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Stochastic homogenization on perforated domains III – General
estimates for stationary ergodic random connected Lipschitz

domains
Martin Heida

Abstract

This is Part III of a series on the existence of uniformly bounded extension operators on ran-
domly perforated domains in the context of homogenization theory. Recalling that randomly per-
forated domains are typically not John and hence extension is possible only from W 1,p to W 1,r,
r < p, we will show that the existence of such extension operators can be guarantied if the
weighted expectations of four geometric characterizing parameters are bounded: The local Lips-
chitz constant M , the local Lipschitz radius δ, the mesoscopic Voronoi diameter d and the local
connectivity radius R.

1 Introduction

Let p(ω) ⊂ Rd be a stationary ergodic connected random open set with random variable ω and let
ε > 0 be the smallness parameter. The concept of stationary ergodic random open sets was introduced
in detail in Part I [5], and we will give a simplified version below, which focuses on the properties used
in the present Part III.

For a bounded open domain Q, we then consider pε(ω) = εp(ω), Qε
p(ω) ∶= Q ∩ pε(ω) and

Γε(ω) ∶=Q ∩ ∂pε(ω) with outer normal νΓε(ω). In order to simplify notation, we keep in mind that p
and Qε

p are random variables and drop the explicit writing of ω.

Denoting W 1,p
0,∂Q(Qε

p) ∶= {u ∈W 1,p(Qε
p) ∶ u∣∂Q ≡ 0} one would classically be interested in a family

of extension operators Uε ∶ W 1,p
0,∂Q(Qε

p) → W 1,p(Q) such that for some C independent from ε it
holds

∥∇Uεu∥Lp(Q)
≤ C ∥∇u∥Lp(Qε

p)
, ∥Uεu∥Lp(Q)

≤ C ∥u∥Lp(Qε
p)
. (1.1)

However, estimates of the form (1.1) are known to exist only for (global) John domains but from Part I
we know that even random Lipschitz domains are mostly not (globally) John.

On the other hand Part I [5] gives rise to the hope that we can find 1 ≤ r < p and a family of extension
operators Uε ∶ W 1,p

0,∂Q(Qε
p) → W 1,r(Q) for scalar valued functions resp. Uε ∶ W1,p

0,∂Q(Qε
p) →

W1,r(Rd) for vector valued functions such that

1

∣Q∣

ˆ
Rd

∣∇Uεu∣r ≤ C ( 1

∣Q∣

ˆ
Q∩εp

∣∇u∣p)
r
p

,
1

∣Q∣

ˆ
Rd

∣Uεu∣r ≤ C ( 1

∣Q∣

ˆ
Q∩εp

∣u∣p)
r
p

, (1.2)

where the full support of Uεu lies within Bεβ(Q) for ε small enough and some fixed β ∈ (0,1)
depending on p.
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M. Heida 2

In Part I we have established a general abstract framework for the derivation of uniform bounds on
extension operators and except for two special examples, the results in Part I are rather vague, missing
a general theory to deal with the connectivity of the domain. The connectivity for general geometries
will be the main topic of the present work. We note at this point that connectivity is also the major
issue for other former works to restrict to inclusions of an absolutely bounded diameter [3, 10]. Our
method of proof, based on Part I, is different from other proofs in the literature, particularly the literature
for periodic [7] or John [8, 2] domains, even though some patterns recur such as the construction of
suitable paths along overlapping sets of an open covering. For a further overview over the history and
the literature, the reader is referred to Parts I and II [6].

Let us finally note that replacing (1.1) by (1.2) also affects the analysis in the homogenization process
and we refer to Part II [6] where this has been discussed.

1.1 The setting

Throughout this work, we use (ei)i=1,...d for the Euclidean basis of Rd. Given a metric space (M,d)
we denote Br(x) the open ball around x ∈M with radius r > 0. The surface of the unit ball in Rd is
Sd−1. Furthermore, we denote

∀A ⊂ Rd ∶ Br(A) ∶= ⋃
x∈A

Br(x) .

A sequence of points will be labeled by x ∶= (xi)i∈N.

In what follows, we will assume that p = p(ω) is also a random connected domain, that is Lipschitz for
almost every realization. We formally introduce the concepts of stationarity and ergodicity of stochastic
processes in Section 2.4. If no confusion occurs, we drop (ω) in the notation wherever possible in
order to improve readability.

According to Part I Chapter 3 for every stationary ergodic random open set p the following can be
established.

Lemma 1.1. Let p be a stationary ergodic random open set. Then there exists r > 0 and a positive,
monotonically decreasing functions fP with fP(R) → 0 as R → ∞ and a random point process
xr = (xa)a∈N jointly stationary with p such that

∎ B r
2
(xr) ⊂ p ,

∎ for all a, b ∈ N, a ≠ b, it holds ∣xa − xb∣ > 2r ,

∎ P(BR(0) ∩ xr = ∅) ≤ fP(R).

Jointly stationary in the sense of Part I means that either both the joint distributions of xr and p are
invariant over all shifts x ∈ Rd or over all shifts x ∈ 2rZd. Constructing from xr = (xa)a∈N a Voronoi
tessellation of cells (Ga)a∈N with diameter da = d(xa) ∶= supx,y∈Ga ∣x − y∣, then according to Part I
for some constant C ≥ 1

P(d(xa) >D) < fd(D) ∶= CfP(C−1D) . (1.3)

Furthermore, for any x ∈ xr and y ∈ p let

Υ(x, y) ∶= {γ ∶ [0,1] → p ∣ γ ∈ C([0,1];p), γ(0) = x, γ(1) = y}
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Stochastic homogenization on perforated domains III 3

denote the set of all continuous paths from x to y inside p. Given x ∈ xr we further denote

R(x) ∶= r + inf {R > r ∶ ∀y ∈ B5d(x)(x)∃γ ∈ Υ(x, y) ∶ γ([0,1]) ⊂ BR(x)} . (1.4)

Connectedness ensures R(x) < ∞ for every x ∈ xr. Denoting S (x) ∶= R(x)/d(x) we consider
monotonically decreasing functions fS , fR ∶ [0,∞) → R given through

fR(R) ∶= P(R(xa) > R) , fS (S) ∶= P(S (xa) > S) . (1.5)

We call R the connectivity radius and S the stretch factor.

Definition 1.2 (Local (δ,M)-Regularity). The domain p ⊂ Rd is called (δ,M)-regular in p0 ∈ ∂p
if there exists an open set U ⊂ Rd−1 and a Lipschitz continuous function φ ∶ U → R with Lipschitz
constant greater or equal to M such that ∂p ∩Bδ(p0) is subset of the graph of the function ϕ ∶ U →
Rd , x̃↦ (x̃, φ(x̃)) in some suitable coordinate system.

Definition 1.3. For a stationary random Lipschitz domain p ⊂ Rd with r from Lemma 1.1 and for every
p ∈ ∂p and n ∈ N ∪ {0}

∆r(p) ∶= sup
δ<2r

{∃M > 0 ∶ p is (δ,M) -regular in p} , δ∆r(p) ∶=
∆r(p)

2
, (1.6)

MR(p) ∶= inf
η>R

inf {M ∶ p is (η,M) -regular in p} , (1.7)

ρn(p) ∶= sup
R<δ(p)

r (4MR(p)2 + 2)−
n
2 , (1.8)

For every p ∈ ∂p it holds that

R2 > R1 implies MR2(p) ≥MR1(p) .

Since no confusion occurs, we write δ = δ∆r for simplicity.

Definition 1.4 (Extension order). The geometry is of extension order n ∈ N∪{0} if there existsC > 0
such that for almost every p ∈ ∂p there exists a local extension operator

Un ∶ W 1,p(B 1
8
δ(p)(p) ∩ p) →W 1,p(B 1

8
ρn(p)

(p)) ,

∥∇Unu∥Lp(B 1
8 ρn(p)

(p)) ≤ C (1 +M 1
8
δ(p)(p)) ∥∇u∥Lp(B 1

8 δ(p)
(p)) . (1.9)

Part I shows that every locally Lipschitz geometry is of extension order n = 1, though better values
(i.e. n=0) for n are possible for some geometries.

Definition 1.5 (Inner microscopic regularity). Given n ∈ N and ρ̃ ∶= 2−5ρn, the inner microscopic
regularity α ∈ [0,1] is

α ∶= inf {α̃ ≥ 0 ∶ ∀p ∈ ∂p∃y ∈ p ∶ Bρ̃(p)/32(1+Mρ̃(p)(p)α̃)(y) ⊂ Bρ̃(p)/8(p)} .

As demonstrated in Part I, the values of α and n as well as the distribution of M and ρn are crucial
for the validity of (1.2) for a given pair (r, p).
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1.2 Main Result: Uniform extension estimates for stationary ergodic random
sets p(ω)

We find the following main result.

Theorem 1.6. Let Q ⊂ Rd be a bounded Lipschitz domain. Let p(ω) be a stationary ergodic random
connected open set in Rd of extension order n and with inner microscopic regularity α. Furthermore
let xr be a jointly stationary point process satisfying Assumption 1.1. Given constants 1 ≤ r < s < p
and q, q̃ ∈ [1,∞) with s

p + 1
q + s

rq̃ = 1 and writing

Pk,R ∶= P(for x ∈ xr ∶ d(x) ∈ [k, k + 1), R(x) ∈ [R,R + 1))
let the following hold:

∞

∑
k,R=1

(k + 1)d(q+1)+3drq+r(q−1) (R + 1)d(q+1)+
s(r+1)−r

r
q+r(q−1) Pk,R < ∞ , (1.10)

E(δ (1 +M 3δ
4
)

p
p−r [(n+α)(d−1)+r]+d−2

) < ∞ , (1.11)

E(ρ̃(1−d)(rq̃−1)+2+d
n M̃αd+d−2

4ρ̃n ) < ∞ . (1.12)

Alternatively let d and S be independent and writing

Pd,k ∶= P(for x ∈ xr ∶ d(x) ∈ [k, k + 1))
PS ,S ∶= P(for x ∈ xr ∶ S (x) ∈ [S,S + 1))

replace condition (1.10) with
∞

∑
k,S=1

(k + 1)d(q+1)+d(3r+
s(r+1)−r

r
)q+r(q−1) (S + 1)d(q+1)+d

s(r+1)−r
r

q+r(q−1) < ∞ . (1.13)

Then there exists β0 ∈ (0,1) not depending on ω such that for almost every ω there exists an exten-
sion operator Uω ∶ W 1,p

loc (p(ω)) → W 1,r
loc (Rd) and a constant Cω and N0 ≥ 1 such that for every

N > N0 it holds

1

∣NQ∣

ˆ
NQ

∣∇Uωu∣r ≤ Cω
⎛
⎝

1

∣NQ∣

ˆ
p(ω)∩B

Nβ0
(NQ)

∣∇u∣p
⎞
⎠

r
p

, (1.14)

1

∣NQ∣

ˆ
NQ

∣Uωu∣r ≤ Cω
⎛
⎝

1

∣NQ∣

ˆ
p(ω)∩B

Nβ0
(NQ)

∣u∣p
⎞
⎠

r
p

. (1.15)

1.3 Discussion

We may apply a rescaling N = ε−1 for some ε > 0. Writing

[U εωu] (x) ∶= [Uωu(ε ⋅ )] (
x

ε
)

inequality (1.14) reads

1

∣Q∣

ˆ
Q

∣U εωu∣
r ≤ Cω

⎛
⎝

1

∣Q∣

ˆ
[εp(ω)]∩B

ε1−β0
(Q)

∣∇u∣p
⎞
⎠

r
p

.

The important insight is that χB
ε1−β0

(Q) → χQ in Lp(Rd) for any 1 ≤ p < ∞ and hence in the limit

U εωu is determined mostly by the values of u(x) for x ∈ Q. Moreover it was shown in Part I that
u∣(εp)∩∂Q ≡ 0 implies that the support of U εωu will ultimately reduce to Q in the limit.
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Stochastic homogenization on perforated domains III 5

1.4 Structure of the article

In Section 2 we collect some results from Part I and modify the Voronoi integration lemma from there
including a new and shortened proof. In Section 3 we prove Theorem 1.6 based on one of the main
results from Part I. An outline of the proof is provided at the beginning of Section 3.

2 Preliminaries from Part I

The constant C on the right hand side of (1.14) depends on averaged weights of δ, M , da, Sa and
Ra related to (1.10)–(1.13). In order to judge whether these averages are bounded as n → ∞, we
will rely on the integration theory that is recalled below. In particular, this theory is connected to the
ergodic theorems and the Palm measure. We start by briefly explaining how the following results will
be applied later on.

In Section 2.1 we recall η-regularity introduced in Part I. This concept allows us to cover any closed
sets by a suitable family of open balls such that the covering is locally finite and uniformly bounded by
a constant. While in Part I this was used to cover only the boundary of p in terms of ρn, we will later
in Section 3.3 use this result to extend the covering to the interior full domain.

In Section 2.2 we construct from (δ,M) (notably only defined on ∂p) various integrable functions on
Rd which are denoted e.g. ρ[... ],Rd , δ[... ],Rd , M[... ],Rd . However, we emphasize at this point that the
distribution of ρn(x), δ(x) or M(x) are w.r.t. the condition that x ∈ ∂p(ω). Hence, it is necessary to
control integrals over the functions ρ[... ],Rd , δ[... ],Rd , M[... ],Rd by integrals over the functions ρn(x),
δ(x) or M(x), which leads to Lemma 2.6.

Section 2.3 provides a frequently used Poincaré inequality and in Section 2.4 we introduce the ergodic
theorems on p and ∂p which will ensure that all the above mentioned averaging integrals converge to
their expectation as the support grows infinitely large.

Finally in Section 2.5 we study functions

b(y) ∶= ∑
x∈Xr

χBR(x)(x)(x)d(x)ηR(x)ξ ,

and provide an estimate on the expectation of bq, q ∈ [1,∞). This will help us to control integrals that
enter the constant C from the mesoscopic geometric properties.

2.1 Local η-Regularity

We summarize the concept of η-regularity and its consequences from Part I. Note that Lemma 2.2 was
proved in Part I only for Γ = ∂p. However, the only property of ∂p used for the proof is its closedness.

Definition 2.1 (η- regularity). Let Γ be a closed set. For a function η ∶ Γ→ (0, r] we call Γ η-regular
if

∀p ∈ Γ, ε ∈ (0,
1

2
) , p̃ ∈ Bεη(p)(p) ∩ Γ ∶ η(p̃) > (1 − ε)η(p) . (2.1)

Lemma 2.2. Let Γ be a locally η-regular set for η ∶ Γ → (0, r). Then η ∶ p → R is locally Lipschitz
continuous with Lipschitz constant 1 and for every ε ∈ (0, 1

2
) and p̃ ∈ Bεη(p) ∩ Γ it holds

1 − ε
1 − 2ε

η(p) > η(p̃) > η(p) − ∣p − p̃∣ > (1 − ε) η(p) , (2.2)

∣p − p̃∣ ≤ εmax{η(p), η(p̃)} ⇒ ∣p − p̃∣ ≤ ε

1 − ε min{η(p), η(p̃)} . (2.3)
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M. Heida 6

Theorem 2.3. Let Γ ⊂ Rd be a closed set and let η(⋅) ∈ C(Γ) be bounded and satisfy for every
ε ∈ (0, 1

2
) and for ∣p − p̃∣ < εη(p)

1 − ε
1 − 2ε

η(p) > η(p̃) > η(p) − ∣p − p̃∣ > (1 − ε) η(p) . (2.4)

and define η̃(p) = 2−Kη(p), K ≥ 2. Then for every C ∈ (0,1) there exists a locally finite covering of
Γ with balls Bη̃(pk)(pk) for a countable number of points (pk)k∈N ⊂ Γ such that for every i ≠ k with
Bη̃(pi)(pi) ∩Bη̃(pk)(pk) ≠ ∅ it holds

2K−1 − 1

2K−1
η̃(pi) ≤ η̃(pk) ≤

2K−1

2K−1 − 1
η̃(pi)

and
2K − 1

2K−1 − 1
min{η̃(pi), η̃(pk)} ≥ ∣pi − pk∣ ≥ Cmax{η̃(pi), η̃(pk)}

(2.5)

In Part I the last lead immediately to the following corollary.

Corollary 2.4. Let r > 0 and let p ⊂ Rd be a locally (δ,M)-regular open set, where we restrict δ
by δ (⋅) ≤ r

4 . Given n ∈ N there exists a countable number of points (pk)k∈N ⊂ ∂p such that ∂p is
completely covered by balls Bρ̃(pk)(pk) where ρ̃ (p) ∶= ρ̃n (p) ∶= 2−5ρn (p). Writing

ρ̃k ∶= ρ̃n,k ∶= ρ̃n(pk) , δk ∶= δ(pk) ,

for two such balls with Bρ̃k(pk) ∩Bρ̃i(pi) ≠ ∅ it holds

15

16
ρ̃i ≤ ρ̃k ≤

16

15
ρ̃i

and
31

15
min{ρ̃i, ρ̃k} ≥ ∣pi − pk∣ ≥

1

2
max{ρ̃i, ρ̃k} .

(2.6)

Furthermore, depending on the inner microscopic regularity α ∈ [0,1] there exists yn,α,k and rn,α,k ≥
ρ̃n,k

32(1+Mρ̃n(pk)(pk)
α
)

such that Brn,α,k(yn,α,k) ⊂ Bρ̃k/8(pk) ∩ p and B2rn,α,k(yk) ∩B2rn,α,j(yj) = ∅ for

k ≠ j.

Remark 2.5. Given the covering from Corollary 2.4 Lemma 4.4 and Remark 4.5 from Part I imply

#{j ∶ x ∈ Bρ̂n,j(pj)} < C(1 +M[ 3δ
8
, δ
8
],Rd(x))n(d−1) .

2.2 Integration of δ and M

Given c ∈ (0,1] let η(p) = cδ(p) or η(p) = cρn(p), n ∈ N and r ∈ C0,1(∂p) and define the functions

η[r],Rd(x) ∶= inf {η(x̃) ∶ x̃ ∈ ∂p s.t. x ∈ Br(x̃)(x̃)} , (2.7)

M[r,η],Rd(x) ∶= sup{Mr(x̃)(x̃) ∶ x̃ ∈ ∂p s.t. x ∈ Bη(x̃)(x̃)} , (2.8)

where inf ∅ = sup∅ ∶= 0 for notational convenience. We also write M[η],Rd(x) ∶=M[η,η],Rd(x) and
ηRd(x) ∶= η[η],Rd(x). The relations between η,M ∶ ∂p→ R and η[r],Rd ,M[r,η],Rd ∶ Rd → R as well
as integrability and measurability are discussed in Part I. Furthermore, we define

p[r],Rd ∶= p ∩ ⋃
x∈∂p

Br(x)(x) .
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Stochastic homogenization on perforated domains III 7

Lemma 2.6. Let r > 0, let P ⊂ Rd be a Lipschitz domain and let η, r ∶ ∂P → R be continuous such
that η ≤ r and P is η- and r-regular. For ε ∈ (0,1] let η(p) = εδ(p) or η(p) = ερn(p), n ∈ N. For
η̃ ∶= η[ η

8
],Rd there exists a constant C > 0 only depending on the dimension d such that for every

bounded open domain Q and k ∈ [0,4) it holds

ˆ
Aη,r∩Q

χη̃>0η̃
−α ≤ C

ˆ
B r

4
(Q)∩∂P

η1−αMd−2
[
η
4
],Rd , (2.9)

ˆ
Aη,r∩Q

η̃−αM r
[k η

8
, η
8
],Rd ≤ C

ˆ
B r

4
(Q)∩∂P

η1−αM r
[k η

8
, η
4
],RdM

d−2
[
η
4
],Rd . (2.10)

Finally, it holds

x ∈ B 1
8
η(p)(p) ⇒ η(p) > η̃(x) > 3

4
η(p) . (2.11)

2.3 A fundamental Poincaré inequality

We define for a ∈ Rd and δ > 0 the operator

Mδ
au ∶=

 
Bδ(a)

u . (2.12)

The following two estimates are special cases of results already proved in Part I.

Lemma 2.7. There exists C > 0 depending only on the dimension d such that for a, b ∈ Rd with
0 < δa ≤ δb and for either i ∈ {a, b}

∣Mδa
a u −Mδb

b u∣ ≤ C (δb (
δa
δb

)
1−d

+ δ1−d
i )

ˆ
Bδb(b)∪conv(Bδi({a,b}))

∣∇u∣ . (2.13)

Proof. Inequality (2.13) follows from Part I Lemma 2.10 and Corollary 2.11.

2.4 Ergodic theorem and Palm measure

In order to make clear what we mean by a random stationary ergodic Lipschitz domain we briefly
introduce the technical details which will be used for the averaging property given by the ergodic
theorem [9, 11] below.

Definition 2.8. Throughout this work, (Ω,F ,P) is a probability space with a dynamical system on
Ω, i.e. a family (τx)x∈Rd of measurable bijective mappings τx ∶ Ω↦ Ω satisfying (i)-(iii):

(i) τx ○ τy = τx+y , τ0 = id (Group property)

(ii) P(τ−xB) = P(B) ∀x ∈ Rd, B ∈ F (Measure preserving)

(iii) A ∶ Rd ×Ω→ Ω (x,ω) ↦ τxω is measurable (Measurability of evaluation)

We further assume that (τx)x∈Rd is ergodic, i.e. a P-measurable function satisfies f(τx⋅ ) = f( ⋅ ) if
and only if f is constant.
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Definition 2.9 (Stationary). Let X be a measurable space and let f ∶ Ω ×Rd → X . Then f is called
(weakly) stationary if f(ω,x) = f(τxω,0) for (almost) every x.

Although the original definition is different, it is sufficient for this work (see [4] Section 2) to say that
a random Lipschitz domain p(ω) is stationary if χp(ω)(x) is stationary and there exists P ⊂ Ω such
that

χp(ω)(x) = χP(τxω) .
A random measure is a measurable mapping

µ● ∶ Ω→M(Rd) , ω ↦ µω

which is equivalent to either one of the following two conditions

1 For every bounded Borel set A ⊂ Rd the map ω ↦ µω(A) is measurable

2 For every f ∈ Cc(Rd) the map ω ↦
´
f dµω is measurable.

A random measure is stationary if the distribution of µω(A) is invariant under translations of A that is
µω(A) and µω(A + x) share the same distribution. The Palm measure is defined as

µP(A) =
ˆ

Ω

ˆ
[0,1]d

χA(τsω)dµω(s)dP(ω)

on the measurable space Ω and in case µω = L we find µP = P. By a deep theorem due to Mecke
(see [9, 1]) every B(Rd)×B(Ω)-measurable non negative or µP ×L- integrable functions f satisfies
the Campbell formula

ˆ
Ω

ˆ
Rd
f(x, τxω)dµω(x)dP(ω) =

ˆ
Rd

ˆ
Ω

f(x,ω)dµP(ω)dx .

We denote by

EµP(f) ∶=
ˆ

Ω

fdµP the expectation of f w.r.t. µP . (2.14)

For random measures we find the following.

Theorem 2.10 (Ergodic Theorem [1] 12.2.VIII). Let (Ω,F ,P) be a probability space,Q be a bounded
open domain with Lipschitz boundary and let f ∶ Ω → R be measurable with

´
Ω
∣f ∣dµP < ∞. Then

for P-almost all ω ∈ Ω
1

nd ∣Q∣

ˆ
nQ

f(τxω)dµω(x) → EµP(f) . (2.15)

In our setting, the above implies in total for any differentiable function f ∶ R3 → R that almost surely

lim
n→∞

ˆ
∂p(ω)∩nQ

f(ρ, δ,M) = EµP(f(ρ, δ,M)) . (2.16)

lim
n→∞

ˆ
p(ω)∩nQ

f(d,R,S ) = E(f(d,R,S ))P(P) . (2.17)

Since the essential property of f in (2.15) is its stationarity, we infer that (2.17) also holds for “non-
local” functions such as b in (2.18) in the following Lemma 2.11.
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2.5 A Voronoi-integration lemma

We state and proof a variant of a Voronoi integration lemma that was proved in Section 4 of Part I.

Lemma 2.11. Let Xr be a stationary and ergodic random point process with minimal mutual distance
2r for r > 0. Given fixed constants η, ξ > 0 let

b(y) ∶= ∑
x∈Xr

χBR(x)(x)(x)d(x)ηR(x)ξ , (2.18)

and write Pk,R ∶= P(d(x) ∈ [k, k+1), R(x) ∈ [R,R+1)). Then there exists C > 0 depending only
on d and r such that for any r > 1 it holds

E(bp) ≤ C (
∞

∑
k=1

k−r)
2 ⎛
⎝

∞

∑
k,R=1

(k + 1)d(p+1)+ηp+r(p−1) (R + 1)d(p+1)+ζp+r(p−1) Pk,R
⎞
⎠
. (2.19)

Proof. In what follows C is a varying constant depending only on d and r. W.l.o.g let r = 1. We write
di = d(xi), Ri = R(xi), Bi ∶= BRi(xi). Let

Xk,R(ω) ∶= {xi ∈ Xr ∶ di ∈ [k, k + 1), Ri ∈ [R,R + 1)} , Ak,R ∶= ⋃
xi∈Xk,R

Bi

We observe that the mutual minimal distance of points in xr implies

∀x ∈ Rd ∶ #{xi ∈Xk,R ∶ x ∈ Bi} ≤ C (R + 1)d (k + 1)d , (2.20)

which follows from the uniform boundedness of the Bi for xi ∈ Xk,R and the minimal distance of
∣xi − xj ∣ > 2r. Then for every y ∈ Rd, M > 0 it holds by stationarity and the ergodic theorem for every
y ∈ Rd

P(y ∈ Ak,R) = lim
N→∞

∣BN(0)∣−1 ∣Ak,R ∩BN(0)∣ = lim
N→∞

∣BN(0)∣−1
RRRRRRRRRRR
BN(0) ∩ ⋃

xi∈Xk,R

Bi
RRRRRRRRRRR

(2.21)

≤ C lim
N→∞

∣BN(0)∣−1 ∑
xi∈Xk,R∩BN (0)

(R + 1)d (k + 1)d

≤ C lim
N→∞

#{xi ∈Xk,R ∩BN(0)}
#{xi ∈ xr ∩BN(0)} (R + 1)d (k + 1)d → CPk,R (R + 1)d (k + 1)d .

In the last inequality we made use of the fact that every ball BRi(xi), xi ∈ Xk,N , has volume smaller

than C (R + 1)d (k + 1)d and #{xi ∈ xr ∩BN(0)} < C ∣BN(0)∣. We note that for 1
p + 1

q = 1

ˆ
Q

(∑
xi

χBid
η
iR

ξ
i )

p

≤
ˆ
Q

⎛
⎝
∞

∑
k=1

∞

∑
R=1

⎛
⎝ ∑
xi∈Xk,R

χBi (k + 1)η (R + 1)ξ
⎞
⎠
⎞
⎠

p

≤
ˆ
Q

⎛
⎝

∞

∑
k,R=1

αqk,R
⎞
⎠

p
q ⎛
⎝

∞

∑
k,R=1

α−pk,R
⎛
⎝ ∑
xi∈Xk,R

χBi (k + 1)η (R + 1)ξ
⎞
⎠

p
⎞
⎠
.

Due to (2.20) we find

∑
x∈Xk,R

χBi ≤ χAk,R (R + 1)d (k + 1)d ∣Sd−1∣
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and obtain for q = p
p−1 and Cq ∶= (∑∞

k,R=1α
q
k,R)

p
q ∣Sd−1∣p due to (2.21):

1

∣BN(0)∣

ˆ
BN (0)

( ∑
xi∈Xr

χBid(x)ηR(x)ξ)
p

≤ Cq
1

∣BN(0)∣

ˆ
BN (0)

⎛
⎝

∞

∑
k,R=1

α−pk,RχAk,R (R + 1)dp+ζp (k + 1)dp+ηp
⎞
⎠

→ Cq
⎛
⎝

∞

∑
k,R=1

α−pk,RP(Ak,R) (R + 1)dp+ζp (k + 1)dp+ηp
⎞
⎠

≤ Cq
⎛
⎝

∞

∑
k,R=1

α−pk,R (k + 1)d(p+1)+ηp (R + 1)d(p+1)+ζp Pk,R
⎞
⎠

For the sum ∑∞
k,R=1α

q
k,R to converge, it is sufficient that αqk,R = (k + 1)−r (R + 1)−r for some r > 1.

Hence, for such r it holds αk,R = (k + 1)−r/q (R + 1)−r/q and thus (2.19).

3 Proof of Theorem 1.6

In this section, we will prove Theorem 1.6. The proof consists of 5 sections: In Section 3.1 we quote
one of the main results from Part I. This is a an estimate of the extended gradient field by the orig-
inal gradient field and the difference of local averages. This makes it clear that one has to estimate
differences of local averages by the gradient field “connecting” the two averaging regions. Since the
geometry p is connected, we identify in Section 3.2 a constant β ∈ (0,1) such that for M ∈ N large
enough the set QM ∶=MQ is connected through paths inside BMβ(QM). In Section 3.3 we extend
the covering Corollary 2.4 of ∂p to a full covering of p using also the seeds xr. This covering will pro-
vide a basis to suitably integrate the gradient along paths connecting the averaging regions. In Section
3.5 we will finally prove the main theorem.

3.1 The Main Result from Part I

Based on the notation from Section 1.1 we use the Voronoi tessellation (Ga)a∈N with seeds (xa)a∈N =
xr and a partition of unity (Φa)a∈N with support B r

2
(Ga). The gradient of Φa is locally bounded by the

number of sets B r
2
(Ga) interacting. Since the number of cellsGa interacting with Br(Ga) is bounded

by (Part I, Lemma 2.19) (4d(xa)r−1)d we obtain

∀x ∈ B r
2
(Ga) ∶ ∣∇Φa(x)∣ ≤ 2 (4d(xa)r−1)d . (3.1)

Furthermore, there exists by Corollary 2.4 (cited from Part I) a complete covering of ∂p by balls
Ai ∶= Bρ̃n(pni )(p

n
i ), (pni )i∈N ⊂ ∂p, where ρ̃n(p) ∶= 2−5ρn(p) and where (2.6) holds for any two points

pi, pk with Ai ∩ Ak ≠ ∅. Finally there exists a partition of unity (φi)i∈N/{0} with support of φi in Ai
and φ0 with support in Rd/∂p such that∑i∈N φi = 1.

Given n ∈ {0,1} and α ∈ [0,1] we chose

rn,α,i ∶= ρ̃n,i/32(1 +Mρ̃n,i(pn,i)α) (3.2)
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Stochastic homogenization on perforated domains III 11

and some yn,α,i such that

Bn,α,i ∶= Brn,α,i(yn,α,i) ⊂ p ∩B 1
8
ρ̃n,i

(pn,i) . (3.3)

and for every pi ∈ ∂p and xa ∈ xr, we define

τn,α,iu ∶=
 
Bn,α,i

u , Mau ∶=
 
B ra

16
(xa)

u ,

local averages close to ∂p and in xa. We finally have to recall from Lemma 4.4 of Part I that

#{j ∶ x ∈ Bδ(pj)} < C(1 +M[ 3δ
8
, δ
8
],Rd(x))n(d−1) . (3.4)

Theorem 3.1. Let p ⊂ Rd be a stationary ergodic Lipschitz domain of extension order n with r > 0
from Lemma 1.1 and inner regularityα ∈ [0,1]. Then for every 1 ≤ r < p there exists a linear extension
operator

Un,α ∶ W 1,p
loc (p) →W 1,r

loc (Rd)

and C > 0 such that with

fα,n(M) ∶= ((1 +M[ 3δ
8
, δ
8
],Rd)

n(d−1)
(1 +M[ 1

8
δ],Rd)

r
(1 +M[ρ̃n],Rd)

α(d−1))
p
p−r

for every bounded Lipschitz domain Q the operator Un,α satisfies

1

∣Q∣

ˆ
Q

∣∇ (Un,αu)∣r ≤ C ( 1

∣Q∣

ˆ
Br(Q)

fα,n(M))
r p−r
p

( 1

∣Q∣

ˆ
Br(Q)∩p

∣∇u∣p)
r
p

+C 1

∣Q∣

ˆ
Q/p

∣∑
a

Φa∑
i≠0

ρ−1
n,iφi (τ sn,α,iu −Ms

au)∣
r

(3.5)

+ 1

∣Q∣

ˆ
Q

∣
d

∑
l=1

∑
a∶∂lΦa>0

∑
b∶∂lΦb<0

∂lΦa ∣∂lΦb∣
DΦ
l+

(Ms
au −Ms

bu)∣
r

,

1

∣Q∣

ˆ
Q

∣Un,αu∣r ≤ C ( 1

∣Q∣

ˆ
Br(Q)

fα,n(M))
r p−r
p

( 1

∣Q∣

ˆ
Br(Q)∩p

∣u∣p)
r
p

. (3.6)

where
DΦ
l+ ∶= ∑

a≠0∶∂lΦa<0

∣∂lΦa∣ . (3.7)

3.2 The support lemma

Definition 3.2. Given a domain Q ⊂ Rd and a stationary random domain p with the jointly stationary
point process xr we define the sets

xr(Q) ∶= {xa ∈ xr ∶ Bd(xa)(xa) ∩Q ≠ ∅} ,
C(Q,xr) ∶= ⋃

xa∈xr(Q)

BR(xa)(xa) . (3.8)

Remark 3.3. Since Br(xa) ⊂ Ga the last definition implies xa ∈ xr(Q) for every xa ∈ xr with
χQχBr(Ga) /≡ 0.
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Lemma 3.4. Recalling (1.3) and (1.5) assume that

1 either there exist C > 0 and βd, βR > d + 1 such that for every D > r, r > 1 it holds fd(D) ≤
CD−βd and fR(r) ≤ Cr−βR

2 or d and S are independent and there exist C > 0 and βd > d + 2, βS > 1 such that for every
D > r, S > 1 it holds fd(D) ≤ CD−βd and fS (S) ≤ CS−βS .

Then there exists β0 ∈ (0,1) such that the following holds: For every bounded open set Q with 0 ∈Q
there almost surely exists a constant N0 > 0 such that for every N > N0

C(NQ,xr) ⊂ BNβ0(NQ) .

Remark 3.5. The scalingNβ0of the radius of BNβ0(NQ) implies that the mass of C(NQ,xr)∖NQ
becomes asymptotically negligible.

Proof. We consider two balls Br(0) ⊂ Q ⊂ BR(0) with r > 0. We write QN ∶= NQ and Bk,QN,β0
∶=

BNβ0+k(Q) and Sk,QN,β0
∶= Bk,QN,β0

/Bk−1,Q
N,β0

for β0 ∈ (0,1). Our aim is to show that for the events

BN ∶= (C(Q,xr) ⊂ B0,QN

2
1
β0 N,β0

) it holds P(BN) → 1 as N →∞, provided β0 is chosen properly. For

this we use

P(¬BN) ≤ P(AN ∧ ¬BN) + P(¬AN)
where AN ∶= (Q̃N ⊂ B0,QN

N,β0
) , Q̃N ∶= ⋃

xa∈xr(NQ)

Bd(xa)(xa) . (3.9)

Step 1: It holds xr(NQ) ⊂ Q̃N and we find

P(¬AN) ≤
∞

∑
k=0

P(∃xa ∈ (Bk+1,QN

N,β0
/Bk,QN

N,β0
) ∩ xr ∶ Bda(xa) ∩QN ≠ ∅)

≤
∞

∑
k=0

P(∃xa ∈ (Sk+1,QN

N,β0
) ∩ xr ∶ da > Nβ0 + k)

We use the very rough estimate # (Sk+1,QN

N,β0
) ∩ xr ≤ (NR +Nβ0 + k + 1)d to find

P(¬AN) ≤ ∑
k

(RN +Nβ0 + k + 1)d fd(Nβ0 + k)

≤ ∑
k

(RN +Nβ0 + k + 1)d (Nβ0 + k)−βd

≤ C
ˆ ∞

1

(2RN +Nβ0 + x)d (Nβ0 + x)−βd dx

≤ C (Nd+1−βd +Nβ0(d+1−βd)) ,

where in the last inequality we used (d − 1)-times integration by parts and C depends on d, βd and
R.
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Step 2: We now we assume that AN holds true. Since C(QN ,xr) = ⋃xa∈xr(NQ)BRa(xa)(xa) and

since xr(NQ) ⊂ Q̃N ⊂ BN,β0,0,QN
it holds

P(AN ∧ ¬BN) ≤
+∞

∑
k=1

P(∃xa ∈ (S−k+1,QN

N,β0
) ∩ xr(QN) ∶ BR(xa)(xa) /⊂ B0,QN

2
1
β0 M,β0

)

≤ ∑
k

P(∃xa ∈ (S−k+1,QN

N,β0
) ∩ xr ∶ BR(xa)(xa) /⊂ B0,QN

2
1
β0 M,β0

)

≤ ∑
k

∑
xa∈S

−k+1,QN
N,β0

∩xr

P(Ra(xr, (Φi)i) ≥ Nβ0 + k)

≤ C
NR+1

∑
k=0

(NR − k + 1)d fR(Nβ0 + k)

≤ CNd

ˆ ∞

0

fR(Nβ0 + x)dx ≤ CNd−β0βR+1 .

If βR > d + 1 and βd > d + 1 it holds

(Nd+1−βd +Nβ0(d+1−βd)) +Nd−β0βR+1 → 0 as N →∞

and the first statement of the lemma almost surely holds due to (3.9).

Step 3: Alternatively we can assume that da and Sa are independent with Ra ≤ daSa. Then

P(Ra ≥ R) ≤
ˆ ∞

r

P(da ≥D)
ˆ ∞

max{1,R/D}

P(Sa ≥ S)dS dD

≤ C
ˆ ∞

r

D−βd

ˆ ∞

max{1,R/D}

S−βS dS dD

≤ C (
ˆ R

r

D−βd

ˆ ∞

R/D

S−βS dS dD +
ˆ ∞

R

D−βd

ˆ ∞

1

S−βS dS dD)

≤ C (
ˆ R

r

D−βd (R
D

)
1−βS

dD +R1−βd) ≤ CR1−βd .

From here we conclude from the first part.

3.3 An extended covering lemma

For x ∈ p let

η(x) ∶= min{dist(x, ∂p) , r
2
} and η̃ = 1

4
η . (3.10)

Then we find the following:

Lemma 3.6. Let p be a connected open set which is locally (δ,M)-regular and has inner regularity
α ∈ [0,1]. For r > 0 let xr = (xk)k∈N be a family of points with a mutual distance of at least 2r
satisfying dist(xk, ∂p) > 1

2r and let n ∈ N and ∂x ∶= (pk)k∈N ⊂ ∂p with corresponding (ρ̃k)k∈N ∶=
(ρ̃n,k)k∈N, (rn,α,k)k∈N ∶= (rn,α,k)k∈N and y∂x ∶= (yk)k∈N ∶= (yn,α,k)k∈N like in Corollary 2.4. Then
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there exists a family of points x̊ = (p̂j)j∈N ⊂ p with xr ⊂ x̊ such that with η̃k ∶= η̃(p̂k), B̂k ∶= Bη̃k(p̂k)
and Bk ∶= Bρ̃k(pk) the family (Bk)k∈N ∪ (B̂k)k∈N covers p and

B̂k ∩ B̂i ≠ ∅ ⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

2
η̃i ≤ η̃k ≤ 2η̃i

and 3 min{η̃i, η̃k} ≥ ∣p̂i − p̂k∣ ≥
1

2
max{η̃i, η̃k} .

(3.11)

Furthermore, Bk ∩ B̂j ≠ ∅ implies

1

4
ρ̃k ≤ η̃j ≤

1

3
ρ̃k , 4η̃j ≤ ∣p̂j − pk∣ ≤

4

3
ρ̃k , (3.12)

i.e. Brk(yk) ∩B 1
8
η̃j
(p̂j) = ∅ and x ∈ B̂i for some i implies

∀p ∈ ∂p ∶ dist(x, ∂p) > 4

5
ρ̃n(p) . (3.13)

Finally, there exists C > 0 such that for every x ∈ p

#{j ∈ N ∶ x ∈ Bη̃j(p̂j)} +#{k ∈ N ∶ x ∈ Bρ̃k(pk)} ≤ C . (3.14)

Proof of Lemma 3.6. We recall ρ̃k ∶= ρ̃ (pk) ∶= 2−5ρ (pk) and rk = ρ̃k
32(1+Mk)

and that (2.6) holds.

Furthermore, Brk(yk) ⊂ Bρ̃k/8(pk) ∩ p and hence Brk(yk) ∩Brj(yj) = ∅ for k ≠ j.

If we define pB ∶= p/⋃kBk and observe that pB is η-regular (for η defined in (3.10)). Then Lemma
2.2 and Theorem 2.3 yield a cover of pB by a locally finite family of balls B̂k = Bη̃k(p̂k), where
(p̂k)k∈N ⊂ pB , and where (3.11) holds. Looking into the proof of Theorem 2.3 we can assume w.l.o.g.
that (xk)k∈N ⊂ (p̂k)k∈N by suitably bounding η.

Furthermore, we find for Bk ∩ B̂j ≠ ∅ that on one hand

η̃j + ρ̃k ≥ ∣p̂j − pk∣ ≥ 4η̃j ⇒ η̃j ≤
1

3
ρ̃k and ∣p̂j − pk∣ ≤

4

3
ρ̃k .

On the other hand p̂j /∈ Bk by construction of (B̂i)i∈N. Hence η̃j ≥ 1
4 ρ̃k . Finally, Brk(yk)∩B 1

8
η̃j
(p̂j) =

∅ follows from ρ̃k ≤ 4η̃j ≤ ∣p̂j − pk∣.

If x ∈ B̂i let px ∈ ∂p with ∣px − x∣ = dist(x, ∂p) and chose some pk with px ∈ Bk. Then the above
implies

∣px − x∣ = dist(x, ∂p) > 3η̃i >
3

4
ρ̃k >

4

5
ρ̃n(px) .

To see (3.14) let x ∈ p and let p̂j such that η̃j is maximal among all B̂j with x ∈ B̂j . Let p̂i with
x ∈ B̂i∩ B̂j and observe that both ∣p̂i − p̂j ∣ and η̃i are bounded from below and above by a multiple of
η̃j . If x ∈ B̂i∩ B̂k ∩ B̂j , ∣p̂i − p̂k∣ is bounded from above and below by η̃i, hence by η̃j . This provides a
uniform bound on #{j ∈ N ∶ x ∈ Bη̃j(p̂j)}. The second part of (3.14) follows in an analogue way.
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3.4 Set-paths

Lemma 3.7. There exists a constant C > 0 such that the following holds:

Let p be a connected open set which is locally Lipschitz regular and has inner regularity α ∈ [0,1]
and extension order n ∈ N ∪ {0}. For r > 0 let xr = (xk)k∈N be a family of points with a mutual
distance of at least 2r satisfying dist(xk, ∂p) > 1

2r and ∂x ∶= (pk)k∈N ⊂ ∂p with corresponding
(ρ̃k)k∈N ∶= (ρ̃n,k)k∈N, (rn,α,k)k∈N ∶= (rn,α,k)k∈N and y∂x ∶= (yk)k∈N ∶= (yn,α,k)k∈N like in Corollary
2.4.

If x ∈ xr with bx ∶= B r
64
(x) and either y ∈ y∂x ∩B4d(x)(x) with by = B 1

8
η̃(y)(y) or y ∈ xr ∩B4d(x)(x)

with by = B 1
64

r(y) then there exists an open set γ(x, y) ⊂ (p ∩BR(x)(x)) with bx ∪ by ⊂ γ(x, y)
and such that for C independent of u ∈ L1

loc(p), x, y and p

∣
 
bx

u −
 
by

u∣ ≤ C
ˆ
γ(x,y)

z ∣∇u∣ (3.15)

where

z(ξ) ∶= χp3δ/8(ξ) (ρ̃n)
1−d
[ 3

8
δ],Rd (ξ)M

α(d−1)

[3ρ̃n,
3
8
δ],RdM

n(d−1)

[ 1
8
δ, 3

8
δ],Rd(ξ) + χRd/p 4

5 ρ̃n
(ξ)dist(ξ, ∂p)d−1 .

(3.16)

Proof. We cover p by a set of balls given by Lemma 3.6 and write for simplicity ρ̃ = ρ̃n. Given x ∈ xr

and y ∈ y∂x ∪ xr ∩ B4d(x)(x) let then γ ∶ [0,1] → p ∩ BR(x)− r
2
(x) be a continuous path with

γ(0) = x and γ(1) = y.

Step 1: We chose a finite sequence of points (Yi)i as a discrete equivalent of γ using the following
algorithm:

1 Set Y0 ∶= x and b0 ∶= B 1
4
η(x)(x) = B r

8
(x), t0 = 0.

2 For i ∈ N ∪ {0}: If γ(t) ∈ bi for every t > ti cancel loop. Otherwise define

ti+1 ∶= sup{T > t0 ∶ ∀t ∈ (t0, T ) ∶ γ(t) ∈ bi}

and chose ε > 0 and
● either Yi+1 ∈ ∂x with bi+1 = Bρ̃(Yi+1)(Yi+1)
● or Yi+1 ∈ x̊ with bi+1 = Bη̃(Yi+1)(Yi+1)
such that it holds γ(ti+1) ∈ bi+1.

We have thus constructed a sequence of points (Yi)i=0,...,I with Y0 = x and y ∈ bI . Furthermore, it
holds bi ∩ bi+1 ≠ ∅ for every i ∈ {0, . . . , I − 1} and γ([0,1]) ⊂ ⋃i bi.
Step 2: For two points p̂1, p̂2 ∈ x̊ with η̃i ∶= η̃(pi) and Bη̃2(p̂2)∩Bη̃1(p̂1) ≠ ∅ and η1 > η2 we find due

to (3.11) that B 1
8
η̃2
(p̂2) ⊂ Bη̃1(p̂1). Hence for the convex hull holds conv(B 1

8
η̃2
(p̂2) ∪B 1

8
η̃1
(p̂1)) ⊂

Bη̃1(p̂1) and according to (3.11) together with Lemma 2.7 we find

∣M
1
8
η̃2

p̂2
u −M

1
8
η̃1

p̂1
u∣ ≤ Cη1−d

1

ˆ
Bη̃1(p̂1)

∣∇u∣ .

We define γ̃(p̂1, p̂2) = γ̃(p̂2, p̂1) ∶= Bη̃1(p̂1).
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Let p1, p2 ∈ x∂ , with ρ̃i ∶= ρ̃(pi) and Bρ̃2(p2) ∩Bρ̃1(p1) ≠ ∅. We find for ri and yi given by Corollary
2.4 w.l.o.g. Br2(y2) ⊂ B3ρ̃1(p1) and r1 < r2. Furthermore, there exists a connected set γ̃(y1, y2)
consisting of Br2(y2) and of two cylinders inside p∩B 1

8
δ(p1)

(p1) of radius r1 and length smaller than

ρ̃(p1) (1 +M)n (p1) such that Br1(y1) ⊂ γ̃(y1, y2) and Br2(y2) ⊂ γ̃(y1, y2). Together this implies
with Lemma 2.7

∣Mr2
y2
u −Mr1

y1
u∣ ≤ CMα(d−1)

3ρ̃1
(p1)ρ̃1−d

1

ˆ
p∩B 1

8 δ(p1)
(p1)

∣∇u∣ .

We define γ̃(p1, p2) = γ̃(p2, p1) ∶= p ∩B 1
8
δ(p1)

(p1).

Let p1 ∈ x∂ , p̂2 ∈ x̊ with ρ̃1 ∶= ρ̃(p1), η̃2 ∶= η̃(p2) and Bη̃2(p̂2) ∩ Bρ̃1(p1) ≠ ∅. According to (3.12)
we find B 1

8
η̃2
(p̂2) ⊂ B2ρ̃1(p1) and from here we conclude similar to the previous case

∣M
1
8
η̃(p̂2)

p̂2
u −Mr1

y1
u∣ ≤ CMα(d−1)

3ρ̃1
(p1)ρ̃1−d

1

ˆ
p∩B 1

8 δ(p1)
(p1)

∣∇u∣ .

We define γ̃(p1, p̂2) = γ̃(p̂2, p1) ∶= p ∩B 1
8
δ(p1)

(p1).

Step 3: Let (Yi)i=0,...,I be the sequence of points constructed in Step 1 and we assume w.l.o.g that
every point appears only once in the sequence (otherwise the path may be shortened). Let γ(x, y) ∶=
⋃i−1
i=0 γ̃(Yi, Yi+1). Then γ([0,1]) ⊂ γ(x, y) and by Step 2, the total bound on the number of local

overlaps (3.14) of Bηi and estimate (3.4) on the local bound on the number of overlapping Bδi(pi),
the condition (3.13), Remark 2.5 and the triangle inequality we find C > 0 such that (3.15)–(3.16)
holds.

3.5 Proof of Theorem 1.6

Proof. Throughout the proof, C > 0 is a varying constant depending on s, r, q, q̃, r, d,Q but not on p
or N .

Step 1: For simplicity of notation, setN = 1 during Steps 1 and 2 but keep in mind that the constant C
below does not depend on Q unless this is state explicitly. In view of Theorem 3.1 it remains to derive
estimates on the terms

I1 ∶=
1

∣Q∣

ˆ
Q/p

∣∑
a

Φa∑
i≠0

ρ−1
n,iφi (τ sn,α,iu −Ms

au)∣
r

, (3.17)

I2,l ∶=
1

∣Q∣

ˆ
Q

∣ ∑
a∶∂lΦa>0

∑
b∶∂lΦb<0

∂lΦa ∣∂lΦb∣
DΦ
l+

(Ms
au −Ms

bu)∣
r

, (3.18)

in terms of C(Q,p) ( 1
∣Q∣

´
p(ω)∩C(Q,xr)

∣∇u∣p)
r
p
.

Denoting ci ∶= ρ−1
n,i and c̃ = ρ−1

n,[ρ̃n]
observe ci ≤ c̃ and apply Lemma 3.7 and Jensens inequality:

I1 ≤
1

∣Q∣

ˆ
Q/p

∣∑
a

Φa∑
i≠0

ciφi

ˆ
γ(xa,yi)

z ∣∇u∣∣
r

≤ 1

∣Q∣

ˆ
Q/p

dx

ˆ
γ(xa,yi)

dy∑
a

Φa(x)∑
i≠0

∣γ(xa, yi)∣r−1
c̃r(x)φi(x)zr(y) ∣∇u∣r (y) .
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We write Ba ∶= BR(xa)(xa) and make use of Φaφi ∣γ(xa, yi)∣r−1 ≤ Φaφi ∣Ba∣r−1, γ(xa, yi) ⊂ Ba
and∑i≠0 φi ≤ 1 to find for s ∈ (r, p) from Hölder’s inequality

I1 ≤ C ∑
xa∈xr(Q)

1

∣Q∣ (
ˆ
Ba

ddaz
r(y) ∣Ba∣r−1 ∣∇u∣r (y)dy)(

ˆ
Q/p

Φac̃
r)

≤ C
⎛
⎝ ∑
xa∈xr(Q)

1

∣Q∣ (
ˆ
Ba

d
d r
s

a ∣Ba∣r−1
zr(y) ∣∇u∣r (y)dy)

s
r⎞
⎠

r
s

⎛
⎝ ∑
xa∈xr(Q)

1

∣Q∣ (
1

dda

ˆ
Q/p

d
d s−r
s

a Φac̃
r)

s
s−r⎞

⎠

s−r
s

(3.19)

From Jensen’s inequality and the fact that ∣suppΦa∣ ≤ dda and∑Φ
s
s−r
a ≤ 1 we find

∑
xa∈xr(Q)

1

∣Q∣ (
1

dda

ˆ
Q/p

d
d s−r
s

a Φac̃
r)

s
s−r

≤ 1

∣Q∣

ˆ
Q(xr)/p

c̃
rs
s−r . (3.20)

Next, we simplify the notation and write
ffl
C f ∶=

1
∣Q∣

´
C(Q,xr)

f . For q and q̃ with s
p + 1

q + s
rq̃ = 1 it then

holds

∑
xa∈xr(Q)

1

∣Q∣ (
ˆ
Ba

d
d r
s

a ∣Ba∣r zr(y) ∣∇u∣r (y)dy)
s
r

≤ C 1

∣Q∣ ∑
xa∈xr(Q)

ˆ
Ba

dda ∣Ba∣
s(r+1)−r

r zs(y) ∣∇u∣s (y)dy rs

≤ C
⎛
⎝

 
C

⎛
⎝ ∑
xa∈xr(Q)

χBad
d
a ∣Ba∣

s(r+1)−r
r

⎞
⎠

q
⎞
⎠

1
q

(
 
C
zrq̃)

s
rq̃

(
 
C
∣∇u∣p)

r
p

(3.21)

Now define Φ̃a,l ∶= ∂lΦa
DΦ
l+

. Since the number of cells interacting with the support of Φa is limited by

(4d(xa)r−1)2 and since (3.1) holds we observe DΦ
l+ ≤ ∑a d(xa)2d χGa(x). Hence by a similar cal-

culation to the estimate of I1

I2,l ≤
C

∣Q∣

ˆ
Q/p

∣∑
a

Φ̃a,l∑
b

DΦ
l+Φ̃b,l

ˆ
γ(xa,xb)

z ∣∇u∣∣
r

≤ C

∣Q∣

ˆ
Q/p

dx

ˆ
γ(xa,xb)

dy∑
a

Φa(x)d(xa)2rd∑
b

∣γ(xa, xb)∣r−1
Φ̃b,l(x)zr(y) ∣∇u∣r (y)

We make use of ΦaΦ̃b,l ∣γ(xa, xb)∣r ≤ ΦaΦ̃b,l ∣Ba∣r, γ(xa, xb) ⊂ Ba and ∑b Φ̃b,l ≤ 1 as well as the
definition of C(Q,xr) to find that

I2,l ≤ ∑
xa∈xr(Q)

C

∣Q∣ (
ˆ
C(Q,xr)

χBad
3rd
a ∣Ba∣r−1

zr(y) ∣∇u∣r (y)dy)

≤ C ( 1

∣Q∣

ˆ
C(Q,xr)

(∑
xa

χBad
3rd
a ∣Ba∣r−1)

q

)
1
q

( 1

∣Q∣

ˆ
C(Q,xr)

zrq̃)
1
q̃

( 1

∣Q∣

ˆ
C(Q,xr)

∣∇u∣p)
r
p

(3.22)
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Step 2: We continue deriving an estimate on 1
∣Q∣

´
C(Q,xr)

zrq̃ in terms of (δ,M).

We first observe that
ˆ
C(Q,xr)

zrq̃ ≤ C
ˆ
p3δ/8∩C(Q,xr)

(ρ̃n)(1−d)rq̃[ 3
8
δ],Rd (ξ)M

α(d−1)rq̃

[3ρ̃n,
3
8
δ],RdM

n(d−1)rq̃

[ 1
8
δ, 3

8
δ],Rd(ξ)

+C
ˆ
C(Q,xr)/p 4

5 ρ̃n

(dist(ξ, ∂p)1−d)rq̃ (3.23)

Since the first integral on the right hand side can be estimated using Lemma 2.6, we focus on the
second integral. Because of Lemma 2.2 it holds for the support

p 4
5
ρ̃n

⊃ p ∩⋃
k

Bk , where Bk ∶= B 1
2
ρ̃n(pk)

(pk)

for the family of points pk given by Corollary 2.4 resp. Lemma 3.6. Using that the covering with Bk is
absolutely locally bounded it holds

ˆ
C(Q,xr)

χRd/p 4
5 ρ̃n

(ξ) (dist(ξ, ∂p)1−d)rq̃ dξ

≤ Cq (
ˆ
C(Q,xr)

rrq̃(1−d) +∑
k

ˆ
p∩(Br(pk)/Bk)

(dist(ξ, ∂p)1−d)rq̃) ,

and using

ˆ
p∩(Br(pk)/Bk)

(dist(ξ, ∂p)1−d)rq̃ ≤ C
ˆ r

1
2
ρ̃n(pk)

r(1−d)rq̃rd−1dr

≤ Cqρ̃n(pk)(1−d)(rq̃−1)+1

≤ Cqρ̃n(pk)(1−d)(rq̃−1)+1+dM̃αd
ρ̃n (pk) ∣Brk(yk)∣

≤ Cq
ˆ
p∩Bk

ρ̃n(pk)(1−d)(rq̃−1)+1+dM̃αd
ρ̃n (pk)

we find
ˆ
C(Q,xr)

χRd/p 4
5 ρ̃n

(ξ) (dist(ξ, ∂p)1−d)rq̃ dξ

≤ Cq (
ˆ
C(Q,xr)

rrq̃(1−d) +
ˆ
p∩C(Q,xr)

ρ̃
(1−d)(rq̃−1)+1+d

n,[ρ̃n]
M̃αd

[ρ̃n,ρ̃n]
) (3.24)

Step 3: Let now N > 1, i.e. replace Q by NQ in the above calculations. We observe from Lemma 3.4
for sufficiently large N0 and every N > N0 that

C(NQ,xr) ⊂ BNβ0(NQ) ⊂ 2NQ . (3.25)

Given Theorem 3.1, the definition of I1 and I2,l as well as (3.19)–(3.24) we find

1

∣NQ∣

ˆ
NQ

∣∇Uu∣r ≤ C0 (C1,N +C2,N(C00 +C3,N))
⎛
⎝

1

∣NQ∣

ˆ
p(ω)∩B

Nβ0
(NQ)

∣∇u∣p
⎞
⎠

r
p
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where the finite positive constants C0,C00 depend only on r, s, p and q, q̃ as well as d, r and Q but
not on N and where

C1,N = ( 1

∣NQ∣

ˆ
Br(NQ)

fα,n)
p
p−r

, C2,N = ( 1

∣NQ∣

ˆ
p∩2NQ

fmes)
1
q

,

C3,N = ( 1

∣NQ∣

ˆ
p∩2NQ

fmic)
1
q̃

with fα,n given by Theorem 3.1 and

fmes ∶=
⎛
⎝ ∑
xa∈xr(Q)

χBad
d
a ∣Ba∣

s(r+1)−r
r

⎞
⎠

q

+
⎛
⎝ ∑
xa∈xr(Q)

χBad
3rd
a ∣Ba∣r−1⎞

⎠

q

,

fmic ∶= ρ̃(1−d)(rq̃−1)+1+d

n,[ρ̃n]
M̃αd

[ρ̃n,ρ̃n]
.

It remains to show that Ci,N , i = 1,2,3, are bounded independently from N . Due to the ergodic
theorem, this is guarantied if

lim
N→∞

C1,N +C2,N +C3,N = Efα,n +Efmes +Efmic < ∞ . (3.26)

Step 4: Using Lemma 2.6 and M[ 3δ
8
, δ
8
],Rd >M[ 1

8
δ],Rd >M[ρ̃n],Rd as well as M 3δ

4
>M[ 3δ

8
, δ
8
],Rd on ∂p

we infer

C
p−r
p

1,N ≤ 1

∣NQ∣

ˆ
Br(NQ)

(1 +M[ 3δ
8
, δ
8
],Rd)

p
p−r [(n+α)(d−1)+r]

≤ 1

∣NQ∣

ˆ
B2r(NQ)∩∂p

δ (1 +M[ 3δ
8
, δ
8
],Rd)

p
p−r [(n+α)(d−1)+r]+d−2

≤ 1

∣NQ∣

ˆ
B2r(NQ)∩∂p

δ (1 +M 3δ
4
)

p
p−r [(n+α)(d−1)+r]+d−2

Taking the limit N →∞ and using the ergodic theorem in its form (2.16) we obtain the condition

lim
N→∞

C
p−r
p

1,N ≤ E(δ (1 +M 3δ
4
)

p
p−r [(n+α)(d−1)+r]+d−2

) .

Similarly we can show that

lim
N→∞

C q̃
3,N ≤ E(ρ̃(1−d)(rq̃−1)+2+d

n M̃αd+d−2
4ρ̃n ) .

Step 5: We observe from the lower bound on d and R that

fmes ≤ f̃ ∶= C
⎛
⎝ ∑
xa∈xr(Q)

χBad
3dr
a ∣Ba∣

s(r+1)−r
r

⎞
⎠

q

Lemma 2.11 now shows that

lim
N→∞

Cq
2,N ≤ Ef ≤ Ef̃

≤
∞

∑
k,R=1

(k + 1)d(q+1)+3drq+r(q−1) (R + 1)d(q+1)+
s(r+1)−r

r
q+r(q−1) Pk,R .

Step 6: Steps 4 and 5 imply (3.26) and the theorem is thus proved in the first case. In the second case,
if S and d are independent, we can proceed in a similar way except that Ba ∶= BS (xa)d(xa)(xa) and
we use Part I Lemma 3.18 and thus

Ef̃ ≤
∞

∑
k,S=1

(k + 1)d(q+1)+d(3r+
s(r+1)−r

r
)q+r(q−1) (S + 1)d(q+1)+d

s(r+1)−r
r

q+r(q−1) Pd,kPS ,S .
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