direct proof of the fact, which was used in [DiC20] that the L∞-norm along geodesics
is bounded by the L∞-norm of the two endpoints. Indeed, we show more, namely that the function
t 7→ c(t,Tt(x)) is either trivially constant or it is strictly convex.
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Theorem 5.8 (Convexity of densities along geodesics)

(1) Under the assumption of Corollary 5.5, for every s ∈ (0, 1) and x ∈ Ds ∪ Ξ± the function
cs(t) = c(t,Ts→t(x)) given by (5.6a) or (5.7), respectively, is convex and positive in (0, 1); moreover,
with a possible Ld-negligible exception, it is either constant or strictly convex.

(2) If moreover µ0 ≪ Ld (resp.µ1 ≪ Ld) then for µs-a.e.x their limit as t ↓ 0 (resp. as t ↑ 1)
coincides with c0 ◦ Ts→0 (resp. c1 ◦ Ts→1).

Proof. Assertion (1). Since x ∈ Rd and s ∈ (0, 1) play no role, we drop them for notational simplicity.
We simply calculate the second derivative of the function t 7→ c(t) = γ(t)d+2cs/ρ(t)

d. If cs =
c(s, x) = 0 then c(t,Ts→t(x)) = 0 and the result is obviously true. Hence, we may assume cs > 0
and obtain after an explicit calculation

c̈ = c
(
(d+2)

γ̈

γ
− d

ρ̈

ρ
+ (d+1)(d+2)

( γ̇
γ

)2 − 2d(d+2)
γ̇

γ

ρ̇

ρ
+ d(d+1)

( ρ̇
ρ

)2)
. (5.14)

The quadratic form involving the first derivatives is positive definite, and for the terms involving the
second derivatives we can use the curvature estimates in (5.12) to obtain

c̈ ≥ c
((

(d+2)
γ̈

γ
− d
(
1− 4

d

) γ̈
γ
+ 0
)
= 6 c

γ̈

γ
.

Notice that t 7→ γ(t) is the square root of the non-negative (and strictly positive in (0, 1)) quadratic
polynomial α(·, x) given by (5.6b), so that γ′′ ≥ 0 and we conclude that c̈(t) ≥ 0 as well due to
c(t) > 0.

Moreover, if x ̸∈ Ξ0
s then |∇ξs(x)| > 0, have γ̈(t) > 0, and we deduce that c̈(t) > 0 obtaining the

strict convexity of c.

If x ∈ Ξ0
s where ∇ξs(x) = 0, we can use the representation (5.7) for c up to a Ld-negligible set.

Assertion (2). If µ0 = c0L
d ≪ Ld, then δs(0, x) > 0 for µs-a.a. x ∈ Ds thanks to the last statement

of Corollary 3.5 (which is a direct consequence of Theorem 3.3(5)) and both δs(0, x) and αs(0, x)
coincides with their limit as t ↓ 0. A further application of Corollary 5.5(3) yields the result. The case
t = 1 is completely analogous.

The above result easily provides the following statement on convexity of L∞ norms along HK-geodesics.
This generalizes to a corresponding result for the Kantorovich–Wasserstein geodesics (which might
have been known, but the authors were not able to identify a reference, see the Remark 5.10 below).

Corollary 5.9 (Convexity of the L∞ norm along geodesics) Let µ0, µ1 ∈ M(Rd) be absolutely
continuous with respect to Ld with densities ci ∈ L∞(Rd) and let (µt)t∈[0,1] be a HK geodesic
connecting µ0 to µ1. Then µt = ctL

d and ∥ct∥L∞ ≤ (1−t)∥c0∥L∞ + t∥c1∥L∞ .

Proof. The result for (M(Rd),HK) follows directly from Theorem 5.8.

Remark 5.10 Let (µW
t )t∈[0,1] be the Kantorovich–Wasserstein geodesic connection between two

probability measures µ0, µ1 ∈ P2(Rd) with µi = ciL
d and c0, c1 ∈ L∞(Rd). Similar to the previous

result, µW
t = cWt Ld is absolutely continuous w.r.t. Ld and ∥cWt ∥L∞ ≤ (1−t)∥cW0 ∥L∞ + t∥cW1 ∥L∞ .

In fact, for (P2(Rd),W2) we replace (5.6) by the simpler formula for the Kantorovich–Wasserstein
transport

cW(t,Ts→t(x)) =
cWs (x)

δs(t, x)
with δs(x) = detTW

s→t(x),
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see [AGS05, Prop. 9.3.9]. Using µ0 = c0L
d we can choose s = 0 and have TW

0→t(x) = x +
t(∇φ(x)−x) for a convex Kantorovich potential. Since for every symmetric positive semidefinite
matrix D the function t 7→ 1/ det

(
(1−t)I + tD

)
is convex, the desired result follows with the same

arguments as for Theorem 5.8.

6 Preliminary discussion of the convexity conditions

In this section, we discuss the equivalence of two formulations of the convexity conditions and give a
few examples. The proof of sufficiency and necessity of these conditions is then given in the following
Section 7.

For most parts of this section, we assume that E : [0,∞[ → R ∪ {∞} is lower semi-continuous
and convex, satisfies E(0) = 0, and is twice continuously differentiable on the interior of its domain
D(E) := { c ≥ 0 | E(c) <∞}. The following result gives a characterization of the conditions (1.25)
on NE : (ρ, γ) 7→ (ρ/γ)dE(γd+2/ρd) in terms of the derivatives of E, namely εj(c) = cjE(j)(c) for
j = 0, 1, and 2, which appear in

B(c) :=
(
ε2(c)− d−1

d

(
ε1(c)−ε0(c)

)
ε2(c)− 1

2

(
ε1(c)−ε0(c)

)
ε2(c)− 1

2

(
ε1(c)−ε0(c)

)
ε2(c) +

1
2
ε1(c)

)
. (6.1)

This characterization will then be used to derive a nontrivial monotonicity result in Proposition 6.2,
which is a crucial building block of the main geodesic convexity result.

Note that the variables ρ and γ are related to the variable c via c = c0γ
d+2/ρd.

Proposition 6.1 (Equivalent conditions on E) Let NE and B be defined in terms of E as in (1.25a)
and (6.1), respectively. Then the following conditions are equivalent:

(A) NE satisfies (1.25);

(B) in the interior of the domain D(E) we have B(c) ≥ 0 and (d−1)
(
ε1(c)−ε0(c)

)
≥ 0.

Proof. We first observe that the desired monotonicity of ρ 7→ NE(ρ, γ) for d ≥ 2 is indeed equivalent
to the condition ε1(c) ≥ ε0(c). This follows easily from the relation

∂ρNE(ρ, γ) =
dρd−1

γd
E
(γd+2

ρd
)
+
ρd

γd
E ′(γd+2

ρd
)(
−dγ

d+2

ρd+1

)
=
dρd−1

γd
(
ε0(c)− ε1(c)

)
.

It remains to establish the equivalence between the convexity of NE and the positive semi-definiteness
of B. For this we note that NE is given as a linear function of E, hence the Hessian D2NE will be a
given as a linear combination of E, E ′, and E ′′. Indeed, an explicit calculation yields

D2NE(ρ, γ) =
ρd

γd

(
d/ρ −d/γ
0 −2/γ

)⊤

B
(γd+2

ρd
)( d/ρ −d/γ

0 −2/γ

)
.

With this, we see that D2NE is positive semidefinite if and only if B is. Hence, the assertion is proved.

From the semi-definiteness of the matrix B(c), we obtain as necessary conditions the non-negativity of
the two diagonal elements which provide the McCann condition B11 = ε2− d−1

d
(ε1− ε0) ≥ 0 and the
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convexity conditions with respect to the Hellinger–Kakutani distance B22 = ε2 +
1
2
ε1 ≥ 0. Moreover,

testing B with (1,−1)⊤ reveals the additional condition(
1

−1

)
· B(c)

(
1

−1

)
≥ 0 ⇐⇒ (d+2)ε1(c)− 2ε0(c) ≥ 0. (6.2)

Proposition 6.2 (New necessary monotonicity) LetE be such that the conditions in Proposition 6.1
hold and let NE be defined via (1.25a). Then, the following three equivalent conditions hold:

(A) The function ]0,∞[ ∋ c 7→ c−2/(d+2)E(c) is non-decreasing.

(B) For all ρ, γ > 0 we have the inequality
(
1− 4

d2

)
ρ∂ρNE(ρ, γ) + γ∂γNE(ρ, γ) ≥ 0.

(C) For all ρ, γ > 0 the mapping ]0,∞[ ∋ s 7→ NE(s
1−4/d2ρ, sγ) is non-decreasing.

Proof. Expressing ∂ρNE and ∂γNE via ε0 and ε1 and using δ = (ρ/γ)d we obtain

ρ∂ρNE(ρ, γ) = −dδ(ε1−ε0) and γ∂γNE(ρ, γ) = δ
(
(d+2)ε1 − dε0

)
.

Thus, we conclude (1− 4
d2
)ρ∂ρNE(ρ, γ) + γ∂γNE(ρ, γ) = 2δ

d

(
(d+2)ε1 − 2ε0

)
, which is positive

because of (6.2). Thus, (B) is established and the monotonicity of s 7→ NE(s
1−4/d2ρ, sγ) in (C) follows

simply by differentiation.

Statement (A) follows by applying (C) for ρ = γ = 1 and choosing s = c2(d+2)/d.

The crucial monotonicity stated at the end of the above proposition means

0 ≤ c1 < c2 =⇒ E(c1) ≤
(c1
c2

)2/(d+2)
E(c2). (6.3)

It implies that if E attains a negative value it cannot be differentiable at c = 0: If E(c1) < 0 then
E(c) ≤ (c/c1)

2/(d+2)E(c1) < 0, which leads to E ′(c) ↘ −∞ for c↘ 0.

In the following examples we investigate which functions E satisfy the above conditions. The following
two results will be used in Corollary 7.3 to obtain geodesic convexity for functionals of the form
E(c) =

∫
Ω
acr dx. The third example shows that in case of the Boltzmann entropy withE(c) = c log c

the conditions do not hold and hence geodesic convexity fails.

Example 6.3 (Density function E(c) = cm) We have ε0(c) = cm, ε1(c) = mcm, and ε2(c) =
m(m−1)cm, which gives the matrix

B(c) = cm
(

(m−1)
(
m− d−1

d

)
(m−1)

(
m− 1

2

)
(m−1)

(
m− 1

2

)
m
(
m− 1

2

) )
.

The Hellinger condition B22(c) ≥ 0 holds for m ̸∈ ]0, 1
2
[, while the McCann condition B11(c) ≥ 0

holds for m ̸∈ ]d−1
d
, 1[. Moreover, for d ≥ 2 the monotonicity condition ε1 ≥ ε0 implies m ≥ 1.

Thus, the remaining cases are either m ≥ 1 or d = 1 and m ≤ 0, and it remains to check
detB(c) ≥ 0. An explicit calculation gives

detB(c) = (m−1)
(
m− 1

2

) (d+2)m− d

2d
.

Clearly, for m ≥ 1 we have detB(c) ≥ 0 for all space dimensions d ∈ N. Moreover, detB(c) < 0
for m ≤ 0.

In summary, we obtain geodesic convexity if and only if m ≥ 1.
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Example 6.4 (Density function E(c) = −cq) As in the previous example we have

B(c) = cq
(

(1−q)
(
q − d−1

d

)
(1−q)

(
q − 1

2

)
(1−q)

(
q − 1

2

)
q
(
1
2
− q
) )

.

The Hellinger condition B22(c) ≥ 0 holds for q ∈ [0, 1
2
], while the McCann condition B11(c) ≥ 0 holds

for q ∈ [d−1
d
, 1], which also implies the monotonicity ε1 ≥ ε0. With

detB(c) = (1−q)
(1
2
− q
) (d+2)q − d

2d
c2q.

we obtain the additional condition q ≥ d/(d+2) and summarize that E(c) = −cq leads to a
geodesically convex functional if and only if q ∈

[
max{d−1

d
, d
d+2

}, 1
2

]
, which has solutions only for

d = 1 and d = 2.

Example 6.5 (Boltzmann entropy) As a negative example where the geodesic convexity fails, we
consider the Boltzmann function E(c) = c log c. We compute B22(c) = ε2(c) +

1
2
ε1(c) = 3

2
c +

1
2
c log c, which shows that the necessary Hellinger condition fails. Moreover, considering the measures
µ0 = 0 and µ1 = cLd for a non-negative density c ∈ L1(Ω) we find that along the geodesic curve,
given by µ(s) = s2µ1, we have

E (µ(s)) =

∫
Ω

E(s2c)dx = s2E (µ1) + 2s2 log(s)

∫
Ω

cdx,

which is clearly not convex if
∫
Ω
cdx = µ1(Ω) > 0.

Finally, we discuss a few examples where the density function E is not smooth. Note that the con-
ditions in (1.25) form a closed cone. Moreover, as for convex functions, the supremum E : c 7→
sup{ Ẽα(c) | α ∈ A } satisfies (1.25) if all Ẽα do so.

Example 6.6 (Nonsmooth E) In applications one is also interested in cases where E is nonsmooth.
For example the case Eκ(c) = κc for c ∈ [0, c∗] and E(c) = ∞ for c > c∗ is considered in [DiC20].
Clearly, E0 satisfies our assumptions (1.25) since NE only takes the values 0 and ∞ and the value
0 is taken on the convex set γd+2 ≤ c∗ρd. Thus, Eκ generates a functional Eκ = E0 + κM that is
geodesically 2κ-convex.

A second example is given by E(c) = max{0, c2 − c}. We first observe that Ẽ1(c) = c and
Ẽ2(c) = c2 satisfy (1.25). Hence, c 7→ max{Ẽ1(c), Ẽ2(c)} = E(c) + c satisfies (1.25) as well.
Thus, we know that E generates a functional E that is at least geodesically (−2)-convex. However, we
may inspect the function c 7→ c2 − c in the region c ≥ 1 directly and find that E itself satisfies (1.25).

In practical applications, in particular for evolutionary variational inequalities as treated in [LaM22], it
is desirable to find the optimal λ for the geodesic λ-convexity. So far, we have treated the case of
geodesic 0-convexity and now return to the general case, which leads to the conditions

B(c) ≥
(

0 0
0 λc/2

)
and (d−1)

(
ε1(c)− ε0(c)

)
≥ 0.

The monotonicity condition is clearly independent of λ. The first equation still relies on the neces-
sary McCann condition B11(c) ≥ 0. If this holds with strict inequality we see that the optimal λ is
characterized by

λopt = inf
{ 2 detB(c)

cB11(c)

∣∣∣ c > 0
}
. (6.4)
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Example 6.7 (d = 1 and E(c) = c2 − c2/5) From the previous examples, we know that E2(c) = c2

andE2/5(c) = −c2/5 are both geodesically 0-convex, and we want to show that the sum is geodesically
λ-convex for λ > 0. As B is linear in E we have B(c) = c2B(2) + c2/5B(2/5) with constant matrices
B(2) and B(2/5) that are both strictly positive definite. Thus,

ℓ(c) :=
2 detB(c)
cB11(c)

> 0 for all c > 0.

Moreover, we find ℓ(c) ∼ 2c−3/5 detB(2/5)/B(2/5)
11 for c ≈ 0 and ℓ(c) ∼ 2c detB(2)/B(2)

11 for c≫ 1.
Thus, by compactness λopt = inf

{
ℓ(c)

∣∣ c > 0
}

is strictly positive.

Numerically, we find λopt ≈ 0.638 which is attained at c∗ ≈ 0.0319.

Remark 6.8 (Geodesic convexity via the Otto calculus) Following the key ideas in [OtW05, DaS08]
a formal calculus for reaction-diffusion systems was developed in [LiM13]. It uses the dynamical
formulation in Subsection 2.1.1 and the associated Onsager operator K(c)ξ = −α div(c∇ξ) + βcξ
to characterize the geodesic λ-convexity of the functional E by calculating the quadratic form M(c, ·)
(contravariant Hessian of E ):

M(c, ξ) = ⟨ξ,DV (c)K(c)ξ⟩ − 1

2
Dc⟨ξ,K(c)ξ⟩[V (c)] with V (c) = K(c)DE (c).

Then, one needs to show the estimate M(c, ξ) ≥ λ⟨ξ,K(c)ξ⟩.
Following the methods in [LiM13, Sect. 4], for c ∈ C0

c(Ω) and smooth ξ we obtain

M(c, ξ) =

∫
Ω

[
α2
((
A(c)−H(c)

)
(∆ξ)2 +H(c)

∣∣D2ξ
∣∣2)

+ αβ
(
B1(c)|∇ξ|2 +B2(c)ξ∆ξ

)
+ β2B3(c)ξ

2

]
dx,

where A(c) = ε2(c), H(u) = ε1(c)− ε0(c), B1(c) =
3

2
ε1(c)− ε0(c),

B2(c) = −2ε2(c) + ε1(c)− ε0(c), B3(c) = ε2(c) +
1

2
ε1(c).

Analyzing the condition M(c, ξ) ≥ λ⟨ξ,K(c)ξ⟩ we find the conditions

∀c ≥ 0 : (d−1)H(c) ≥ 0, B1(c) ≥
λ

β
c,

(
A(c)− d−1

d
H(c) 1

2
B2(c)

1
2
B2(c) B3(c)− λ

β
c

)
≥ 0, (6.5)

which for λ = 0 give the same conditions as B(c) ≥ 0, see Proposition 6.1. Note that the middle
estimate in (6.5) follows from the first and the third estimates because of

B1(c) =
3
2
ε1 − ε0 =

d−1
d
(ε1−ε0) + 1

2d

(
(d+2)ε2−2ε0

)
.

7 Proof of geodesic convexity of E

In this section, we finally prove the necessity and sufficiency of the conditions for geodesic convexity of
functionals E on M(Ω) in (1.25), where we now allow for a general closed and convex domain Ω ⊂ Rd.
In order to keep the arguments clear, we first restrict ourselves to absolutely continuous measures µ0
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and µ1. Thus, by Corollary 5.5 the connecting geodesic curves are also absolutely continuous, and we
can rewrite E along the latter in the form

E (µt) =

∫
Ω

E(c(t, y))dy =

∫
Ω

e(t, x)dx, where e(t, x) = δ(t, x)E
(
c∗(x)

α(t, x)

δ(t, x)

)
.

The general case will then be treated by using an approximation argument.

Under the assumption that E is twice differentiable in the interior of its domain, we show that for µ0-a.a.
x ∈ Ω the function t 7→ e(t, x) is convex. Since α(·, x) and δ(·) are analytic functions on [0, 1], we
can show convexity in this case by establishing ë(t, x) ≥ 0. For this, we can fix x ∈ Ω, drop the
dependence on x for notational convenience, and set

e(t) = δ(t)E
(
c∗
α(t)

δ(t)

)
= NE

(
ρ(t), γ(t)

)
with ρ := (c∗α)

1/2δ1/d, γ := (c∗α)
1/2, (7.1)

and NE from (1.25a). Now, the classical chain rule implies the relation

ë =
〈(ρ̇

γ̇

)
,D2NE(ρ, γ)

(
ρ̇

γ̇

)〉
+ ∂ρNE(ρ, γ)ρ̈+ ∂γNE(ρ, γ)γ̈. (7.2)

The aim is to show ë(t) ≥ 0 for all t ∈ [0, 1]. By the convexity of NE it suffices to treat the last two
terms.

For this we exploit the curvature estimates (5.12) on γ̈ and ρ̈ as well as the monotonicities in (1.25c)
and Proposition 6.2.

7.1 Usage of the curvature estimates

We first show that it is sufficient to use the curvature estimates

γ̈

γ
≥ 0 and


ρ̈

ρ
≤
(
1− 4

d2
) γ̈
γ

for d ≥ 2,

ρ̈

ρ
=
(
1− 4

d2
) γ̈
γ

for d = 1.
(7.3)

In particular, the equality condition for d = 1 is different from the inequality conditions for d ≥ 2. This
will be used to compensate for the missing monotonicity of NE in (1.25c) in the case d = 1.

Below we will see that the curvature estimates (7.3) are necessary to complete our proof. Note that
they are implied by the curvature estimates derived in Proposition 5.7. In fact, both coincide for d = 1,
while for d ≥ 2 the former are strictly weaker as the latter because of 1− 4/d < 1− 4/d2.

Proposition 7.1 (ë ≥ 0 via curvature estimates) Assume that NE satisfies (1.25) and that t 7→
(ρ(t), γ(t)) satisfies (7.3), then ë ≥ 0 in (7.2).

Proof. As the first term (involving D2NE) on the right-hand side of (7.2) is non-negative, we only have
to show that the last two terms have a non-negative sum. For this we rearrange terms as follows:

∂ρNE(ρ, γ)ρ̈+∂γNE(ρ, γ)γ̈ =
(
−ρ∂ρNE

)((
1− 4

d2
) γ̈
γ
− ρ̈

ρ

)
+
(
γ∂γNE+

(
1− 4

d2
)
ρ∂ρNE

) γ̈
γ
.
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The right-hand side is the sum of two products, both of which are non-negative. Indeed, the first product
equals 0 in the case d = 1 independently of the sign of ∂ρNE , because the second factor is 0. In the
case d ≥ 2 both factors are non-negative (using ∂ρNE ≤ 0 and the second curvature estimate in
(7.3)), so the first product is non-negative again.

In the second product both terms are non-negative by Proposition 6.2(B) and the first curvature estimate
in (7.3). Thus, ë ≥ 0 in (7.2) is proved.

7.2 The main results on geodesic λ-convexity

We are now ready to establish our main result on the geodesic convexity of functionals E given in terms
of a density E. We now make our general assumptions of E precise.

E : [0,∞[ → R ∪ {∞} is lower semi-continuous, convex,

E(0) = 0, and there exists c◦ > 0 such that E(c◦) <∞.
(7.4a)

We also want to include the case that E is not necessarily superlinear, so we introduce the recession
constant

E ′
∞ := lim

c→∞

1

c
E(c) ∈ R ∪ {∞}.

The case E ′
∞ = ∞ is the superlinear case where the functional E (µ) is always +∞, if µ has a

singular part, i.e. µ⊥ ̸= 0 in the decomposition µ = cLd + µ⊥ with µ⊥ ⊥ Ld.

We introduce a closed (convex) domain Ω ⊂ Rd, and we consider the set of measures µ with support

contained in Ω, which we identify with M(Ω). In the case that the right derivative E ′
0 := lim

c↓0

1

c
E(c) of

E at 0 is not finite, we further have to impose that Ω has finite Lebesgue measure. Therefore, we will
assume that

Ω is a closed convex set with nonempty interior and

Ω is also bounded, i.e. Ld(Ω) <∞, if E ′
0 = −∞.

(7.4b)

Thus, the functionals E are defined as follows

E (µ) =

∫
Ω

E(c(x))dx+ E ′
∞µ

⊥(Ω) for µ = cLd+µ⊥ with µ⊥ ⊥ Ld. (7.5)

It is well known that (7.4) guarantees that E is a weakly lower semi-continuous functional on M(Ω). In
particular, condition (7.4b) is necessary to guarantee that the negative part x 7→ min{E(c(x)), 0}
is integrable, because for c ∈ L1(Ω) the functions x 7→ −

√
c(x) may not lie in L1(Ω). We refer to

Example 7.4 for a case where (7.4b) can be avoided by using a confining potential.

We are now in the position to formulate our main result on the geodesic λ-convexity of integral
functionals E on the Hellinger–Kantorovich space (M(Ω),HK). The proof consists of three steps.
First, we assume that E is twice continuously differentiable in its domain. Restricting to geodesic
curves connecting absolutely continuous measures, we can use the above differentiable theory giving
ë ≥ 0. In Step 2, we generalize to possibly non-differentiable density functions E, but keep absolutely
continuous measures. For smoothing a given E, we use that whenever E solves the conditions (1.25)
and (7.4) then c 7→ E(rc) does so for each r ∈ [0, 1]. With a multiplicative convolution we construct a
smooth Eδ to which Step 1 applies. Finally, Step 3 handles the case where µ⊥

0 or µ⊥
1 are non-zero by

a standard approximation argument of general measures using absolutely continuous measures.
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Theorem 7.2 (Geodesic convexity of E ) Assume thatE : [0,∞[ → R∪{∞} and Ω ⊂ Rd satisfy
(7.4a) and (7.4b), respectively. If for a λ∗ ∈ R the function

Nλ∗,E(ρ, γ) :=
(ρ
γ

)d
E
(γd+2

ρd

)
− λ∗

2
γ2, for ρ, γ > 0,

satisfies the conditions (1.25b) and (1.25c), then the functional E defined in (7.5) is geodesically
λ∗-convex on (M(Ω),HK).

Proof. Without loss of generality, we set λ∗ = 0 throughout the proof and shortly write NE = Nλ∗,E .

Step 1: The smooth and absolutely-continuous case. We first assume that E is twice continuously
differentiable in the interior ]0, cE[ of its domain and that the measures µ0 and µ1 are absolutely
continuous with respect to Ld, i.e. µj = cjL

d for cj ∈ L1(Ω).

We fix s ∈ (0, 1) adopting the notation of Corollary 5.5. Then, the geodesic curve t 7→ µt = c(t, ·)Ld

satisfies

E (µt) =

∫
Ω

E(c(t, y))dy =

∫
Ω

E
(
cs(x)

αs(t, x)

δs(t, x)

)
δs(t, x)dx =

∫
Ω

e(t, x)dx

with e(t, x) = NE(ρ(t, x), γ(t, x)) as above. We want to show that for a.a. x ∈ Ω the function
t 7→ e(t, x) is convex.

As shown in Theorem 5.8 the functions t 7→ c̃(t, x) = c0(x)
α(t,x)
δ(t,x)

= γ(t, x)d+2/ρ(t, x)d are either

constant or strictly convex. If the function c̃(·, x) is constant then either c0(x) = 0 or (ρ(·, x), γ(·, x))
is constant. In both cases, e(·, x) is constant as well, and hence convex.

In the strictly convex case, the values of c̃(t, x) for t ∈ ]0, 1[ lie in the interior of the domain of E,
where E is twice differentiable. Hence, combining Propositions 7.1 and 5.7 shows that t 7→ e(t, x) is
convex for a.a. x ∈ Ω. Since integration over Ω maintains convexity we conclude that t 7→ E (µt) is
convex, too.

Step 2: The nonsmooth but absolutely-continuous case. We still assume µj = cjL
d, but now consider

an E that is not necessarily twice differentiable, but still satisfies (7.4). We choose a function χ ∈
C∞

c (R) satisfying χ(r) ≥ 0,
∫ −1

−2
χ(r)dr = 1, and χ(r) = 0 for r ̸∈ [−2,−1]. Now for δ ∈ ]0, 1/2[

we define the smoothings

Eδ(c) =

∫ 1

0

χδ(r)E(rc)dr, where χδ(r) =
1

δ
χ
(1
δ
(r−1)

)
.

Hence, χδ has support in [1−2δ, 1−δ]. If the closure of the domain of E is [0, cE], then Eδ is well-
defined and C∞ on ]0, cE/(1−δ)[. Moreover, for all c ∈ [0, cE] we have Eδ(c) → E(c) for δ ↘ 0.
We easily check, that Eδ still satisfies the assumption (1.25) and (7.4). Moreover, Eδ(c) can be
estimated by E(c) via

∃K > 0 ∀ δ ∈ ]0, 1/4[ ∀ c ≥ 0 : |Eδ(c)| ≤ K
(
c+ |E(c)|

)
. (7.6)

To see this, we first consider the largest interval [0, c1[ on which E is non-increasing. Then 0 =
E(0) ≥ Eδ(c) ≥ E(c) which implies (7.6) with K = 1. If c1 = ∞ then we are done. If c1 <∞, then
E starts to increase and there exists c2 ∈ [c1,∞[ with E(c) ≥ 0 for c ≥ c2. Using the construction
of Eδ, we obtain for all c ≥ 2c2 ≥ c2/(1−2δ) the lower bound Eδ(c) ≥ 0. Using (6.3) we easily get
Eδ(c) ≤ E(c).
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It remains to cover the case c ∈ [c1, 3c2]. If c1 = 0 then E(c) ≥ 0 for all c, which means c2 = 0 as
well, then (7.6) follows immediately from the above arguments. If c1 > 0, a uniform continuity argument
gives the estimate |Eδ(c)− E(c)| ≤M for c ∈ [c1, 3c2]. Then, choosing K =M/c1 provides (7.6).

With this preparation, Lebesgue’s dominated convergence theorem implies

µ = cLd with c ∈ L1(Ω) and E (µ) <∞ =⇒
∫
Ω

Eδ(c(x))dx→ E (µ) as δ ↓ 0.

Taking any constant-speed geodesic [0, 1] ∋ t 7→ µt = c(t, ·)Ld, we know by Step 1 that the curves

eδ : t 7→
∫
Ω

Eδ(c(t, x))dx

are convex. As eδ(t) → E (µt) we conclude that t 7→ E (µt) is convex on [0, 1].

Step 3: Pure growth. The curve t 7→ t2µ1 is the unique geodesic connecting µ0 = 0 and µ1. Using the
Lebesgue decomposition µ1 = c1L

d + µ⊥ we see that

t 7→ E (µt) = E (t2c1L
d) + t2E ′

∞µ
⊥,

is convex on [0,1] by Step 2 for the first term and by E ′
∞ ≥ 0. The nonnegativity of E ′

∞ =
limc→∞E(c)/c follows from (7.4a) and Proposition 6.2(A), namely for c ≥ c◦ we have

1

c
E(c) =

1

cd/(d+2)
c−2/(d+2)E(c)

(i)
≥ 1

cd/(d+2)
c−2/(d+2)
◦ E(c◦) → 0 for c→ ∞.

Step 4: The general case allowing for singular measures. Singular measures can only occur for E with
sublinear growth. Hence, we assume E ′

∞ ∈ R from now on. In particular E is finite everywhere, and
using E(c) ≤ E ′

∞c we have E (µ) ≤ E ′
∞µ(Ω).

As in Corollary 5.6, we consider an arbitrary geodesic (µt)t∈[0,1] connecting µ0 and µ1. For a fixed
s ∈ (0, 1), we decompose µs as µa

s + µ⊥
s . Then, µt = µ̃t + µ̂t splits into two geodesics with disjoint

supports and µ̃s = µa
s and µ̂s = µ⊥

s , see Corollary 5.6. Moreover, we have µ̂t ⊥ Ld and µ̃t ≪ Ld

for all t ∈ (0, 1). This implies the relation

E (µt) = E (µ̃t) + E (µ̂t) = E (µ̃t) + E ′
∞µ̂t(Ω).

Since (µ̂t)t∈[0,1] is a geodesic and the total mass functional M (µ) = µ(Ω) is convex (see (1.21))
and E ′

∞ ≥ 0, the last term t 7→ E ′
∞µ̂t(Ω) is convex. Hence, it is sufficient to check the convexity of

t 7→ E (µ̃t).

Since µ̃t ≪ Ld for all t ∈ (0, 1), the function t 7→ E (µ̃t) is convex in the open interval (0, 1) by Step
2. Hence, to show convexity on [0, 1] it is sufficient to check that

lim sup
t↓0

E (µ̃t) ≤ E (µ̃0) and lim sup
t↑1

E (µ̃t) ≤ E (µ̃1),

because HK convergence implies weak convergence and E is weakly l.s.c.

Let us focus on the limit t ↓ 0 as the limit t ↑ 1 is completely analogous. The problem is that µ̃t ≪ Ld

for t ∈ (0, 1) only, but µ̃0 may have a singular part. Hence, we forget the decomposition µt = µ̃t + µ̂t

and use a different one. Before that, we restrict to the case µ0(Ξ
+) = 0 because on Ξ+ we have pure

growth and this case is covered by Step 3.
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Now, we exploit the Lebesgue decomposition of µ0 = µa
0 + µ⊥

0 at t = 0 and consider two disjoint
Borel sets A,B ⊂ Ω \ Ξ+ such that µa

0 = µ0 A and µ⊥
0 = µ0 B. We define the corresponding

disjoints sets At := T−1
t→0(A) and Bt := T−1

t→0(B) as well as the measures νAt := µt At and
νBt := µt Bt. By Theorem 5.4, we obtain two geodesics νAt , νBt concentrated on disjoint sets giving
E (µt) = E (νAt )+E (νBt ). Since νAt ≪ Ld for every t ∈ [0, 1) we deduce that t 7→ E (νAt ) is convex
up to 0 by Step 2. Concerning E (νBt ), we use E (µ) ≤ E ′

∞µ(Ω) and find

lim sup
t↓0

E (νBt ) ≤ E ′
∞ lim sup

t↓0
νBt (Ω) = E ′

∞ν
B
0 (Ω) = E (νB0 ),

where we exploited νB0 ⊥ Ld in the last identity.

This finishes the proof of the main theorem

The following result is a direct consequence of the main result by using the results of Examples 6.3 and
6.4, respectively. In particular, this establishes the result announced in [DiC20, Thm. 2.14].

Corollary 7.3 (Power-law functionals) Assume that Ω ⊂ Rd and E : [0,∞[ → R satisfy (7.4) and
let E be defined via (7.5).

(1) If E(c) = cm with m ≥ 1, then E is geodesically convex on (M(Ω),HK).

(2) If Ld(Ω) <∞, d ∈ {1, 2}, and E(c) = −cq with d/(d+2) ≤ q ≤ 1/2, then E is geodesically
convex on (M(Ω),HK).

Example 7.4 We have seen above that the density E(c) = −
√
c produces a geodesically convex

functional in dimensions d = 1 and 2, if Ld(Ω) < ∞. The restriction of finite volume for Ω can be
dropped by using a confining potential V as follows: Let

E1/2,V (µ) =

∫
Rd

(
−
√
c(x)

)
dx+

∫
Rd

V dµ for µ = cLd + µ⊥,

where V ∈ C(Rd) satisfies for m > d and A ∈ R the lower bound V (x) ≥ a0|x|m − A on Rd.
Then it is easy to see that E1/2,V is well-defined and weakly lower semi-continuous.

Moreover, in [LMS16, Prop. 20] it was shown for a continuous V : Rd → R with inf V > −∞ that the
linear mapping µ 7→

∫
Rd V dµ is geodesically λV -convex on (M(Ω),HK) if and only if the mapping

Ṽ : [x, r] 7→ r2V (x) is geodesically λV -convex on the metric cone space (C, dC). For smooth V , this
amounts to the estimate (

∇2V (x) + 2V (x)Id ∇V (x)

∇V (x)⊤ 2V (x)

)
≥ λV Id+1.

Thus, for V satisfying both of the above assumptions, the functional E1/2,V is geodesically λV -convex
on (M(R2),HK) for d ∈ {1, 2}. For d = 1 we may choose V (x) = α+ β|x|2 with β > 0 and obtain
λV = 2α.

7.3 Necessity of the conditions on E

Theorem 7.2 states that the conditions (1.25) and (7.4) on the density E : [0,∞) → (−∞,+∞] are
sufficient for the geodesic convexity of the integral functional E . We finally show that the conditions are
also sufficient. To simplify the analysis we restrict ourselves to the smooth case where E : dom(E) →
R lies in C2. Thus, we can obtain conditions by differentiation along suitably chosen geodesic curves.
For this, the characteristic equations (4.62) derived in Theorem 4.8 will be the main tool.
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Theorem 7.5 (Necessity of conditions on E) Consider a closed, convex domain Ω ⊂ Rd with
nonempty interior and a density function E : [0,∞) → (−∞,+∞] such that (7.4) holds and
that E is C2 on the interior of its domain. If the induced functional E : M(Ω) → (−∞,+∞] defined
in (7.5) is geodesically convex on (M(Ω),HK), then E satisfies the conditions (1.25).

Proof. We first observe that it is sufficient to show that for (ρ∗, γ∗) with c∗ = γ2+d
∗ /ρd∗ ∈ int(dom(E))

we have the inequalities

D2NE(ρ∗, γ∗) ≥ 0 and (d−1)∂ρNE(ρ∗, γ∗) ≤ 0. (7.7)

By the scaling properties of NE(ρ, γ) = (ρ/γ)dE(γ2+d/ρd) it is sufficient to look at the case

(ρ∗, γ∗) = (c
1/2
∗ , c

1/2
∗ ).

The main idea is to construct suitable geodesic curves µt such that the convexity of t 7→ E (µt) gives
the desired inequality. For this we choose a point x∗ ∈ int(Ω) and r∗ > 0 such that B3r∗(x∗) ⊂ Ω.
Without loss of generality we assume x∗ = 0 and write Br in place of Br(x∗) for r ∈ (0, 3r∗].

We further choose an s ∈ (0, 1) and a smooth function ξs ∈ C3(B3r∗). Then, there exists an ε > 0
such that there is a unique smooth solution ξ : (s−ε, s+ε)×B2r∗ → R of the Hamilton–Jacobi
equation (2.4). With this ξt = ξ(t, ·) and r ∈ (0, r∗) we can construct a geodesic curve

(s−ε, s+ε) ∋ t 7→ µ
(r)
t with µ(r)

s = c∗L
d Br and sppt(µ

(r)
t ) ⊂ B2r∗

of absolutely continuous measures µt = c(r)(t, ·)Ld, see (5.6a) in Corollary 5.5. If necessary ε needs
to be reduced to avoid mass flowing outside B2r∗ . For this geodesic we have

E (µ
(r)
t ) =

∫
Ω

E(c(r)(t, y))dy =

∫
Br

e(t, x)dx with e(t, x) = NE(ρ(t, x), γ(t, x)),

where γ(t, x) = c
1/2
∗ qs→t(x) and ρ(t, x) = c

1/2
∗ qs→t(x)

(
δs→t(x)

)
1/d with q and δ from (4.62). Note

that q, δ, and e do not depend on r, cf. Theorem 5.4.

By the smoothness of ξ, and hence of ρ and γ, we may pass to the limit r ↓ 0 in the convex functions
t 7→ 1

Ld(Br)
E (µ

(r)
t ) = 1

Ld(Br)

∫
Br
e(t, x)dx. Thus, the limit

t 7→ e(t, 0) = NE(ρ(t, 0), γ(t, 0)) is convex on (s−ε, s+ε).

In particular, the second derivative is non-negative which means

0 ≤ ë(s, 0) = D2NE(c
1/2
∗ , c1/2∗ )

[(
ρ̇

γ̇

)
,
(
ρ̇

γ̇

)]
+ ∂ρNE(c

1/2
∗ , c1/2∗ )ρ̈+ ∂γNE(c

1/2
∗ , c1/2∗ )γ̈,

where now ρ̇ = ∂tρ(s, 0), γ̇, ρ̈, and γ̈ are given by (4.62) and (5.13) in terms of ξ only:

ρ̇

c
1/2
∗

= 2ξs+∆ξ2,
γ̇

c
1/2
∗

= 2ξs,
ρ̈

c
1/2
∗

=
(∆ξs)

2−d|D2ξs|2

d2
+
d−4

d
|∇ξs|2,

γ̈

c
1/2
∗

= |∇ξs|2,

where ξs and its derivatives are evaluated at x = x∗ = 0.

To obtain the convexity of NE we can now choose the functions ξs such that ρ̈ = γ̈ = 0, which is
the case for ξs(x) = α + β|x|2, which implies ∇ξs(0) = 0, ∆ξs(0) = 2dβ, and |D2ξs|2 = dβ2.
Moreover, ρ̇ and γ̇ can be chosen arbitrarily by adjusting α, β ∈ R. Thus, D2N ≥ 0 is established.

To prove the second estimate in (7.7) we may assume d ≥ 2, as there is nothing to show for d = 1.
Choosing the function ξs = α(x21 − x22) we obtain ρ̇ = γ̇ = γ̈ = 0 and ρ̈ = −8c

1/2
∗ α2/d. This

implies ∂ρNE ≤ 0 and the theorem is established.
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7.4 A more direct sufficiency proof for 2 ≤ d ≤ 4

The above proof of Theorem 7.2 strongly relies on differentiating e(t, x) = NE(ρ(t, x), γ(t, x)) with
respect to t. In the case 2 ≤ d ≤ 4, this can be avoided since we have the curvature estimates

(a) t 7→ γ(t, x) is convex and (b) t 7→ ρ(t, x) is concave, (7.8)

where we used d ≤ 4 in (5.12) for (b). With (a) and (b), we can further exploit

(i) the convexity of NE ,

(ii) the monotonicity of ρ 7→ NE(ρ, γ) (non-increasing, cf. (1.25c) for d ≥ 2), and

(iii) the monotonicity of s 7→ NE(s
1−4/d2ρ, sγ) (non-decreasing, cf. Proposition 6.2).

Choosing t0, t1, θ ∈ [0, 1] with t0 < t1, we set tθ := (1−θ)t0 + θt1 and have to show

NE(ρ(tθ), γ(tθ)) ≤ (1−θ)NE(ρ(t0), γ(t0)) + θNE(ρ(t1), γ(t1)). (7.9)

We start with the right-hand side and use convexity (i) first:

(1−θ)NE(ρ(t0), γ(t0)) + θNE(ρ(t1), γ(t1))
(i)
≥ NE

(
(1−θ)ρ(t0)+θρ(t1), (1−θ)γ(t0)+θγ(t1)

)
.

With the convexity (a) of γ we have s := γ(tθ)/
[
(1−θ)γ(t0)+θγ(t1)

]
∈ [0, 1] and continue

NE

(
(1−θ)ρ(t0)+θρ(t1), (1−θ)γ(t0)+θγ(t1)

)
(iii)
≥ NE

(
s1−4/d2

[
(1−θ)ρ(t0)+θρ(t1)

]
, s
[
(1−θ)γ(t0)+θγ(t1)

])
= NE

(
s1−4/d2

[
(1−θ)ρ(t0)+θρ(t1)

]
, γ(tθ)

)
.

Using the monotonicity (ii) (for d ≥ 2) we can increase the first argument using s1−4/d2 ≤ 1 (because
of s ∈ [0, 1] and d ≤ 4) and then exploit the concavity in (b) of ρ (i.e. ρ(tθ) ≥ (1−θ)ρ(t0)+θρ(t1))
giving

NE

(
s1−4/d2

[
(1−θ)ρ(t0)+θρ(t1)

]
, γ(tθ)

) (ii), (a+b)
≥ NE(ρ(tθ), γ(tθ)).

Thus, we have proved the desired convexity (7.9) for the case d ∈ {2, 3, 4}.
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