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A turnpike property for optimal control problems with dynamic
probabilistic constraints

Martin Gugat, Holger Heitsch, René Henrion

Abstract

In this paper we consider systems that are governed by linear time-discrete dynamics with
an initial condition, additive random perturbations in each step and a terminal condition for the
expected values. We study optimal control problems where the objective function consists of a
term of tracking type for the expected values and a control cost. In addition, the feasible states
have to satisfy a conservative probabilistic constraint that requires that the probability that the
trajectories remain in a given set F is greater than or equal to a given lower bound. An appli-
cation are optimal control problems related to storage management systems with uncertain in-
and output. We give sufficient conditions that imply that the optimal expected trajectories remain
close to a certain state that can be characterized as the solution of an optimal control problem
without prescribed initial- and terminal condition. In this way we contribute to the study of the
turnpike phenomenon that is well-known in mathematical economics and make a step towards
the extension of the turnpike theory to problems with probabilistic constraints.

1 Introduction

The turnpike phenomenon for optimization problems has been discussed in mathematical economics
by P. A. Samuelson already in [4]. Ever since, the turnpike phenomenon has been analyzed for optimal
control problems of different types, see for example [3, 7, 10]. The turnpike phenomenon for infinite
horizon optimal control is studied in [21]. Turnpike properties in the calculus of variations and optimal
control are considered in [11, 12, 20]. For optimal control problems with partial differential equations
see also [18] and the references therein.

In order to obtain decisions that are robust against uncertainties in the problem data, probabilistic
constraints are a useful tool if information on the corresponding probability distribution is available (see
[16]). Probabilistic constraints require that the probability to remain feasible is greater than or equal to a
lower bound p that is prescribed as a problem parameter by the decision maker. They play a prominent
role in risk averse water reservoir management under uncertain inflows (e.g.,[14, 16, 19]) but could
equally well apply to gas reservoirs. Recently, probabilistic constraints (or Value-at-Risk constraints)
have attracted increasing interest in optimal control or PDE constrained optimization (e.g., [6, 5, 8, 15].

Although the study of the turnpike phenomenon is an active are of current research, results on the
turnpike property for optimization problems with probabilistic constraints are not yet available in the
literature.

This paper investigates the turnpike property for discrete time optimal control problems with probabilis-
tic constraints (chance constraints). For probabilistic constraints continuous in time (a special case of
so-called probust constraints), we refer to [1, 9]. The underlying random distribution is supposed to
be continuous. We consider a probabilistic constraint where it is required that the probability that the
whole trajectory remains in a given convex set F is greater than or equal to a given parameter p.
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M. Gugat, H. Heitsch, R. Henrion 2

It is the nature of these constraints that for a longer time horizon, they are harder to satisfy than for
a short time horizon. Therefore in some cases if the probability threshold p is not adapted to the
time horizon there is a maximal time horizon where the probabilistic constraint admits a nonempty
feasible set. Hence also in our turnpike result for optimization problems with probabilistic constraints
we consider a time dependent probability threshold pT .

We present a turnpike result that states that the optimal expected trajectories approach a certain state
(the turnpike, which is defined by the optimal trajectory of the problem with free initial and free terminal
state) in the sense that there is an upper bound for the Euclidean distance between the trajectories
of the expected values that is independent of the time horizon. Since probabilistic constraints are
an excellent modeling tool for problems of optimal control and optimal design, also for this case, the
turnpike structure of the generated trajectories is of interest.

This paper has the following structure. In Section 2 we introduce the time-discrete system, a quadratic
objective function and define an optimization problem with a probabilistic constraint.

In Section 3 we show that the solutions of the relaxed problem without the probabilistic constraint have
an exponential turnpike property. Moreover, we show a turnpike property for the problems where the
probabilistic constraint is replaced by a probabilistic penalty term in the objective function. Finally we
also discuss the problem with the probabilistic constraint.

In Section 4 numerical experiments are presented that illustrate the probabilistic turnpike phenomenon.
At the end of the paper, some conclusions are discussed.

2 Optimal control of time-discrete systems

We consider a linear time-discrete system. The initial state l0 ∈ Rn is given and for t ∈ {1, 2, 3, ...}
the evolution of the state lt ∈ Rn is influenced by identically distributed random variables ξt ∈ Rn

and governed by the linear recursion

lt = A lt−1 +Bxt + ξt (1)

with linear operators A and B and control variables xt ∈ X = Rn. Assume that

AT = A, (2)

that A is positive definite and that B is invertible. Expanding the recursion (1), the state vector l can
be written as an affine linear mapping of control and random variables:

l(x, ξ) = Px+Qξ + r. (3)

As an example consider the linear recursion

lt = lt−1 + xt + ξt

for t ∈ {1, ..., T} that models the water level in a reservoir for hydroelectricity generation. It can also
be used as a model of gas storage. Gas storage is important for power generation in gas-fired power
stations in the case of a lack of electricity that is generated from renewable energy. Also the storage
of hydrogen can play an important role in a future hydrogen economy, see [2].

Let a closed convex set F ⊂ Rn and a desired state

l(δ) ∈ F (4)
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A turnpike property for optimal control problems with dynamic probabilistic constraints 3

be given. We assume that for all t ∈ {1, 2, ..., T} we have

Eξt = E

and that
l(δ) = A l(δ) +Bx(δ) + E. (5)

Let a weight γ > 0 be given. For k ∈ {1, ..., T}, we define the objective function JT with a control
cost and a tracking term that is stated in terms of expected values as

JT (x) =
T∑
t=0

‖E(lt)− l(δ)‖2 + γ

T∑
t=1

‖Bxt −Bx(δ)‖2. (6)

Here, for z ∈ Rn we use the notation ‖z‖ =
√∑n

i=1 z
2
i . Define the probability

ϕT (x) = P (lt ∈ F for all t ∈ {1, ..., T})

in the sense that the initial state for t = 0 is l0 and lt is the corresponding random state generated
with the control x ∈ XT by (1).

For a natural number T and pT ∈ (0, 1) we define the probabilistic constraint

ϕT (x) ≥ pT (7)

and the optimization problem

P(T, l0) : min
x∈XT

JT (x) subject to ElT = l(δ) and (7).

This is a problem where a here–and–now decision has to be taken based upon the information that is
available at the time t = 0.

If the feasible set is nonempty, that is if pT is sufficiently small our assumptions imply that a solution of
P(T, l0) exists.

This can be seen as follows. Define the feasible set of P(T, l0)

ΥT = {x ∈ XT : ϕT (x) ≥ pT}

that contains the feasible control vectors that generate the trajectories (lt)
T
t=1 with the starting point

l0. Since the relation lt ∈ F for all t ∈ {1, . . . , T} can be represented as the inequality h(x, ξ) ≥ 0
with lt(x, ξ) from (3) and with the continuous function

h(x, ξ) = − max
t∈{1,...,T}

dist (lt(x, ξ), F ), (8)

it follows that ϕT is an upper semicontinuous function. Hence the feasible set ΥT is closed.

Note that the objective function JT is continuous. Assume that xS ∈ ΥT is a feasible control. Due to
the growth of the objective function JT the lower-level set

MT = {x ∈ XT : JT (x) ≤ JT (xS)}

is compact. Without changing the optimal control we can replace the feasible set ΥT of P(T, l0) by
the set ΥT ∩MT . Since this set is compact, the existence of an optimal control follows.
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We finish this Section with a statement on the log-concavity of the probability function ϕT . As observed
above, one may use the function h in (8) for the representation ϕT (x) = P(h(x, ξ) ≥ 0). Thanks to
(3), the functions

dist (lt(x, ξ), F ) = dist (·, F )(Ptx+Qtξ + rt)

are convex as compositions of the convex (by convexity of F ) distance function dist (·, F ) with an
affine linear mapping. As a consequence, h is concave. Now, the following Lemma is a direct conse-
quence of a classical result by Prékopa [16, Theorem 10.2.1]:

Lemma 1. If ξ has a density fξ such that ln fξ is concave (e.g., Gaussian and many other prominent
multivariate distributions), then lnϕT is a concave function.

3 Turnpike properties for the optimal controls and trajectories

In this section we consider decisions x that have to be taken before the ξt are observed, that is we
are looking for a decision that is taken at the time t = 0 and yields a control that is optimal subject
to uncertainty about the random perturbations ξt for all t ∈ {1, 2, ..., T}. This type of choice is often
called a here-and-now-decision.

First we present an exponential turnpike property for the solution of P(T, l0) for the case that the
probabilistic constraint is not active. Our turnpike results in Theorem 1 states that for the problem
where the probabilistic constraint is not active, in the optimal trajectories the distance between the
expected state and the desired state decays exponentially fast with t. Next, we consider problems
with a logarithmic penalty term for the probabilities and show that the optimal trajectories have a
turnpike property in the sense that the optimal trajectories approach the optimal trajectories for the
corresponding problem with free initial and terminal state. In Theorem 2 below we state this turnpike
result.

Then we also discuss the problem with the probabilistic constraint. In order to show a turnpike result
in this case we have to adapt the probability level pT to the time-horizon.

In the sequel we assume that the feasible set of P(T, l0) has non-empty interior. More precisely, we
assume that there exists a control ẑ(T ) ∈ XT such that

ϕT (ẑ(T )) > pT and El̂T = l(δ). (9)

Here, l̂T refers to the final state resulting from the control ẑ(T ) and the dynamics (1). In the sequel we
assume that the sequence (pT )∞T=1 is decreasing.

For λ ∈ [0, 1] we introduce the problem with a probabilistic penalty term

Q(T, l0, λ) : min
x∈XT

λ JT (x)− (1− λ) ln (ϕT (x)) subject to ElT = l(δ).

In problem Q(T, l0, λ), the probabilistic constraint (7) is replaced by a penalty term in the objective
function and the initial state l0 is still prescribed.

3.1 An exponential turnpike result for the case that the probabilistic constraint
is not active

We start with an exponential turnpike result for the case that the probabilistic constraint is not active.
In this case, the optimal control solves a deterministic problem.
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A turnpike property for optimal control problems with dynamic probabilistic constraints 5

Theorem 1. Assume that (7) is nonactive at a solution of P(T, l0). Then, such solution is unique and
has a discrete exponential turnpike structure in the sense that there exists a number zγ ∈ (0, 1) that
is independent of l0 and T such that for all t ∈ {1, ..., T} we have the turnpike inequality

‖E(lt)− l(δ)‖2 ≤ ztγ ‖E(l0)− l(δ)‖2. (10)

For all eigenvalues λk of the matrix A define the polynomial

pk(ω) = ω2 −
[

1

λk

(
1 +

1

γ

)
+ λk

]
ω + 1. (11)

Then we can choose
zγ = max

k∈{1,...,n}
min

z∈C:pk(z)=0
|z|2.

Proof. For the proof we first observe that problem Q(T, l0, 1) is identical to the relaxed problem

R(T, l0) min
x∈XT

JT (x) subject to ElT = l(δ)

where the probabilistic constraint does not appear. Due to linearity, for the expected values, we have
the recursion

Elt = AElt−1 +B xt + E (t ∈ {1, . . . , T}). (12)

Since the objective function JT only depends on the expected values, this implies that in fact, we have
a deterministic problem that we can solve. Equation (12) yields

B xt = Elt − AElt−1 − E (t ∈ {1, . . . , T}).

This implies that we can write the objective function in terms of

αt := Elt − l(δ) (t ∈ {0, . . . , T}). (13)

Then,

Bxt −Bx(δ) = E(lt − l(δ))− A (Elt−1 − l(δ)) = αt − Aαt−1 (t ∈ {1, . . . , T}). (14)

Hence, the constrained problem R(T, l0) is equivalent with the free minimization of the objective

J̃T (α) := ‖α0‖2 +
T∑
t=1

(
‖αt‖2 + γ‖αt − Aαt−1‖2

)
. (15)

We note that for J̃T only α := (α1, . . . , αT−1) is variable, while α0 = l0 − l(δ) and αT = 0
(as a consequence of the terminal constraint in R(T, l0)) are constant. Recalling that A = AT ,
differentiation yields for t ∈ {1, ..., T − 1}

∇αt J̃T (α) = 2
[
αt + γ

(
αt − Aαt−1 + A2 αt − Aαt+1

)]
= 2

[
−γ Aαt−1 + ((1 + γ)I + γA2)αt − γ Aαt+1

]
.

Thus the necessary optimality condition implies the equation

Aαt+1 =

((
1 +

1

γ

)
I + A2

)
αt − Aαt−1. (16)
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Note that due to convexity, (16) is also a sufficient condition for the optimality of a trajectory that
minimizes (15).

Due to (2) there exists an orthonormal basis v(1), ..., v(n) of eigenvectors of the symmetric matrix A
that correspond to the real eigenvalues λ1,...,λn. Our aim is to express the optimal trajectories as a
linear combination of the orthonormal basis vectors v(k) with k ∈ {1, ..., n}. In order to proceed, for
k ∈ {1, ..., n} define the polynomial

Pk(ω) = λk ω
2 −

(
1 +

1

γ
+ λ2k

)
ω + λk.

Let zk denote a number such that Pk(zk) = 0. For t ∈ {0, 1, 2, ...} define the vector α(k)
t =

ztk v
(k) ∈ Rn. Note that Pk(zk) = 0 implies

λk z
t+2
k =

(
1 +

1

γ
+ λ2k

)
zt+1
k − λk ztk.

Hence we have

λk α
(k)
t+2 =

(
1 +

1

γ
+ λ2k

)
α
(k)
t+1 − λk α

(k)
t .

Since for all s ∈ {0, 1, 2, ...}, the α(k)
s are eigenvectors corresponding to the eigenvalue λk, this

implies that the α(k)
t satisfy (16). Since λk 6= 0, we can define the polynomial pk = 1

λk
Pk as in (11).

With the roots of pk we obtain an explicit representation of the optimal state. If one root is zk, the other
root is 1

zk
. Note that since

∆ =

[
1

λk

(
1 +

1

γ

)
+ λk

]2
− 4 > 0, (17)

pk has two different real roots. The initial state has the representation

l0 = l(δ) +
n∑
k=1

ρk v
(k)

(where the coefficients ρ1, ρ2,... ρn are uniquely determined). We represent the optimal state as a
linear combination of the α(k)

t corresponding to the roots zk and 1
zk

. The initial condition and the
terminal constraint ElT = 0 yield a system of 2n linear equations for the 2n coefficients. With suitable
coefficients (ĝk, ĥk) (k ∈ {1, ..., n}) for t ∈ {1, ..., T} the optimal state is given by

Elt = l(δ) +
n∑
k=1

ρk

(
ĝkz

t
kv

(k) + ĥkz
−t
k v

(k)
)
.

For t = 0 we obtain l0 − l(δ) =
∑n

k=1 ρk

(
ĝk + ĥk

)
v(k). This yields ĝk + ĥk = 1 for all k ∈

{1, ..., n}. For t = T we obtain the equation

ElT − l(δ) = 0 =
n∑
k=1

ρk

(
ĝkz

T
k v

(k) + ĥkz
−T
k v(k)

)
.

This yields zTk ĝk + z−Tk ĥk = 0 for all k ∈ {1, ..., n}. Thus we obtain

ĝk =
z−Tk

z−Tk − zTk
, ĥk =

−zTk
z−Tk − zTk

DOI 10.20347/WIAS.PREPRINT.2941 Berlin 2022



A turnpike property for optimal control problems with dynamic probabilistic constraints 7

and

Elt = l(δ) +
n∑
k=1

ρk
zt−Tk − zT−tk

z−Tk − zTk
v(k). (18)

By our construction, this trajectory satisfies (16), hence it minimizes (15).

For the control that generates this trajectory we have Bxt = Bx(δ) + αt −Aαt−1. Since this control
generates an optimal trajectory, this is an optimal control for R(T, l0). Since the optimization prob-
lem R(T, l0) has a strongly convex objective function and the constraints are linear, the solution is
uniquely determined.

Now we show that for the problem without the probabilistic constraint, the expected values of the
optimal state approach the desired state l(δ) exponentially fast. In order to show this we introduce the
notation

fk,t =
zt−Tk − zT−tk

z−Tk − zTk
.

Then (18) implies

‖αt‖2 =
n∑
k=1

(ρk)
2 |fk,t|2 . (19)

Since we can assume without restriction that |zk| < 1 we have the inequality∣∣∣∣∣1− z2(T−t)k

1− z2Tk

∣∣∣∣∣ ≤ 1.

Hence the following inequality holds:

|fk,t| =
∣∣∣∣ztk − z2T−tk

1− z2Tk

∣∣∣∣ = |zk|t
∣∣∣∣∣1− z2(T−t)k

1− z2Tk

∣∣∣∣∣ ≤ |zk|t.
Define zγ = maxk∈{1,...,n} |zk|2 < 1. Then we have

‖αt‖2 =
n∑
k=1

(ρk)
2 |fk,t|2 ≤

n∑
k=1

(ρk)
2|zk|2t ≤

n∑
k=1

(ρk)
2ztγ = ztγ ‖α0‖2. (20)

Thus we obtain (10) for the relaxed problem R(T, l0). This completes the proof.

Note that the exponential decay implies that the optimal value ν(T, l0) of the optimization problem
R(T, l0) is uniformly bounded with respect to T and l0 ∈ U . Define

η∗ = sup
T∈{1,2,3,...},l0∈l(δ)+U

ν(T, l0) <∞. (21)

Remark 1. If the optimal state of the relaxed problem R(T, l0) that is generated by the optimal control
xT (l0) satisfies the probabilistic constraint (7) (which is the case if pT ≥ 0 is sufficiently small), it is
also the solution of P(T, l0) and satisfies the exponential turnpike inequality (10).

In the next subsections, we investigate the role of the probabilistic constraint for the turnpike phe-
nomenon. We start with the problem where the corresponding probability appears as a penalty term
in the objective function.
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3.2 Results with probabilistic penalty term

Now we present a turnpike result for the problem with the probabilistic constraint. Here the state
that is approached in the interior of the time-interval (the ’turnpike’) is defined as the solution of the
corresponding problem with free terminal and free initial state, which obviously is independent of
prescribed initial and terminal data.

First we state a result about the growth of −ln(ϕT (x)).

Lemma 2. We have
lim
‖x‖→∞

−ln(ϕT (x)) =∞. (22)

Proof. Since the set F is bounded, there exists a number RF ≥ ‖l0‖ such that f ∈ F implies the
inequality ‖f‖ ≤ RF . For all s ∈ {1, ..., T} we have ξs = ls − Als−1 − Bxs. This implies ‖ξs‖ ≥
‖Bxs‖ − ‖ls‖ − ‖A‖ ‖ls−1‖ where ‖A‖ denotes the spectral norm of A. For all s ∈ {1, ..., T} we
have

ϕT (x) = P(lt ∈ F for all t ∈ {1, ..., T})
≤ P(‖lt‖ ≤ RF for all t ∈ {1, ..., T})
≤ P(‖ξs‖ ≥ ‖Bxs‖ −RF (1 + ‖A‖)).

Let a sequence of controls x(k) ∈ XT be given such that limk→∞ ‖x(k)‖ =∞. Then there exists an

s ∈ {1, ..., T} such that limk→∞ ‖Bx(k)s ‖ =∞.

For all t ∈ {1, ..., T} we have
lim
k→∞

P(‖ξt‖ ≥ k) = 0. (23)

This yields
lim
k→∞

P(‖ξs‖ ≥ ‖Bx(k)s ‖ −RF (1 + ‖A‖)) = 0

and the assertion (22) follows.

Due to (23) there exists a number k0,T > 0 such that for all t ∈ {1, ..., T} we have the inequality
P(‖ξt‖ ≥ k0,T ) < pT . Thus if for a control x ∈ XT and a natural number s ∈ {1, .., T} we have

‖Bxs‖ ≥ k0,T +RF (1 + ‖A‖), (24)

we also have ϕT (x) < pT , and thus x is not feasible for P (l0, T ).

By Lemma 2, for all λ ∈ [0, 1] for the objective function of Q(T, l0, λ) we have

lim
‖x‖→∞

inf
λ∈[0,1]

λ JT (x)− (1− λ) ln (ϕT (x)) ≥

lim
‖x‖→∞

min {JT (x), −ln (ϕT (x))} =∞. (25)

Let xT (l0) denote the optimal control for Q(T, l0, 1) presented in Theorem 1 and define

Cprob(T ) = −lnϕT (xT (l0)) (26)

(where we set Cprob(T ) =∞ if ϕT (xT (l0)) = 0). We define the set

ℵT :=
⋃

λ∈[0, 1]

ℵT (λ),

DOI 10.20347/WIAS.PREPRINT.2941 Berlin 2022



A turnpike property for optimal control problems with dynamic probabilistic constraints 9

where, for λ ∈ [0, 1],

ℵT (λ) := {x ∈ XT : λ JT (x)− (1− λ) lnϕT (x) ≤ λ JT (xT (l0)) + (1− λ)Cprob(T )}.

Lemma 3. Assume that ξ has a density fξ such that ln(fξ) is concave and that ϕT (xT (l0)) > 0.
Then, for each λ ∈ [0, 1], the sets ℵT (λ) are nonempty, compact and convex. Moreover, the set ℵT
is nonempty and compact.

Proof. For each λ ∈ [0, 1] the set ℵT (λ) contains xT (l0), hence is nonempty. Much more, ℵT is
nonempty. As a consequence of Lemma 1, the ℵT (λ) are convex. They are also closed thanks to the
upper semicontinuity of ϕT (see Section 2). The set ℵT is bounded due to (25) and by our assumption
that ϕT (xT (l0)) > 0. This implies that the sets ℵT (λ) are bounded too, hence compact. It remains
to verify the closedness of ℵT . To this aim, consider a sequence {xn} ⊆ ℵT with xn → x∗ for some
x∗. Then, there exists some sequence {λn} ⊆ [0, 1] with xn ∈ ℵT (λn). Passing to a subsequence
which we do not relabel, we may assume that λn → λ∗ ∈ [0, 1]. Then, by upper semicontinuity of ϕT
it follows that

λ JT (xT (l0)) + (1− λ)Cprob(T ) ≥ lim inf
n

(λn JT (xn)− (1− λn) lnϕT (xn))

= λ∗JT (x∗)− (1− λ∗) lim sup
n

lnϕT (xn)

≥ λ∗JT (x∗)− (1− λ∗) lnϕT (x∗).

Hence, x∗ ∈ ℵT (λ∗) ⊆ ℵT , as was to be shown.

In the next theorem we state that for a certain value of λ, problem Q(T, l0, λ) is equivalent to
P(T, l0).

Theorem 2. Let T ∈ N be arbitrarily given. Assume that Cprob(T ) < ∞ for Cprob(T ) in (26). Let ξ
have a density fξ such that ln(fξ) is concave (e.g., multivariate Gaussian). Then, for all λ ∈ (0, 1],
problem Q(T, l0, λ) has a unique solution and there exists a number λ∗ ∈ (0, 1] such that the
solution of Q(T, l0, λ

∗) is equal to the solution of P(T, l0).

Proof. According to Lemma 1, our assumption on the density of ξ implies that lnϕT is concave.
Hence, for all λ ∈ (0, 1], the objective function of problem Q(T, l0, λ) is strongly convex. Since the
optimal controls can be found in the nonempty, compact and convex set ℵT (λ) (see Lemma 3), the
existence of a unique solution of Q(T, l0, λ) follows. By the concavity of lnϕT , problem P(T, l0) is
a convex optimization problem. Similar to the proof of Theorem 1 we can transform it to an optimization
problem in terms of α := (αt)

T−1
t=1 with αt = Elt − l(δ) for t = 0, . . . , T :

minimize J̃T (α) subject to − ln ϕ̃T (α) ≤ − ln pT . (27)

Here, J̃T is defined in (15) and, using the linear transformation (14), ϕ̃T is defined as

ϕ̃T (α) := ϕT ([B−1(αt − Aαt−1 +Bx(δ))]Tt=1) = ϕT (x), (28)

where in (27) α0 = l0− l(δ) and αT = 0 are constants in these problems. Observe that the concavity
of lnϕT implies that of ln ϕ̃T by linearity of the inner mapping. Hence, (27) is a convex optimization
problem too. Moreover, with ẑ(T ) from (9), we may resolve (14) for α with x := ẑ(T ) starting with
α0 := l0 − l(δ) and ending - thanks to the endpoint condition in (9) - as required with

αT = AαT−1 + E(lt − l(δ))− A (Elt−1 − l(δ)) = AαT−1 − A (Elt−1 − l(δ))
= AαT−1 − AαT−1 = 0.
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Using the correspondence (28) between α and controls, this yields some α̂(T ) with α̂(T )
0 = l0 − l(δ),

α̂
(T )
T = 0 and ϕ̃T (α̂(T )) = ϕT (ẑ(T )) > pT . This means that α̂T is a Slater point for problem (27).

Consequently, the necessary and sufficient conditions for a solution α of (27) amount to the existence
of a multiplier µ ≥ 0 such that ϕT (α) ≥ pT and

0 ∈ ∇J̃T (α) + µ ∂ (−ln (ϕ̃T (α))) , µ(ϕ̃T (α)− pT ) = 0 (29)

where ∂ denotes the subgradient of convex analysis. Note that the last equation in (29) represents the
complementarity constraint associated with the inequality in (27).

In the following, denote by x(λ) the solution of Q(T, l0, λ) (whose unique existence we have shown
in the beginning of this proof). If ϕT (x(1)) ≥ pT , then x(1) is a solution of P(T, l0) as well and we
may choose λ∗ = 1 in the statement of the theorem. Therefore, we assume now that ϕT (x(1)) < pT .
Assume for a moment, that there exists some λ∗ ∈ (0, 1) such that

ϕT (x(λ
∗)) = pT . (30)

Then, by definition, x(λ
∗) solves Q(T, l0, λ

∗) and we show that it also solves P(T, l0) as claimed
in the Theorem. Indeed, like P(T, l0) in (27), Q(T, l0, λ

∗) can be formulated as a (free) convex
problem in terms of the variable α:

minimizeλ∗J̃T (α)− (1− λ∗) ln ϕ̃T (α). (31)

Denote by α∗ the vector in correspondence with x(λ
∗) via (14). Then, by (28) and (30),

ϕ̃T (α∗) = ϕT (x(λ
∗)) = pT . (32)

Moreover, since x(λ
∗) is the solution of Q(T, l0, λ

∗), α∗ is the solution of (31) which is equivalent
with the condition

0 ∈ ∂(λ∗J̃T (α∗) + (1− λ∗)(− ln ϕ̃T (α∗)) = λ∗∇J̃T (α∗) + (1− λ∗) ∂ (− ln ϕ̃T (α∗)) . (33)

Here, we have applied the sum rule for the convex subdifferential which is justified by, e.g., [17, The-
orem 2.85] because J̃T is continuous and convex, − ln ϕ̃T is convex and − ln ϕ̃T (α∗) < ∞ as a
consequence of (32) and our general assumption pT > 0. Now, defining

µ := (1− λ∗)/λ∗ > 0, (34)

we get - thanks to λ∗ ∈ (0, 1) - that the inclusion inside (29) is satisfied for α∗. The same holds
true for the equality (complementarity condition) as a consequence of (32). Hence, α∗ satisfies the
necessary and sufficient optimality conditions of problem (27) which entails that it is a solution of this
problem. Translated to the original description in terms of the x-variables, this means that x(λ

∗)) is a
solution of P(T, l0) as was to be shown.

It remains to justify the existence of λ∗ ∈ (0, 1) with (30). Define

λ∗ := sup{λ ∈ (0, 1] | ϕT (x(λ)) ≥ pT}.

We show first that λ∗ > 0 which amounts to saying that there exists some λ ∈ (0, 1] with ϕT (x(λ)) ≥
pT . Assume to the contrary that ϕT (x(λ)) < pT for all λ ∈ (0, 1]. Then, by optimality of x(λ) and by
feasibility of x(0) for problem Q(T, l0, λ), it follows that

λJT (x(λ))− (1− λ) ln pT < λJT (x(λ))− (1− λ) lnϕT (x(λ))

≤ λJT (x(0))− (1− λ) lnϕT (x(0))
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A turnpike property for optimal control problems with dynamic probabilistic constraints 11

for all λ ∈ (0, 1]. Since all x(λ) belong to the compact set ℵ by Lemma 3 and since JT is bounded
on this set, we may pass to the limit λ ↓ 0, and arrive at ϕT (x(0)) ≤ pT . On the other hand, x(0)

is the optimal solution of Q(T, l0, 0) which amounts to maximizing ϕT under the endpoint constraint
ElT = l(δ). Hence, it follows from (9) the contradiction

ϕT (x0)) ≥ ϕT (ẑ(T )) > pT .

Thus, λ∗ ∈ (0, 1].

Next, we verify thatϕT (x(λ
∗)) ≥ pT . By definition of λ∗, there is a sequence λk ↑ λ∗ withϕT (x(λk)) ≥

pT . Since the x(λk) belong to the compact set ℵ (see Lemma 3), we may assume that x(λk) → x∗.
Observe that, since all x(λk) as solutions of Q(T, l0, λk) satisfy the endpoint condition ElT = l(δ),
the same holds true for x∗. Let x be arbitrary such that ElT = l(δ). Then, since x(λk) is the solution
of Q(T, l0, λk) and the objective of that problem is lower semicontinuous, it follows that

λ∗JT (x∗)− (1− λ∗)ϕT (x∗) ≤ lim inf
k

λkJT (x(T,λk))− (1− λk)ϕT (x(T,λk))

≤ lim inf
k

λkJT (x)− (1− λk)ϕT (x)

= λ∗JT (x)− (1− λ∗)ϕT (x).

This means that x∗ is the solution of Q(T, l0, λ
∗), i.e., x∗ = x(λ

∗). Now, the upper semicontinuity of
ϕT yields the desired inequality

pT ≤ lim sup
k

ϕT (x(λk)) ≤ ϕT (x∗) = ϕT (x(λ
∗)).

As a consequence, λ∗ < 1 because ϕT (x(1)) < pT . Summarizing, we have that λ∗ ∈ (0, 1) and
ϕT (x(λ

∗)) ≥ pT .

In the last step we show that actually ϕT (x(λ
∗)) = pT . For k ∈ N sufficiently large it holds that

λ∗ + 1/k ≤ 1 and, hence, by definition of λ∗, for k large enough, ϕT (x(λ
∗+1/k)) < pT . Then, by

optimality of x(λ
∗+1/k) and by feasibility of x(λ

∗) for problem Q(T, l0, λ
∗ + 1/k), it follows that

(λ∗ + 1/k)JT (x(λ
∗+1/k))− (1− λ∗ − 1/k) ln pT

< (λ∗ + 1/k)JT (x(λ
∗+1/k))− (1− λ∗ − 1/k) lnϕT (x(λ

∗+1/k))

≤ (λ∗ + 1/k)JT (x(λ
∗))− (1− λ∗ − 1/k) lnϕT (x(λ

∗))

for all k sufficiently large. Repeating an argument, already used before in this proof, we may assume
that x(λ

∗+1/kl) →l x
(λ∗) for a subsequence. Invoking now the continuity of JT , we end up, after

passing to the limits above, at ϕT (x(λ
∗)) ≤ pT which finally yields the desired relation ϕT (x(λ

∗)) =
pT .

3.3 A turnpike result for the case that the probabilistic constraint is active

In the sequel we denote by λT the multiplier λ∗ from Theorem 2 associated with an arbitrary T ∈ N.
Accordingly we define the following sequence of problems with free initial state and free terminal state

Q̂(T ) : min
(l̂0, x)∈Rn×XT

λT JT (x)− (1− λT ) ln (ϕT (x)) (T ∈ N), (35)

where now, in contrast to the previous problems, l̂0 is a variable initial state. In the following, we denote
by l̂t (t = 0, . . . , T ) the random states generated by the optimal solution of Q̂(T ). Next we state a
probabilistic turnpike result:
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Lemma 4. Let the assumptions of Theorem 2 be valid for all T ∈ N. Assume that there exists some
constant R such that for all T ∈ N

‖El̂t‖ ≤ R ∀t ∈ {0, . . . , T}.

Moreover, suppose that κ > 0 for

κ := inf
T∈N

P
(
l̂T − El̂T + l(δ) ∈ F | l̂t ∈ F ∀t ∈ {1, ..., T − 1}

)
. (36)

Then, there exists C1 > 0 such that the random states (lt)
T
t=1 generated by the optimal control of

P(T, l0) satisfy the estimate

T∑
t=0

‖Elt − El̂t‖2 ≤
C1

λT
∀T ∈ N. (37)

Proof. Fix an arbitrary T ∈ N. For Z = (z0, ..., zT )> ∈ XT+1 define the function

H1(Z) := ‖z0‖2 +
T∑
t=1

(
‖zt‖2 + γ‖zt − Azt−1‖2

)
. (38)

Then H1 is strongly convex in the sense that for all s ∈ [0, 1] and all Z , Y ∈ XT+1 we have the
inequality

H1((1− s)Z + sY ) ≤ (1− s)H1(Z) + sH1(Y )− s (1− s)‖Z − Y ‖2. (39)

This can be seen as follows. For H2(Z) := ‖z0‖2 +
∑T

t=1 ‖zt‖2 we have

H2((1− s)Z + sY ) = (1− s)H2(Z) + sH2(Y )− s (1− s)‖Z − Y ‖2.

Since H1 is the sum of H2 and a convex function, (39) follows. Define

H(α) := λT H1(α)− (1− λT ) ln (ϕ̃T (α)) (α ∈ XT+1),

where ϕ̃ is as in (28), but now with α0, αT being variables. Note that H is the objective function of
Q̂(T ) when similarly as in the proof of Theorem 1, problem Q̂(T ) is restated as an optimization
problem in terms of α as defined in (13). Due to (39) our assumptions imply that H is a strongly
convex function in the sense that for all s ∈ [0, 1] and all Z , Y ∈ XT+1 we have the inequality

H((1− s)Z + sY ) ≤ (1− s)H(Z) + sH(Y )− λT s (1− s)‖Z − Y ‖2,

where we exploited (39), the concavity of ln ϕ̃ according to Theorem 2 (see remark below (28)) and
λT ≤ 1 by the same Theorem. For all s ∈ (0, 1] this is equivalent to the inequality

H(Y ) ≥ H(Z) +
H((1− s)Z + sY )−H(Z)

s
+ λT (1− s)‖Z − Y ‖2.

If Z is a point such that H(Ỹ ) ≥ H(Z) for all Ỹ ∈ XT+1, this yields

H(Y ) ≥ H(Z) + λT sup
s∈(0,1]

(1− s)‖Z − Y ‖2 = H(Z) + λT ‖Z − Y ‖2.
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A turnpike property for optimal control problems with dynamic probabilistic constraints 13

Following our previous reformulation of problems in the new variable α, we may restate Q̂(T ) as

min
α∈XT+1

H(α)

and Q(T, l0, λT ) as the corresponding problem with fixed α0 = l0 − l(δ) and αT = 0 (see remarks
below (28)). Let v̂(T ) denote the optimal value of Q̂(T ) and v(T, l0, λT ) the optimal value of
Q(T, l0, λT ). Since problems Q(T, l0, λT ) and P(T, l0) are equivalent by Theorem 2, we have
that

v(T, l0, λT ) ≥ v̂(T ) + λT

T∑
t=0

‖α∗t − α̂∗t‖2 (40)

where α∗t := Elt − l(δ) and α̂∗t := El̂t − l(δ) and Elt, El̂t are the expected states generated by the
optimal solutions of Q(T, l0, λT ) and Q̂(T ), respectively.

Since the matrices A,B are regular by our basic assumptions, there exists a control q̃ ∈ XT that
generates for the deterministic dynamics

ηt = Aηt−1 +Bq̃t (41)

the deterministic trajectory

(η0, η1, ...., ηT ) = (l0 − l̂0, 0, . . . , 0, l(δ) − El̂T ).

To be precise, we have

q̃ = (−B−1[A(l0 − l̂0)], 0, . . . , 0, B−1[l(δ) − El̂T ]).

Starting with lu0 := l0 the control u := x̂+ q̃ with the (uncertain) dynamics

lut := A lut−1 +But + ξt (t = 1, . . . , T )

generates the trajectory (lut )Tt=0 = (l̂t + ηt)
T
t=0 which is equal to

l0, l̂1, . . . , l̂T−1, l̂T + l(δ) − El̂T (42)

Since E(l̂T + l(δ) − El̂T ) = l(δ), the control u is feasible for Q(T, l0, λT ).

Due to the definition of the objective function of Q(T, l0, λT ) and Q̂(T ), our construction implies the
inequality

v(T, l0, λT )− v̂(T ) ≤ λT (JT (u)− JT (x̂))− (1− λT ) (lnϕT (u)− lnϕT (x̂)) . (43)

First we derive an upper bound for the deterministic part JT (u)− JT (x̂). Given (15) and with αut :=
Elut − l(δ) for t = 0, . . . , T , we get that

JT (u)− JT (x̂) = ‖αu0‖2 − ‖α̂∗0‖2+
T∑
t=1

‖αut ‖2 − ‖α̂∗t‖2 + γ
(
‖αut − Aαut−1‖2 − ‖α̂∗t − Aα̂∗t−1‖2

)
≤ ‖αu0‖2 − ‖α̂∗0‖2+

γ
(
‖αu1 − Aαu0‖2 − ‖α̂∗1 − Aα̂∗0‖2 + ‖AαuT−1‖2 − ‖α̂∗T − Aα̂∗T−1‖2

)
, (44)
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because, thanks to (42) one has that αut = α̂∗t for t = 1, . . . , T − 1 and because of αuT = E(l̂T +

l(δ) −El̂T )− l(δ) = 0. For the probabilistic part of the objective function we proceed in a similar way.
By definition of ϕT , we may write in terms of conditional probabilities

ϕT (u) = P(lut ∈ F (t = 1, . . . , T − 1)) · P(luT ∈ F | lut ∈ F (t = 1, . . . , T − 1))

ϕT (x̂) = P(l̂t ∈ F (t = 1, . . . , T − 1)) · P(l̂T ∈ F | l̂t ∈ F (t = 1, . . . , T − 1)).

By (42), the first factors coincide. Since also the log of a probability is negative, we may conclude that

lnϕT (u)− lnϕT (x̂) ≥ lnP(l̂T + l(δ) − El̂T ∈ F | l̂t ∈ F (t = 1, . . . , T − 1)).

Thus, we may continue (43) by using (44) as

v(T, l0, λT )− v̂(T ) ≤ λT (‖αu0‖2 − ‖α̂∗0‖2)
+λTγ

(
‖αu1 − Aαu0‖2 − ‖α̂∗1 − Aα̂∗0‖2 + ‖AαuT−1‖2 − ‖α̂∗T − Aα̂∗T−1‖2

)
−(1− λT ) lnP(l̂T + l(δ) − El̂T ∈ F | l̂t ∈ F (t = 1, . . . , T − 1)) ≤
λT
(
‖αu0‖2 + γ‖αu1 − Aαu0‖2 + γ‖AαuT−1‖2

)
− (1− λT ) lnκ,

where we we exploited that κ > 0 by assumption. Observing that

‖αu0‖ ≤ ‖l0‖+ ‖l(δ)‖
‖αu1 − Aαu0‖ ≤ R + ‖l(δ)‖+ ‖A‖(‖l0‖+ ‖l(δ)‖)
‖AαuT−1‖ ≤ ‖A‖(R + ‖l(δ)‖),

we arrive at v(T, l0, λT )− v̂(T ) ≤ C1, where C1 is independent of T . With (40) the above inequality
implies

T∑
t=0

‖α∗t − α̂∗t‖2 ≤
1

λT
[v(T, l0, λT )− v̂(T )] ≤ C1

λT
.

In Lemma 4, the quotient C1

λT
on the right-hand side of (37) becomes arbitrarily large if λT ∈ (0, 1]

converges to zero. In the following we derive a strictly positive lower bound for the corresponding
values of λT . To show that there is a strictly positive uniform lower bound for the multipliers for problem
P(T, l0) with respect to T , we have to introduce a normalization with respect to T in the probabilistic
constraint, that is, we adapt the probability level to the time-horizon. For this purpose for a given
parameter ζ ∈ (0, 1) and T ∈ N we define

pT = ζT pmax(T ) (45)

where pmax(T ) is the optimal value of the probability maximizing problemQ(T, l0, 0). Since pmax(T )
is decreasing with T , also pT is decreasing as a function of T .

Lemma 5. Assume that the probability levels pT in problems P(T, l0) are given by (45). Suppose,
moreover, that there exists some R̃ such that for all T ∈ N.

‖Elt‖ ≤ R̃ ∀t ∈ {0, . . . , T}, (46)

Then, there is some C2 > 0 such that

λT ≥ C2 ∀T ∈ N.
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A turnpike property for optimal control problems with dynamic probabilistic constraints 15

Proof. The probabilistic constraint (7) with the time-dependent probability level is

ϕT (x) ≥ pT .

Under the assumptions of Theorem 2, define the convex function

gT (x) = ln(pT )− ln(ϕT (x)).

Then the probabilistic constraint (7) is equivalent to the convex constraint

gT (x) ≤ 0. (47)

Let xS(T ) be a solution of Q(T, l0, 0) (i.e. a control that yields the maximum probability ϕT (·)).
Then for all T ∈ {2, 3, 4, ...} we have the SLATER condition (9) for problem P(T, l0):

ϕT (xS(T )) = pmax(T ) > ζT pmax(T ) = pT . (48)

Define the affine subspace

X̃T = {x ∈ XT | ElT = l(δ) under l0 = 0 and the dynamics (1)}.

Then, we can write the dual problem for P(T, l0) as

D(T, l0) : max
µ≥0

inf
x∈X̃T

LT (x, µ)

with the Lagrangian LT (x, µ) = JT (x)+µ gT (x). Let µT (l0) denote the multiplier that corresponds
to the optimal control xT (l0) of problem P(T, l0). Let β(T, l0) denote the optimal value of P(T, l0).
Due to the SLATER condition (48) we have strong duality, which means that the optimal value of
P(T, l0) is equal to the optimal value of D(T, l0), that is

β(T, l0) = inf
x∈X̃T

LT (x, µT (l0)).

This yields the inequality β(T, l0) ≤ LT (xS(T ), µT (l0)), which implies in turn

µT (l0) ≤
β(T, l0)− JT (xS(T ))

gT (xS(T ))
=
JT (xS(T ))− β(T, l0)

|gT (xS(T ))|
(49)

=
JT (xS(T ))− β(T, l0)

T | ln(ζ)|
.

Due to the recursion (12) for the expected values, we have

(xS(T ))t = B−1 (Elt − AElt−1 − E) .

This implies with (46)
sup
T∈N

max
t∈{1,...,T}

‖(x(T )S )t‖ <∞. (50)

Note that by (6) JT attains only values greater than or equal to zero. This yields β(T, l0) ≥ 0. Hence
we obtain

sup
T∈N

JT (xS(T ))− β(T, l0)

T
≤ sup

T∈N

JT (xS(T ))

T
.
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The objective function JT is defined as the sum of T + 1 terms each of which can be bounded by
some common constant M̂ thanks to (46). Hence (50) yields

sup
T∈N

JT (xS(T ))

T
≤ sup

T∈N

(T + 1) M̂

T
≤ 2 M̂ <∞.

Due to (49) we have that

sup
T∈N

µT (l0) ≤
2 M̂

| ln(ζ)|
<∞.

Due to the relation (34), we have that µT = (1− λT )/λT , whence

λT ≥
| ln(ζ)|

| ln(ζ)|+ 2 M̂
=: C2 ∀T ∈ N.

Now, we are in a position to formulate our main result on the probabilistic turnpike property of the
expected states for the optimal control of problem P(T, l0):

Theorem 3. Under the assumptions of Lemma 4 and Lemma 5, the expected states (Elt)Tt=1 gen-
erated by the optimal controls of the sequence of problems P(T, l0) for T ∈ N have a turnpike
structure near the expected states (El̂t)Tt=1 generated by the optimal solutions of the sequence of
problems Q̂(T ) in the sense that there exists a constant C such that

T∑
t=0

‖Elt − El̂t‖2 ≤ C ∀T ∈ N.

Proof. Combine Lemmas 4 and 5 and put C := C1/C2.

In the numerical experiments presented in the next section the turnpike property stated in Theorem 3
is clearly visible and in particular close to the middle of the time horizon the two expected trajectories
almost coincide.

4 Numerical experiments for the probabilistic turnpike

In this section we present numerical experiments for the probabilistic turnpike for here-and-now deci-
sions. For studying the turnpike phenomenon in a probabilistic setup, as instance for a time-discrete
system (1), we consider the linear recursion

lt = lt−1 + xt + ξt (51)

for t ∈ {1, . . . , T}. Equation (51) models the state level in a reservoir problem, for example the water
level for hydroelectricity generation. For any time step t ∈ {1, . . . , T} the scalar state variable lt ∈ R
denotes the water level in the reservoir, the control variable xt ∈ R is the amount of water to be
filled or released at t, and ξt ∈ R is some random water inflow to the reservoir. We assume that the
inflows ξt describe a sequence of identically distributed Gaussian random numbers with Eξt = E for
t = 1, . . . , T .
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A turnpike property for optimal control problems with dynamic probabilistic constraints 17

Instead of computing policies for optimal water releases for power generation, in our numerical tests
we are rather interested in turning a given water level l0 back to a desired level l(δ) ∈ F := [a, b] in a
cost optimal way. According to (5) we have

x(δ) = −E

and define the objective function of the optimal control problem by

JT (x) =
T∑
t=0

(E(lt)− l(δ))2 + γ

T∑
t=1

(xt − x(δ))2,

where γ is some non-negative weighting factor concerning the control cost. Introducing the probabilis-
tic constraint

ϕT (x, l0) = P(lt ∈ [a, b] for all t ∈ {1, . . . , T}),
finally, the optimization problem P(T, l0) introduced in Section 2 reads

min
x∈RT

JT (x) subject to ElT = l(δ) and ϕT (x, l0) ≥ p (52)

for a given and fixed probability level p ∈ [0, 1].

4.1 Turnpike study for a short time horizon

In a first test series we want to study numerical examples, where the consider a short fixed time
horizon T , varying initial water levels l0 compared to different desired levels l(δ) for a fixed confidence
interval [a, b]. In particular, we solve (52) numerically with the following data:

Confidence interval: [a, b] = [11, 25]
Initial level: l0 = 5, 13
Desired level: l(δ) = 16, 20
Time horizon: T = 10
Control cost factor: γ = 5
Distribution of inflow t: ξt ∼ N (E, 1); E = −1

Computed solutions of the optimal control problem (52) for the first two numerical examples are shown
in Fig. 1. The expected level trajectories of the reservoir for the given data are displayed for two different
situations, where the initial level is located outside and inside the confidence interval, respectively.
Beside the expected level, the figure also shows realizations of the level curves realizing the computed
optimal control for randomly selected inflow scenarios (light gray) for the given time horizon. The
expected level (shown by purple lines) are observed for probability levels p = 0.70 and p = 0.91,
respectively. Clearly, in both example, by the optimal solution the system is controlled towards the
desired level. However, if the initial level as in the first example is located outside the confidence
interval, we observe a jump of the expected level into the confidence interval in the first time step in
order to satisfy the probabilistic constraint. Afterwards, similar to the second example, the system is
smoothly turned to the desired level, which is a consequence to the chosen parameter γ > 0. By this
setting, due to the control cost within the objective function, abrupt rises of the reservoir levels will be
avoided.

Next, we want to study the behavior of the reservoir levels when increasing the probability level inside
the probabilistic constraint. With the same setup as in the two examples before we just change the
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Figure 1: Solution of the turnpike problem for two examples with different initial level l0 = 5 (left) and
l0 = 13. The level trajectories are computed for a fixed desired level l(δ) = 16 as well as probability
levels p = 0.70 (left) and p = 0.91.
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Figure 2: Solution of the turnpike problem for two examples with different initial level l0 = 5 (left) and
l0 = 13, but, with increased probability levels p = 0.91 (left) and p = 0.93. The level trajectories are
computed for the fixed desired level l(δ) = 16.
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Figure 3: Solution of the turnpike problem for pmax. Displayed are level trajectories for different desired
levels l(δ) = 16 (left) and l(δ) = 20.
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probabilities to p = 0.91 and p = 0.93, respectively. The results are shown in Fig. 2. The new
observation is the following: When increasing the probability the expected reservoir level will be forced
to leave the desired state in order to increase the probability that the state curves remain within the
confidential bounds. As consequence, within intermediate time steps the expected state of the system
exceeds the desired level and turns toward the center line of the confidence interval. However, as
required by the constraints, at the end of the time horizon in both examples the expected value of the
reservoir level turns back and reaches the desired level again.

As typical for optimization problems with probabilistic constraints there exists a maximum probability
level pmax such that the feasibility set becomes empty for higher probability p, i.e. for pmax < p ≤ 1.
The previous results are obtained for probability levels below the maximum probability. Now, we want
to look at the turnpike behavior when reaching pmax. If p = pmax, the reservoir problem solution
approaches the level state that maximizes the probability p in one step. This is shown in Fig. 3 for
two instances, where we compare two different desired levels. In both cases it turns out that the
expected reservoir levels almost ignore the desired level, because they are forced towards the center
of confidence in order to match the maximum probability. They both turn to the desired level only to
the end of the time horizon that is due to the terminal condition.

4.2 The turnpike property for increasing time horizon

Finally, we want to illustrate the probabilistic turnpike property for a increasing time horizon. The turn-
pike result from Section 3 describes the turnpike behavior of the system state with increasing time
horizon T . In order to show this specific probabilistic turnpike phenomenon by the numerical example
we want to setup the time horizon sequentially by T = 40, T = 60 and T = 100. In addition, we ad-
just the standard deviation of the random vectors ξt and we want to allow correlations between different
time steps. In particular, we assume an inflow process ξ = (ξ1, . . . , ξT ) that follows a multivariate
Gaussian distribution with tridiagonal covariance matrix of the form

ξ ∼ N (−IT ,ΣT ) and ΣT =


σ1 σ2 σ3 0

σ2
. . .

. . .
. . .

σ3
. . .

. . .
. . . σ3

. . .
. . .

. . . σ2
0 σ3 σ2 σ1


with σ1 = 0.05, σ2 = 0.03, σ3 = 0.015, and where IT denotes the T -dimensional identity matrix.
All other fixed problem data of the level problem (52) follow the general setup above with initial level
l0 = 13 and desired level l(δ) = 20.

When increasing the number of time steps, the probability that the system remains within some given
bounds drops down. This is due to the increasing variance of perturbations caused by the random
inflow process. More precisely, the probability pmax(T ) as function of the time horizon is strictly mono-
tonic decreasing. On the other hand, for small enough probability levels the probabilistic constraint
becomes inactive. As consequence, the probability level p in (52) should be chosen between the up-
per bound pmax(T ) and some lower bound pmin(T ). Otherwise, the problem (52) is getting infeasible
or it turns to a pure deterministic turnpike problem. Fig. 4 shows the bounding maximal and minimal
probability curves pmax(·) and pmin(·) as function of the time horizon for the numerical example. In
order to get a suitable probability levels for (52) we setup the probability p as function of pmax. In the
following we apply p according to the definition

p(T ) := ζT · pmax(T ) ,
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Figure 4: Bounding maximal and minimal probability curves pmax(·) and pmin(·) as function of the
time horizon such that the level problem (52) is feasible and such that the probabilistic constraint is
active. The graphic also shows a suitable time dependent choice of probabilities p(T ), where p(T ) =
ζT · pmax(T ) with constant ζ = 0.99996.
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Figure 5: Illustration of the probabilistic turnpike property for an increasing time horizon with T =
40, 60, 80, 100. Displayed are the expected state trajectories compared to the corresponding free
initial and terminal state solutions.
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where ζ ∈ (0, 1) is some constant number that is chosen sufficient close to 1. In the numerical
example ζ is assigned to ζ = 0.99996 (cf. Fig. 4). The related probabilistic turnpike property for an
increasing time horizon is studied in Fig. 5. The numerical results are shown for time horizons T = 40,
T = 60, T = 80 and T = 100. In all four settings we compare the expected state of the system,
observed when applying the optimal control as solution of (52), with the expected state according
to the optimal solution of the free initial state and free terminal state problem Q̂(T ) defined in (35).
The pictures in Fig. 5 reveal that at the beginning of the time horizon the expected system state
(when applying the problem with bounding conditions) turns from the defined initial state smoothly
towards the expected state of the problem with free initial and free terminal state. Before reaching
the end of the time horizon the expected level leaves the free initial/terminal state solution in order to
match the deterministic terminal state condition, i.e. the expected system state of the bounded problem
terminates with the desired level. The effect that becomes apparent with the time horizon is that the
longer the time horizon the more intermediate time steps can be observed, where the computed
expected level according to (52) is close to the expected level of the corresponding free initial/terminal
solution. In fact, that particular observation demonstrates numerically the turnpike property stated in
Theorem 3 for the considered example.

5 Conclusion

Motivated by the application of probabilistic constraints in dynamic optimal planning problems for the
operation of gas networks, we have studied the turnpike property for time-discrete systems with an
additive random perturbation.

We have considered optimal control problems where the quadratic objective functional is stated in
terms of expected values and a probabilistic constraint is prescribed. We have shown that under suit-
able assumptions we obtain a turnpike structure for the expected optimal state also for problems with
probabilistic constraints. We have shown that for large time horizons the optimal expected trajectories
approach the optimal expected trajectories of the problem with free initial and free terminal states in
the majority of time steps.

There are some open questions left, in particular about the verification of our assumptions in terms of
the problem data, in particular the underlying probability distributions. We have considered a special
finite-dimensional setting with affine linear dynamics. In the applications, in contrast to our setting
the dynamics are often nonlinear, in fact often given by partial differential equations. In this infinite-
dimensional setting specific probabilistic box-constraints are required for the feasible states. How the
results can be generalized to this setting is a topic for future research. Such an analysis could be
based upon the recent paper [13].
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