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Unusual ways of four-wave mixing instability
Shalva Amiranashvili, Uwe Bandelow

Abstract

A pump carrier wave in a dispersive system may decay by giving birth to blue- and red-shifted
satellite waves due to modulation or four-wave mixing instability. We analyse situations where
the satellites are so different from the carrier wave, that the red-shifted satellite either changes
its propagation direction (k < 0, ω > 0) or even gets a negative frequency (k, ω < 0). Both
situations are beyond the envelope approach and require application of Maxwell equations.

1 Introduction

The key property of a dispersive system is the existence of linear small-amplitude waves, e.g., of the
form Re

[
ei(kr−ωt)

]
with a certain dispersion relation ω = ℓ(k). An increase of power results in a

nonlinear wave, which may become unstable [1]. A very common instability scenario is excitation of
two growing satellite waves with the reduced and increased frequencies: the Stokes and anti-Stokes
(or just red/blue-shifted) spectral lines [2]. The satellite frequencies are equally displaced from the
incident one. Starting from the seminal study on modulated water waves [3], the effect was observed
in many nonlinear dispersive systems including optical fibers [4], which are in the focus of this work.

A small frequency displacement that is proportional to the incident power is the defining feature of the
most common modulation instability (MI). If the new lines are separated from the carrier, no matter
how small the incident power, one deals with a four-wave mixing (FWM) instability. In both cases, the
parameters of the blue-shifted (b) and red-shifted (r) satellites are connected to that of the carrier (c)
wave by the resonance (phase matching) conditions

ωb + ωr = 2ωc, kb + kr = 2kc, (1)

where the dispersion relation ω = ℓ(k) must hold for all three waves [5, 6].

Conditions (1) are necessary but not sufficient, the sufficient condition for MI was given by Lighthill
[7]. With respect to optical fibers, both instability scenarios are described by a generalized nonlinear
Schrödinger equation (GNLSE) for the wave envelope [8, 9, 10, 11, 12, 13, 14, 15]. Moreover, Lighthill’s
criterion can be reformulated to cover both MI and FWM regimes [16]. Note that GNLSE actually refers
to a class of increasingly complex equations with higher-order dispersion, losses, Raman integral,
and self-steepening derivative terms [17, 18, 19, 20, 21, 22, 23, 24]. To our knowledge, the most
comprehensive “all included” MI analysis was published in [15]. One can also study MI directly with
the full Maxwell equations [25].

This work considers wave instabilities in optical fibers and takes advantage of the fact that fiber disper-
sion can be engineered [26]. One can manipulate ℓ(k) and solutions of the system (1) to excite a wide
range of frequencies via the FWM mechanism [27, 28, 29, 30, 31]. We aim to answer the question: can
the red-shifted satellite be so different from the carrier wave that it either propagates in the opposite
direction or gets a negative frequency , as schematically shown in Fig. 1? In this case, the blue-shifted
frequency will be greater than 2ωc.

Appearance of the backward wave may resemble the Brillouin scattering with the difference that the
FWM instability takes place due to cubic nonlinearities and without any contribution of material waves.
Our interest to negative frequencies is motivated by recent papers on classical nonlinear optics (and
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Figure 1: A schematic dispersion law within a transparency window and possible instability regimes
are shown. An anisotropic ℓ(k) with k = (0, 0, k) is used for better visibility. The necessary Eq. (1)
selects the feasible instability. A sufficient condition (e.g., that of Lighthill) decides whether the insta-
bility develops or not.

on water waves [32, 33]), where calculation of the excited spectral line leads to a negative frequency.
One scenario is scattering of a wave packet at a quickly moving perturbation of the refractive index
created by another pulse. One can observe several scattered waves: a standard frequency-shifted
backward wave identical to that reflected by a moving mirror [34], forward scattering [35], and an
exotic classical Hawking radiation with a negative frequency [36, 37]. Another option is the so-called
dispersive or Cherenkov radiation emitted by solitons in fibers [38]. A formal calculation of the radiation
frequency may lead to a negative value. The positive-frequency partner of the emitted wave was
observed in experiment [39, 40] and predicted by a novel modification of GNLSE [41, 42]. A search for
new phenomena involving negative frequencies seems to be interesting and instructive; the stability
problem for a nonlinear wave is worth a try.

2 Framework

The majority of studies on MI and FWM instability in optical fibers use various versions of GNLSE. The
latter is extremely powerful and can be adapted to describe the contribution of negative frequencies
[41, 42]. Yet, GNLSE does not fit well to our needs for several reasons. First , it describes waves moving
in one direction, a possible backward satellite is not covered. Second , GNLSE approximates medium
dispersion by Taylor expansion around a carrier frequency. The expansion is limited by its convergence
radius, which is determined by resonances of the dielectric function ϵ(ω,k) in the complex ω-plane.
If the low-frequency resonances are present, the Taylor expansion at ωc covers neither the red stars
in Fig. 1 nor the general relation [43]

ϵ∗(ω,k) = ϵ(−ω∗,−k), (2)

which we will use later. Third , GNLSE in optical fibers is a space-propagated problem in (t, z) coor-
dinate space. The initial pulse is given for some z and ∀t, in conflict with the causality principle. The
pulse shape is then calculated for a larger z and ∀t. Dealing with such a delicate question as negative
frequencies, it is preferable to have a causal system that evolves in time.

For these reasons, we will follow [25] and directly employ Maxwell equations to study the stability
problem with the difference being that our system is time-propagated and retains causality. Before
proceeding, we need to make a few remarks.

■ Given a reasonable incident power, MI satellites are too close to the carrier to have unusual
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Four-wave mixing instability 3

properties. FWM instability is the only case of interest.

■ Plane waves in what follows will have a real k and possibly complex ω, which is called “negative”
if Re(ω) < 0. We should modify Eq. (1) for ω ∈ C.

■ Re
[
ei(kr−ωt)

]
is invariant with respect to the substitution ω 7→ −ω∗, k 7→ −k, generated by

the complex conjugation, cf. Eq. (2).

■ Any positive-frequency branch of the dispersion law has a negative-frequency partner

ω = ℓ(k) comes with ω = −ℓ∗(−k). (3)

The situation we are interested in is schematically shown in Fig. 1 by red stars. Now we can formulate
the problem more precisely. Let ωc, kc and ωb, kb belong to the positive-frequency branch in Eq. (3).
It is not enough to know whether ωr, kr, which come from Eq. (1), can belong to either backward or
negative-frequency branch. We shall get a dispersion relation for the satellites and study if they grow
up.

3 Model equation

A generic electromagnetic wave is described by the wave equation

µ0∂
2
tD+ rot rotE = 0, (4)

where the displacement D(t, r) and field E(t, r) are confined by a material relation. We consider an
isotropic dispersive dielectric medium with a cubic nonlinearity that is characterized by a single Kerr
parameter χ

1

ϵ0
D = E+K ◦ E+ χ|E|2E, (5)

where, for simplicity, χ is just a constant. The simplest non-dispersive nonlinearity is combined with a
generic linear dispersion: the term K ◦E denotes a causal convolution with a suitable kernel K(t, r)

K ◦ E =

∫ ∞

0

∫
R3

K(t′, r′)E(t− t′, r− r′)dt′d3r′.

A wave with E ∝ ei(kr−ωt) yields K ◦ E = (ϵ− 1)E, where the dielectric function reads [43]

ϵ(ω,k) = 1 +

∫ ∞

0

∫
R3

K(t, r)ei(ωt−kr)dtd3r. (6)

Again, for simplicity and with optical fibers in mind, we consider only 1D propagation with

k = (0, 0, k), E = E(t, z) = (Ex, Ey, 0),

and use the notations

ϵ(ω, k) = ϵ(ω,k)|k=(0,0,k), ℓ(k) = ℓ(k)|k=(0,0,k).

Equations (4) and (5) are then reduced to a single partial differential equation (PDE) for a complex
variable Ψ

∂2t
(
Ψ+K ◦Ψ+ χ|Ψ|2Ψ

)
− c2∂2zΨ = 0, (7)
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where Ψ(t, z) = Ex + iEy.

Equation (7) is our starting point. It might look like an envelope equation, but it applies directly to
the electric field. Being an exact reduction of (4–5), it is not limited by any kind of unidirectional or
slowly-varying-envelope approximation. Moreover, Eq. (7) describes causal evolution of both forward
and backward waves for an arbitrary medium dispersion. Both positive and negative frequencies are
covered such that Eq. (7) is well suited to study two unusual FWM scenarios from Fig. 1.

4 Carrier wave

For brevity we introduce a kind of generalized dispersion function E(ω, k) and notations for its deriva-
tives

E = ϵ(ω, k)− k2c2

ω2
, Ė =

∂E

∂ω
, E′ =

∂E

∂k
. (8)

A small-amplitude Aei(kz−ωt) solution to Eq. (7) corresponds to a circular linear wave and requires
E(ω, k) = 0. This yields the main (generally speaking, multivalued) dispersion relation ω = ℓ(k) and
its partner (3). The group velocity V and the group velocity dispersion D are given by the derivatives
of an implicit function

V =
dω

dk
= −E′

Ė
, (9)

D =
d2ω

dk2
= − ËV 2 + 2Ė′V + E′′

Ė
, (10)

where a bit clumsy form of D(ω, k) is the price we pay for a general ϵ(ω, k).

A possible instability develops upon a weakly nonlinear circular carrier wave

Ψ = Ace
i(kcz−ωct) with σ = χA2

c ≪ 1, (11)

where σ is a dimensionless power parameter. The carrier should belong to a transparency domain,
such that ωc, kc ∈ R and Im[ϵ(ωc, kc)] ≈ 0. Equations (7) and (11) yield a nonlinear dispersion
relation

E(ωc, kc) + σ = 0. (12)

The carrier wave has a nonlinear frequency shift ωnl, which is defined such that ωc−ωnl and kc satisfy
the linear dispersion relation E(ωc − ωnl, kc) = 0, i.e.,

ωnl = − σ

Ėc

+O(σ2). (13)

Here and from now on, we use the notations

Eξ, Ėξ, E
′
ξ, Vξ, Dξ,

when the involved quantities are calculated for the carrier wave (ξ = c) or its satellites (ξ = b, r). We
now turn to the carrier stability problem.
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Four-wave mixing instability 5

5 Dispersion relation

We consider a small perturbation ψ of the carrier wave (11)

Ψ(t, z) = Ace
i(kcz−ωct) + ψ(t, z),

which is subject to a linear PDE yielded by Eq. (7)

∂2t
(
ψ +K ◦ ψ + 2σψ + σe2i(kcz−ωct)ψ∗)− c2∂2zψ = 0.

We look for a special solution for ψ that combines one blue- and one red-shifted satellite

ψ = Abe
i(kbz−ωbt) + Are

i(krz−ωrt),

with Ab,r = const. Recall that ωc and all wavevectors are real. The satellite frequencies ωb and ωr

may be real or complex. By construction we require, cf. Eq. (1),

ωb + ω∗
r = 2ωc and kb + kr = 2kc, (14)

such that the non-homogeneous term in the PDE for ψ is expressed through the same satellites

e2i(kcz−ωct)ψ∗ = A∗
re

i(kbz−ωbt) + A∗
be

i(krz−ωrt).

The amplitudes Ab and Ar are then non-trivial solutions to a system of two linear homogeneous
equations (

Eb + 2σ σ
σ E∗

r + 2σ

)(
Ab

A∗
r

)
=

(
0
0

)
, (15)

which finally leaves us with the dispersion relation for the satellites

(Eb + 2σ)(E∗
r + 2σ) = σ2. (16)

Equation (16), being causal and valid for positive and negative frequencies, contains all we need to
know about the instability regimes depicted in Fig. 1.

Let us make a few remarks before continuing. Figure 1 and the standard phase matching conditions (1)
apply, of course, to the real parts of the satellite frequencies. The satellites will typically belong to the
transparency window, and yet ωb,r may be complex which indicates instability. If it is the case, Eb and
Er are complex as well and the complex conjugation in Eq. (16) is essential. Equations (2) and (14)
yield that

E∗
r = E(−ω∗

r ,−kr) = E(ωb − 2ωc, kb − 2kc), (17)

such that all stable solutions of Eq. (16) can be plotted as a real-valued ωb(kb). The plot contains
gaps, where ωb(kb) turns complex because of losses or instability.

It is remarkable that the merged MI/FWM problem gets such a compact formulation as Eq. (16) for
an arbitrary ϵ(ω, k). On the other hand, the dispersion relation for the satellites that comes from a
GNLSE can be solved immediately [8, 9, 10, 11, 12, 13, 14, 15]. At most, one is facing a fourth-order
equation [25]. In our case, the implicit Eq. (16) requires aditional work to be done (Fig. 2).

DOI 10.20347/WIAS.PREPRINT.2934 Berlin 2022



Sh. Amiranashvili, U. Bandelow 6

find from

for all where

Given where

Figure 2: Informal summary of the dispersion relation (16) for the satellites. Complex values of ωb,r

indicate instability, Eξ denotes ϵ(ωξ, kξ)− k2ξc
2/ω2

ξ with ξ = c, b, r.

6 MI case

The general approach of the previous sections is an overkill for the classical MI, where the carrier wave
and both its satellites perfectly fit to a slowly varying envelope approximation and GNLSE. Neverthe-
less, MI is of course covered by Eq. (16). Note that for kb,r = kc, we have an exact solution ωb,r = ωc

of the problem sketched in Fig. 2. In the vicinity of this solution, one can set

ωb = ωc + Ω, ωr = ωc − Ω∗, kb,r = kc ± κ,

such that both phase matching conditions (14) are satisfied, and look for Ω(κ). We expand Eq. (16)
with respect to Ω and κ. Two successive iterations yield the classical result

(Ω− κVc)
2 =

(
2ωnl +

Dcκ
2

2

)
Dcκ

2

2
, (18)

which contains the group velocity (9) and group velocity dispersion (10) of the carrier wave. The non-
linear frequency shift ωnl was defined in Eq. (13).

For (Lighthill criterion) ωnlDc < 0, Eq. (18) describes MI that evolves in time with the complex modu-
lation frequency Ω and the maximal increment

[ImΩ]max = |ωnl| =
σ

|Ėc|
. (19)

Note, that a more common MI formulation for fibers is space-propagated and yields complex κ(Ω),
see [44].

7 FWM case

We are now ready to consider the FWM instability without any reference to GNLSE and dispersion
coefficients at carrier frequency. Let us neglect for a moment the right-hand-side of Eq. (16)[

E(ωb, kb) + 2σ
][
E∗(ωr, kr) + 2σ

]
= 0. (20)

Solutions of Eq. (20) are split into the “blue” and “red” ones. Within the transparency domain, we get
two real-valued implicit functions, which can be plotted on the same (kb, ωb) plane using Eq. (17). An
example is shown in Fig. 3a. Assume that these two curves cross each other at some point (kb0, ωb0),
see the inset in Fig. 3a. In the vicinity of this double root one can set

ωb = ωb0 + Ω, ωr = ωr0 − Ω∗, Ω = O(σ),

kr = kb0 + κ, kr = kr0 − κ, κ = O(σ),
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Figure 3: (a) Both blue and red solutions of Eq. (20) are plotted as ωb(kb) for kb ≥ kc. We use a bulk
fused silica dispersion function [45], take the carrier wave at 1µm, and set σ = 0. A gap for ωb ≈ 2kc
(i.e., ωr ≈ 0) appears due to the low-frequency absorption of the red satellite. The FWM instability
results from a generic crossing of the red and blue curves on the inset. Panels (b,c,d) show stable and
unstable reconnections yielded by the right-hand-side of the full Eq. (16).

with ωr0 = 2ωc − ωb0, kr0 = 2kc − kb0 and expand

Eb = −2σ + Ėb0Ω + E′
b0κ+O(σ2),

Er = −2σ − Ėr0Ω
∗ − E′

r0κ+O(σ2),

where the derivatives Ėb0,r0 and E′
b0,r0 and the corresponding group velocities Vb0,r0 are real.

We now return to the full Eq. (16), consider the vicinity of the intersection point, and derive

(Ω− Vb0κ)(Ω− Vr0κ) = − σ2

Ėb0Ėr0

. (21)

The effect of the right-hand-side is that the two lines Ω = Vb0κ and Ω = Vr0κ (Fig. 3b) are now
reconnected in one of two possible ways, as shown in Fig. 3c,d. A gap, like one in Fig. 3d, indicates a
complex-valued Ω(κ) and results in the FWM instability. The latter occurs if

Ėb0Ėr0 > 0, (22)

and develops with the maximal increment

[ImΩ]max =
σ√

Ėb0Ėr0

. (23)

It is remarkable that the MI increment (19) is covered by Eq. (23) for ωb0 = ωr0 = ωc. Equation (23)
is universal. On the other hand, Eq. (22) is very different from the MI criterion because it does not
depend on the nonlinear frequency shift.

8 Examples

To summarise the previous section: an unusual scenario of the FWM instability occurs if an intersection
of two curves yielded by Eq. (20), like (kb0, ωb0) in the inset in Fig. 3a, takes place not before but after
the attenuation gap at 2kc, in which case the red-shifted wave-vector kr0 = 2kc − kb0 is negative.
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Figure 4: Solutions of the reduced Eq. (20) are shown for (a) KSR-5 glass with the carrier wave at
1.14µm and (b) ZBLAN with the carrier wave at 1.4µm. Change to the full Eq. (16) yields the FWM
instability with the backward satellite but not the negative-frequency wave.

Two cases are then possible. A positive value of ωr0 = 2ωc−ωb0 means a back-propagating satellite,
otherwise one deals with a forward negative-frequency wave.

An example of the backward propagating red satellite is shown in Fig. 4a for KRS-5 glass [45], which
is transparent from 0.6–40µm, and for a carrier at 1.14µm. The backward satellite is at 15.6µm.
Similar behavior is expected in several other materials.

FWM instability at a negative frequency is a different story: typical dispersive materials from [45]
proved to be unsuitable. Some systems are very close to the required behaviour (e.g., ZBLAN with
the carrier wave at 1.4µm in Fig. 4b) because the red and blue curves are very close to each other.
Double roots with negative frequencies should appear for a slightly tuned dispersion law. However, one
can demonstrate that even in such a favourable case the negative-frequency wave is not generated
because the instability condition (22) is not satisfied. To demonstrate this, we use Eq. (9) to rewrite the
inequality (22) as (E′

b0/Vb0)(E
′
r0/Vr0) > 0. As spatial dispersion is small for optical materials, Eq. (8)

yields that E′ ≈ −2kc2/ω2 and the FWM instability criterion takes the form

(kb0/Vb0)(kr0/Vr0) > 0. (24)

Examining Fig. 1, we see that inequality (24) is satisfied for the backward satellite but not for the
negative-frequency one.

9 Conclusions

Nonlinear waves in dispersive systems are typically decomposed giving birth to new satellite waves,
but how far these satellites can go from their origin? Can they go beyond the standard slowly vary-
ing envelope approximation and even beyond an extended envelope equation equipped by numerous
dispersion coefficients? To address these questions we studied the carrier stability problem using a
general material relation (5) and an exact reduction (7) of Maxwell equations. The dielectric function is
not expanded at carrier frequency, moreover, the system in question evolves in time in full agreement
with the causality principle. This approach resulted in a surprisingly compact dispersion relation for the
satellite frequencies (16), which however is implicit and difficult to analyse, as compared to the stan-
dard space-propagated modelling of the optical four-wave instabilities. Using geometrical arguments,
we revealed the instability criterion (22), and a general expression (23) for the instability increment. In
the first place, we have found that the red-shifted satellite can reverse its velocity in the lab frame and
propagate backward to the carrier, as long as the dispersive material is transparent for the infrared
radiation. In the second place, we have found that generation of the negative-frequency satellite, while
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formally possible, does not take place because the wave-mixing instability is switched off for this exotic
wave.
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