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ABSTRACT. We derive a useful approximation of a density estimator based on we-
akly dependent random vectors by a density estimator built from independent ran-
dom vectors. We construct, on a sufficiently rich probability space, such a pairing of 
the random variables of both experiments that the set of observations { X 1 , ..• , Xn} 
from the time series model is nearly the same as the set of observations {Yi, ... , Yn} 
from the i.i.d. model. The set ({Xi, ... , Xn}Ll{Yi, ... , Yn} )n([ai, b1] x .. . x [ad, bd]) 
has with a high probability at most 0( {[n112 fI(bi - ~)] + 1} log(n)) elements. Al-
though this does not imply very much for parametric problems, it has important 
implications in nonparametric statistics. It yields a strong approximation of a kernel 
estimator of the stationary density by a kernel density estimator in the i.i.d. model. 
Moreover, we show that such a strong approximation is also valid for the standard 
bootstrap and the smoothed bootstrap. Using these results we derive simultaneous 
confidence bands as well as supremum-type nonparametric tests based on reasoning 
for the i.i.d. model. · 

1. INTRODUCTION 
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Density estimation on the basis of i.i.d. observations is one of the most often studied 
problems in nonparametric statistics. Important asymptotic properties concerning 
the pointwise as well as the joint probabilistic behaviour of commonly used estima-
tors are now well-known and allow for powerful methods of statistical inference like, 
for example, tests for certain hypotheses or simµltaneous confidence bands which 
guarantee asymptotically the desired error probability of the first kind and coverage 
probability, respectively. 
In contrast, much less is known in the case of dependent observations. This case is 
very important from the practical point of view, since data from time series usually 
show some dependence. In order to develop analogous tools as in the independent 
case, it seems to be on first sight unavoidable to account for the dependence by specific 
corrections. This might, .however, turn out to be quite a difficult and messy task, 
such that one could be tempted to seek for conditions which ensure asymptotically 
the same behaviour of certain statistics as known from the i.i.d. setting. 
Whereas long-range dependence usually leads to phenomena essentially different from 
those under independence, there seems to be some hope for asymptotic similarities 
to the independent case under short-range dependence. Some commonly imposed 
conditions for weak dependence are strong (a-) mixing and absolute regularity ((3-
mixing). Provided the corresponding mixing coefficients decay fast enough, then 
commonly used nonparametric estimators converge with the same rates as in the in-
dependent case; cf. Gyorfi, Hardle, Sarda and Vieu (1989). The fact that desirable 
properties of the estimators remain valid in the dependent case provides a strong 
motivation for applying just the same estimation techniques as under the assumption 
of independence. However, some i:rp.portant tools for statistical inference require a 
more accurate knowledge of the asymptotic properties of the underlying estimators. 
Assuming mixing and some additional, not very restrictive condition on the bounded-
nes.s of the joint densities of consecutive random variables, Robinson (1983), Masry 
(1994) and Hart (1995) showed that certain nonparametric estimators have actually 
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the sa~e asymptotic variance as in the independent case. This phenomenon, which 
was described as "whitening by windowing" by Hart, is in sharp contrast to what 
happens in (finite-dimensional) parametric problems. For example, the asymptotic 
variance of the mean of time-series data does of course depend on the covariances 
as well. Results like those of Robinson (1983), Masry (1994) and Hart (1995) on 
the pointwise behaviour of nonparametric estimators allow, for example, to neglect 
the dependence structure when one establishes pointwise confidence intervals for the 
density function. 
On the other hand, other problems of statistical inference require an even stronger 
notion of asymptotic equivalence. For example, the construction of simultaneous 
confidence bands or the determination of critical values for certain tests against a 
nonparametric alternative require knowledge about the joint distribution of the non-
parametric estimator used to define the corresponding statistic. A first step in this 
direction has been done by Neumann and Kreiss ( 1996). They characterized the 
asymptotic equivalence of nonparametric autoregression and nonparametric· regres-
sion by a strong approximation of a local polynomial estimator of the autoregression 
function by a local polynomial estimator in an appropriate regression setup. Howe-
ver, the nonparametric autoregressive model automatically imposes certain structural 
conditions on the data-generating process, which were essential for the approxima-
tion method used. Since this restricts the applicability of such a method in practice, 
it would be very desirable to develop similar results without any such structural 
assumptions. 
In the present paper we show quite a surprising similarity between the observati-
ons that stem from a time-series model and a set of independent observations. Let 
Xi, . .. , Xn be d-dimensional, weakly dependent random vectors with a stationary 
density f. As a counterpart we consider i.i.d. random vectors Yi, ... , Yn with the 
same density f. Let .6.n ={Xi, ... , Xn}.6.{J!i, ... , Yn} be the symmetric difference of 
both sets of observations. We show that there exists, on a sufficiently rich probability 
space, a pairing of the random variables of both models, which preserves the respective 
joint distributions, such that the following fact is true. Let [a, b] = [a1 , bi] x ... x [ad, bd] 
be an arbitrary hyperrectangle. Then the relation 

is satisfied with a probability exceeding 1 - O(n->.), where ). < oo is an arbitrarily 
large constant. The link is achieved by embedding both the random variables from the 
time series model and the i.i.d. model into a common Poisson process on (0, oo) x Rd. 
It turns out that most of the randomness of the kernel estimators in both models is 
driven by the same part of the Poisson process. This leads to an approximation of the 
kernel estimators in the time series model by the kernel estimator in the i.i.d. model 
with an error that is of lower order of magnitude than the noise level of one of these 
estimators. 
Let fh(x) = (nhd)-1 E?=t K((x-Xi)/h)) and Jh(x) = (nhd)-1 E?=t K((x-Yi)/h)) be 
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kernel estimators of f( x ), where K is a compactly supported kernel function. Then 
we see that #{lln n supp(K((x - .)/h))} = O(n112hdlog(n)), and, therefore, 

fh(x)-fh(x) = o(n-1l2 1og(n)) 

are satisfied with a large probability. Such a result can be shown to be valid in a 
uniform manner for x E JR.d. In view of the fact that supx{ var(h(x ))} ~ (nhd)-1, we . 

. have a useful strong approximation of the kernel estimator {_h(x )}xEJ.d by {fh(x )}xeJ.d. 
As some interesting applications we establish simultaneous confidence bands for f as 
well as certain test~ based on the supremum norm between the above kernel estimator 
h and estimators corresponding to hypotheses of lower-dimensional parametric or 
semiparametric structures. To determine the required tun_ing parameters, that is the 
width of the bands and the critical value for the tes.t, respectively, we propose two 
bootstrap methods, both developed under the assumption of independence. 

2. THE APPROXIMATION SCHEME 

The main goal in this section is to establish a link between density estimation under 
weak dependence and density estimation based on independent observations. This 
will be achieved in a mainly constructive way, by embedding the random variables 
of both models in a common Poisson process indexed by time as well as spatial 
position in JR.d. The apparently quite involved problem of finding a global (in x) 
connection between kernel estimators h( x) and h( x) in these models will be reduced 
to a collection of one-dimensional problems, which can be analysed separately from 
each other. Hence, in contrast to many other papers on strong approximations, 
the pleasant fact with our approximation method is that the technical part of the 
calculations becomes quite elementary. 

2.1. The model and basic assumptions. Assume we have d-dimensional realiza-
tions X1 , ... , Xn of a weakly dependent, stationary and time-homogeneous process 
with a stationary density f. To obtain some kind of asymptotic equivalence to the 
case of i.i.d. random variables, we impose the following conditions: 

Assumption 1 
{Xi} is absolutely regular (that is, ,B-mixing) with mixing coefficients satisfy-
mg 

,Bk ::; C exp(-C1k ). 
Assumption 2 
Let fxilFi-i be the density of the conditional distribution .C(Xi I Xi-i, ... , X1 ) 

and let fxilXi_ 1 , ••• ,xi_.., be the density of .C(Xi I Xi-i, ... ,Xi--y)· We assume 
that · 

s~p sup {jfxilFi-1(x) - fxilXi-1, ... ,xi_..,(x)I} = 0 (exp(-021)) 
i xEJ.d 

and 
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hold for some 0 2 > 0 and 0 3 < oo. 

Remark 1. 
(i) Our assumption of exponentially decaying mixing coefficients is rather strong and 
can possibly be relaxed on the expense of a larger error in our approximation. Ne-
vertheless, it is known that still many interesting processes are actually exponentially 
,B-mixing. Mokkadem (1990, Theorem 2.1) provides sufficient conditions for a Markov 
chain to be geometrically ,B-mixing. Ango Nze (1992) used this result to derive suffici-
ent conditions for a vector autoregressive process with conditional heteroscedasticity 
given as 

Xt+i = m(Xt) + g(Xt)et+i, 
et i.i.d., to be geometrically ergodic, which implies geometrical ,B-mixing if the chain 
is stationary. An overview is given by Doukhan (1994). 

(ii) Assumption 1 may be seen as some kind of minimal condition which brings the 
time series model close to an i.i.d. situation. This is however not enough to get the 
desired asymptotic equivalence. We need some additional condition which ensures 
that closely neighbored (in time) observations do not behave too different from an 
i.i.d. situation. Whereas Robinson (1983), Masry (1994) and Hart (1995) imposed 
a condition on the boundedness of the joint densities, we set this slightly stronger 
Assumption 2, which also reflects a rapidly decaying memory of the process {Xi}· 

2.2. Embedding the random variables into a common Poisson process. 
Now we relate the random vectors X 1 , • •• , Xn from the above setup to i.i.d. random 
vectors Yi, ... , Yn having a density f. For that, we define on a sufficiently rich pro-
bability space copies x;, ... , X~ and t;_*, ... , Y,: with the same joint distribution as 
X 1 , ... , Xn and Yi, ... , Yn, respectively. As the connecting device, which determines 
both x;, .. ~ , X~ and t;_*, ... , Y,:, we use a Poisson process Non (0, oo) x JR.d with an 
intensity function equal to the Lebesgue measure. For details concerning the defini-
tion and construction of N, see Reiss (1993, Section 2.1). In contrast to Reiss, we use 
the equivalent formulation of a set-valued process instead of a point measure-valued 
process. Furthermore, since it is unlikely that this causes any confusion, we do not 
distinguish between Xi and Xi as well as Yi and Yi* and denote the versions of these 
random variables on the common probability space simply by Xi and Yi, respectively. 
The notation Xt will be reserved for bootstrap resamples of the Xi's to be introduced 
in Section 3. 
First we describe in detail how the Poisson process N is used to generate the ob-
servations X 1 , ..• , Xn, retaining the joint distribution of these random vectors. The 
embedding of Yi, ... , Yn is completely analogous, since independence is a special case 
of weak dependence. 

(i) Embedding of X1 
Let {(Uj, V; ), j = 1, 2, ... } denote a realization of N, where Uj E (0, oo) and V; E JR.d. 
The basic idea of how X1 is represented by N(l) = N may be explained as follows: 
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consider the graph (tfx1(v),v) of the function 9t(v) = tfx1(v), which spreads out, 
starting from {O} x Rd, with a velocity proportional to fx1 ( v ). We define 

X1 = Vi1, 
where (Uiu Vj1 ) is the first realization of N(l) hitted by ( tf x 1 ( v ), v) as t grows from 
zero to infinity. In other words, we have 

i1 = arg inf{Ui/fx1 (Vj)}. 

Note that {(Ui/ fx1 (Vj), Vj),j = 1, 2, ... } is a Poisson process on (0, oo) x Rd with 
intensity function p( u, v) = f x 1 ( v ). Hence, it is clear that X 1 has just the desired 
density fx1 = f. 
To explain the following steps in a formally correct way, we introduce stopping times 

(i) . 0 D fi 7 11 , i = , ... , n. e ne 
rJo) = o 

and 
rP) = rJ0

) + [Ui1 / fx1 (Vi1 )]fx1 ( v ). 
If we order {(Ui/ fx1 (Vj), Vj),j - 1, 2, ... } with respect to the first component, we 
may alternatively construe this object as a marked Poisson point process· where the 
second argument has the density fx1 • If we denote the corresponding realizations of 
this process by (Si, Wj), S1 < S2 < ... , then X1 is just equal to W1. By the strong 
Markov property of a marked Poisson point process, the remaining part of N, 

NC2> = {(Ui - rt~)' Vj)} n ((o, oo) x Rd), 

is again a Poisson process on (0, oo) x Rd. 
(ii) Embedding of Xi 

Assume that X 1 , ••. , Xi-l have already been embedded into N, according to their 
conditional distributions £(Xk I Xk-1, ... '~1}. We embed xi in the remaining 
part of N, that is 

N(i). = { (U; - r~-1 ), Vj)} n ((o, oo) x Rd). 

In other words, we use from the whole set of realizations {(Uj, Vj)} of N only those 
from the subset {(Uj, Vj) I Uj > T~-l)}. By the strong Markov property of the corre-
sponding marked Poisson point process, N(i) is again a Poisson process on (0, oo) x Rd. 
Now we define 

where 
ji = arg inf { (U; - T~-l))/ fXilFi-i (Vj ), Uj > T~-l)}. 

Further, we set 
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Finally, we obtain that 

{X1, ... , Xn} - {Vj I Uj ::; rt)}. (2.1) 

(iii) Embedding of Yi, ... , Yn 
The embedding of Yi, ... , Yn is completely analogous to that of X1 , ..• , Xn. Since 
.C(Yi I Yi-1, ... , Yi) =£(Yi), we have to deform the time axis only once. 
Let {(Tj, Wj),j = 1, 2, ... } be the marked Poisson point process corresponding to 
{(Ui/ f(Vj), Vj),j = 1, 2, ... }. That is, we have in particular T1 < T2 < .... Then 
we define 

Yi = wi, i = 1, ... 'n. 
We may introduce stopping times rJi) analogous to the rJi)'s. We obtain :rJn) 
Tnf ( v ), which implies that 

{Yi,··· , Yn} = {Vj I Uj ::; ri;)}. (2.2) 
Remark 2. It may well happen that the Xi's emerge in a different chronological order 
than the }i's. Since the transition densities are usually different from the stationary 
density, the construction for the time-series model "borrows" some probability mass 
assigned to future time points in the i.i.d. model. This is just the reason why we 
introdu~e a "time axis" for our embedding method. 

2.3. Approximation results. To get estimates for the number of elements of ..6..n 
that fall in certain intervals, we derive first an estimate for the distance between rJn) 
and rJn), respectively, and thei_r common expectation nf ( v ). 
Since many assertions in this article are of the type that a certain random variable is 
below some threshold with a high probability, we introduce the following notation. 

Definition 2.1. Let {Zn} be a sequence of random variables and let {an} and 
{rn} be sequences of positive reals. We write 

Zn = O(an,{n), 
if 

P(IZnl > Gan) ::; G1n 
holds for n ~ 1 and some G < oo . 

This definition is obviously stronger than the usual Op and it is well suited for our 
particular purposes of constructing confidence bands and nonparametric tests; see its 
application in Section 3. 
Further, we make throughout the paper the convention that 6 > 0 will denote an 
arbitrarily small and .X < oo an arbitrarily large constant. 

Lemma 2 .1. Suppose that Assumptions 1 and 2 hold. Then 

lrSn) - nf(v)I + ITSn) - nf(v)I = 0 (n1l 2 log(n),n->-). 
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Whereas the pointwise (in v) similar behavior of T~n) and :r~n) does not imply anything 
essential, a uniform version of the result given in Lemma 2.1 will finally yield the 
desired result about the difference set .6.n. To derive such a uniform version, we 
impose the following smoothness condition on the conditional densities: 

Assumption 3 
There exists some constant C < oo such that 

s~p lfxilFi-1(v) - fxilFi-1(v')j ::; Cllv - v'll· 
7. 

Lemma 2.2. Suppose that Assumptions 1 through 3 are fulfilled. Then we have for 
any hyperrectangle [a, b] = [a1, b1] x ... x [ad, bd] that 

sup {lr~n) - nf(v)I + l7~n) - nf(v)I} = 0 (n1! 2 log(n),n->.). 
ve[a,b] 

Now we are in a position to relate both experiments to a common experiment given 
by the restriction of N to 

Sn = {(u,v) I 0 < u::; nf(v), v E Rd}. 

Let 

(2.3) 

Now we obtain estimates for the cardinality of the sets ( {X1, ... , Xn}.6.{Z1, ... , Zv}) n [a, b] 
as well as ({Yi, ... , Yn}.6.{Zi, ... , Zv}) n [a, b] from Lemma 2.2 and an appropriate 
exponential inequality for Poisson processes. 

Proposition 2.1. Suppose that Assumptions 1 through 3 hold. Then 

# {({Xi, ... , Xn}.6.{Z1, ... , Zv}) n [a, b]} } _ (j ( {[ 1/2 Il(b· _ ·)] + 1} 1 ( ) ->.) 
#{({Yi, ... ,Yn}.6.{Z1, ... ,Zv})n[a,b]} - n i ai ogn,n · 

Now we obtain, as an immediate consequence of Proposition 2.1, the desired strong 
~proximation of a kernel estimator h in the time series model by a kernel estimator 
fh in the i.i.d. model. Let 

"' 1 ~ (x-Xi) 
fh(x) = nhdt;_K h 

and 
- 1 ~ (x - Yi) 
fh(x) = nhd t;_ K h . 

For simplicity we impose the following condition: 
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Assumption 4 
The kernel K is supported on [-1, l]d and supx{IK(x)I} 5 Ko. 

It is obvious that 

lh(x) - k(x)I 
Ko < nhd# {( {X1,, ... 'Xn}.6.{Yi, ... 'Yn}) n ([x1 - h, X1 + h] x ... x [xd - h, Xd + h])} 

0 ([n-112 + (nhdt 1
] log(n), n-,\) (2.4) 

holds for arbitrary x E Rd. With a simple extra argument, we can show that this 
result holds simultaneously over JR.d. 

Theorem 2.1. Suppose that Assumptions 1 through 4 are fulfilled. Then 

Now it becomes clear what we have achieved by our embedding of (X1 , ... ,Xn) and 
(Yi, ... , Yn) in a common Poisson process: the apparently quite difficult task of get-
ting a uniform (in x) approximation of fh(x) by Jh(x) is reduced to the technically 
much simpler task of proving a pointwise result as in Lemma 2·.1. 

3. APPLICATION TO SIMULTANEOUS CONFIDENCE BANDS AND NONPARAMETRIC 
TESTS 

Theorem 2.1 in .the previous section provides an approximation of a kernel estimator 
in the time series model by a kernel estimator in an i.i.d. model. Besides the more 
fundamental message that weak dependence is asymptotically negligible, the practical 
significance lies on the possibility to transfer methods of inference originally develo-. 
ped under the assumption of independence to the case of weakly dependent random 
variables. As two important applications, we propose in this section confidence bands 
and supremum-type tests based on a bootstrap approximation of the distribution of 
the L 00-distance between h and Ek. We did not attempt to develop versions of 
these methods based on asymptotic theory instead of the bootstrap. Although, at 
least in the one-dimensional case, the process {(fh(x)- Eh(x))/.jvar(h(x))}xE[a,b] 
can be well approximated by a Gaussian process, the approximation of the supremum 
of this Gaussian process by its limit, as proposed by Bickel and Rosenblatt (1973), 
converges with the very slow rate (log(n))-1; cf. Hall (1991). In contrast, it will be 
shown that the bootstrap approximation converges with a certain algebraic rate. 
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- 3.1. Two bootstrap proposals. We consider two methods of bootstrapping the 
empirical process, the standard bootstrap and the smoothed bootstrap. Both versions 
were proposed by Efron (1979) in the context of i.i.d. observations. 
Denote by Pn the empirical distribution based on {Xi, ... ,Xn}· In the standard 
bootstrap, we draw with replacement n independent bootstrap resamples Xi, ... , X~. 
That is, the unknown distribution P is replaced by its empirical analog Pn. In the 
smoothed bootstrap, we drawn independent bootstrap resamples x;,g' ... 'x~,g from 
a smoothed version Pn,g of Pn. Pn,g is the distribution function which corresponds to 
the kernel estimate 

J: (x) = _1 ~ L (x - Xt) 
g ngd~ g 

i=l 

of f ( x ). We use the letters L and g to indicate that one may use a kernel and a 
bandwidth different from K and h, respectively. It will turn out that there is very 
much freedom for the choice of g. 
A discussion. about the relative merits of the standard bootstrap and the smoothed 
bootstrap as well as some examples may be found in Efron (1979, 1982), Silverman 
and Young (1987) and Hall (1992). Roughly speaking, smoothing does not improve 
the convergence rate of the bootstrap estimate, if that estimate can be expressed as (or 
well approximated by) a smooth function of a vector sample mean. In other cases, like 
in estimating the mean squared error of a quantile estimate, the smoothed bootstrap . 
can significantly outperform the unsmoothed one; cf. Hall (1992, Appendix IV). 
The derivation of asymptotic properties of the bootstrap methods goes again via 
strong approximations. We begin with the smoothed bootstrap and construct a 
pairing of (Yi, ... , Yn) and (X;'9 , ••• , X~19 ), which are both vectors of i.i.d. ran-
dom variables, as follows. First we draw n independent Bernoulli random variables 
Bi rv Bernoulli(p), where p = J(f(x) /\ fs,(x)) dx. If Bi = 1, then we generate Yi 
according to the density (f(x)Afs,(x))/p, and set Xt'9 = }i. If Bi= 0, then we draw 
independently Yi according to the density [f(x) - (f(x) /\ h(x))]/(l -p) and Xt'9 

with the density [fs,(x) - (f(x) /\ J;,(x))]/(1 - p). It is easy to see that Yl, ... , Yn 
are i.i.d. with density f and x;'9

, ••• , X~19 are i.i.d. with density fsi. The following 
assertion shows that this construction actually leads to a useful approximation of 
{fh(x) - Efh(x)}:z:e1.ct by {f~'9 (x) - Ef~'9 (x)}:z:e1.ct, where 

f~'9(x)= lhdi:,K(x-:1'9

)· 
n i=l 

Since the proofs of the assertions of this section use approximations of the kernel 
estimators on fine grids, we impose the following additional conditions: 

Assumption 5 
The kernel K is Lipschitz continuous and of second order. 
Assumption 6 
The kernel L is Lipschitz continuous and of second order. 
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Theorem 3.1. Suppose that Assumptions 1 through 6 are fulfilled. Let 

µn == g2 + (ngdt1f2J1og(n). 

Then there exists a pairing of the random variables X 1 , •.. , Xn and X;'9 , ••• , X~,g 
such that 

sup {j(h(x) - Eh(x)) - (f~'9(x) - ER'9 (x))I} 
:z:EJRl.d 

= 0 ( n-112 log(n) + (nhdt 1 log(n) + (nhd)-112µ1;/\jlog(n), n->') . 

In contrast to the case of the smoothed bootstrap, the distributions P and Pn are 
actually orthogonal. Hence, there is no hope to find such a pairing of both experiments 
that enough random variables from them coincide. However, obviously one can define 
a pairing of (X;'9 , ••• ,X~'9 ) and (X;, ... ,X~) such that 11Xt'9 -Xtll ~ Vdg for all i. 
Hence, for g «: h, ~'0(x) is well approximated by f~'9 (x), which finally provides the 
desired strong approximation 9f {fh(x) - Eh(x)}:z:EJRl.d by {f~'0(x) - ER'0 (x)}xEJRl.d· 
Theorem 3.2. Suppose that Assumptions 1 through 5 are fulfilled. Then there exists 
a pairing of the random variables X1 , ••• , Xn and x;,o, ... , X~,o such that 

sup {j(h(x)- Eh(x)) - (f~'0(x) - Ef~'0(x))I} 
xEJRl.d 

= 0 ( n-112 log(n) + (nhdt 1 log(n) + (nhdt 1l 2Vlog(n) i~f{(ngdt1/2 Vlog(n) + g/h }, n-

In order to assess the significance of the above strong approximation results for the 
desired approximation of the distribution of the maximal deviation of Jh from its 
expectation, we still need an upper bound for the probabilities that this supremum 
falls into small intervals. 

Proposition 3.1. Suppose that Assumptions 1 through 5 are fulfilled. 

P (sup {lh(x) - Eh(x)I} E [c, d]) xEJRl.d 
0 ((d- c)(nhd)112(log(n))112 + hlog(n) + (nhdt114(log(n))514+ 

+ hdf2(log(n))3f2 + (nhdt1f2(log(n))3f2). 

This estimate will finally imply, in conjunction with Theorems 2.1, 3.1 and 3.2, the va-
lidity of the bootstrap for the supremum functional. We apply this to the construction 
of simultaneous confidence bands and nonparametric tests in the next subsections. 
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3.2. Simultaneous confidence bands. Confidence bands are an important uni-
versal tool which provide some impression about the exactness of a nonparametric 
estimator. Similarly to nonparametric tests, they can indicate whether there is em-
pirical evidence for certain conjectured features of the curve. 
There already exists a considerable amount of literature on the construction of con-
fidence bands in the context of independent observations. Work on simultaneous 
confidence bands in nonparametric density estimation dates back to the seminal pa-
per by Bickel and Rosenblatt (1973) who used a first-order asymptotic approximation 
of the distribution of the supremum of a certain Gaussian process that approximates 
the dev!ation of the kernel estimator from its mean. The use of the bootstrap to 
determine an appropriate width for confidence bands for a univariate density was 
proposed by Faraway and Jhun (1990) on a heuristic level and investigated in more 
detail by Hall (1993). One of the main messages in Hall (1991, 1993) is that the ap-
plication of the bootstrap leads to much smaller errors in coverage probability than 
the approach of Bickel and Rosenblatt (1973). 
In contrast to the papers mentioned above, we consider confidence bands of uniform 

size rather than bands with a varying size, proportional to ( v a~))) 112
• The 

latter bands seem to be somewhat more natural and they work well as long as they 
are restricted to some compact set on which the density f is bounded away from 
zero. One has to exclude regions of sparse design, because the performance of the 
bootstrap approximation deteriorates there. Such a truncation is not necessary with 
uniform bands, because then the problematic regions are automatically faded out. 
Let t; be the ( 1 - o: )-quantile of the distribution of sup{ I fZ'9 ( x) - E fZ'9 ( x) I}, that is 

For simplicity, we restrict the following considerations to the smoothed bootstrap. 
Using Theorem· 3.2 instead of Theorem 3.1, one may derive results similar to the 
following theorems fort; based on the standard bootstrap. 
Let Kh be the smoothing operator defined by 

I 1 (x - z) Kh(f) = hdK -h- f(z)dz. (3.2) 

Although statisticians usually focus on confidence intervals or bands for the density 
itself, we consider first simultaneous confidence bands for Kh(f). The reason is that 
this problem is much easier to deal with, and with bands for Kh(f) we have also more 
freedom to choose h. Theorems 2.1 and 3.2 and Proposition 3.1 imply the following 
theorem: 
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Theorem 3.3. Suppose that Assumptions 1 through 6 are fulfilled. Then 

P (Kh(f)(x) E [fh(x)-t:,fh(x)+ t:] for all x E Rd) 

If 

and 

1 - a + 0 (hdf 2(log(n))312 + (nhdt 1l 2(log(n)) 312 + µ~12 log(n) + 
+ hlog(n) + (nhdt114(log(n))514

). 

h = 0 ((log( n) r(JVd)) , 

(nhdtl = o ((log(n)t5
) 

(3.3) 

(3.4) 

(3.5) 

then the confidence band will have asymptotically the prescribed coverage probability 
for Kh(f). Certain qualitative features off like unimodality or monotonicity in some 
region remain valid for the smoothed version Kh(f) under mild regularity assumptions 
on the kernel K. Hence, the confidence band for Kh(f) can also be used as a criterion 
to assess whether there is enough evidence for such a feature. This is, of course, closely 
related to the formal test proposed in Subsection 3.3. 
Since density estimation is an ill-posed inverse problem, there are certain limitations 
for a pointwise inference about f ( x ). For example, one cannot consistently distingu-
ish between two densities that differ only on an interval shrinking at a sufficiently fast 
rate. This is in some way reflected in the bias problem one necessarily encounters in 
the construction of confidence bands for f. Nevertheless, there seems to be conside-
rable interest in such bands, because they provide an easily accessible quantitative 
characterization of the precision of a nonparametric estimator. 
To determine the width of the confidence band, we will use again the ( 1 - a )-quantile 
t~ of the bootstrapped maximal deviation of the density estimator from its mean. 
We will obtain an asymptotically correct coverage probability, if the bias of Jh is of 
smaller order of magnitude than its standard deviation. Our theory is valid for an 
undersmoothed estimator h, which excludes the usual mean-squared-error optimal 
choice of h. 

Theorem 3.4. Suppose that Assumptions 1 through 6 are fulfilled. Then 

P(!(x)E[fh(x)-t:,fh(x)+t:] forall xERd) 

- 1 - a+ 0 (hdf 2(log(n))312 + (nhdt 112(log(n))312 + µ;/2 log(n)+ 

+ hlog(n) + (nhdt114(log(n))514 + h2(nh)112(log(n))112
). 
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We see from this theorem that the confidence band has asymptotically the desired 
coverage probability, if, besides (3.3), (3.4) and (3.5), 

(3.6) 

is satisfied. (3.6) means that we have to undersmooth in order to make the bias of 
k, which was not mimicked by the bootstrap, negligible. A well-known alternative 
consists in an explicit bias correction, which allows then also bandwidths h = hn 
decaying at the mean-squared-error optimal rate n-1/(4+d). 

We do not dwell on the effect of a data-driven bandwidth choice which is important 
for a real application of this method. Usually data-driven bandwidths h are intended 
to approximate a certain nonrandom bandwidth hn. If (h - hn)/ hn converges at an 
appropriate rate, then the estimators J1;. and k'"' are sufficiently close to each other, 
such that the results obtained in this paper remain valid; see Neumann (1995) for a 
detailed investigation of these effects for pointwise confidence intervals in nonpara-
metric regression. 

3.3. A nonparametric test. Tests against a nonparametric alternative are an im-
portant tool to assess the appropriateness of a parametric or a semiparametric model. 
In contrast to tests like the Kolmogorov-Smirnov or the Cramer-von Mises test, our 
density-based test seems to be more powerful for local deviations from the assumed 
model. Moreover, by considering the supremum statistic, we exploit the whitening-
by-windowing principle, which allows to neglect the dependence structure. We allow 
a composite hypothesis, that is 

Ho: f E :F, 

where the only requirement is that the functional class :F allows a faster rate of 
converg~nce than the full nonparametric model. We will assume 

Assumption 7 ...... 

There exists an estimator J of f such that, for f E :F, 

In the cased= 1, this includes some parametric models, 

:F = {fe, () E 8}. 
In the higher-dimensional case, one may test for parametric but also for certain 
semiparametric models like, for example, a multiplicative nonparametric model that 
corresponds to the assumption that the components of the X/s are independent, 

:F = { f ( x) = }] f;( x;) f; "sufficiently smooth" } , 
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or a semiparametric model proposed by Friedman, Stuetzle and Schroeder (1984), 

F = { f ( x) = fa( x) g f;( a:x) f; "sufficiently smooth"} . 

In accor~ance to our theory above, we consider the maximal deviation between fh 
and Kh(f), that is 

T - :~f.{IJ;,(x) - j h-dK C ~ z) f(z)dzl}. 
The next theorem shows that the prescribed error of the first kind is asymptotically 
guaranteed. · 

Theorem 3.5. Suppose that Assumptions 1through7 as well as {3.3), {3.4) and {3.5) 
are fulfilled. Then 

Remark 3. It seems that L2-tests, like that proposed by Hardle and Mammen (1993) 
in the regression setup, are the most popular ones among nonparametric statisticians. 
Such tests can be optimal for testing against smooth alternatives, whereas supremum-
type tests have less power in in such a situation. On the other hand, supremum-type 
tests can also outperform Lrtests for testing against local alternatives having the 
form of sharp peaks; see Konakov, Lauter and Liero (1995) and Spokoiny (1996) for 
more details. 
Our methodology is obviously restricted to supremum-type tests. The author conjec-
tures that weak dependence as considered in the present paper cannot be neglected 
for Lrtest statistics. 

4. DISCUSSION 

1) A knock out for traditional mixing conditions? 
By now strong mixing and absolute regularity have been accepted as being bench-
mark conditions to characterize weak dependence. A lot of efforts have been devoted 
to show that estimation problems under weak dependence allow the same rates of 
convergence as under independence. 
However, see see in this paper, as well as in Robinson (1983), Masry (1994) and 
Hart (1995), that suitable extra conditions on the joint densities lead to qualitatively 
much stronger results: then we obtain asymptotic equivalence on the level of con-
stants. In many instances such an extra condition is not very restrictive and leads 
to an immediate applicability of important statistical methods developed under the 
assumption of independence. Hence, although the classical mixing conditions seem to 
be suitable in parametric (that is, finite-dimensional) estimation problems, we think 
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that this concept is perhaps not the most adequate one in nonparametric (that is, 
infinite:..dimensional) problems of inference. 

2) Does a multiscale approach lead to a better approximation? 
In many cases one obtains better rates for strong approximations by a multiscale 
approach based on a dyadic partition of the interval of interest. A classical example 
is the construction by Komlos, Major and Tusnady (1975). A dyadic approxima-
tion scheme has also been employed by Neumann and Kreiss (1996) for constructing 
a strong approximation of nonparametric autoregression by nonparametric regres-
sion. The simultaneous consideration of different resolution scales makes sense for 
the above examples, because the relative approximation rate deteriorates as one mo-
ves to smaller intervals. 
However, in our context, the possibility to approximate density estimators under 
weak dependence by density estimators under independence is essentially based on 
the "whitening by windowing" -principle. Therefore, the relative approximation rate 
becomes even better for finer scales. It seems to be unlikely that a multiscale approach 
leads to better approximation rates between kernel estimators from both models. 

3) Are these non-standard proofs really necessary? 
Compared to existing literature on similar topics, the proving methods in this paper 
are somehow non-standard. In particular, all proofs are based on certain constructive 
pairing techniques instead of the commonly used first-order approximation by the 
supremumof the limiting Gaussian process. This is done for the following two reasons: 
First, a purely analytical derivation of the asymptotic distribution of the -maximal 
deviation between fh and its expectation is presumably very technical and neither 
pleasant for the author nor for the reader. Second, it is well-known that first-order 
asymptotic theory leads to very poor rates of convergence in this context. Once we 
had used such an approximation at any point, we were not be able to prove that the 
bootstrap actually leads to better rates of convergence. 
There exists an extensive literature on strong approximations for empirical cumula-
tive distribution functions by certain Gaussian processes. For example, Dhompongsa 
(1984) showed for absolutely regular processes that the cumulative distribution func-
tion can be approximated by a Gaussian process with an error of order n-1/ 2->., for a 
certain.:\. > 0. Such a result can also be used to show that a kernel density estimator 
is approximated by a certain Gaussian process. However, in dependence on the value 
of A, there are limitations for the significance of such results. Kernel estimators with 
small bandwidths h will require more localized approximations. 

4) Alternative bootstrap methods 
Even if the effect of the dependence vanishes asymptotically, it is still present in hig-
her order terms. Instead of neglecting it, one could also try to mimic the dependence 
structure by the bootstrap. One standard tool is the blockwise bootstrap introduced 
by Kunsch (1989). Biihlmann (1994) showed that the blockwise bootstrap consisten-
tly estimates the distribution of a multivariate empirical process based on a-mixing 
observations, and applied this result to a nonlinear estimator of a finite-dimensional 
parameter. On the other hand, the blockwise bootstrap requires the estimation of 
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much more features of the data-generating process, which in turn leads to new fluc-
tuations of the resulting estimates. It seems to be an important and challenging task 
to explore whether such an approach can really improve the rate of approximation. 

5. PROOFS 

Proof of Lemma 2.1. Define 

We split up 

where 

Ti = (Uii - T~~1))/ fxil:Fi-1 (VjJ. 

n 

T~n) = l:Tdxil:Fi_1(v) = nf(v) + Rl + R2, 
i=l 

n 

Rl - l:Ti [fxil:Fi-1(v) - fxilXi-1, ... ,Xi--yJv)], 
i=l 

n 

R2 = L [TdxilXi-1, ... ,Xi--yJv) - f(v)] 
i=l 

(5.1) 

and /n is chosen such that log(n)/(402) :::; /n < log(n)/(402) + 1, 02 given by 
Assumption 2. 
It is easy to see that the vector (T1, ... , Tn) is independent of (X1, ... , Xn) and that 
Ti r-.J Exp(l) are i.i.d. 
(To see this, consider for a moment the situation where we start with independent 
vectors (1\, ... , Tn) and (X1 , ••• , Xn), where Ti r-.J Exp(l) are i.i.d. and £(Xi I 
Xi-1 = Xi-1, ... , X1 = x1) = £(Xi I Xi-l = Xi-l, ... , X1 = x1). Now we ea-
sily see that the conditional distributions £((Ti, Xi) I (Ti-1, Xi-1), ... , (T1, X1)) and 
£((Ti, Xi) I (t-i, Xi-1), ... , (T1, X1)) coincide, which implies that (T1, ... , Tn) and 
(Xi, ... , Xn) are actually independent.) 
According to Assumption 2, we have that 

lfxil:Fi-1 ( v) - fxi1xi-1, ... ,xi--yJ v )I = O(n-114
). 

R1 is a weighted sum of the Ti's, where (T1, ... , Tn) is independent of the weights 
([fxd:Fi_1(v) - fxilXi_1, ... ,Xi--yJv)],i = 1, ... ,n). Hence, we obtain by Theorem 4 of 
Amosova (1972) that 

P ( [R1[ ::'.:: lf.•./2Jfx,1:r,_, (v) - fx,1x,_,, ... ,x,_.,,. ( v )]2.jlog(n) X1, ... , Xn) = O(n-"
2
12

) 

holds for arbitrary "' < oo and uniformly in Xi, ... , Xn. This implies that 

(5.2) 
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To estimate R2 , we consider blocks of observations {Xj,j E Ji}, where Ji = {(i -
l)pn -{n + 1, ... , ipn} and Pn ~ (,\ + 1) log(n)/C1 +rn -1, Pn = O(log(n)). Without 
loss of generality, we consider the blocks with odd numbers. Note that we have 

f3(a({Xj,j E Ji}),a({Xj,j E Jk},k =i+2,i+4, ... )) ~ Cexp(-C1(Pn-rn+l)). 
By Proposition 2 of Doukhan, Massart and Rio (1995, page 407), there exists a 
sequence of independent blocks {Xj,j E Ji}, i odd, where the X/s are independent 
of the T/s, £((X;,j E Ji))= £((Xj,j E Ji)), and 

P ((Xj,j E Ji)# (X;,j E Ji)) ~ C exp(-C1(Pn - rn + 1)) = O(n->--1). (5.3) 

Now we have 

( 

ip,.,. ) ip,.,. 
var :E T}-- - - (v) < p :E var(T}- -, - (v)) 

J X;IX;-1, ... ,X;-..,.,.,. - n J X;IX;-1 1 ... ,X;-..,.,.,. ' 
j=(i-l)p,.,.+1 j=(i-l)Pn+l 

which implies, again by Theorem 4 of Amosova (1972), that 
ip,.,. 

L L (T;fx;IX;-1, ... ,x1_..,.,.,.(v) - f(v)) 
i odd j=(i-l)p,.,.+1 

- 0 Pn :2: L var(Tjfx11x1_1, ... ,x1_..,.,.,.(v)).jlog(n),n->. ( ~ ) 
i odd j=(i-1)Pn+1 

- 0 (n1l 2 log(n),n->-). 

An analogous result can be shown for the blocks with even numbers, which implies, 
in conjunction with (5.3), that 

R2 = 0 (n1l 2 log(n),n->-). (5.4) 

The proof of the assertion about ;;=Jn) is analogous, which finishes the proof. D 

Proof of Lemma 2.2. We prove the assertion only for SUPve[a,bJ{lrJn) - nf(v)I}. Let 
Nn = { v1 , ••. , v-y,.,.} be an n-1/2-net for the hyperrectangle [a, b] of cardinality #Nn = 
{n = O(ndf2 ). It is clear from Lemma 2.1 that 

S1;1P {Ir~;) - nf(v;)I} = 0 (n1l2 log(n),n->-) (5.5) 
l~J~'Yn 

holds. Let v E [a, b] be arbitrary. Then there exists a j( v) E {1, ... , {n} such that 
llv - Vj(v)ll = O(n-112

). Since 

t T; = O(n) + 0 (n11\fiog(n), n->') , 
i=l 

we have that 
n 

lr~n) - 7~~:)1 ~ ~Ti lfxil.1"i_1(v) - fxil.1"i_1(v;(v))I = O(n112 ,n~>-), (5.6) 
i=l 
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which yields, in conjunction with lf(v) - f(vj(v))I = O(n-112 ), the assertion. D 

Proof of Proposition 2.1. According to Lemma 2.2, we have that 

({Xi, ... , Xn}~{Z1, ... , Zv}) n [a, b] 
~ {Vi E [a,b] /nf(v)- C.\n1l 2 log(n) ::::; Uj ::::; nf(v) + C.\n112 log(n)} 

holds with a probability exceeding 1 - O(n-.\), where 0.\ is an appropriate constant. 
To get an estimate for the cardinality of the latter set, we apply an exponential 
inequality to the restriction ND of the Poisson process N to 

D = {(u,v)/ nf(v)-C.\n112 log(n)::;u::;nf(v)+C.\n112 log(n), vE[a,bJ}. 

It is clear that ND is a Poisson process with intensity µ(D) = O(n112 log(n) IT(bi-ai)). 
If µ( D) ~ (8/3).:\ log( n ), then we obtain by Inequality 14.5.1 on page 569, and Pro-
position 11.1.1(10) on page 441 in Shorack and Wellner (1986) that . 

P (Nn > 2µ(D)) ::; exp (- µ(~) 'if;(l)) ::; exp(-µ(~) D = O(n-A). (5. 7) 

If µ(D) < (8/3).:\log(n), then we obtain, again by Inequality 14.5.1 and Proposi-
tion 11.1.1(10) of Shorack an~ Wellner (1986), that 

P ( Nn - µ(D) > ~>.log(n)) 
< (-((8/3).:\log(n))2 

,,/, ((8/3).:\log(n)).) 
exp 2µ(D) If' µ(D) 

< (-((8/3).:\log(n))23 µ(D) ) = O( -.\) (5.8) 
exp 2µ(D) 4 (8/3).Alog(n) n · 

(5. 7) and (5.8) imply (i). (ii) follows from the same reasoning. D 

Proof of Theorem 2.1. It remains to show that (2.4) holds simultaneously for all x E 
JR.d. For that, we show that the assertion of Proposition 2.1 holds simultaneously over 
all hypercubes lk = [( k1 -1 )h, k1h] x ... x [( kd-1 )h, kdh], where k = ( k1 , ... , kd) E zd. 

Since K((x - .)/h) is supported on a finite number of these ]k's, we will immediately 
get the assertion of the theorem from a relation like (2.4). 
The main argument of this proof will be based on Bernstein's inequality, which we 
quote for reader's convenience from Shorack and Wellner (1986, p. 855): 
Let Z1, ... , Zn be i.i.d. random variables with EZ1 = 0 and IZ1I ::::; Kn almost 
surely. Then, for z = E zi ' 

P(Z > c) 
var(Z) + (Knc)/3 

c
2 

) ( 3c ) +exp --4var(Z) 4Kn 
holds for arbitrary c > 0 . 
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Setting 

c,x = .jvar(Z).j4Alog(n) + (4/3)KnAlog(n) 
we get 

P(IZI > c,x) ~ 4exp(-Alog(n)). 
In other words, we have that 

Z = 0 (,/var(Z)-jlog(n) + Knlog(n),n->'). (5.9) 

We consider two index sets: 

and 
K2 = {k I P ( X 1 E I k) < n -r} , 

where r > ). + 1. The set K1 contains at most nr elements, hence, (2.4) holds 
simultaneously over x E Ukex:1 Ik. 
Now we combine the indices from K2 to disjoint sets K21 , ... ,K2cn, where Cn ~ nr, 
Ui~1 K2i = K2 and 

As in the proof of Lemma 2.1, we decompose the set {1, ... ,n} again into blocks of 
length Pn x log( n ). We consider again, without loss of generality, the blocks with 
odd numbers. After having replaced these blocks by independent ones, we can apply 
(5.9). It is obvious that 

P (L 1 (x; E LJ ]k) > 1 for any z) = 0 (log(n)n-r+i) 
jE:Ji kEX:2i 

and 

var(?=I(X;E LJ h)) = O(n-1 log(n)), 
JE:Ji kEX:2i 

which implies by (5.9) that 

L LI (x; E LJ Ik) = 0 (log(n),n->.). 
l odd jE:Ji kEX:2i 

For {Yi, ... , Yn} we can show the same results, which yields the assertion. D 

Proof of Theorem 3.1. It is easy to show that 

(5.10) 
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We show in this proof that there exists a pairing of the random variables Yi, ... , Yn 
and x;19 , ••• 'x~,g such that 

sup {j[fh(x) - Efh(x)] - [fi'9 (x) - Efi'9 (x)]j} 
xEJRl.d. 

= {j ((nhdf112µ~2 J1og(n) + (nhd)-1 Iog(n), n-") . (5.11) 

The assertion of the theorem follows then in conjunction with Theorem 2.1. 
Since Yi = Xi*'9 if Bi .:_ 1, we have 

To estimate the right-hand side of (5.12), we proceed as in the proof of Theorem 2.1 
and distinguish between two sets of hypercubes: 

where r > A + 1. 

lC1 - { k l.l. lfa(z) - f(z)I dz ;::: n_.,.}, 
lC2 { k l.l. lfa(z) - f(z)I dz < n~..-}, 

First we investigate the case of x E Ik, k E JC1 . Let Nn = {x1 , ... , Xc,J be an n-1-net 
of Ukex:1 Ik, where Cn = 0( nd+.,.). Because of 

( 
1 { . x - y; x - x~,g j x - z ....... }) var nhd ~ I(Bi = O)[K( h i) - K( h i )] - K(-h-)[f(z) - f9 (z)] dz 

= 0 (n(nhdt 2 J. IJ(z) - h(z)I dz) = 0 ((nhdt 1µn), 
supp(K((x-.)/h)) 

we obtain by (5.9) that 

sup {l[Jh(x) - Efh(x)] - [fi'9(x) - Efi'9 (x)JI} 
xEN'n. 

= 0 ((nhd)-1! 2 µ~2J!og(n) + (nhdf1 log(n), n-") . (5.13) 

Let x E Ik, k E JC1 , be arbitrary. Then there exists a j(x) E {1, ... , en} such that 
llx - Xj(x)ll = O(n-1 ). Since 

lfh(x) - h(xj(x))I + lfi'9 (x) - fi' 9 (Xj(x))I = 0 (h-dn-1
) 

is satisfied with probability 1, we have that 

sup sup {l[fh(x) - Eh(x)] - [fi'9 (x) - Efi'9 (x)JI} 
kEX:1 xEI1c 

= 0 ((nhdf1f2µ~2 J!og(n) + (nhdf 1 log(n), n-") . (5.14) 
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Concerning the set K2, we show, analogously to the corresponding part of the proof 
of Theorem 2.1, that 

sup {#({Yi, ... ,Yn}L).{X;'9 , ... ,X~19})nlk} = 0 (log(n),n->.), 
kEIC2 

which implies 

sup sup {l[fh(x) - Eh(x)] - [i,:'9 (x) - Ef~'9(x)Jj} = 0 ((nhdtl log(n),n->.). 
kEIC2 :z:El1c ( 5.15) 

(5.14) and (5.15) imply (5.11), which yields the assertion in conjunction with Theo-
rem 2.1. 0 

Proof of Theorem 3.2. As already mentioned, we cannot use the idea of the proof of 
Theorem 3.1, because the probability measures P and Pn are orthogonal. However, 
we may exploit the pairing of X1 , ••• , Xn and x;19 , ••• , X~19 used for proving Theo-
rems 2.1 and 3.1 as an intermediate step to show the closeness of [fh(x) - Efh(x)] 
and [f~ 10 (x)-Ef~'0 (x)]. In addition to this paring we pair the Xt0 's with the Xt'9 's 
in such a way that 

(5.16) 

holds with probability 1. Since 

K ( x -::·
0

) - K ( x -::·
9

) = O(g/h), 

we obtain by an approximation on a sufficiently fine grid that 

sup {j[f~'0(x) - Ei,:'0(x)] - [f~'9(x)- Ef~'9 (x)JI} = 0 ((nhdt 1l2(g/h)Jlog(n),n->.). 
:z:EJRl.d 

This yields, in conjunction with Theorem 3.1, that 

sup {l[fh(x) - Eh(x)] - [f~'0(x) - Ef~10(x)JI} 
:z:EJRl.d . 

= 0 ( n-1/ 2 log(n) + (nhdtl log(n) + (nhdt1l\jlog(n)[(ngd)-1l2J1og(n) + g/h], n-A) . 

0 

Proof of Proposition 3.1. (i) Upper estimates for Poisson probabilities 
Before we turn directly to the proof of the assertion, we first derive some technical 
results to be applied in the main part of this proof. 
Let Ps({k}) = e-ssk/k! be a Poisson probability. Let k = s ± s112 Jr8 log(s) be an 
integer. Then we obtain by formula 11.9.19 in Shorack and Wellner (1986, page 486) 
that 

e-a(k) 1 ( -r8 log(s) V ) Ps({k}) = . ro-:::-: exp 'lf;(±s-1l2 r8 log(s)) , 
Y 27rs Ji± s-1t2Jr,log(s) 2 
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where 1/(12k + 1) < a(k) < 1/(12k). Using the estimate for 'if;(.) given in Proposi-
tion 11.1.1(10) in Shorack and Wellner (1986, page 441), we get, for an appropriate 
C>., 

Ps( {k}) = 0( s->. ), if lk - sj ~ s112 JC>. log( s ). (5.17) 

For' k < s + s112 JC>. log( s) we obtain that 

Ps({k,k+ l, ... })/Ps({k}) 
1 s s s 

- +k+l+k+lk+2+ ... 

[ 
1/2] ( ) h/ s/(c'A log(s))] 

> CA l:g(s)) s + /sc;>. log(s) : [ /s/( C>. log(n))] 

> [( s ) 1
/

2
] (l _ Jsc>.log(s) + Js/(c>.log(s)))[ys/(c'Alog(s))l 

C>.log(s) s 

> c)s/log(s). (5.18) 

Analogously we get, for k > s - s112 JC>. log( s ), that 

Ps ( { k, k - 1, ... } ) / Ps ( { k}) 
k kk-l 

- 1 + - + --- + ... s s s 

> [( s ) 112] (s - Jsc>.log(s) - Js/(c>.log(s)))[ys/(c'Alog(s))] 
C>.log(s) s 

> c)s/log(s). (5.19) 

(5.17) and (5.18) imply 

P,({k}) ~ 0>. [/Iog(s)/s P,({k,k+ 1, ... }) + s->-], (5.20) 

and (5.17) and (5.19) yield 

P,( {k}) ~ 0>. [ /log(s )/ s P,( {k, k - 1,. .. }) + s->-] (5.21) 

for all k E Z. 
(ii) Some preparatory considerations 

We consider instead of A the artificial quantity 

- 1 ~ (x-Zi) 
fh(x) = nhd'f::!iK .h ' (5.22) 

where {Z1 , ••• , Zv} were defined .by (2.3). 
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The crucial point is _that ]h is ~ased on a Poisson process instead of an empirical 
process. Therefore, fh( x1) and fh( x2) are independent, if the supports of the corre-
sponding kernels are disjoint. 
We decompose the R_d into nonoverlapping hypercubes of sidelength 2h, that is 

Further, we divide the set .zd into 2d subsets, 

Jez= {k = (k1, ... ,kd) I ki = 2ji + li, ji E .Z}, 

where l = (l1 , ... , ld) E {O, l}d. We fix land consider 

Zz = sup sup {lfh(x) - Eh(x)I}. 
kE/Cz :z:El1c 

It can be seen from the following considerations that 

P (zz < CA(nhdt1l 2(log(n)) 1!2) = O(n-A) 

holds for sufficiently small CA. 
Let 

µk = =~r.Uh-dKC~z)!(z)dz}. 
Similarly to the considerations in the proof of Theorem 2.1, we can show that 

(5.23) 

P ( sup sup {i/h(x) - Ef,.(x)I} ~ C~(nhdf1l2 (Iog(n))1 12) = O(n-A), 
k: µ.1c <rueI1c ( 5.24) 

for some µ sufficiently small. Hence, with a probability exceeding 1 - 0( n-A), the 
supremum Zz will be attained on one of the intervals Ik with µk ~ µ. Let 

{k1,. .. , kPJ = {k E Jez I µk ~ µ}. 

(iii) Decomposition of ]h( x) - Eh( x) 
Let 

:Tk = hE9supp ( K C ~ ·)) = [(2k1 -3)h, (2k1 +l)h) x ... x [(2kd-3)h, (2kd+l )h). 

Further, let Zf be the i-th variable of Z1, ... , Zv that falls into :fk, and let Vk = 
#{1 ::::; i::::; v I zi E Jk} be the number of them. Then 

- 1 ~ (x - z~) 
fh(x) = nhd~K hi . 

Let vk = Evk = nP( Z1 E Jk)· 
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Now we have, for x E Ik, that 

The main purpose of this decomposition was to split fh( x) - Eh( x) into a term Tk1 
proportional to the Poisson variable Vk rv Pv1c, a term {Tk2( x )}xEI1c independent of 
Tkl, and two asymptotically negligible terms, Rk1 ( x) and Rk2 ( x). 

(iv) Proof of the assertion 

Next we show that 

where 

Tk2 = sup{Tk2(x)}. 
xEI1c 
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We keep for a moment {Tk2hex:i fixed. Since the Tki 's are independent of the Tk2's, 
we obtain, by (5.20), that 

P (sup{Tk1 + Tk2} E [c, d]I Tk1 ,2, ... , Tkp ,2) kEX:i l 

:::; P (Tk111 E [c - Tk1 ,2, d - Tk1 ,2]) 
+ P (Tk211 E [c - Tk2 ,2, d - Tk212]; Tk1 ,1 < c - Tk112) 

+ ... + P ( Tkpl'1 E [c - Tkpl'2, d - TkPi 12]; Tk1 ,1 < c - Tk1 ,2, ... , Tkpz-111 < c - Tkpz-1 ,2) 

< (d- c)(nhd) 1l 2 .jlog(n) {P (Tk1 ,1 > c - Tk112) + 
+ ... + P ( Tkpl'1 > c - Tkpl'2; Tk111 :::; c - Tk1 ,2, ... , Tkpz-111 :::; c - Tkpz-112)} 

+ O(n->.) 

0 ((d- c)(nhd)1f2.jiog(n)P (~~_f1 {Tkl + Tk2} > cj Tk,,2 , ••• ,Tkp,,2)) + O(n->.) 

0 ((d - c)(nhd)1f2.jlog(n) + n->.) . (5.27) 

Integrating over all realizations for Tk112, ... , Tkpl'2, we get (5.26). 
Since f is Lipschitz, we easily obtain that 

sup{IRk1(x)I} == 0 ((nhdt 1!2h.jlog(n),n->.).. (5.28) 
xEl1t 

Because of Vk - [vk] == O((nhd)1l 2(log(n)) 1l 2 ,n->.), we can readily show that 

sup{jRk2(x)I} == 0 ((nhdt3l 4(log(n))3!4 + (nhdtl log(n),n->.). (5.29) 
xEl1t 

By (5.25), (5.26), (5.28) and (5.29) we obtain, with Kn == G[(nhdt112h(log(n))112 + 
( nhdt314 (log( n) )314], that 

P (Zz E [c, d]) 

< P (sup{Tk1 + Tk2} E [c - Kn, d +Kn]) + O(n->.) 
kEX:i 

0 ((d- c)(nhd)1l2(log(n))1l 2 + hlog(n) + (nhdt 114(log(n)) 514). (5.30) 

By analogous considerations, where we only have to use (5.21) instead of (5.20), we 
obtain 

P (inf inf {fh(x) - Efh(x)} E [-d, -cJ) kEX:z xEl1t 

== 0 ((d- c)(nhd)112(log(n)) 112 + hlog(n) + (nhdt114(log(n)) 514). (5.31) 
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This implies 

P (:~f}lfh(x) - Efh(x)I} E [c,d]) 

< I: P (sup sup{lfh(x) - Ehi(x)I} E [c,d]) + O(n->.) 
lE{O,l}d kEICi ::cEl1c 

- 0 ((d- c)(nhd)1l 2(log(n)) 1l 2 + hlog(n) + (nhdt 114(log(n)) 514). (5.32) 

Using 
sup {lfh(x) fh(x )I} 
xEJ.d 

we obtain the assertion. D 

Theorems 3.3, 3.4 and 3.5 are straightforward implications of Theorem 3.1 and Pro-
position 3.1. We omit these proofs. 
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