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First-order conditions for the optimal control of
learning-informed nonsmooth PDEs

Guozhi Dong, Michael Hintermüller, Kostas Papafitsoros, Kathrin Völkner

Abstract

In this paper we study the optimal control of a class of semilinear elliptic partial differential
equations which have nonlinear constituents that are only accessible by data and are approx-
imated by nonsmooth ReLU neural networks. The optimal control problem is studied in detail.
In particular, the existence and uniqueness of the state equation are shown, and continuity as
well as directional differentiability properties of the corresponding control-to-state map are estab-
lished. Based on approximation capabilities of the pertinent networks, we address fundamental
questions regarding approximating properties of the learning-informed control-to-state map and
the solution of the corresponding optimal control problem. Finally, several stationarity conditions
are derived based on different notions of generalized differentiability.

1 Introduction

1.1 Context and motivation

In this paper we study the following prototypical optimal control problem:

minimize J(y, u) :=
1

2
‖y − g‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω), over (y, u) ∈ H1
0 (Ω)× L2(Ω),

subject to

{
−∆y + f(·, y) = u, in Ω,

y = 0, on ∂Ω,
and u ∈ Cad.

(Pf )

Here Ω denotes an open, bounded Lipschitz domain in Rd, d ≥ 2, with boundary ∂Ω, g ∈ L2(Ω)
is a given desired state, and α > 0 is fixed. Further, Cad is the admissible set of controls u, which
is a nonempty, bounded, closed and convex subset of the Lebesgue space Lp(Ω) for some p ≥ 2.
The state is given by y and is supposed to lie in the Sobolev space H1

0 (Ω); see, e.g., [1] for the latter.
Moreover, f : Ω × R → R is assumed to be a rather general nonlinear and possibly nonsmooth
function. A particular motivating example for this work is given by f represented (or approximated) by
a so-called ReLU artificial neural network. In this case f is replaced by N , a neural network function
that has the Rectified Linear Unit (ReLU) σ(t) := max(t, 0) as the underlying activation function; see
Section 2 for more details and definitions. When such an N approximates f , the semilinear partial
differential equation PDE in (Pf ) is replaced by the following (nonsmooth) learning-informed PDE{

−∆y +N (·, y) = u, in Ω,

y = 0, on ∂Ω.
(1.1)

The concept of learning-informed PDEs was recently introduced in [16]. It aims at representing an
(explicitly) unknown physical law f by a neural network (map) N which is learned from given data.
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For instance, assume that a data set

D := {(yi, ui) : yi (approximately) solves the original unknown PDE for ui, i = 1 . . . , nD},

of pre-specified controls and associated state responses is at our disposal. Such a set may, for ex-
ample, arise from measurements or computations. Then this data set can be used towards evaluation
instances of f via f(xj, yi(xj)) ' ui(xj) + ∆yi(xj), where {xj}`j=1, ` ∈ N, is a finite collection
of evaluation locations in the domain Ω. Using these instances as a training set, a neural network N
can be computed in the context of supervised learning and take the role of an approximation of the
unknown f . Via solving the associated PDE (1.1), this results in a learning-informed control-to-state
map SN : u 7→ y. In view of this, such a set-up can also be regarded as an example in the currently
rather limited field of operator learning, which is the task of learning a map between infinite dimen-
sional spaces; here from the control to the state space. In particular, it provides a case that depicts
how low dimensional learning could help to identify infinite dimensional control-to-state operators. We
also note that in this set-up, the training of the networkN is assumed to be done in an offline phase,
meaning that the minimization problem that constitutes the training ofN and the optimal control prob-
lem (Pf ) are decoupled. In [16], a smooth version of the above framework was considered in order to
learn the physical law that governs the separation of a (initially homogeneous) material mixture into
two pure states. This law can be related to (a derivative of) a double-well potential type function f in
a stationary Allen-Cahn equation. In the same work, an ordinary differential equation (ODE) version
of (Pf ) was used to approximate the physics behind magnetic resonance imaging (MRI) [14] with the
goal of reconstructing quantitative maps of biophysical parameters in the context of quantitative MRI.

The regularity of the neural network function N is determined by the regularity of the underlying ac-
tivation function. In this vein, we note that the set of functions represented by ReLU neural networks
coincides with the family of piecewise affine maps; see Section 2. Since the main objective in [16]
was to introduce the concept of learning-informed PDEs, only smooth neural networks were consid-
ered, corresponding to some smooth, typically sigmoidal activation function, such as, e.g., tansig or
arctan. This eases the subsequent optimization-theoretic treatment of the optimal control problem
like the derivation of first-order optimality conditions. However, when it comes to deep learning appli-
cations nowadays, the nonsmooth ReLU is the most popular choice among activation functions. Its
main advantages lie in its sparsification properties, its easy computation and further advantages dur-
ing training, such as for instance with regards to remedy the issue of vanishing gradients [6, 18]. The
study of approximation capabilities of ReLU neural networks is another active field of research [20, 27].
All these aspects are also relevant to our problem, in particular with respect to the capability of the
learning-informed optimal control problem to approximate the original one. We mention already here
that we consider the nonsmooth N to be monotonically increasing in the variable y. This guarantees
uniqueness of solutions to the learning-informed state equation, resulting in a well-defined control-to-
state map. Conceptually, this assumes that the ground truth map f is also monotonically increasing
and the network has been trained sufficiently well, thus preserving this monotonicity. However, we
point out that for homogeneous Dirichlet boundary conditions (like the one in (1.1)) one can still show
uniqueness of the solution of the state equation if the negative part of ∂yN is sufficiently small (which
is often the case for good enough approximations of monotone functions). In this case it can still be
shown that the corresponding PDE operator is strongly monotone and the Browder-Minty theorem can
be applied. Let us also point out that there are ways to enforce monotonicity during training [13, 25, 29]
via a sufficiently good derivative approximation (Sobolev training) [12].

Since f and its approximationN are nonsmooth maps, one does not expect the associated control-to-
state map S to be Frechét differentiable. This poses difficulties in the derivation of first-order optimality
respectively stationarity conditions for the optimal control problem as well as its numerical treatment.
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First-order conditions for the optimal control of learning-informed nonsmooth PDEs 3

Therefore, one needs to resort to more general notions of differentiability (than Fréchet differentiability);
we refer to the introduction of [10] for a short review. In the same paper, the optimal control of a
semilinear PDE with the special choice f(·, y) = max(0, y) and in the absence of control constraints
was studied, characterizing the Bouligand subdifferential of the control-to-state map and deriving so-
called strong stationarity conditions. We remark that in our set-up this would correspond to a very
simple and shallow ReLU network N . Here, following [10] and also adapting certain results from a
recent preprint [8], we study in depth a version of (Pf ) with a more general f that still covers the ReLU
neural network case. This function f is assumed to be measurable in the first variable and locally
Lipschitz and directionally differentiable in the second one. For this general problem, we establish a
series of stationarity respectively necessary first-order conditions. We begin by deriving purely primal
optimality conditions (B-stationarity) which are equivalent to the directional derivative of the reduced
objective in feasible directions being non-negative, as well as conditions that are derived as a limit of a
regularization scheme [5, 10, 26] (weak stationarity). The latter conditions are refined in the case that f
is a piecewise differentiable function yielding C-stationarity. Under additional constraint qualifications,
we further improve C-stationarity by establishing certain sign conditions on the dual variables. This
leads to strong stationarity which is shown to be equivalent to B-stationarity in specific cases.

1.2 Structure of the paper

In Section 2 we start by reviewing basic properties of ReLU neural networks. In Section 3, we study the
state equation of the optimal control problem (Pf ) with a rather general nonsmooth, nonlinear function
f . Existence and uniqueness of solutions to this PDE are discussed, and continuity as well as direc-
tional differentiability properties of the corresponding control-to-state map are shown. We then study
approximation results of this PDE on two levels: (i) f is approximated by a ReLU neural network N ;
(ii) f , or a network N , is approximated by some smoothed version of it. The corresponding general
optimal control problem is studied in Section 4. Existence and approximation results stemming from
the analogous results of the state equation are shown. In Section 5, we focus on different stationarity
systems that are necessary for local minimizers of the optimal control problem, namely B-, weak, C-
and strong stationarity.

We finally mention that in the companion paper [15], by employing a descent algorithm inspired by the
bundle-free method in [23], a numerical algorithm that treats the nonsmooth optimal control problem
(Pf ) directly is proposed, analyzed and tested.

2 ReLU neural networks

In this work, we rely on ReLU neural networks as efficient approximators of an unknown and potentially
complex function f : Rn0 → RnL , with n0, nL ∈ N, for which only a few (approximate) data values
are available, namely {fj ≈ f(xj)}nDj=1 where nD ∈ N and {xj}nDj=1 ⊂ Ω. Given this setting, we
assume that a network function Nθ with parameters θ – see Section 2.1 below for definitions – has
been trained to “learn"the function f in the context of supervised learning. This training is typically
achieved by (approximately) solving

min
θ∈Rp

nD∑
j=1

`(Nθ(xj), fj) +R(θ). (2.1)
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Here, ` is a suitable loss function and R is an optional regularization term inducing some a priori
properties on θ. Clearly, the study of (2.1) is an important research area in the field of deep learning
[19], but here we rather assume that this learning process has been successfully completed such that
we are equipped with a ReLU network N which approximates f sufficiently well. As a consequence,
in what follows we merely focus on the properties of such networks.

2.1 Definition and basic properties

Let N := {1, 2, . . .}.

Definition 2.1 (Standard feedforward multilayer neural network). Let L ∈ N, network parameters
θ = ((W1, b1), . . . , (WL, bL)) with Wi ∈ Rni×ni−1 , bi ∈ Rni , for i = 1, . . . , L and ni ∈ N
for i = 0, . . . , L. Furthermore let σ : R → R be an arbitrary function. We say that a function
N : Rn0 → RnL is a neural network with weight matrices (Wi)

L
i=1, bias vectors (bi)

L
i=1 (the network

parameters) and activation function σ if N (x) can be defined through the following recursive relation
for any x ∈ Rn0 :

z0 = x, (2.2)

z` = σ (W`z`−1 + b`) , ` = 1, . . . , L− 1, (2.3)

N (x) = WLzL−1 + bL. (2.4)

The action of the activation function σ in (2.3) is understood in a component-wise sense, i.e., for a
vector y = (y1, . . . , yn) ∈ Rn we have σ(y) := (σ(y1), . . . , σ(yn)). More compactly,N reads

N (x) = TL ◦ σ(TL−1) ◦ · · · ◦ σ(T2) ◦ σ(T1)(x), x ∈ Rn0 , (2.5)

where, for every ` = 1, . . . , L, TL denotes the affine transformation Rn`−1 3 z 7→ W`z + b` ∈ Rn` .

We say thatN is a ReLU neural network if σ is the ReLU (Rectified Linear Unit) activation function

σ(t) = max(t, 0), t ∈ R. (2.6)

Following the standard neural network terminology, we say that a neural network defined as in (2.2)–
(2.4), has L layers and L− 1 hidden layers, with the latter denoting the operations in (2.3). The final
operation (2.4) is called the output layer. Furthermore, ni is called the number of neurons in the i-th
layer, i = 1, . . . L, which is the number of rows of the weight matrix Wi. The number of neurons of a
given layer is also called the width of that very layer, while the number of layers is called the depth of
the network.

We note that a neural network as a function does not necessarily admit a unique representation with
respect to the weight matrices, the bias vectors and the activation functions. Furthermore in Definition
2.1, the input of the `-th layer consists only of the output z`−1 of the previous layer. A more general
neural network definition would allow the input for each layer to depend on the output of all previous
layers. In that case, every W` would be a weight matrix of size Rni×(

∑`−1
k=0 nk). However, since every

network of that type can be realized by a network as in Definition 2.1 (see also [20]) we will always
relate to the more classical definition given above.

We are interested in the regularity and structural properties of the class of functions that are realized
by ReLU neural networks. It turns out that the latter coincides with the class of continuous piecewise
affine functions, which we define next.
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Definition 2.2 (Continuous piecewise affine functions). Let n0 ∈ N. We say that a function F :
Rn0 → R is continuous piecewise affine if the following condition holds:

� F is continuous and there exist finitely many affine maps f1, . . . , fp : Rn0 → R for some
p ∈ N such that for every x ∈ Rn0 , there exists an i ∈ {1, . . . , p} such that F(x) = fi(x).

Note that such a mapF is not necessarily Fréchet differentiable, and see [2, 3, 31] for characterizatons
and properties of continuous piecewise affine functions.

Theorem 2.3. A function N : Rn0 → R is a ReLU neural network if and only if it is a continuous
piecewise affine function.

From the definition (2.2)–(2.4) it is clear that N : Rn0 → RnL , nL ≥ 1, is a RnL-valued ReLU
neural network if and only if N = (N1, . . . ,NL) with each Ni : Rn0 → R, i = 1, . . . , L, is a
scalar-valued ReLU neural network. Thus, N is an RnL-valued ReLU neural network if and only if it
is an RnL-valued continuous piecewise affine function, with the latter defined exactly as in Definition
2.2 with the only difference that the affine maps fi are RnL-valued.

2.2 Approximation results

Next we recall several basic properties regarding the approximation capabilities of ReLU neural net-
works in the spirit of the several versions of the universal approximation theorem; see [28] for a
thorough review. In fact, in the case where the activation function is k-times differentiable and not
a polynomial, the set of the corresponding one-hidden layer networks is dense in the set of k-times
continuously differentiable functions in the topology of uniform convergence (for function values and
derivatives up to order k) on compact sets. In the case of the ReLU activation function, the corre-
sponding approximation results are less standard and are stated here for the ease of access.

Indeed, there exists a growing amount of literature that studies properties of ReLU networks with
regards to their approximation of functions of a given Sobolev regularity. Typically, special emphasis is
given to the upper bound on the number of layers, neurons and nonzero weights needed to achieve
approximation of a certain accuracy with respect to a Sobolev norm; see for instance [7, 20, 32]. For
our purposes, the following result taken from the aforementioned references will be of interest: Given
an open, bounded domain U ⊂ Rn0 with Lipschitz boundary we have that

for every ε > 0 and f ∈ W 1,∞(U) there exists a ReLU networkNε : Rn0 → R such that

‖Nε − f‖W 1,∞(U) < ε.
(2.7)

Here, the Sobolev space W 1,∞(U) relates to Lipschitz functions on U ; see [1]. We also note that the
density result in (2.7) is typically stated for U = (−M,M)n0 for a given M > 0, but it is easy to see
that it holds for every open, bounded U ⊂ Rn0 with Lipschitz boundary. Indeed, given such a domain
U , consider a bounded, linear extension operator T : W 1,∞(U) → W 1,∞(Rn0) such that Tg has
compact support, which is common for every g ∈ W 1,∞(U). Then we readily get

‖Nε − f‖W 1,∞(U) ≤ ‖Nε − Tf‖W 1,∞((−M,M)n0 )

for some large enough M > 0.
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3 Nonsmooth and ReLU neural network informed PDE

We recall once again the structure of the learning-informed optimal control problem that motivates us
in the following:

minimize J(y, u) :=
1

2
‖y − g‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω), over (y, u) ∈ H1
0 (Ω)× L2(Ω),

subject to

{
−∆y +N (·, y) = u, in Ω,

y = 0, on ∂Ω,
and u ∈ Cad.

(PN )

Note that the governing state equation in (PN ) is a semilinear elliptic PDE with the neural networkN
(approximating some unknown f ) as a constituent. Concerning N : Rd × R → R we assume that
it is a ReLU neural network which is monotonically increasing in the second variable. The objective
J is of tracking type and may be replaced by other suitable candidates allowing to prove existence
of a solution to the associated optimal control problem. Such tracking objectives often arise, e.g., in
engineering applications where one wishes to find a system state y which is sufficiently close to some
given desired state g and which arises through some control action u in the governing equation. The
associated control is constrained by Cad, and its pertinent average L2-cost is α > 0.

As outlined above, our underlying assumption is thatN is an approximation of an unknown, potentially
nonsmooth function f : Ω× R→ R, with (Pf ) the corresponding optimal control problem. Thus, for
most of our analysis we will adopt a more general perspective by considering functions f that belong
to a larger family than the one defined by ReLU neural networks only. In such a setting f = N
becomes one particular instance. Concerning such a general f : Ω×R→ R, throughout we invoke
the following:

For every y ∈ R the function x 7→ f(x, y) is Lebesgue measurable. Moreover (A1)

f(·, 0) ∈ L∞(Ω).

f is Lipschitz continuous in y on bounded sets, that is, for every M > 0, there exists a (A2)

constant L = L(M) > 0, such that for all y1, y2 ∈ (−M,M) :

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|, for almost every x ∈ Ω.

For almost every x ∈ Ω the function y 7→ f(x, y) is monotone increasing. (A3)

For almost every x ∈ Ω the function y 7→ f(x, y) is directionally differentiable with (A4)

its directional derivative at y ∈ R in direction h ∈ R given by

f ′x(y;h) = lim
tn→0+

f(x, y + tnh)− f(x, y)

tn
.

Note that we do not necessarily require y 7→ f(x, y) to be strictly monotonically increasing. It is further
clear that a ReLU neural network N : Rd × R → R, restricted to Ω × R, which is monotonically
increasing in the second variable satisfies assumptions (A1)–(A4). In fact, it is even globally Lipschitz
continuous in the second variable.

Observe further that N is even Hadamard directionally differentiable with respect to the second vari-
able. Then, using the chain rule for Hadamard directionally differentiable functions [9, Proposition
2.47], we can state a recursion formula forN ′x(y;h). For this, we first confine ourselves to a two-layer
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architecture and generalize afterwards. Indeed, let z := (x, y) andN (2)(z) = W2 ·σ(W1z+b1)+b2,
W2 ∈ R1×n1 , W1 ∈ Rn1×(d+1), b1 ∈ Rn1 , b2 ∈ R. Then we have for any y, h ∈ R that

(N (2))′x(y;h) = W2 ·
(
1(0,∞)(W1z + b1)W1(:, n0)h+ 1{0}(W1z + b1)max(0,W1(:, n0)h)

)
.

(3.1)

Here, W1(:, n0) denotes the last column of W1, and 1(0,∞)(W1z + b1) is a diagonal matrix, whose
diagonal consists of the vector resulting from the componentwise action of the characteristic function
1(0,∞) : R → {0, 1}, with 1(0,∞)(t) = 1 if t ∈ M := (0,∞) and 1(0,∞)(t) = 0 otherwise, on
the vector W1z + b1 – similarly for the second summand in (3.1). In general, recursively for N (`) =
W`σ(N `−1(z)) + b` we have

(N (`))′x(y;h) = W` ·
(
1(0,∞)(N

(`−1)(z))(N (`−1))′x(y;h) (3.2)

+ 1{0}(N
(`−1)(z)) max(0, (N (`−1))′x(y;h))

)
.

Comparing (3.1)–(3.2) with

∇N (x) = WL · σ′(N (L−1)(x)) ·WL−1 · . . . · σ′(N (1)(x)) ·W1, (3.3)

the weak gradient of N [7], we note that while (3.3) holds almost everywhere, the formulas for the
directional derivatives hold at every point.

For our analysis we will make use of the space

Y := {y ∈ H1
0 (Ω) : ∆y ∈ L2(Ω)},

which is a separable Hilbert space equipped with the inner product (y, v)Y :=
∫

Ω
∆y∆v+∇y∇v+

yv dx and it is compactly embedded in H1
0 (Ω) [10].

We will also denote by F andN the Nemytskii operators y 7→ F (y) and y 7→ N(y), with F (y)(x) =
f(x, y), N(y)(x) = N (x, y) for y in some Lp space. Note that under the assumptions (A1)–(A2),
F is a well-defined operator from L∞(Ω)→ L∞(Ω) which is Lipschitz continuous on bounded sets.
Morever N : Lp(Ω)→ Lp(Ω) is Lipschitz continuous for every fixed 1 ≤ p ≤ ∞.

3.1 Existence and uniqueness

The next proposition deals with the existence of solutions for the state equation of (Pf ) as well as
continuity properties of the corresponding control-to-state map. As the proof is rather standard, we will
only provide a sketch. We also note that here we closely follow [10, Proposition 2.1] where f(x, y) =
max(y, 0).

Proposition 3.1. Let f : Ω × R → R satisfy the assumptions (A1)–(A3), and let u ∈ Lp(Ω) for
some p ≥ 2 and p > d

2
. Then the state equation{

−∆y + f(·, y) = u, in Ω,

y = 0, on ∂Ω,
(E)

admits a unique solution y ∈ Y ∩ C0,a(Ω), for some Hölder exponent a > 0 depending only on p, d
and Ω. Furthermore, for every M > 0 there exists a constant ca > 0 (that depends on M ) such that

‖y‖C0,a(Ω) ≤ ca‖u− f(·, 0)‖Lp(Ω), for all ‖u‖Lp(Ω) ≤M. (3.4)

Finally, the control-to-state map S : u 7→ y has the following properties:

DOI 10.20347/WIAS.PREPRINT.2940 Berlin 2022
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(i) S : Lp(Ω)→ H1
0 (Ω) is globally Lipschitz and weakly-strongly continuous.

(ii) S : Lp(Ω)→ Y is weakly-weakly continuous.

(iii) S : Lp(Ω)→ Y ∩ C0,a(Ω) is Lipschitz continuous on bounded sets of Lp(Ω).

Whenever the nonlinearity is represented by a ReLU networkN (i.e. f = N ), then the last Lipschitz
continuity is also global and the constant ca does not depend on M .

Proof. We only provide a general sketch of proof for the sake of completeness, since the arguments
are standard. The first step is to consider a family of truncations fk of f where for k > 0 we define

fk(x, y) :=


f(x,−k), if y < −k,
f(x, y), if |y| ≤ k,

f(x, k), if y > k.

(3.5)

The associated state equation reads{
−∆y + fk(·, y) = u, in Ω,

y = 0, on ∂Ω.
(Ek)

An application of the Browder-Minty theorem gives that (Ek) admits a unique solution y ∈ H1
0 (Ω).

Since u ∈ L2(Ω) and fk is bounded, in particular Fk : L2(Ω) → L2(Ω) so we have that ∆yk ∈
L2(Ω) as well, and hence yk ∈ Y . The same theorem gives that the corresponding control-to-state
map Sk : Lp(Ω) → H1

0 (Ω) is Lipschitz continuous (with a Lipschitz constant that does not depend
on k) and also weakly-strongly continuous. In fact Sk : Lp(Ω)→ Y is also globally Lipschitz by using
the fact Fk is so as well (but here the Lipschitz constant depends on k). Moreover, one can easily
check that the map from Sk : Lp(Ω)→ Y is also weakly-weakly continuous.

By adapting standard results of Stampachia’s method, e.g. [30, Theorem 4.5], and crucially also using
that p > d

2
, one can show that yk ∈ L∞(Ω) and there exists a constant c∞ > 0 independent of u

such that
‖yk‖L∞(Ω) ≤ c∞‖u− fk(·, 0)‖Lp(Ω) = c∞‖u− f(·, 0)‖Lp(Ω). (3.6)

By choosing a large enough k > 0, it is clear that yk = y is the solution of the problem (E), which is
also unique from the monotonicity of f . The Lipschitz continuity of S : Lp(Ω) → H1

0 (Ω) as well as
its weak-strong continuity follow readily. However, for the Lipschitz continuity of S : Lp(Ω) → Y one
needs to restrict to bounded sets of Lp(Ω) since the corresponding Lipschitz constant for Fk depends
on k. Note that this is not the case when f is globally Lipschitz, e.g., a ReLU neural network.

Finally, regarding the Hölder regularity and the corresponding estimate (3.4), these follow from an
application of [17, Theorem 8.29]. Thus, it remains to show the Lipschitz continuity with respect to the
C0,a semi-norm. For this purpose, let ui ∈ Lp(Ω) and yi = S(ui), i = 1, 2, and define

ξ :=

{
F (y1)−F (y2)

y1−y2
on {x ∈ Ω : y1(x) 6= y2(x)},

0 on {x ∈ Ω : y1(x) = y2(x)}.

Since y1, y2 ∈ C0,a(Ω), ξ ≥ 0 is essentially bounded by a local Lipschitz constant of F depending
on max{‖y1‖∞, ‖y2‖∞}. Then, by definition of ξ we have that y1 − y2 solves the equation{

−∆y + f̃(y) = u1 − u2, in Ω,

y = 0, on ∂Ω,
(3.7)
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where f̃(y) = ξy. Obviously, the function f̃ satisfies the assumptions of this proposition, and in
particular we can apply the estimate (3.4) to obtain

‖y1 − y2‖C0,a(Ω) ≤ c̃a‖u1 − u2 − f̃(0)‖Lp(Ω) = c̃a‖u1 − u2‖Lp(Ω).

Note that, also in view of the discussion right after, the constant c̃a depends on the Lipschitz constant
of f̃ , that is ‖ξ‖L∞(Ω), which is controlled by ‖y1‖L∞(Ω) + ‖y2‖L∞(Ω). The latter can be controlled
by ‖u1‖Lp(Ω), ‖u2‖Lp(Ω). Thus, in the end we get the required Lipschitz continuity on bounded sets of
Lp(Ω). Again for a globally Lipschitz f , as it is the case for a ReLU networkN , the Lipschitz continuity
S : Lp(Ω)→ C0,a(Ω) is also global.

We add a remark regarding the constant M > 0 in the statement of Proposition 3.1. We note that in
the case of locally Lipschitz f , the constant ca in (3.4) will also depend on ‖u‖Lp(Ω). This is because
ca depends on the local Lipschitz constant L > 0 such that ‖f(·, y) − f(·, 0)‖Lp(Ω) ≤ L‖y‖Lp .
This constant L depends on ‖y‖L∞(Ω) which is controlled by ‖u‖Lp(Ω). More specifically, for u in a
bounded subset of Lp(Ω), one can take a uniform constant ca in (3.4). If f is globally Lipschitz, then
ca can be chosen independently of ‖u‖Lp(Ω).

3.2 Control-to-state map (differentiability)

We will proceed by stating differentiability properties of the solution operator S of the state equation
(E), under the assumptions (A1)–(A4).

We start by mentioning that it is easy to check after an application of the dominated convergence
theorem that under these assumptions,F : L∞(Ω)→ Lp(Ω) is Hadamard directionally differentiable
for 1 ≤ p <∞. The directional derivative F ′(y;h) ∈ Lp(Ω) is given by

F ′(y;h)(x) = f ′x(y(x);h(x)). (3.8)

In fact if y, h ∈ L∞(Ω) and (hn)n∈N is a bounded sequence in L∞(Ω) with hn → h in Lp(Ω), and
tn → 0+, then we have

F (y + tnhn)− F (y)

tn
→ F ′(y;h) in Lp(Ω). (3.9)

In the case of a ReLU neural network, we also have that N : Lp(Ω) → Lp(Ω) for 1 ≤ p < ∞
is Hadamard directional differentiable with the directional derivative N ′x(y;h) ∈ Lp(Ω), given by the
analogous formula to (3.8). The following proposition also is a simple adaptation of [10, Theorem 2.2]
to our case.

Proposition 3.2. The control-to-state map S : Lp(Ω)→ Y of (E) is Hadamard directional differen-
tiable, that is, given u ∈ Lp(Ω), a direction h ∈ Lp(Ω), (hn)n∈N ⊂ Lp(Ω) with hn → h in Lp(Ω)
and tn → 0+ we have

S(u+ tnhn)− S(u)

tn
→ S ′(u;h) in Y.

Moreover, S ′(u;h) := zh ∈ Y ∩ C0,a(Ω) and it is the unique solution of{
−∆zh + F ′(y; zh) = h, in Ω,

zh = 0, on ∂Ω,
(K)

where y = S(u).

DOI 10.20347/WIAS.PREPRINT.2940 Berlin 2022



G. Dong, M. Hintermüller, K. Papafitsoros, K. Völkner 10

Proof. We denote un := u + tnhn ∈ Lp(Ω), yn := S(un) and zn := yn−y
tn

for every n ∈ N. From
the Lipschitz continuity of S, we deduce the existence of some zh ∈ Y such that zn ⇀ zh (weakly)
in Y and zn → zh (strongly) in H1

0 (Ω) (due to the compact embedding) along a subsequence.
Furthermore we have

−∆zn +
F (yn)− F (y)

tn
= hn. (3.10)

According to (3.9), the second term of the left hand side in (3.10) converges to F ′(y, zh) strongly in
L2(Ω), and since hn → h in L2(Ω), we also get that −∆zn converges strongly to −∆zh. Hence
zn → zh strongly in Y . Taking the weak limit inL2(Ω) in (3.10), we get that zh satisfies (K). Note now
that fixing y ∈ L∞(Ω), we have that F ′(y; ·) : Lp(Ω) → Lp(Ω) is the Nemytskii operator induced
by (x, z) 7→ f ′x(y(x); z(x)). It can be easily checked that the latter map satisfies the assumptions
(A1)–(A3). Hence, Theorem 3.1 applies and thus zh ∈ C0,a(Ω) as well. Since this solution is unique,
the convergence zn → zh holds along the whole sequence.

3.3 Approximation results

In this section we are concerned with certain approximation results regarding the state equation (E).
In particular, we consider approximating sequences for the nonlinear nonsmooth function f , and we
show approximation results for the sequence of solutions of the corresponding approximating state
equations to the solution of the limit problem. We will consider approximations on two levels: The first
level of approximation arises from the approximation of f by a sequence of ReLU neural networks
Nn in the sense of (2.7) and can be thought of as the capability of ReLU network-informed PDEs
to approximate some ground truth nonsmooth model. The second level of approximation considers
the approximation of a ReLU network-informed PDE by (a sequence of) PDEs that correspond to a
smoothing of the network. Concerning the latter we will also briefly discuss some complications which
arise when the smoothed network results from simply smoothing the ReLU activation function. We
recall that smoothing a general function f is a typical first step in standard methods that study the op-
timal control of PDEs that contain nonsmooth components. In this context, one often regularizes these
components and subsequently considers the limit behaviour as regularization vanishes; compare, e.g.,
[5, 10, 26].

We start by studying the approximation of a general function f by a sequence of ReLU neural net-
works.

Proposition 3.3. Suppose that f : Ω × R → R satisfies (A1)–(A4) with the additional assumption
that f ∈ W 1,∞

loc (Rd ×R). Moreover, let u ∈ Lp(Ω) for some p ≥ 2 and p > d
2
. Then, given K > 0,

there exists a sequence (Nn)n∈N of ReLU neural networksNn : Rd × R→ R, n ∈ N, such that

Nn → f, in W 1,∞(Ω× (−K,K)). (3.11)

Furthermore, there exists K > 0 such that for sufficiently large n ∈ N, the approximating learning-
informed PDE {

−∆y +Nn(·, y) = u, in Ω,

y = 0, on ∂Ω,
(ENn)

has a unique solution yn ∈ Y ∩C0,a(Ω) satisfying (3.4), with the corresponding control-to-state-map
Sn satisfying (i)–(iii) of Proposition 3.1 (with global Lipschitz constants). Furthermore, it holds that

yn → y, strongly in Y and in C0,a(Ω), (3.12)
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where y ∈ Y ∩ C0,a(Ω) is the unique solution of (E).

Proof. Given K > 0, the W 1,∞(Ω × (−K,K)) convergence (3.11) for some sequence (Nn)n∈N
follows directly from (2.7). Note that every Nn satisfies assumptions (A1)–(A4) with the possible ex-
ception of (A3), that is, monotonicity in the second variable. We note however that this monotonicity
was only used previously in the application of Browder-Minty’s theorem in order to show that the oper-
ator A : H1

0 (Ω)→ H−1(Ω) with

〈A(y), z〉H−1(Ω),H1
0 (Ω) :=

∫
Ω

∇y∇z dx+

∫
Ω

f(x, y)z dx,

is strongly monotone. We argue that this is the case also for the corresponding operator An,k (where
f has been substituted by the truncation Nn,k of Nn as in (3.5)). Indeed, let cΩ to be the Poincaré
(inequality) constant, set

K := ca(‖u‖Lp(Ω) + (‖f(·, 0)‖L∞(Ω) + 1)|Ω|1/p) > 0, (3.13)

and fix k > K . Then we have for y1, y2 ∈ H1
0 (Ω)

〈An,k(y1)− An,k(y2), y1 − y2〉 ≥
1

(cΩ + 1)2
‖y1 − y2‖2

H1
0 (Ω) (3.14)

+

∫
Ω

(Nn,k(x, y1)−Nn,k(x, y2))(y1 − y2) dx.

Due to the fact thatNn,k → fk in W 1,∞(Ω× R), we have that for large enough n ∈ N∫
Ω

(Nn,k(x, y1)−Nn,k(x, y2))(y1 − y2) dx

=

∫
Ω

(
(Nn,k − fk)(x, y1)− (Nn,k − fk)(x, y2)

)
(y1 − y2) dx

+

∫
Ω

(fk(x, y1)− fk(x, y2))(y1 − y2) dx︸ ︷︷ ︸
≥0

≥ −‖∇(Nn,k − fk)‖L∞(Ω×R)‖y1 − y2‖2
L2(Ω).

Since the term ‖∇(Nn,k−fk)‖L∞(Ω×R) can be arbitrarily small for large enough n ∈ N, we have that
the last negative term can be absorbed into 1

(cΩ+1)2‖y1 − y2‖2
H1

0 (Ω)
in (3.14) and hence the operator

An,k is strongly monotone for large enough n ∈ N. Thus the corresponding approximating truncated
problem (ENn,k) has a solution. In order to show that (ENn) has a solution yn ∈ Y ∩ C0,a(Ω) as
well, we argue exactly as in the proof of Proposition 3.1, keeping in mind that since ‖Nn,k(·, 0) −
f(·, 0)‖L∞(Ω) = ‖Nn(·, 0) − f(·, 0)‖L∞(Ω) → 0 for large enough k ∈ N the L∞ norm of ynk
will be bounded by K . The estimate (3.4) and the corresponding continuity properties of the control-
to-state map Sn follow analogously. We note that since the Lipschitz constants of Nn are uniformly
bounded (in particular their k-truncation), the same holds for the Lipschitz constants of the maps
Sn : Lp(Ω)→ H1

0 (Ω) and Sn : Lp(Ω)→ Y ∩ C0,a(Ω).

Using the convergence of Nn to f , it is easy to check that the sequence (yn)n∈N is bounded in Y
and hence there exists an (unrelabeled) subsequence and ζ ∈ Y such that yn ⇀ ζ weakly in Y and
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yn → ζ strongly in H1
0 (Ω). Note that in view of (3.4), we also have ‖ζ‖L∞(Ω) ≤ K . Observe now

that for every z ∈ L2(Ω)∣∣∣∣∫
Ω

Nn(x, yn)z dx−
∫

Ω

f(x, ζ)z dx

∣∣∣∣ ≤ ∫
Ω

|Nn(x, yn)z −Nn(x, ζ)z| dx

+

∫
Ω

|Nn(x, ζ)z − f(x, ζ)z| dx

≤ L‖yn − ζ‖L2(Ω)‖z‖L2(Ω)

+ ‖Nn − f‖L∞(Ω×(−K,K))‖z‖L2(Ω) → 0

as n→∞, where we also used the fact that the Lipschitz constants Ln ofNn on Ω× [−K,K] are
uniformly bounded (say by L). HenceNn(x, yn) ⇀ f(x, ζ) in L2(Ω) and thus by taking weak limits
in (ENn), we have that ζ ∈ Y is equal to the solution y of (E). By uniqueness the weak convergence
yn ⇀ y (in Y ) holds for the whole sequence. Note that the estimate

‖∆yn−∆y‖L2(Ω) = ‖Nn(·, yn)− f(·, y)‖L2(Ω) ≤ L‖yn− y‖L2(Ω) + |Ω|‖Nn− f‖L∞(Ω×(−K,K))

(3.15)
yields the strong convergence yn → y in Y , keeping in mind that ∆ induces the norm on Y .

Finally we would like to show that in addition we also have ‖yn− y‖C0,a(Ω) → 0 as n→∞. For that
purpose note that wn := yn − y solves the following PDE:{

−∆wn = f(·, y)−Nn(·, yn), in Ω,

wn = 0, on ∂Ω.
(3.16)

Using the same arguments as in Proposition 3.1, we have that

‖yn − y‖C0,a(Ω) = ‖wn‖C0,a(Ω) ≤ ca‖f(·, y)−Nn(·, yn)‖Lp(Ω),

and thus it suffices to show that the latter is going to zero. We have

‖f(·, y)−Nn(·, yn)‖Lp(Ω) ≤ ‖f(·, y)− f(·, yn)‖Lp(Ω) + ‖Nn(·, yn)− f(·, yn)‖Lp(Ω).

The first term on the right hand side tends to zero since yn → y a.e. (up to a subsequence) and
by applying the dominated convergence theorem, while the second term vanishes since ‖Nn −
f‖L∞(Ω×(−K,K)) → 0.

We will now pass to the second level of approximation, which is more related to techniques in the
optimal control of nonsmooth PDEs, where an optimality system is derived as a limit of optimality
systems corresponding to smooth approximations for the PDE. Here, we will initially consider the
learning-informed case and study smoothings of the involved ReLU networkN , also providing a word
of caution about some complications that can result from such smoothings.

In particular, here we will consider the following ReLU informed semilinear PDE{
−∆y +N (·, y) = u, in Ω,

y = 0, on ∂Ω,
(EN )

and its corresponding smoothed version{
−∆y +Nε(·, y) = u, in Ω,

y = 0, on ∂Ω.
(ENε)
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A very natural way to produce smooth approximations Nε of N is simply via smoothing its activation
function. This type of smoothing, here referred to as canonical smoothing of N , is studied in detail
in [15]. Note, however, that nonmonotonicity of Nε may arise after such a smoothing. In fact, as we
saw in Proposition 3.3, we were able to prove strong monotonicity for the operator An,k (for large
enough n) despite the fact thatNn was not monotone itself. This was done by taking advantage of the
L∞ convergence of ∇Nn,k to ∇fk, the latter being positive almost everywhere. But in the case of a
canonical smoothing Nε, the convergence of∇Nε to∇N as ε → 0 can only be guaranteed to hold
with respect to the Lp norm for every 1 ≤ p <∞, see [15, Remark 2.9] making the application of the
Browder-Minty theorem problematic, see the corresponding section in [15] .

We stress here that our purpose of usingNε is to obtain a limiting optimality system as ε→ 0 for the
optimal control with respect to the learning-informed PDE (PN ). Hence, for the following proposition,
as well as for the passage to the limit later on, we will assume thatNε remains monotone with respect
to the second variable, a property that can be achieved theoretically (but perhaps not practically in
implementations) via convolution; see also Remark 3.5. We thus set here

Nε(x, y) :=

∫
R
ρε(y − z)N (x, z) dz, (3.17)

where (ρε)ε>0 is the family of standard mollifiers [33]. Note that we have Nε → N uniformly as
ε→ 0, ‖∇Nε‖L∞(Ω×R) is uniformly bounded, and eachNε satisfies the assumptions (A1)–(A4).

Due to the linear growth ofNε and the L∞ bound for its gradient, we have that the Nemytskii operator
Nε with Nε(y)(x) = Nε(x, y) is continuously Fréchet differentiable from Lp(Ω)→ Lq(Ω) for every
1 ≤ q < p <∞, with derivative N ′ε : Lp(Ω)→ L(Lp(Ω), Lq(Ω)) defined as

(N ′ε(y)h)(x) = ∇yNε(x, y(x))h(x), for a.e. x ∈ Ω. (3.18)

Consequently, Nε is also continuously Fréchet differentiable as a function from H1
0 (Ω)→ Lq(Ω), for

any 1 ≤ q < 2d
d−2

(d ≥ 3), for any 1 ≤ q < ∞, (d = 2), and for any 1 ≤ q ≤ ∞ (d = 1). In
particular, Nε is continuously Fréchet differentiable from H1

0 (Ω)→ L2(Ω) for any dimension d ≥ 1.
Recall that∇yNε(x, y(x)) ∈ L∞(Ω× R) with its explicit form derived

∇Nε(x) = WL · σ′ε(N (L−1)
ε (x)) ·WL−1 · . . . · σ′ε(N (1)

ε (x)) ·W1. (3.19)

Proposition 3.4. Let N : Rd × R → R be a ReLU network that satisfies assumptions (A1)–(A4)
and let (Nε)ε>0 be a smoothing of N defined as in (3.17). Moreover, let u ∈ Lp(Ω) for some p ≥ 2
and p > d

2
. Then the smoothed state equation (ENε) has a unique solution yε ∈ Y ∩ C0,a(Ω).

Furthermore the following hold:

(i) The corresponding control-to-state map Sε satisfies the continuity properties (i)–(iii) of Propo-
sition 3.1 (with global Lipschitz constants independent of ε > 0).

(ii) Sε : Lp(Ω)→ Y is Fréchet differentiable. Its derivative at u ∈ Lp(Ω) in direction h ∈ Lp(Ω)
is given by the unique solution of{

−∆zh +N ′ε(yε)zh = h, in Ω,

zh = 0, on ∂Ω,
(Kε)

where yε = Sε(u).
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Proof. Since each Nε satisfies the assumptions (A1)–(A4) and has at most linear growth in the sec-
ond variable, we can directly apply the Browder-Minty theorem, i.e. without the truncation argument,
and as before show that the smoothed state equation (ENε) has a unique solution yε ∈ Y ∩C0,a(Ω).

For (i) note that here the continuity properties (i)-(iii) of Proposition 3.1 follow as before. The fact
that the Lipschitz constants are global, i.e. independent of ε > 0, follows from the fact that ‖∇Nε‖L∞
and hence the Lipschitz constants ofNε are uniformly bounded in ε.

For (ii), note first that since N ′ε(yε) is nonnegative, the equation (Kε) has a unique solution zh ∈
Y ∩ C0,α(Ω). Then, given the continuous Fréchet differentiability of Nε, an application of the implicit
function theorem gives the Fréchet differentiability of Sε : Lp(Ω)→ Y .

Remark 3.5. One can get results analogous to Proposition 3.4 for the problem involving the function
f under assumptions (A1)–(A4). Indeed, using the smoothing fε(x, y) :=

∫
R ρε(y − z)f(x, z)dz

for almost every x ∈ Ω, we have that for almost every x ∈ Ω, fε(x, ·) ∈ C∞(R), and that it is
monotonically increasing. Moreover, fε is uniformly Lipschitz continuous in y on bounded sets, i.e.,
for every M > 0, there exists a constant L = L(M) independent of ε > 0 such that for every
y1, y2 ∈ (−M,M)

|fε(x, y1)− fε(x, y2)| ≤ L|y1 − y2|, for almost every x ∈ Ω. (3.20)

Furthemore, for every M > 0, there exists a constant c > 0 such that for all y ∈ (−M,M)

|fε(x, y)− f(x, y)| ≤ cε for almost every x ∈ Ω. (3.21)

The analogous inequalities inLp hold for the superposition operatorsFε when restricting y to aL∞(Ω)
ball. Then by considering {

−∆y + fε(·, y) = u, in Ω,

y = 0, on ∂Ω,
(Efε)

we have that analogous results to the ones of Proposition 3.4 hold with the only difference, that the
Lipschitz continuity of Sε : Lp(Ω)→ Y ∩ C0,α(Ω) is local (on bounded sets of Lp(Ω)), but still with
Lipschitz constants independent of ε. Furthermore, in that case we can only show Gâteaux differen-
tiability for Sε : Lp(Ω) → Y , with the derivative at u ∈ Lp(Ω) in direction h ∈ Lp(Ω) given by the
solution to (Kε) where N ′ε is substituted by F ′ε(y)(x) := ∂yfε(x, y(x)).

4 Existence and approximation results of optimal control

We return now to the optimal control problem (Pf ). To be consistent in our notation, we denote by
(PNε) the optimal control problem corresponding to the state equation (ENε). We also define the
reduced problem for (Pf ) as follows:

min
u∈Cad

J (u) := J(S(u), u) :=
1

2
‖S(u)− g‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω), (P̂f )

and analogously we define the reduced objectives JN and JNε . Further, we consider Cad to be a
nonempty, bounded, closed, convex subset of Lp(Ω) with p ≥ 2 and p > d/2.
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Proposition 4.1. The optimal control problem

min
u∈Cad

J (u) (4.1)

has a solution.

Proof. The proof is a standard application of the direct method of calculus of variations. Let (un)n∈N
be a minimizing sequence for (4.1) in Lp(Ω). Since Cad is bounded in Lp(Ω), there exists a sub-
sequence unk ⇀ u for some u ∈ Lp(Ω), which also belongs to Cad by Mazur’s theorem. From
Proposition 3.1 (ii), we have that S(unk)→ S(u) in L2(Ω). Then the results follows from the lower
semicontinuity of J .

Observe that in the case p = 2, boundedness of Cad is not necessary to get existence for (4.1), due
to the term α

2
‖u‖2

L2(Ω) appearing in the objective.

The following proposition summarizes approximation properties of solutions of the optimal control
problem (Pf ) and approximations (Pfn) with fn close to f .

Proposition 4.2. Consider the general optimal control problem (Pf ) and its corresponding control-to-
state map S : Lp(Ω) → Y ∩ C0,a(Ω). Let (Pfn) be an optimal control problem that corresponds to
fn which is regarded to approximate f in a certain sense, and denote by Sn : Lp(Ω)→ Y ∩C0,a(Ω)
the corresponding approximating control-to-state map. Suppose also that the corresponding Nemytskii
operators satisfy

‖Fn(y)− F (y)‖Lp(Ω) ≤ εn, for all y ∈ L∞(Ω) with ‖y‖L∞(Ω) ≤M (4.2)

for some M > 0 and some εn ↓ 0 possibly depending on M . Then the following hold:

(i) There exists c > 0 such that

‖Sn(u)− S(u)‖Y ≤ cεn, for all u ∈ Cad, (4.3)

(ii) For every sequence of minimizers (un)n∈N of (Pfn) there exists a minimizer u of (Pf ) such
that, up to a subsequence

un ⇀ u in Lp(Ω), un → u in L2(Ω), and Sn(un)→ S(u) in H1
0 (Ω).

(iii) If un → u in Lp(Ω), then Sn(un)→ S(u) in Y ∩ C0,a(Ω).

If Cad is of the form Cad = {u ∈ Lp(Ω) : ua ≤ u ≤ ub, a.e. in Ω} for some ua, ub ∈ Lp(Ω), then
for the above subsequence we have un → u in Lp(Ω) and (iii) holds.

Proof. (i) We fix u ∈ Cad and write yn := Sn(u), y := S(u). By subtracting the two state equations,
adding and subtracting F (yn), testing with yn − y and using the monotonicity of f we have

‖∇yn −∇y‖2
L2(Ω) = −

∫
Ω

(Fn(yn)− F (yn))(yn − y) dx−
∫

Ω

(F (yn)− F (y))(yn − y) dx

≤ ‖Fn(yn)− F (yn)‖L2(Ω)‖yn − y‖L2(Ω)

≤ ‖Fn(yn)− F (yn)‖L2(Ω)‖yn − y‖H1
0 (Ω).
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Using the Poincaré inequality, dividing the inequality above by ‖yn − y‖H1
0 (Ω) and using the fact that

‖yn‖L∞(Ω) ≤ c∞‖u − Fn(0)‖Lp(Ω) as well as (4.2), we get the existence of c > 0 satisfying the
an estimate analogous to (4.3) for the H1

0 norm. The required estimate for the Y -norm is shown by
considering

‖∆yn −∆y‖L2 ≤ ‖Fn(yn)− F (yn)‖L2(Ω) + ‖F (yn)− F (y)‖L2(Ω),

and taking advantage of (4.2) and the local Lipschitz continuity of F .
(ii) The first two convergences follow from a direct application of [16, Theorem 2.3]. We only need to
prove the last one. By setting now yn := Sn(un) and performing a similar estimation as before, we
get

‖yn − y‖H1
0 (Ω) ≤ c

(
‖Fn(y)− F (y)‖Lp(Ω) + ‖un − u‖H−1(Ω)

)
≤ c(ε+ ‖un − u‖H−1(Ω)).

We then use the fact that un ⇀ u in Lp(Ω) implies un → u in H−1(Ω).
(iii) Suppose that un → u in Lp(Ω). We need to show yn → y both in Y and C0,a(Ω). For the
former one it suffices to show ∆yn → ∆y in L2(Ω) which follows from the estimate

‖∆yn −∆y‖L2(Ω) ≤ ‖Fn(yn)− F (yn)‖L2(Ω) + ‖F (yn)− F (y)‖L2(Ω) + ‖un − u‖L2(Ω).

Finally, for the convergence yn → y in C0,a(Ω), we work similarly to the proof of Lipschitz continuity
of S : Lp(Ω)→ C0,a(Ω) in Proposition 3.1.

Finally note that if Cad is of the form Cad = {u ∈ Lp(Ω) : ua ≤ u ≤ ub, a.e. in Ω} for some
ua, ub ∈ Lp(Ω), then for the same subsequence as in (ii), the convergence un → u in Lp(Ω)
follows from an application of the dominated convergence theorem, as well as un → u in L2(Ω)
which implies almost everywhere convergence up to subsequence.

Remark 4.3. A few remarks about Proposition 4.2 are in order. The main requirement for the approx-
imation fn to f is to have a well-defined control-to-state map Sn : Lp(Ω) → Y ∩ C0,a(Ω) that
satisfies the continuity properties (i)–(iii) of Proposition 3.1 as well as the approximation property
(4.2). The former will guarantee existence for the optimal control problem and the latter will imply the
approximation results of Proposition 4.2. We note that these will be satisfied for the approximating
sequencesNn → f ,Nε → N , fε → f of Propositions 3.3, 3.4 and Remark 3.5, respectively.

5 Optimality systems (Stationarity conditions)

In this section we study first-order optimality respectively stationarity systems for the optimal control
problem under consideration. For the sake of generality, we study problem (Pf ) when the nonlinear
function f satisfies Assumptions (A1)–(A4). Note that this setting covers the case f = N . In what
follows we specifically focus on the (reduced) minimization problem (4.1) and are interested in neces-
sary conditions satisfied by its local minimizers. Recall here that u is a local minimizer for (4.1) if there
exists an r > 0 such that for every u ∈ Lp(Ω) satisfying u ∈ B(u, r) ∩ Cad ⊂ Lp(Ω) we have
J (u) ≤ J (u).

Depending on whether we take a primal or primal-dual view on characterizing stationarity of a feasible
control, but also in view of different prerequisites on the problem data, in the sequel we derive different
types of first-order conditions for (Pf ) respectively (4.1).

B-stationarity. We start with a primal first-order necessary optimality condition for u which relies on
Fermat’s principle, corresponding to the directional derivative of J at ū being non-negative along any
feasible direction.
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To identify these feasible directions, we define the contingent cone of Cad at u ∈ Cad as

TCad(u) := {h ∈ Lp(Ω) : ∃ tn ↓ 0 and hn → h ∈ Lp(Ω), such that for all n ∈ N, u+tnhn ∈ Cad}.
(5.1)

It can be shown, see for instance [9, Lemma 6.34], that if Cad is of the form

Cad = {u ∈ Lp(Ω) : ua(x) ≤ u(x) ≤ ub(x), for almost every x ∈ Ω} (5.2)

with ua, ub ∈ L∞(Ω), ua < ub almost everywhere, then TCad(u) can be characterized by

TCad(u) =

{
h ∈ Lp(Ω) :

h(x) ≥ 0, almost everywhere in {x ∈ Ω : u(x) = ua(x)}
h(x) ≤ 0, almost everywhere in {x ∈ Ω : u(x) = ub(x)}

}
. (5.3)

Proposition 5.1. [B-stationarity] Suppose that u is a local minimizer for the problem (4.1) and let
y = S(u) ∈ C0,a(Ω) ∩ Y be the associated state. Then the pair (u, y) satisfies the following
variational inequality

J ′(u;h) = 〈y − g, S ′(u;h)〉+ α〈u, h〉 ≥ 0, for all h ∈ TCad(u). (5.4)

Proof. The proof closely follows [21, Theorem 1]. Note that the minimization problem (4.1) can be
equivalently written as

min
u∈Lp(Ω)

V (u) := J (u) + XCad(u), (5.5)

where XCad denotes the indicator function of Cad. Since u is a local minimizer of (5.5), we have the
following Fermat rule, see [4, Theorem 6.1.9]:

D↑V (u)(h) ≥ 0, for all h ∈ Lp(Ω), (5.6)

where for a u ∈ dom(V ), D↑V (u)(h) denotes the contingent epiderivative of V at u in direction
h ∈ Lp(Ω), given by

D↑V (u)(h) = lim inf
t↓0
h′→h

V (u+ th′)− V (u)

t
. (5.7)

Hence from (5.5), (5.6) and (5.7) we have

lim inf
t↓0
h′→h

(J (u+ th′)− J (u)

t
+
XCad(u+ th′)−XCad(u)

t

)
≥ 0 for all h ∈ Lp(Ω). (5.8)

Note that for all h ∈ Lp(Ω) we have

lim inf
t↓0
h′→h

(J (u+ th′)− J (u)

t
+
XCad(u+ th′)−XCad(u)

t

)
≥ lim inf

t↓0
h′→h

J (u+ th′)− J (u)

t

+ lim inf
t↓0
h′→h

XCad(u+ th′)−XCad(u)

t
.

(5.9)
Furthermore, it holds that

lim inf
t↓0
h′→h

XCad(u+ th′)−XCad(u)

t
= lim inf

t↓0
h′→h

XCad(u+ th′)

t
=

{
0, if h ∈ TCad(u)

∞, otherwise.
(5.10)
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Thus, given that J ′(u;h) <∞ for every h ∈ Lp(Ω), we have that the expression (5.8) is equivalent
to the corresponding one, where h ∈ TCad(u) only. For those h we have

lim inf
t↓0
h′→h

(J (u+ th′)− J (u)

t
+
XCad(u+ th′)−XCad(u)

t

)
= lim inf

t↓0
h′→h

J (u+ th′)− J (u)

t

= J ′(u;h), (5.11)

and thus (5.8) is equivalent to

J ′(u;h) ≥ 0 for all h ∈ TCad(u). (5.12)

By using the chain rule for Hadamard directional differentiability [9, Proposition 2.47], we have

J ′(u;h) = ∂yJ(y, u)S ′(u;h) + ∂uJ(y, u)h

= 〈y − g, S ′(u;h)〉+ α〈u, h〉,
and the proof is complete.

We will say that a point u ∈ Cad with corresponding state y is B-stationary if it satisfies (5.4).

Optimality conditions via regularization. Next, we are interested in optimality conditions that are
derived as a limit of the optimality conditions of smooth problems, see the discussion at the end of
Section 3. Since this approach is not new [5, 10, 26], we will rather sketch the proof of the following
proposition and afterwards discuss some more special cases in more detail.

Proposition 5.2. [Weak stationarity] Suppose that u is a local minimizer for the problem (4.1) with
y = S(u) ∈ Y ∩C0,a(Ω) the associated state. Then there exists a nonnegative ζ ∈ L∞(Ω) and an
adjoint state p ∈ Y such that the following hold

−∆p+ ζp = y − g, (5.13)

〈p+ αu, u− u〉 ≥ 0 for all u ∈ Cad. (5.14)

If Cad is given by (5.2), then (5.14) can be equivalently formulated as follows: There exists a multiplier
µ = µb − µa with µa, µb ∈ L2(Ω) such that u and p satisfy

p+ αu+ µ = 0, (5.15)

ua ≤ u ≤ ub, µa ≥ 0, µb ≥ 0, (5.16)

µa(ua − u) = µb(u− ub) = 0, (5.17)

almost everywhere in Ω.

Proof. We will state the proof in several steps:

Step 1: Consider (Efε), the regularized state equation that corresponds to the smoothing of f dis-
cussed in Remark 3.5. Then by slightly generalizing the standard arguments of [10, Section 4], one
can show that there exist ε > 0 and local minimizers of (P̃fε) such that uε → u in Lp(Ω) as ε→ 0,
where (P̃fε) is the following modified regularized problem

minimize
(y,u)∈H1

0 (Ω)×L2(Ω)
J̃(y, u) :=

1

2
‖y − g‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω) +
1

p
‖u− u‖pLp(Ω),

subject to

{
−∆y + Fε(y) = u, in Ω,

y = 0, on ∂Ω,
and u ∈ Cad.

(P̃fε)
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From Proposition 4.2 we have that yε = Sε(uε)→ S(u) = y in Y ∩ C0,a(Ω) and from the Lipschitz
continuity of Sε : Lp(Ω) → Y ∩ C0,a(Ω) on bounded sets of Lp(Ω) and with Lipschitz constant
independent of ε we get that ‖yε‖L∞(Ω) ≤ c uniformly in ε for some constant c > 0. Combining this
with the fact that F ′ε(y)(x) = ∂yfε(x, y(x)) is a bounded operator from L∞(Ω) to itself due to the
uniform Lipschitz constant of fε we get that

‖F ′ε(yε)‖L∞(Ω) ≤ c, (5.18)

with a constant c > 0 independent of ε. Hence, along a subsequence, F ′ε(yε)
∗
⇀ ζ weakly* in L∞(Ω)

for some ζ with ‖ζ‖L∞(Ω) ≤ c.

Step 2: It follows from standard arguments [30], that for every local minimizer uε ( 6= ū) of (P̃fε) there
exists a unique adjoint state pε ∈ Y such that

−∆pε + F ′ε(yε)pε = yε − g, (5.19)

〈pε + αuε, u− uε〉+ 〈|uε − u|p−2(uε − u), u− uε〉 ≥ 0 for all u ∈ Cad. (5.20)

Step 3: We now take the limit as ε → 0 in (5.19)–(5.20) using the limiting behaviours of uε, yε
and F ′ε(yε). Note first that by testing (5.19) with pε, employing the Poincaré inequality and using that
yε → y in L2(Ω), we can easily show that pε is bounded in Y and thus pε ⇀ p in Y and pε → p in
H1

0 (Ω) for some p ∈ Y along a subsequence. Since F ′ε(yε)
∗
⇀ ζ inL∞(Ω) and pε → p inL2(Ω) we

deduce F ′ε(yε)pε ⇀ ζp in L2(Ω). Since pε ⇀ p in Y we have ∆pε ⇀ ∆p in L2(Ω) and since weak
convergence in L2(Ω) implies strong convergence in H−1(Ω), by taking the limit ε→ 0 in (5.19) we
have that p satisfies (5.13). Finally, we take the limits in (5.20). We can straightforwardly estimate that
‖|uε − u|p−2(uε − u)‖qLq(Ω) → 0 as ε → 0 where q = p/(p − 1). Using this as well as pε → p in

L2(Ω) and uε → u in Lp(Ω), we pass to the limit in (5.20) and obtain (5.14).

Finally we refer to [30, Theorem 2.29] for a proof of equivalence of (5.14) and the conditions (5.15)–
(5.17) in the case of a box constraint set.

C-stationarity. In general we say that a u ∈ Cad with state y is weakly stationary if there exist a non-
negative ζ ∈ L∞(Ω) and an adjoint state p ∈ Y such that (5.13)–(5.14) are satisfied. Proposition 5.2
states that every local mimimizer of (4.1) is weakly stationary. Note, however, that this weak stationarity
condition (5.13)–(5.14) does not provide any information about the dual variable ζ . In this context, we
are in particular interested in conditions that guarantee

ζ(x) ∈ ∂f(x, y(x)) for almost every x ∈ Ω, (C)

where the subdifferential operates on the y-component of f . This gives rise to the following stationarity
notion: A point u ∈ Cad with state y is called C-stationary if it is weakly stationary and (C) holds in
addition. Letting fx := f(x, ·) : R → R, we write ∂f(x, y) =: ∂fx(y) where the latter represents
Clarke’s generalized gradient of fx at y. We recall here that for a locally Lipschitz φ : R → R, the
Clarke generalized gradient at a point y can be characterized as

∂φ(y) = conv ({ξ ∈ R : ∃ yn with φ differentiable at yn, such that yn → y and φ′(yn)→ ξ}) ;
(5.21)

see [11] for a general definition. In order to show C-stationarity for a local minimizer u of (4.1), one
needs to guarantee that the weak∗ limit ζ of F ′ε(yε) of the regularized nonlinearity at yε is (in a point-
wise sense) an element of the generalized gradient ∂f(x, y(x)). In the recent preprint [8] a similar
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problem is considered where this difficulty is remedied by assuming that the nonlinearity f is ei-
ther convex or concave locally around y0 ∈ R whenever f is nondifferentiable at y0 and the set
{x ∈ Ω : y(x) = y0} is of positive measure. This, however, excludes a variety of other nonsmooth
monotone functions which might, for instance, be convex on an interval left of y0 and concave on
an interval on the right. In order to include more general cases, here we will make use of alternative
condition, namely piecewise continuous differentiability.

Assumption 5.3 (PC1(R)). We suppose that apart from assumptions (A1)–(A4), for almost every
x ∈ Ω it holds that f(x, ·) is piecewise continuously differentiable, and we write f(x, ·) ∈ PC1(R).
This means that there exist finitely many points −∞ < y1 < . . . < yk < +∞ such that f(x, ·)
is continuously differentiable on each of the intervals (−∞, y1], [yk,∞) and [yj−1, yj] for all j ∈
{2, . . . k}, where the derivatives at yj are understood as one-sided derivatives.

Remark 5.4. It follows immediately that every ReLU neural network N : Rd × R → R satisfying
(A1)–(A4), that is, every ReLU neural network which is restricted to Ω×R and is monotone increasing
in the second variable also satisfies Assumption 5.3, since for every x ∈ Rd, N (x, ·) is continuous
and piecewise affine.

Note that in view of (5.21), it is easy to characterize the Clarke generarized gradient of a PC1 function
φ : R→ R. Indeed, denoting by φ′(y, h) the directional derivative at y in direction h, and φ′±(y) :=
±φ′(y,±1) the left- and right-sided derivatives, respectively, we have

φ′−(y) = lim
y↗y

φ′(y) and φ′+(y) = lim
y↘y

φ′(y).

Then, defining ∂φ = min{φ′−, φ′+} and ∂φ = max{φ′−, φ′+}, it can be checked that ∂φ = [∂φ, ∂φ].

Before we proceed towards C-stationarity, we need the following lemma.

Lemma 5.5. Let φ ∈ PC1(R) and let φn := ρn ∗φ be the standard mollification of φ with ρn := ρεn ,
εn ↘ 0. Suppose that (yn)n∈N is a sequence in R such that yn → y for some y ∈ R. Then it holds
that

lim sup
n→∞

φ′n(yn) ≤ ∂φ(y) and lim inf
n→∞

φ′n(yn) ≥ ∂φ(y).

Proof. See Appendix A.

Proposition 5.6. Let f satisfy Assumption 5.3. If u is a local minimizer for the for the problem (4.1)
with associated state y, then u is C-stationary.

Proof. Since u is a local minimizer, by Proposition 5.2 we have that it is weakly stationary, satisfying
(5.13) for a ζ obtained via F ′ε(yε)

∗
⇀ ζ in L∞(Ω). Since for almost every x ∈ Ω, f(x, ·) ∈ PC1(R),

and yε(x)→ y(x) as ε→ 0, we can apply Lemma 5.5 and get that for almost every x ∈ Ω we have

lim sup
ε↘0

f ′ε(x, yε(x)) ≤ ∂f(x, y(x)) and lim inf
ε↘0

f ′ε(x, yε(x)) ≥ ∂f(x, y(x)). (5.22)

From the PC1-property of f we have that for almost every x ∈ Ω

∂f(x, y(x)) = [∂f(x, y(x)), ∂f(x, y(x))].
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In order to prove (C) for ζ we aim for a contradiction and assume that there exists a set A ⊂ Ω of
positive measure such that ζ(x) < ∂f(x, y(x)) for all x ∈ A. Using (5.22), Fatou’s lemma and the
fact that F ′ε(yε)

∗
⇀ ζ in L∞(Ω) we have∫

Ω

ζ1A dx <

∫
Ω

lim inf
ε↘0

f ′ε(x, yε(x))1A dx ≤ lim inf
ε↘0

∫
Ω

f ′ε(x, yε(x))1A dx =

∫
Ω

ζ1A dx,

which is a contradiction. Similarly, via contradiction and using a reversed version of Fatou’s lemma
for nonnegative functions bounded from above, ζ(x) > ∂f(x, y(x)) cannot hold on a set of positive
measure.

Strong stationarity. Next we examine conditions that, additionally to C-stationarity, will guarantee a
certain sign condition on the adjoint state p. We say that a point u ∈ Cad with state y satisfies the sign
condition σ(A) on a measurable set A ⊂ Ω if it is C-stationary and

ζ(x)p(x) ∈ [f ′+(y(x))p(x), f ′−(y(x))p(x)] for almost every x ∈ A. (σ(A))

Then, u is called strongly stationary if it satisfies the sign condition σ(Ω) on the whole of Ω. Note that
strong stationarity always implies C-stationarity even if f does not satisfy the PC1 condition. This
is due to the fact that [∂f(x, y(x)), ∂f(x, y(x))] ⊂ ∂f(x, y(x)) which is a consequence of the
directional differentiability of f . Note also that on the set {x ∈ Ω : p(x) = 0} one can change ζ such
that (C) is satisfied without affecting (5.13).

Here we examine conditions under which local minimizers of (4.1) are strongly stationary. We will also
formulate a constraint qualification under which B-stationarity is equivalent to strong stationarity. The
next proposition states that the latter always implies the former. We note that these results are inspired
by the investigations in the preprint [8].

Proposition 5.7. Suppose that u is strongly stationary. Then u is B-stationary.

Proof. For z ∈ L2(Ω), we have z = z+ − z− with z+ := max(0, z), z− = max(0,−z) and we
write Ωz+ := {x ∈ Ω : z(x) ≥ 0}, Ωz− := {x ∈ Ω : z(x) ≤ 0}. From the positive homogeneity of
the directional derivative with respect to the direction and from the sign condition for ζ and p we have∫

Ω

F ′(y; z)p dx =

∫
Ωz+

F ′(y; z+)p dx+

∫
Ωz−

F ′(y;−z−)p dx

=

∫
Ωz+

f ′+(y)pz+ dx+

∫
Ωz−

f ′−(y)p(−z−) dx

≤
∫

Ωz+

ζpz+ dx+

∫
Ωz−

ζp(−z−) dx =

∫
Ω

ζpz dx

and hence
〈ζz, p〉 − 〈F ′(y; z), p〉 ≥ 0. (5.23)

In view of the adjoint equation (5.13) we have that p satisfies

〈−∆z+ ζz, p〉 = 〈∇z,∇p〉+ 〈ζz, p〉 = 〈−∆p, z〉+ 〈ζp, z〉 = 〈y− g, z〉, for all z ∈ Y. (5.24)

For h ∈ Lp(Ω), let z := S ′(u, h). Then, testing the characterizing equation of z from Proposition 3.2
with p we get

〈−∆z, p〉 = −〈F ′(y; z), p〉+ 〈h, p〉. (5.25)
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Furthermore, we also have that

〈p, h〉 ≥ −α〈u, h〉, for all h ∈ TCad(u). (5.26)

Indeed, using (5.14) we have that this is true for every h ∈ RCad = {t(u − u) : u ∈ Cad, t > 0},
and then (5.26) follows by using the fact that TCad(u) = RCad(u) and the continuity of 〈p + αu, ·〉.
We fix h ∈ TCad(u) and let z = S ′(u;h). From (5.24), (5.25) as well as (5.23) and (5.26) we have

〈y−g, S ′(u;h)〉 = 〈y−g, z〉 = 〈ζz, p〉+〈−∆z, p〉 = 〈ζz, p〉−〈F ′(y; z), p〉+〈h, p〉 ≥ −α〈u, h〉.
(5.27)

Since h ∈ TCad(u) is arbitrary, the proof is complete.

We now introduce a measurability assumption which will be relevant to the constraint qualification
which we state afterwards.

Assumption 5.8. The set Ωf := {x ∈ Ω : f(x, ·) is nondifferentiable at y(x)} is Lebesgue mea-
surable.

Assumption 5.8 holds for instance when f satisfies (A1)–(A4) and additionally is independent of x, or
if it satisfies Assumption 5.3 and is jointly continuous on Ω× R.

We now introduce a constraint qualification for u ∈ Cad that lead to strong stationarity as a necessary
condition in different settings:

TCad(u) is dense in L2(Ω). (CQ)

Furthermore, if Cad is defined via box constraints as in (5.2), and Assumption 5.8 holds, then we define

Ωf ∩ Ωa,b has Lebesgue measure zero, (CQf )

where
Ωa,b := {x ∈ Ω : u(x) = ua(x) or u(x) = ub(x)}.

We note that if Cad is given as a box constraint set as in (5.2) then (CQ) is satisfied if and only if Ωa,b

has Lebesgue measure zero. This can be seen directly from the characterization (5.3) of TCad(u) for a
box constraint set. Thus if Ωa,b is closed, then (CQ) implies (CQf ). Note also that (CQf ) is satisfied
independently of the measure of Ωa,b in the case that f is differentiable in the second variable.

Proposition 5.9. Let u with corresponding state y be a point which is both B-stationary and C-
stationary. Moreover assume that Assumption 5.8 holds and that Cad is defined as in (5.2). Then
u satisfies the sign condition σ(Ω\(Ωf∩Ωa,b))

. In particular, if (CQf ) is satisfied, then u is strongly
stationary.

Proof. We fix an arbitrary direction h ∈ TCad(u) and let z := S ′(u;h) ∈ Y . Testing the equation that
characterizes z with p and using (5.15) from weak stationarity, as well as (5.4) fromB-stationarity and
(5.24) we get

〈−∆z+F ′(y; z), p〉 = 〈h, p〉 = −α〈u, h〉−〈µ, h〉 ≤ 〈y−g, z〉−〈µ, h〉 = 〈−∆z+ζz, p〉−〈µ, h〉,
and thus

0 ≤ 〈ζz − F ′(y; z), p〉 − 〈µ, h〉 =

∫
Ω

(ζz − F ′(y; z))p dx−
∫

Ω

µh dx

=

∫
Ωf

(ζz − F ′(y; z))p dx−
∫

Ωa,b

µh dx, (5.28)
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where in the last inequality we used the fact that fromC-stationarity we have ζ(x)z(x)−F ′(y(x); z(x)) =
0 for almost every x ∈ Ω \ Ωf and µ = 0 on Ω \ Ωa,b which can be easily verified.

According to Lemma A.1 we can find a non-negative ψm ∈ C∞(Rd) such that for an arbitrary non-
negative function v ∈ C∞c (Ω) the function

hm := −∆(vψm)(x) + F ′(y; vψm)(x),

belongs to L∞(Ω) and vanishes almost everywhere in Ωa,b, in particular hm ∈ TCad(ū) and it also
holds vψm = S ′(u;hm). Thus we can take z = vψm in (5.28) and by using the positive homogeneity
of the directional derivative, we get

0 ≤
∫

Ωf

(ζvψm − F ′(y; vψm))p dx =

∫
Ω

1Ωf (ζ − f ′+(y))ψmpv dx.

Since v ∈ C∞c (Ω) is an arbitrary nonnegative function and from the fundamental lemma of calculus of
variations, and the fact that ψm is also nonnegative, this implies that (ζ(x)− f ′+(y(x)))p(x) ≥ 0 for
almost every x ∈ Ωf ∩ suppψm. Using the pointwise convergence 1suppψm → 1Ω\Ωa,b from Lemma
A.1 we conclude that

ζ(x)p(x) ≥ f ′+(y(x))p(x) for almost every x ∈ Ωf \ Ωa,b.

By taking z = −vψm in (5.28) we get similarly

0 ≤
∫

Ωf

(ζ(−vψm)− F ′(y;−vψm))p dx =

∫
Ω

1Ωf (f
′
−(y)− ζ)ψmpv dx

and using the same argument we end up with

ζ(x)p(x) ≤ f ′−(y(x))p(x) for almost every x ∈ Ωf \ Ωa,b.

Since for every x ∈ Ω \Ωf we have ζ(x)p(x) = f ′(y(x))p(x) due to the C-stationarity, we deduce
that u satisfies the sign condition σ(Ω\(Ωf∩Ωa,b))

.

Note that under Assumptions 5.3 and 5.8, the conditions of the previous proposition are satisfied for
any local minimizer u of (4.1). In the next proposition we show that the converse of Proposition 5.7
is also true provided that the constraint qualification (CQ) holds. The proof here closely follows [10,
Proposition 4.13].

Proposition 5.10. Suppose that one of the following is satisfied for u:

(i) The constraint qualification (CQ) holds.

(ii) The set Ωf has zero Lebesgue measure and Cad is given as a box constraint set.

Then we have that if u is B-stationary, it is also strongly stationary.

Proof. We first assume that u satisfies (CQ) and it is also B-stationary. We set p := −αu ∈ L2(Ω)
as a candidate for the adjoint state and it clearly follows that (5.14) is satisfied. Let z ∈ Y such that
there exists h ∈ TCad(u) with z = S ′(u;h). Testing the equation that z satisfies with p and using the
B-stationarity condition yields

〈−∆z, p〉+ 〈F ′(y; z), p〉 = 〈p, h〉 = −α〈u, h〉 ≤ 〈y − g, z〉
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⇒ 〈−∆z, p〉 − 〈y − g, z〉 ≤ −〈F ′(y; z), p〉.
We can now interpret ξ := ∆p+ (y − g) ∈ Y ∗ and estimate

〈ξ,−z〉Y = −〈∆z, p〉 − 〈y − g, z〉 ≤ −〈F ′(y; z), p〉 ≤ ‖F ′(y; z)‖L2(Ω)‖p‖L2(Ω)

≤ c‖z‖L2(Ω)‖p‖L2(Ω) (5.29)

where we used that positive homogeneity of the directional derivative and the fact that F ′(y;±1) ∈
L∞(Ω). Note that (5.29) is valid for all z ∈ {S ′(u;h) ∈ Y : h ∈ TCad(u)}. We claim that the
latter set is dense in Y . Indeed this follows from the fact that the operator h 7→ S ′(u;h) derived
from equation (K) is surjective and Lipschitz continuous Lp(Ω) → Y from the density of TCad(u) in
L2(Ω). Using this density we deduce from (5.29)

〈ξ, z〉Y ≤ c̃‖z‖L2(Ω), for all z ∈ Y.

From the Hahn-Banach theorem we can extend ξ from Y ∗ to L2(Ω)∗ ' L2(Ω). Denoting its Riesz
representation by ξ again we have

(ξ, z)L2(Ω) = 〈ξ, z〉 ≤ −〈F ′(y;−z), p〉, for all z ∈ Y.

By density of Y in L2(Ω) and continuity of F ′(y; ·) on L2(Ω), we can extend the previous estimate
to

〈ξ, z〉 ≤ −〈F ′(y;−z), p〉, for all z ∈ L2(Ω).

For arbitrary z ∈ C∞c (Ω) with z ≥ 0 we have

0 ≤
∫

Ω

−F ′(y;−z)p− ξz dx =

∫
Ω

(f ′−(y)p− ξ)z dx,

0 ≤
∫

Ω

−ξ(−z)− F ′(y; z)p =

∫
Ω

(ξ − f ′+(y)p)z dx,

and from the fundamental lemma of calculus of variations we get

f ′+(y(x))p(x) ≤ ξ(x) ≤ f ′−(y(x))p(x), for almost every x ∈ Ω. (5.30)

By defining

ζ(x) :=

{
ξ(x)
p(x)

, almost everywhere in {p(x) 6= 0},
f ′−(y(x)), almost everywhere in {p(x) = 0},

(5.31)

we have that ζ(x) ∈ [∂f(y(x)), ∂f(y(x))] and thus ζ(x) ∈ ∂f(y(x)) almost everywhere in Ω.
Moreover ζ ∈ L∞(Ω), ζ ≥ 0 and the sign condition for ζp holds almost everywhere in Ω. Since
ξ = ζp ∈ L2(Ω), in view of ξ = ∆p+ (y − g) we have

−∆p+ ζp = (y − g),

implying −∆p ∈ L2(Ω) and thus p ∈ Y . This concludes the strong stationarity of u.

Now if we assume that u is B-stationary and Ωf has zero Lebegue measure, then it can be shown,
see [24, Lemma 1.12], that there exists µ = µb − µa, with µa, µb ∈ L2(Ω) such that

J ′(u;h) + 〈µ, h〉 = 〈y − g, S ′(u;h)〉+ α〈u, h〉+ 〈µ, h〉 = 0, for all h ∈ Lp(Ω),

ua ≤ u ≤ ub, µa ≥ 0, µb ≥ 0

µa(ua − u) = µb(u− ub) = 0

(5.32)

DOI 10.20347/WIAS.PREPRINT.2940 Berlin 2022



First-order conditions for the optimal control of learning-informed nonsmooth PDEs 25

u is B-stationary

u is locally
optimal
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C-stationary
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σ(Ω\(Ωf∩Ωa,b))
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+
Assumption 5.8
& Cad box

Prop. 5.1

Prop. 5.2

Prop. 5.6
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Prop. 5.9

Prop. 5.9

(CQf )
+

Prop. 5.7

+ Prop. 5.10

(CQ) or
L(Ωf ) = 0 &
Cad box

Figure 1: Summary of relations between the different stationarity conditions. Arrows represent direct
implications which only require the assumptions they start from. Additional assumptions are marked
with the “+” symbol.

almost everywhere in Ω. In that case we can set p := −αu+ µ ∈ L2(Ω) and we proceed as before
by using the equality {S ′(u;h) ∈ Y : h ∈ Lp(Ω)} = Y .

The different stationarity conditions and their relations are summarized in Figure 1.

6 Conclusion

In this paper, we studied the optimal control of a family of nonsmooth neural network informed PDEs
which approximate some semilinear PDE with unknown nonlinearity. We focused on theoretical in-
vestigations, such as well-posedness of the learning-informed PDEs and the optimal control problem,
approximation properties, and established several first-order conditions based on purely primal con-
cepts (B-stationarity) and primal-dual systems (e.g. C-stationarity and strong stationarity). Particular
attention was paid to ReLU networks due to its wide application in practical learning. However, many
of the results presented here fit to optimal control of more general nonsmooth semilinear PDEs. Differ-
ent optimality/stationarity conditions require specific assumptions, and their relationships are clarified
in Figure 1. We showed the equivalence between strong stationarity and B-stationarity, under some
rather restrictive constraint qualifications. Whether this equivalence persists under milder constraint
qualifications remains an open question.

The understanding of optimality conditions for the nonsmooth PDE constrained optimization problem
is not only an important theoretical question, but also guides the development of robust nonsmooth
numerical algorithms, which is the focus of the companion paper [15].

A Appendix

Proof of Lemma 5.5. If φ is differentiable y, then ∂φ(y) = ∂φ(y) = φ′(y). Since φ ∈ PC1(R), φ′

is continuous at a compact interval containing y. Hence φ′n = ρn ∗ φ′ → φ′ uniformly in that interval
and thus we have limn→∞ φ

′
n(yn) = φ′(y).

Suppose now that y is a nondifferentiable point of φ. Since φ ∈ PC1(R), there exists an M > 0
such that φ′ ∈ C([y − M, y]) and φ′ ∈ C([y, y + M ]). From uniform continuity of φ′ on those
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intervals we have that for every ε > 0, there exists a < δ ≤M such that

0 < y − y < δ ⇒ |φ′(y)− φ′−(y)| < ε and 0 < y − y < δ ⇒ |φ′(y)− φ′+(y)| < ε. (A.1)

Since yn → y and εn ↘ 0, it follows that for all ε > 0 we can pick N ∈ N such that for every n > N
we have that for all z ∈ (−εn, εn)

yn−z < y ⇒ |φ′(yn−z)−φ′−(y)| < ε and yn−z > y ⇒ |φ′(yn−z)−φ′+(y)| < ε. (A.2)

Note also that for every n, the set {z ∈ (−εn, εn) : yn − z = y} contains at most one point and
hence it is a Lebesgue nullset. In order to prove that lim supn→∞ φ

′
n(yn) ≤ ∂φ(y), we show that for

every ε > 0 we can find N large enough such that for all n > N , we have φ′n(yn) < ∂φ(y) + ε.
Choosing N as in (A.2) and using −∂φ(y) ≤ −φ′±(y) we have

φ′n(yn)− ∂φ(y) =

=

∫
[−εn,εn]

ρn(z)
(
φ′(yn − z)− ∂φ(y)

)
1{yn−z<y}(z)

+ ρn(z)
(
φ′(yn − z)− ∂φ(y)

)
1{yn−z>y}(z) dz

≤
∫

[−εn,εn]

ρn(z)
(
φ′(yn − z)− φ′−(y)

)
1{yn−z<y}(z)

+ ρn(z)
(
φ′(yn − z)− φ′+(y)

)
1{yn−z>y}(z) dz

< ε

(∫
[−εn,εn]

ρn(z)1{yn−z<y}(z) dz

∫
[−εn,εn]

ρn(z)1{yn−z>y}(z) dz

)
= ε.

The inequality lim infn→∞ φ
′
n(yn) ≥ ∂φ(y) is proven analogously.

The following lemma and its proof are slight adaptations from [8, Lemma 3.7] which we include here
for completeness.

Lemma A.1. For an arbitrary A ⊂ Ω there exists a sequence (ψm)m∈N ⊂ C∞(Rd) with ψm ≥ 0
such that for every m ∈ N and every v ∈ C∞(Rd)

−∆(vψm)(x) + F ′(y; vψm)(x) = 0, for almost every x ∈ A, (A.3)

and
1suppψm(x)→ 1Ω\A(x), for every x ∈ Ω. (A.4)

Proof. For m ∈ N, we set Am := {x ∈ Rd : dist(A, x) < 1
m
}, which are open sets, satisfying

A ⊂ Am+1 ⊂ Am for all m and also
⋂
m∈NAm = A. According to a classical result by Whitney,

see for instance [22, Theorem 2.1], for every m ∈ N we can find ψm ∈ C∞(Rd) with ψm > 0 in
Ω \ Am and ψm = 0 in Rd \ (Ω \ Am). In particular, ψm = 0 on the open set Ω ∩ Am and (A.3)
is satisfied for almost every x ∈ Ω ∩ Am and hence for almost every x ∈ A. In order to show (A.4),

we note that suppψm = (Ω \ Am) = Ω \ Am and suppψm ⊂ suppψm+1 for all m ∈ N. Thus we
have ⋃

m∈N

suppψm =
⋃
m∈N

(Ω \ Am) = Ω \
(⋂
m∈N

Am
)

= Ω \ A,

which implies 1suppψm → 1Ω\A pointwise in Rd, and hence (A.4) follows.
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