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Incompressible limit for a fluid mixture
Pierre-Étienne Druet

Abstract

In this paper we discuss the incompressible limit for multicomponent fluids in the isothermal
ideal case. Both a direct limit-passage in the equation of state and the low Mach-number limit
in rescaled PDEs are investigated. Using the relative energy inequality, we obtain convergence
results for the densities and the velocity-field under the condition that the incompressible model
possesses a sufficiently smooth solution, which is granted at least for a short time. Moreover,
in comparison to single-component flows, uniform estimates and the convergence of the pres-
sure are needed in the multicomponent case because the incompressible velocity field is not
divergence-free. We show that certain constellations of the mobility tensor allow to control gradi-
ents of the entropic variables and yield the convergence of the pressure in L1.
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1 Introduction

The equation of state of a pure fluid usually expresses the density % = %̂(T, p) or the specific volume
1/% = v̂(T, p) by constitutive functions %̂, v̂ of temperature and pressure. Primarily, incompressibility
is a property of this relation defined via ∂p%̂ = 0 or ∂pv̂ = 0. Here ”zero” means that the pressure
variations occurring in the empirical physical system are too small to allow for substantial changes
of the mass density. For the isothermal viscous case, the balance equations are the compressible
Navier-Stokes equations which, in the pressure-velocity formulation, read

∂pρ̂(T, p) (∂tp+ v · ∇p) =− ρ̂(T, p) div v ,

ρ̂(T, p) (∂tv + (v · ∇)v) +∇p = div S + %̂(T, p) b ,
(1)

and ∂p%̂ → 0 yields the incompressible Navier-Stokes equations with constant density for the main
variables p, (v1, v2, v3). Due to the lack of estimates on the pressure-field, it is not possible to study
this limit with rigorous mathematical methods by present state of the art.

Very often too, ”incompressible” is taken as synonymous for dynamic volume conservation div v = 0,
which in fact is a consequence of ∂pρ̂ = 0 and of the conservation of mass. However, the condition
div v = 0 does not imply that % is constant, and it has also no impact on the equation of state
of the fluid which is a material property1. Finally, incompressibility is related to the Mach-number
Ma =

√
%|v|/√p or Ma = |v|/

√
∂ρp. In applications, a flow is called a low Mach-number flow if,

after rescaling of position, time, and all variables and data occurring in the Navier-Stokes equations, it
obeys

∂t%+ div(% v) =0 ,

% (∂tv + (v · ∇)v) +
1

ε2
∇p = div S + % b ,

(2)

with a global Mach-number Ma = ε � 1. Unlike (1), the limit ε → 0 for (2) can be rigorously
studied within the framework of weak solutions, which was first established in the pioneering work
[LM98]. The density and the velocity field converge as ε → 0 and one recovers a weak solution to
the incompressible Navier-Stokes equations with constant density. No uniform bounds are available
for the pressure, but it can suitably be eliminated since the incompressible velocity field is solenoidal.

Typically, the variables % and p in (2) obey the effective equation of state % = (ε2 p+ 1))
1
γ =: %̂ε(p).

Here γ > 1 is some constant and, evidently, we have ∂p%̂ε → 0 for ε → 0. This shows that the low
Mach-number limit in rescaled PDEs is profoundly related to the limit (1).

The motivation for the present paper is providing a first rigorous study of the incompressible limit for
a fluid mixture of N > 1 components. For simplicity, the fluid mixture is assumed homogeneous,
Newtonian and ideal. In particular, it is volume-additive and therefore it obeys the equation of state

N∑
i=1

ρi v̂i(T, p) = 1 ,

where ρ1, . . . , ρN are the partial mass densities of the components and v̂i(T, p) = 1/ρ̂i(T, p) de-
notes the specific volumes of the ithcomponent as pure substance. For instance, if each of the compo-
nents is itself an incoompressible fluid, the density of the pure substance is constant near the reference

1Solutions to the so-called density-dependent (incompressible) Navier-Stokes equations (see [Lio96], Ch. 2) satisfy
div v = 0 and ∂t% + v · ∇% = 0 independently. In this problem, the number of variables increases from the four
standard variables (p, v1, v2, v3) to five: (%, p, v1, v2, v3). It seems unclear whether this model can be reached as
some asymptotic limit of the Navier-Stokes equations
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Incompressible limit for a fluid mixture 3

temperature T = TR and the reference pressure p = pR of the system, hence

N∑
i=1

ρi v̂i(T, p) =
N∑
i=1

ρi v̂i(T
R, pR) =

N∑
i=1

ρi
ρ̂R
i

= 1 . (3)

We see that, in the very common case that the mixed fluids have different densities, the mass density
% :=

∑N
i=1 ρi of the mixture is in general not constant. Hence, profound differences between the

single-component and the multicomponent case must be expected concerning incompressibility. In a
mixture which is incompressible in the sense of the equation of state, the dynamic volume conservation
div v = 0 does not follow from the continuity equation. For this reason, certain authors distinguish
between incompressibility and quasi-incompressibility: [LT98], [FLM16].

The definition of incompressibility as ∂p%̂ = 0 has an important impact on the thermodynamic mod-
elling of fluids. In particular, for the non-isothermal context, the question whether incompressibility
forbitds thermal expansion is widely studied: [Mül85], [BFRW03], [GMR12], [BD15] for the single-
component case. For the multicomponent case, asymptotic free energies have been studied in [BDD],
exhibiting further interesting consequences of the independence of the equation of state on pressure.

In the present paper, we shall perform the limit in the PDEs in the spirit of [LM98] and show the
convergence to the incompressible or quasi-incompressible mixture model for the isothermal case.
Let us recall that the results of Lions and Masmoudi were later refined and extended to the non-
isothermal case, giving a justification for the Boussinesq approximation in a rigorous framework: see
a.o. [FN07], [FN09], [FN13], and the book [FN]. Likewise, extension of our results to the multicompo-
nent non-isothermal case is certainly possible for the non-isothermal ideal model exposed in [Dru22].
Interestingly, it is not to be expected that the Boussinesq approximation is valid in the multicompo-
nent case for a dense mixture: See [BDD]. Thus, the non-isothermal limit raises acute questions and
should be studied with priority too. However, in the context of global solutions, for the energy or en-
tropy equation one must relax the notion of weak solution to variational sub-solution as done for the
single-component case in [FN07]. This is associated with yet more technicalities, which we would like
to avoid in this first investigation. So we prefer to postpone sketching the full picture to a forthcoming
paper.

From the viewpoint of the mathematical method, our results are mainly based on the relative entropy
inequality, here a relative energy inequality since the system is assumed isothermal. This method was
applied also in the context of numerical approximation, see [Fis15], and it nowadays the main tool to
study comparison issues in the context of PDEs with entropy structure.

In essence, we follow the road-map of the book [FN] (see also [FN12], [FN13] and [FJN12]) to study
singular thermodynamic limits in fluid mechanics. However, there are important differences to the
single-component case. The most significant one is the necessity to discuss pressure bounds. For
mixtures, the incompressible velocity field is not solenoidal, the terms involving the pressure in the
relative energy functional do not vanish, and must be proved to converge with independent methods.

Let us remark that incompressible fluid mixtures in the sense of constant density have been studied in
several papers: see [BS16], [Gio99] paragraph 3.2, [PS14] for modelling and, among others, [CJ15],
[MT15] for mathematical analysis. For an ideal mixture, constant density occurs in the incompressible
case either if all mixed substances possess the same density, or if N − 1 components are dilute
in a dominant fluid. From the viewpoint of the present investigation, these are very particular cases.
The incompressible model with (3) was analysed in [FLM16], [Dru21a], [BD21b]. The section 3.2 of
[Gio99] is devoted to multicomponent low Mach-number flows, but the focus is not on the mathematical
investigation of the asymptotics. For a characterization of the limit in the non-isothermal case, showing
in particular that the Boussinesq–approximation is valid only for dilute mixtures, we refer to [BDD].
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In the sections 2 and 3, we set up the multicomponent flow models for an isothermal ideal fluid mixture
and, in particular, for the incompressible case. Then, in the section 4 we expose the mathematical
assumptions on the data of the models, and the convergence statements for the multicomponent
counterparts of (1), (2) (see the Theorems 4.1, 4.3 and 4.5). The proof are provided in the sections 5
and 6. The paper possesses a relatively long appendix, where we have collected some prerequisites
for the proofs.

2 PDE description of isothermal multicomponent fluids

We consider an isothermal liquid consisting of N > 1 different chemical substances that mix homo-
geneously, for instance a mixture of N liquids. The thermodynamic state of the fluid is described by
the vector of the partial mass densities ρ = (ρ1, . . . , ρN) of the substances. Recall that the partial
mass density ρi is the mass of the substance Ai per unit volume of the mixture. The mass density of
the fluid is defined as % =

∑N
i=1 ρi and is also called the total mass density.

The evolution of the partial mass densities ρ1, . . . , ρN and of the velocity field v = (v1, v2, v3) is
described by the following system of partial differential equations:

∂tρi + div(ρi v + J i) =0 for i = 1, . . . , N , (4)

∂t(% v) + div(% v ⊗ v − S) +∇p =% b . (5)

In addition to the main variables, we encounter here the diffusion fluxes J1, . . . , JN , the viscous
stress tensor S, the thermodynamic pressure p, and the gravitational acceleration b.

For the diffusion fluxes, we consider the Fick–Onsager or Maxwell–Stefan closure equations, while we
assume that the viscous stress tensor is Newtonian:

J i =−
N∑
j=1

Mij∇
µj
T

for i = 1, . . . , N , (6)

S =2 η (∇v)sym + λ div v I . (7)

Here µ1, . . . , µN are the chemical potentials. In this paper, we restrict our considerations to so called
ideal mixtures for which, by definition,

µi = gi(T, p) +
RT

Mi

lnxi , (8)

with the gas constant R and, for each component Ai, the Gibbs free enthalpy gi which is a function of
temperature and pressure, and the constant molar mass Mi > 0. Denoting by υ̂i(T, p) the specific
volume, and by ρ̂i(T, p) the mass density of the ith component at temperature T and pressure p, we
have

∂pgi(T, p) = υ̂i(T, p) = 1/ρ̂i(T, p) .

Moreover,−T ∂2
Tgi = cip is the heat capacity at constant pressure, while the heat capacity at constant

volume of the pure substance is −T [∂2
Tgi − (∂2

p,Tgi)
2/∂2

pgi] = ciυ. In particular, it follows that
p 7→ gi(T, p) is concave. We refer for instance to [Dru22], Section 7 for a construction of a simple
thermodynamically consistent example.

In (8), the mole fraction xi is related to the main variables via

xi = x̂i(ρ) =
ρi

Mi

∑N
j=1(ρj/Mj)

implying that
N∑
i=1

xi = 1 . (9)
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Incompressible limit for a fluid mixture 5

The pressure p is related to the main variables via the equation of state

N∑
i=1

ρi ∂pgi(T, p) = 1 , (10)

which expresses the volume-additivity of ideal mixtures. This equation defines the pressure implicitly
as a function of T and ρ. Throughout the paper, we denote this function by p̂(T, ρ) or also, ignoring
the temperature which is only a parameter, by p̂(ρ)

With the constitutive relations (6), (7), (8) and (9), (10), the PDEs (4) and (5) constitute a closed system
for the variables ρ1, . . . , ρN and v1, v2, v3.

For the mathematical and numerical analysis, and for the study of stability issues concerning isother-
mal systems, the Helmholtz free energy arises as the natural thermodynamic potential. Here it is
assumed that the Helmholtz free energy of the system possesses the density

%ψ = f(T, ρ1, . . . , ρN) (11)

with a certain constitutive function f of the temperature T - a constant in the present context - and of
the partial mass densities. The choice of f consistent with (8), (10) is

f(T, ρ) =
N∑
i=1

ρi gi
(
T, p̂(T, ρ)

)
− p̂(T, ρ) +RT

N∑
i=1

ρi
Mi

ln x̂i(ρ) . (12)

The chemical potentials and the pressure then obey

µj =∂ρjf(T, ρ1, . . . , ρN) for j = 1, . . . , N , (13)

p =− f(T, ρ1, . . . , ρN) +
N∑
i=1

ρi µi , – Gibbs–Duhem equation. (14)

The thermodynamic diffusivities Mij = Mij(T, ρ1, . . . , ρN) in (6) constitute a symmetric positive
semidefinite matrix subject to

N∑
i=1

Mij(T, ρ1, . . . , ρN) = 0 for all j = 1, . . . , N and all ρ1, . . . , ρN > 0 . (15)

Note that the theory of irreversible processes originally postulates fluxes of the form

J i = −
N−1∑
j=1

M̃ij(T, ρ)∇(µj − µN) for i = 1, . . . , N − 1 and JN := −
N−1∑
i=1

J i , (16)

and theN−1×N−1 matrix {M̃ij} is actually called the Onsager–operator. Singling out a particular
dominant species (the ”solvent”) with index N might be meaningful in many applications. However we
prefer, in the present paper, using the form (6) which, as shown for instance in [BD20], is completely
equivalent. For simplicity, the viscosity coefficients in (7) are assumed constant, and are required to
satisfy

η > 0, λ+
2

3
η ≥ 0 .
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P.-É. Druet 6

Incompressible fluid mixture. The volume-additive fluid mixtures are subject to the equation of state
(10), which we can also express as

υ =
N∑
i=1

Mi xi ∂pgi(T, p) =: υ̂(T, p, x1, . . . , xN) , (17)

where υ denotes the molar volume of the mixture, and υ̂(T, p, x) is its constitutive representation as a
function of temperature, pressure and the mole fractions. Here we use x = (x1, . . . , xN) as a useful
abbreviation for the vector of mole fractions.

Following [BDD], we call a multicomponent fluid incompressible if its molar volume2 is independent on
pressure, hence

∂pυ̂(T, p, x1, . . . , xN) = 0 ⇐⇒
N∑
i=1

Mi xi ∂
2
pgi(T, p) = 0 . (18)

According to this notion3, and recalling that each gi is concave in p, mixtures characterised by the
volume-additivity (17) are thus incompressible under the following condition: For all i = 1, . . . , N ,
either the ith component is incompressible – this means that ∂pυ̂i = ∂2

pgi = 0 –, or this constituent
is dilute in the mixture – this means that xi � 1. However, since we want to allow here not only for
dilute solutions, but also for mixtures of fluids where no species needs being dilute, the only possibility
to fulfill (18) is to require ∂2

pgi = 0 for i = 1, . . . , N . Hence, each constituent is itself incompressible
and its Gibbs energy gi is affine in p.

The definition (18) affects the thermodynamic states and the constitutive equations for the chemical
potentials in a special way. We introduce the specific volumes at reference temperature TR = T and
pressure pR via

vi = ∂pgi(T
R, pR) =

1

ρ̂i(TR, pR)
for i = 1, . . . , N . (19)

Then, in view of (10) the mass densities in an incompressible fluid are subject to the side-condition

N∑
i=1

ρi vi =1
(

equiv. with % =

∑N
i=1Mi xi∑N
i=1 Mi xi vi

)
. (20)

Unlike (10), it is to note that this constraint cannot be satisfied by appropriate choice of p. Hence, in
the incompressible case, the pressure remains an independent variable in the PDEs. In other words,
the main variables are T (here constant), ρ1, . . . , ρN and p.

Due to the fact that gi is affine in p with slope vi, the chemical potentials are given by

µi := p vi +
RT

Mi

lnxi for i = 1, . . . , N . (21)

Using a singular Helmholtz free energy function, it is also possible to generalise the expressions (11),
(13), (14) to the incompressible case. We define

f∞(T, ρ) :=

{
RT

∑N
i=1

ρi
Mi

ln x̂i(ρ) for
∑N

i=1 ρi vi = 1 ,

+∞ otherwise.
(22)

2Due to the relation 1/% = υ/(
∑

iMi xi), the definition of incompressibility is not affected by the choice of the molar
or specific volume.

3The fluids characterised by (18), which we here call incompressible, were also called quasi-incompressible elsewhere:
See [LT98], [FLM16]. In dynamic situations, fluid flows subjects to (18) can conserve mass without satisfying div v = 0.
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It can be shown (see [Dru21a], [BD21b], [BDD]) that (21) is equivalent to

µ ∈ ∂ρf∞(T, ρ) , p = −f∞(T, ρ) +
N∑
i=1

ρi µi ,

where ∂ρ is the subdifferential. This provides a direct generalisation of (13), (14).

In the incompressible case, the variables are (T, p, ρ), and it is necessary to state the pressure-
dependence of the phenomenological coefficients explicitly. Hence, the diffusion fluxes are written
as

J i =−
N∑
j=1

Mij(T, p, ρ1, . . . , ρN)∇µj
T

for i = 1, . . . , N , (23)

However, in this paper, we shall restrict for simplicity to the particular case that there is no substantial
pressure-dependence. Then the Mij ’s are regular functions depending only on ρ1, . . . , ρN for both
the compressible and incompressible case. Another important remark is that, throughout this paper,
we shall assume that there are at least two different (reference) specific volumes vi 6= vj which,
in vector notations, means that v is not parallel to 1N . The case v = v0 1N with v0 > 0 - which
means that all components of the mixture possess the same density at reference conditions - is very
particular. The incompressibility condition reduces to a constant mass density, and we observe a
complete de-coupling of the systems (4), (5). The momentum equations reduce to the incompressible
Navier-Stokes equations for a viscous fluid. In fact, this limit must be studied with the same methods
as the single-component case. This means that a convergence result for the pressure is not to be
expected by present state of the art.

3 Incompressibility: ∂pυ = 0 vs. Ma = 0

Consider in (8) a sequence gm = gm(T, p) withm ∈ N. The function−∂pgmi ∂2
pg

m
i is called (isother-

mal) compressibility of the substance Ai. Finite compressibility means that ∂2
pg

m < 0. Assume that
for m→∞ the function gmi converge in a suitable sense to a g∞i = g∞i (T, p) which is affine in p. In
the paper [BDD], we have proved in a very general setting that the indexed Helmholtz potentials fm

of the form (12) Gamma-converge to a singular limit f∞ with the structure (22).

The main question of the present paper concerns the behaviour not of the thermodynamic structures,
but of solutions to the PDEs (4), (5) where the constitutive model is indexed by m. If (ρm, vm) are so-
lutions to the PDE system (4), (5) with constitutive relations relying on (8) do these solutions converge
as m→ +∞, to a solution to the incompressible model with (20) (21) and (23)?

Now, we must distinguish between the incompressible limit according to the physical definition (18)
and the low Mach-number limit in rescaled PDEs.

Stable incompressible fluid phase. The physical statement of incompressibility presupposes that
the temperature, pressure and composition of the fluid remain in a range where the compressibil-
ity function of the mixture −∂pυ/υ = −

∑
i ∂

2
pgi(p) ρi is very small compared to some empirical

measure. Hence it is possible to replace the free enthalpies gi’s by affine functions.

In order to perform this first variant of the limit in the isothermal context, we assume that

gmi (T, p)→ vi p for m→∞, for all p ∈]p1, p2[ (24)
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where 0 < p1 < p2 ≤ +∞ is a ”reasonable range” of pressures for which the incompressible phase
remains stable.

From the viewpoint of rigorous mathematical asymptotics, the limit based on (24) is very difficult to
perform on the original PDE system. To the present state of knowledge, no methods are available
for proving that solutions to the PDEs (4), (5) possess a globally in time bounded pressure, or that
the densities remain strictly positive, let alone for proving that the solutions remains confined to the
real domain of the state space where thermodynamic stability makes sense. However, it is possible to
study rigorously a second variant of the limit, for certain scalings of the PDEs (4), (5).

Low Mach-number limit in rescaled PDEs. The complete scaling procedure is described in the
Appendix, Section A. With a reference time tR and a reference lengthLR, we introduce the normalised
domain QR := {(x̄, t̄) : x̄ = x/LR , t̄ = t/tR, (x, t) ∈ Ω×]0, τ̄ [}. Rescaling of the PDEs (4),
(5) yields

∂t̄ρ̄i + div
(
ρ̄i v̄ −

N∑
j=1

M̄ij ∇̄µ̄j
)

=0 , (25)

%̄ (∂t̄v̄ + v̄ · ∇̄v̄) + div S(∇̄v̄) + ∇̄p̄∆ =− %̄ e3 . (26)

The bars on functions, fields and differential operators denote a renormalised/dimensionless quantity.
The relative pressure p̄∆ is obtained from the thermodynamic pressure by two steps: The pressure
is first normalised, then the deviations from reference pressure are rescaled by the Mach-number
squared, to obtain that

p̄∆(x̄, t̄) =
1

Ma2

(p(LR x̄, tR t̄)

pR
− 1
)
, where Ma =

vR

cR
,

with the mean pressure pR, the mean modulus of velocity of the fluid vR and the mean variation of
pressure over density at fixed temperature and composition cR, which possesses the same magnitude
as the speed of sound in the medium.4 We use the notation p̄∆ to hint at the fact that pressure
variations are rescaled rather than of the pressure itself.

Introducing m := Ma−2, the constitutive choices for (25), (26) are given by

µ̄i = µ̂mi (p̄∆, x̄i) := ḡmi (p̄∆) +
1

M̄i

ln x̄i , (27)

with ḡmi (p̄∆) = m
(
ḡi
(
1 +

p̄∆

m

)
− ḡi(1)

)
, (28)

with rescaled masses M̄i = Mi(v
R)2/(RT ), and with the rescaled free energy functions

ḡi(·) =
gi(p

R ·)
gR

where gR :=
%R

pR
. (29)

Within these definitions, it is also to note that a rescaled equation of state for the pressure is valid in
the form p̄∆ = π̂m(ρ̄) , where π̂m is the implicit function defined by the normalised equation of state

N∑
i=1

(ḡmi )′(π) ρ̄i = 1 ⇐⇒ π = π̂m(ρ̄1, . . . , ρ̄N) . (30)

4In fact the rescaling procedure uses the special choice cR = pR/%R, where %R is the average density.
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Incompressible limit for a fluid mixture 9

Next, we compare the rescaled PDEs (25), (26) and constitutive equations (27) and (30) with the
original (4), (5), (8), (10), and see that the structures are identical, up to the difference that the pressure
is replaced by the ”normalised pressure variations” p̄∆. In the formal limit of m → ∞, the equation
(28) implies that

ḡmi (p̄∆) =

∫ 1

0

ḡ′i

(
1 +

θ

m
p̄∆

)
dθ p̄∆ −→ ḡ′i(1) p̄∆ = %R g′i(p

R) p̄∆ = %R vi p̄∆ , (31)

with the reference mass density %R. This shows that the (formal) limit of the functions ḡmi for m→∞
is the affine function ḡ∞i (p̄∆) = v̄i p̄∆ with v̄i := %R vi. Thus, the expected limit of the rescaled
system is formally identical with the incompressible system, with the important difference that, now,
the constitutive equations make sense independently of the sign or the boundedness of p̄∆. As already
shown in the single-component case by the pioneering work [LM98], the rescaling approach allows to
make sense of the incompressibile limit in a rigorous mathematical framework. To study stability issues
on the rescaled system, note that we can introduce a rescaled free energy function via

f̄m(ρ̄) :=
N∑
i=1

ḡmi (π̂m(ρ̄)) ρ̄i − π̂m(ρ̄) +
N∑
i=1

ρ̄i
M̄i

ln
ρ̄i/M̄i∑N

j=1(ρ̄j/M̄j)
, (32)

and then can verify that ∂ρ̄i f̄
m(ρ̄) = µ̄i = µ̂mi (π̂m(ρ̄), x̂i(ρ̄)).

4 Notations, assumptions and statement of the results

Notations: We define RN
+ := {ρ ∈ RN : ρ1, . . . , ρN > 0} and

RN
+ := {ρ ∈ RN

+ : ρ1, . . . , ρN ≥ 0} .

For x ∈ RN , and 1 ≤ p < +∞, the p−norm of x is |x|p = (
∑N

i=1 |xi|∩)1/p and |x|∞ =
maxi=1,...,N |xi|. We moreover denote maxx = maxi=1,...,N xi and minx = mini=1,...,N xi.

We let P : RN → {1N}⊥ (orthogonal complement of the vector 1N = (1, . . . , 1) ∈ RN ) denote
the orthogonal projection

Pξ := ξ − 1

N

N∑
i=1

ξi 1
N for ξ ∈ RN .

For ρ ∈ RN
+ the mass and mole fractions are given by

yi = ŷi(ρ) =
ρi∑N
j=1 ρj

, xi = x̂i(ρ) =
ρi

Mi

∑N
j=1(ρj/Mj)

,

with the relationship yi =
Mi∑N

j=1Mj xj
xi .

(33)

We will make use of the function

k(ρ) = RT
N∑
i=1

ρi
Mi

ln x̂i(ρ) , (34)
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and of its rescaled variant k̄(ρ̄) =
∑N

i=1
ρ̄i
M̄i

ln x̂i(ρ̄). These functions are positively homogeneous.

In particular, Dk(ρ) · ρ = k(ρ) and D2k(ρ) ρ = 0. In order to study the behaviour of the function
π̂m introduced in (30), we introduce a function ˆ̄p(ρ̄) = p̂(ρ̄) via

N∑
i=1

ḡ′i(π) ρ̄i = 1 ⇐⇒ π = p̂(ρ̄1, . . . , ρ̄N) , (35)

where ḡ are the normalised functions of (29). Then, (30) and (35) characterise

π̂m(ρ̄) = m (p̂(ρ̄)− 1) . (36)

Moreover, in the context of mathematical proofs, we shall denote the reference pressure by p0 (= pR).

We assume throughout the paper that Ω ⊂ R3 is a bounded domain with Lipschitz boundary. We
denote by τ̄ > 0 the final time, and Q = Qτ̄ = Ω∪]0, τ̄ [ is the space-time cylinder in R4. For a
Lebesgue measurable subset E of Ω (of Q), we denote by |E| its three-dim. (four-dim.) Lebesgue-
measure, and by Ec the complement Ω \ E (the complement Q \ E).

Several usual function spaces shall occur. For 1 ≤ p ≤ ∞ the Lebesgue-spacesLp(Ω) andLp(0, τ̄)
are well-known. For 1 ≤ p, q < +∞, the Lebesgue space Lq,p(Q) consists of all integrable func-
tions u : Q → R such that

∫ τ̄
0

(
∫

Ω
|u(x, τ)|qdx)p/q dτ is finite and, for p = +∞, such that

ess sup0<t<τ̄

∫
Ω
|u(x, τ)|qdx < +∞. We also use the evolution-space variants Lp(0; τ̄ ; Lq(Ω))

of these spaces. For the norms, we adopt the either the usual full denotation or the following abbrevi-
ations: The norm on Lp(Ω) is denoted | · |p, while the norm on Lq,p(Q) is denoted ‖ · ‖p,q and ‖ · ‖p
for p = q.

Moreover we encounter the Sobolev spaces W 1,q(Ω), W 1
p (Q), W 1,0

p (Q) = Lp(0, τ̄ ; W 1,p(Ω)) and
W 2,1

p (Q) = W 1
p (0, τ̄ ; Lp(Ω)) ∩ Lp(0, τ̄ ; W 2,p(Ω)). All definitions are well-known from standard

monographs. The norm are denoted by |·|W 1,p , ‖·‖LqW 1,q , etc. For an integrable function u : Q→ R,
we denote by (u)M ∈ L1(0, τ̄) the function (u)M := 1

|Ω|

∫
Ω
u(x, ·) dx.

4.1 Assumptions for the free energy functions

We adopt the viewpoint that the thermodynamic pressure is in essence positive, and simplify the
discussion by assuming that the functions g1(T, ·), . . . , gN(T, ·) occurring in (8) are defined on
the whole positive real line. Motivated by requirements of thermodynamic stability, we assume that
(g1, . . . , gN) is subject to:

(A1) gi ∈ C2(]0, +∞[);

(A2) g′i(p) > 0 and g′′i (p) < 0 for all p > 0;

(A3) limp→0 g
′
i(p) = +∞ and limp→+∞ g

′
i(p) = 0;

The conditions (A2) express for each constituent the requirement that: first its density ρ̂i(p) = 1/g′i(p)
is positive (first condition), and second that its volume g′i(p) is a strictly decreasing function on pres-
sure (second condition). The first of the conditions in (A3) means that the lower-pressure threshold
corresponds to infinite volume, and the second one that infinite pressure leads to volume zero.

For the weak solution analysis, we shall have to moreover require specific growth behaviour for small
and large arguments:
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(A4) There are positive constants c̄1 ≤ c̄2 and s̄ > p0 such that

0 < c̄1 ≤ g′i(p) p ≤ c̄2 for all 0 < p < s̄ .

(A5) There are α1, . . . , αN ≥ β > 1 such that

αi p g
′
i(p) ≥ gi(p) ≥ β p g′i(p) for all p ≥ s̄ .

(A6) There is c̄3 > 0 such that p |g′′i (p)| ≤ c̄3 g
′
i(p) for all p > 0, i = 1, . . . , N .

For small and moderate arguments, (A4) implies that gi grows like ln p and, for large arguments, (A5)
implies that gi grows faster than p1/αi with αi > 1. The Helmholtz free energy is defined by (12).
Under the assumptions (A1), (A2) it can be shown that f = fm is a strictly convex function on RN

+ ,
which express the thermodynamic stability. Under the assumptions (A4), (A5) there are c0, c1 > 0
depending only on the constants occuring in (A4), (A5) such that

f(ρ) ≥ c0 |ρ|γ − c1 with γ := max
i=1,...,N

αi/( max
i=1,...,N

αi − 1) . (37)

Using (A4), (A5) and g′(p̂(ρ)) · ρ = 1 we can moreover show that

c̄1 % ≤ p̂m(ρ) ≤ c̄2 % for 0 < p̂(ρ) < s̄ , (38)(
β min g′(s̄)

maxα

)γ
s̄ %γ ≤p̂(ρ) ≤

(
maxα max g′(s̄)

β

) β
β−1

s̄ %
β
β−1 for p̂(ρ) ≥ s̄ . (39)

These statements and other growth properties of the free energy functions independently on the Mach-
number are established in the appendix, Proposition B.1.

Next considering the rescaling procedure, we let m = 1, 2, 3, . . . and define ḡm according to (28),
with ḡ from (29). We see that ḡm is defined in the interval ]−m, +∞[. Moreover,

(ḡmi )′(π) = ∂pḡi

(
1 +

π

m

)
for all π ∈]−m, +∞[ .

Thus, if the underlying functions ḡ1, . . . , ḡN satisfy the asssumptions (A1)-(A3), then

(Ā1) ḡmi ∈ C2(]−m, +∞[);

(Ā2) (ḡmi )′(π) > 0 and (ḡmi )′′(π) < 0 for all π > −m;

(Ā3) limπ→−m(ḡmi )′(π) = +∞ and limπ→+∞(ḡmi )′(π) = 0;

For the rescaled model, the free energy function is discussed in Appendix, Prop. B.2.

4.2 Convergence assumptions

In order to study the incompressible limit, we will consider two situations.

In the first situation, we assume in (8) that the functions gi are indexed by a large parameter, hence
gi = gmi with m ∈ N. Moreover, for all i = 1, . . . , N and m = 1, 2, . . . the function gmi is subject
to the assumptions (A1)–(A3). For the incompressible limit in its physical sense, we define the affine
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functions g∞i (p) = vi p and, for a certain range 0 < p1 < p2 < +∞ (containing the reference value
p0) in which thermodynamic stability is valid, we assume that

gmi −→ g∞ in C2([p1, p2]) . (40)

In the second situation, we consider for each m ∈ N the rescaled system (25), (26) with constitutive
equations (27), where functions ḡ1, . . . , ḡN are fixed and satisfy the assumptions (A). We obtain the
effective functions ḡmi applying the rescaling step (28), (29). Then, the function ḡmi satisfies (Ā1),
(Ā2), (Ā3). We easily show that (cf. (31))

ḡmi −→ ḡ∞ in C2(K) for all compact sets K ⊂ R , (41)

with the affine limit ḡ∞(π) = v̄i π for π ∈ R. Here, v̄ is the rescaled vector of specific volumes
v̄ = %R v.

4.3 Assumptions for the mobility tensor

For {Mij} (or the rescaled {M̄ij}), we adopt the following assumptions (B):

(B1) Mij = Mij(T, ·) ∈ C0,1(RN
+ ) for all i, j = 1, . . . , N ;

(B2) For all ρ1, . . . , ρN > 0, Mij(ρ) = Mji(ρ) for all i 6= j and
∑N

j=1Mij(ρ) = 0;

(B3) There is a positive function λ0 ∈ C(RN
+ ) such that

∑N
i,j=1Mij(ρ)ξj ξi ≥ λ0(ρ) |Pξ|2 for all

ρ ∈ RN
+ , ξ ∈ RN ;

These assumptions are natural and they also include the Maxwell–Stefan (short: M–S) choice of the
mobility tensor. Exemplarily, if all M–S interaction coefficients are equal, then it is well–known that

Mij(ρ) = d ρi (δ
i
j − ρj) , (42)

which might serve as a toy example. The general condition for a system with Maxwell-Stefan diffusion
consists, according to the paper [BD20], in the property

d0(p)PTRP ≤M(ρ) ≤ d1(p)PTRP , (43)

where 0 < d0 ≤ d1 are functions of pressure (and temperature), R := diag(ρ1, . . . , ρN) and P :=
I− 1N ⊗ ŷ(ρ). Obviously, the toy model (42) occurs for d0 = d = d1 implying that M = PTRP.

In the context of weak solutions in which, to the present best knowledge the densities do not need re-
maining uniformly positive, we shall need to reinforce the assumption (B3). This will be stated explicitly
stated in the theorems.

As a last remark concerning the mobilities and the other phenomenological coefficients, note that it
is possible, and even more precise, to conceptualise Mij as a function of the temperature T , the
pressure p and the mole fractions x1, . . . , xN instead of the main variables as done in (B1). See in
this respect also (23). This question has an important impact on the discussions on incompressibility
(See the remark 4.4, (iv)).
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4.4 Solution concept for the PDEs

In order to investigate the low Mach–number asymptotics while simplifying the technical mathematical
discussions as much as possible, we shall blend out possible external influences on the physical
system. We consider insulating boundary conditions for the fluxes and no velocity slip:

J i · ν(x) = 0 for i = 1, . . . , N, v = 0 , on ∂Ω×]0, τ̄ [ . (44)

We consider only the relaxation of the system starting from certain (non-equilibrium) initial data

ρ(x, 0) = ρ0,m(x), v(x, 0) = v0(x) for x ∈ Ω . (45)

The case v(x, 0) = v0,m(x) with indexed initial data for the velocity can be easily treated too.

Form ∈ N, we call (IBVPm) the initial-boundary-value-problem (4), (5) with constitutive equations (6),
(7), (8), and initial and boundary conditions (44), (45). Hereby, we assume in (8) that gi = gmi with
m ∈ N where, for all i = 1, . . . , N and m = 1, 2, . . . the function gmi is subject to the assumptions
(A).

For m ∈ N, we might consider the rescaled IBVP (25), (26) with constitutive equations, (27). In this
case, the initial and boundary conditions (44), (45) are also rescaled. Whenever we need to separately
refer the rescaled problem, we shall denote it by ( IBVP

m
).

We call (ρ, v) = (ρm, vm) a weak solution to (IBVPm) if the initial-boundary-value-problem is satis-
fied in the usual sense of distributions and, moreover, the following energy inequality∫

Ω

(%(x, t)

2
|v(x, t)|2 + fm(ρ(x, t))

)
dx+

∫ t

0

∫
Ω

S(∇v) : ∇v + ζDiff dxdτ

≤
∫

Ω

(%m0 (x)

2
|v0(x)|2 + fm(ρ0,m(x))

)
dx+

∫ t

0

∫
Ω

% b · v dxdτ
(46)

is valid for all 0 ≤ t ≤ τ̄ , where ζDiff is the entropy dissipation of diffusion, and we moreover defined
%m0 (x) :=

∑N
i=1 ρ

0,m
i (x). Depending on the regularity of the weak solution and the assumption on

the data, we will have different representations of ζDiff . If the solution were smooth and the densities
ρ1, . . . , ρN uniformly positive, then

ζDiff = −J : ∇µ =
N∑

i,j=1

Mij(ρ)∇µi · ∇µj ≥ 0 .

Let us next specify minimal requirements in order that all integrals involved in the definition of a weak
solution are making sense. Using (37) with ζDiff ≥ 0, the minimal regularity of weak solutions can be
read off from (46):

ρ ∈ Lγ,∞(Qτ̄ ; RN) and v ∈ L2(0, τ̄ ;W 1,2
0 (Ω; R3)) with

√
% v ∈ L2,∞(Qτ̄ ; R3) , (47)

with γ > 1 from (37). Recall moreover that ρ = (ρ1, . . . , ρN) is non-negative.

However, the properties (47) – which reflect the typical regularity for compressible Navier–Stokes
equations – do not allow to make sense of diffusion terms: At first, the chemical potentials µi = µ̂i(ρ)
obey (8) and are not defined on sets where a mole fraction x̂i(ρ) vanishes. At second we need an
information on gradients.

Two different attempts to introduce appropriate ”diffusive variables”, allowing to define global-in-time
weak solutions, were presented in [DDGG20], [Dru21b]. In both cases, the condition (B3) for the
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mobility tensor needs being reinforced. Since these ideas are of technical nature, we shall recall them
in the appendix of the paper, in Section C, for readers interested in this kind of discussions. In the
present introductory context, let us simplify the technical problems by considering the case of uniformly
positive weak solutions, those satisfying

inf
i=1,...,N

ρi(x, t) ≥ s0 > 0 for almost all (x, t) ∈ Qτ̄ . (48)

Then, exploiting (B3), we get

−
N∑
i=1

J i · ∇µi =
N∑

i,j=1

Mij(ρ)∇µi · ∇µj ≥
(

inf
ρ1,...,ρN≥s0

λ0(ρ)
)
|P∇µ|2 ,

and, in addition to (47), the inequality (46) motivates the regularity

∇Pµ̂(ρ) ∈ L2(Qτ̄ ; RN) and
N∑

i,j=1

Mij(ρ)∇µ̂i(ρ) · ∇µ̂j(ρ) ∈ L1(Qτ̄ ) . (49)

As a consequence of (B1), the entries of the mobility matrix satisfy

|Mij(ρ)| ≤ |Mij(0)|+ sup
r∈R+

N

|∂rMij(r)| |ρ| ≤ λ̄ (1 + |ρ|) . (50)

Using the Cauchy-Schwarz inequality, we then show that

|J i| ≤M
1
2
ii (ρ)

( N∑
i,j=1

Mij(ρ)∇µ̂i(ρ) · ∇µ̂j(ρ)
) 1

2

≤λ̄
1
2

√
1 + |ρ|

( N∑
i,j=1

Mij(ρ)∇µ̂i(ρ) · ∇µ̂j(ρ)
) 1

2
,

and with the help of (47), (49) and Hölder’s inequality, we can see that the diffusion fluxes satisfy a
bound in L2γ/(1+γ),2(Qτ̄ ; RN×3). The regularity of positive weak solutions to (IBVPm) hence consists
of the conditions (47), (49).

Note that, in order to fully exploit the multicomponent character, it would be more precise to state the
regularity of ρ in the Orlicz class generated by the free energy function. The γ−growth in (47) is usual
in the analytical context of single-component compressible Navier–Stokes equations but it is only the
worst case scenario for mixtures.

We shall call (IBVP∞) the initial-boundary-value-problem (4), (5), (44) with (7) for the Newtonian stress,
and incompressible constitutive equations (21), (23) for the fluxes. The initial condition (45) is replaced
by

ρ(x, 0) = ρ0,∞(x) for x ∈ Ω ,

where ρ0,∞ is an incompressible initial state subject to (20).

In this paper, only strong solutions (ρ∞, p∞, v∞) to (IBVP∞) shall be considered. A particularity to
note is that, in the incompressible model, the thermodynamic diffusivity Mij and the viscosity coef-
ficient η and λ are independent on pressure, and the boundary conditions also do not involve the
pressure. As a consequence, the pressure field of a solution to (IBVP∞) is determined only up to an
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arbitrary function of time. In order to rule out this multiplicity, we adopt a special way to prescribe the
mean-value via ∫

Ω

p∞(x, t) dx
!

= −RT
N∑
i=1

ηi
Mi

∫
Ω

ln x̂i(ρ
∞(x, t)) dx , (51)

with real numbers η1, . . . , ηN satisfying
∑N

i=1 ηi vi = 1 and, if the vectors v and 1N are not parallel,

also
∑N

i=1 ηi = 0. This condition implies that a certain linear combination of the chemical potentials
has mean-value zero over Ω, which turned out convenient for the analysis of (IBVP∞)in [Dru21a],
[BD21b]. Overall, concerning the resolvability of the incompressible model (IBVP∞), we adopt the
following list (C) of assumptions:

(C) There exists a sufficiently smooth solution (ρ∞, p∞, v∞) with strictly positive densities to
(IBVP∞) on some interval ]0, τ̄ [, moreover satisfying (51), and such that

ρ∞1 , . . . , ρ
∞
N , p

∞ ∈ W 1
∞(Qτ̄ ), v∞ ∈ W 2,1

p (Qτ̄ ; R3) with p ≥ 6 ,

min
(x,t)∈Qτ̄ , i=1,...,N

ρ∞i (x, t) ≥ r0 > 0 .

We remark that, owing to the Theorem C.1, the property (C) can be verified locally in time if the data
are smooth enough.

4.5 Convergence results

We shall at first state, in Theorem 4.1, a convergence result for the scenario (40). Here the approxi-
mate solutions are subject to additional a priori assumptions, which express the physical consistency
of the pressure-field. Due to this, the result of Theorem 4.1 can not be applied to available weak solu-
tions, and its value is mainly heuristic. However, it has the advantage to allow us introducing the main
estimate in a more comfortable way widely free of technicalities. In order to simplify the proof, we shall
adopt the normalisation assumptions

gm(p0) = 0, ∂pg
m(p0) = v for all m ∈ N , (52)

In general, gm1 (p0), . . . , gmN (p0) are constants related to the entropy and the enthalpy of the species
under reference thermodynamic conditions (T, p0), while ∂pgm(p0) are the specific volumes under
reference conditons. Thus, (52)2 is quite natural, while the reader can easily verify by himself that the
Theorem remains valid for general gm(p0) such that supm |gm(p0)| < +∞.

Theorem 4.1. Suppose that for allm ∈ N, the functions gm1 , . . . , g
m
N satisfy the growth and regularity

assumptions (A1)− (A3) and the normation assumptions (52), that {Mij} satisfies (B), and that
(C) is valid for (IBVP∞). Suppose that, for every m > 1, the vector (ρm, vm) is a weak solution
with the regularity (47), (49) to (IBVPm), and that gm → g∞ for m → ∞ as in (40) with two fixed
thresholds 0 < p1 ≤ p0 ≤ p2 < +∞. Assume moreover that the pressure pm = p̂m(ρm) is
confined to the interval of convergence of {gm}, that is,

p1 ≤ pm(x, t) ≤ p2 for all m ∈ N, for almost all (x, t) ∈ Qτ̄ . (53)

Suppose that v0 ∈ W 2−2/p
p (Ω; R3) and that ρ0,m ∈ L∞(Ω; RN) satisfies mini ρ

0,m
i ≥ s0 > 0 and

the following conditions:
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(a) The initial energy is uniformly bounded, that is

sup
m∈N

∫
Ω

(%m0 (x)

2
|v0(x)|2 + fm(ρ0,m(x))

)
dx < +∞ ,

(b) With the constants p1, p2 of (53): p1 ≤ p̂m(ρ0,m(x)) ≤ p2 for all x ∈ Ω, m ∈ N;

(c) ρ0,m → ρ∞(·, 0) in L1(Ω; RN) as m→ +∞.

Then, ρm → ρ∞ in L1(Qτ̄ ; RN), and vm → v∞ in L1(Qτ̄ ; R3). Moreover, if v is not parallel to 1N ,
then with η1, . . . , ηN chosen according to (51), there is a sequence ζ̄m of functions of time such that
supm ‖ζ̄m‖L∞(0,τ̄) < +∞ and pm + ζ̄m → p∞ in L1(Qτ̄ ).

Remark 4.2. If v and 1N are parallel, then the weak convergence pm ⇀ p∞ in L2(Qτ̄ ) is a conse-
quence of (5) and the strong convergence of {ρm} and {vm}, but we are not able to show a strong
convergence result.

At second, in Theorem 4.3, we state an entirely rigorous convergence statement valid for the rescaled
problems ( IBVP

m
) under the convergence (41) of the free energy functions. In order to obtain pressure

bounds we have to reinforce the assumption (B3) as follows:

(B3′) The function λ0 in (B3) is bounded away from zero. In other words, there is λ0 > 0 such that∑N
i,j=1 M̄ij(ρ) ξi ξj ≥ λ0 |Pξ|2 for all ρ ∈ RN

+ , ξ ∈ RN .

As shown in [DDGG20] (see Appendix, Th. C.2), (B3′) allows to construct weak solutions in the natural
class (47), (49). For this result, in addition to (A1)-(A6), we adopt a simplifying technical assumption
concerning the functions ḡ1, . . . , ḡN :

(A′) There is a permutation {k1, . . . , kN} of {1, . . . , N} such that

ḡ′k1
(s) < . . . < ḡ′kN (s) for all s > 0 ,

which means that the mass densities of the species are strictly ordered, with the ordering independent
on pressure. Since v̄i = ḡ′i(1), (A′) implies in particular that the species under reference conditions
have all different specific volumes. This is the interesting case in practice.

Theorem 4.3. For the free energy functions ḡ, we assume (A) with γ ≥ 9/5 and (A′). Assume (B1),
(B2), and (B3′) for the matrix {Mij}, and (C) for the solution (ρ∞, p∞, v∞) of the incompressible
model. we let wm

0 := 1
|Ω|

∫
Ω
%0,m(x) dx, and we assume that %̄min < infmwm

0 and supmwm
0 <

%̄max. Suppose that the initial data satisfy (a), (c) as in Theorem (4.1) and moreover

lim sup
m→∞

m ‖p̂(ρ̄0,m)− 1‖2
L2(ΩR) = 0 ,

where p̂ is the function defined in the normalised equation of state (35). Suppose that, for every m >
0, the vector (ρ̄m, v̄m) is a weak solution with the regularity (47), (49) to the rescaled compressible
problem ( IBVP

m
). Then, ρ̄m → ρ∞ in L1(QR; RN), and v̄m → v∞ in L1(QR; R3). Moreover,

there is a sequence {ζ̄m} of functions of time such that supm ‖ζ̄m‖L1(0,τ̄) < +∞ and such that
p̄m∆ + ζ̄m −→ p∞ in L1(QR).
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Remark 4.4. (i) Weak solutions to ( IBVP
m

) exist globally (see Th. C.2). Moreover under the con-
ditions of Theorem C.1, the problem (IBVP∞) possesses a unique classical local solution on an
interval ]0, t∗[ so that assumption (C) is valid on this interval;

(ii) In the case of Maxwell-Stefan diffusion (cf. (42), (43)), the condition (B3′) is known to be violated.
In this case, we cannot expect the class (49) and must find alternative ways of making sense of
the diffusion flux. A result in this direction is to find in the paper [Dru21b]. This case is yet more
technical and cannot be treated with available methods, as a uniform bound for the pressure is
missing even in L1;

(iii) In both theorems, the functions ζ̄m(t) are needed in order to match the correct mean–value of
the limit pressure in accordance with the condition (51);

(iv) It is fundamental for this result that the phenomenological coefficients Mij are independent on
pressure, that is, they depend only on ρ1, . . . , ρN with the smoothness in (B1). We expect being
able to treat the case Mij = Mm

ij (p, x1, . . . , xN) only if, among other restrictions, ∂pMm
ij has

compact support and if ∂pMm
ij converges to zero uniformly for m→∞.

Finally, let us remark that it is also possible in this context to remove the assumption (C) entirely,
and prove the convergence of weak solutions to weak solutions. However, the pressure-field of weak
solutions to the incompressible model is affected by a defect measure as explained in the Appendix,
Section C.

Theorem 4.5. Assume (A) with γ ≥ 9/5, (A′) and (B1), (B2), and (B3′). Suppose that the
initial data satisfy (a). Suppose that, for every m > 0, the vector (ρ̄m, v̄m) is a weak solution to
the rescaled compressible problem ( IBVP

m
). Then, there is a weak solution (ρ∞, p∞ + dκ, v∞)

with defect measure to ( IBVP∞), and ρ̄mk → ρ∞ in L1(QR; RN), and v̄mk → v∞ in L1(QR; R3)
for a subsequence {mk}k∈N. Moreover, there is a sequence {ζ̄m} of functions of time such that

supm ‖ζ̄m‖L1(0,τ̄) < +∞ and such that p̄m∆ + ζ̄m
ACP−→ p∞.

The remainder of the paper is devoted to proving these theorems. We begin with the physical limit of
Theorem 4.1 which, being partly formal, is simpler. For the sake of clarity, we will moreover restrict in
the main text to proving the theorem under the additional asssumption that the approximate solutions
have uniformly positive densities as in (48). We show in the Appendix, Section E.2, how to remove
the positivity assumption, but this is associated with rather technical discussions. In the Section 6, we
show the complete result of Theorem 4.3.

5 Convergence for solutions with physically consistent pressure-
field

Let fm = fm(T, ·) be the free energy function (12) with g = gm. If the latter satisfies the assumptions
(A), it is shown in Lemma B.1 that fm is a co–finite function of Legendre type on RN

+ satisfying
the condition (37). With p̂m(ρ) defined as the unique root to the equation (10), and k(ρ) being the
abbreviation (34), the following identities are valid:

µ̂mi (ρ) =∂ρif
m(ρ) = gmi (p̂m(ρ)) +

RT

Mi

ln x̂i(ρ) = gmi (p̂(ρ)) + ∂ρik(ρ) , (54)
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∂2
ρi,ρj

fm(ρ) =−
∂pg

m
i (p̂m(ρ)) ∂pg

m
j (p̂m(ρ))∑N

k=1 ρk ∂
2
pg

m
k (p̂m(ρ))

+
RT

MiMj n̂(ρ)

(
δij

x̂i(ρ)
− 1

)
, (55)

where we abbreviated n̂(ρ) =
∑N

i=1(ρi/Mi). We assume that (ρ, v) := (ρ1, . . . , ρN , v1, v2, v3)
is a weak solution vector with the regularity (47) for (IBVPm). We let (r, u) with r : Qτ̄ 7→ RN

+ and
u : Qτ̄ 7→ R3 be smooth vector fields. For t ≥ 0 we define the relative energy functional(

Em(ρ, v | r, u)
)

(t) :=

∫
Ω

(%
2
|v − u|2 + fm(ρ)− fm(r)− µ̂m(r) · (ρ− r)

)
dx .

In this formula, we use the abbreviation µ̂m(r) := Dfm(r) = ∇rf
m(r). The regularity of weak

solutions guarantees that Em(t) is finite for all t. An equivalent expression is(
Em(ρ, v | r, u)

)
(t)

=

∫
Ω

(
%
|v|2

2
+ fm(ρ)

)
dx+

∫
Ω

(
%
|u|2

2
− % u · v − fm(r)− µ̂m(r) · (ρ− r)

)
dx . (56)

We moreover introduce the (relative) viscous dissipation functional via

DVisc(t) =
(
Dvisc(v |u)

)
(t) :=

∫
Ω

S(∇(v − u)) : ∇(v − u) dx .

The section is divided into two parts. In the first subsection, we state the relative energy inequality,
and in the second, we provide the stability estimate and the proof of Theorem 4.1.

5.1 Relative energy inequality and stability estimate

We here restrict to state the natural form of the energy inequality for positive weak solutions. Mean-
while, relative energy/entropy inequalities are used extensively in the literature, so that the proof ideas
are sufficiently well-known. We refer to [FN] for systematical developments. The proof is therefore to
be found in the appendix, Section E, together with more refined versions of the inequality valid for
non-necessarily positive weak solutions.

Proposition 5.1. Let (ρm, vm) be a weak solution to (IBVPm) satisfying (47), (48) and (49). Let
(ρ∞, p∞, v∞) satisfy (IBVP∞) and (C). We define Em(t) := (Em(ρm, vm | ρ∞, v∞))(t) and
µ∞ = p∞ v + (RT/M) ln x̂(ρ∞). Then, for all t ∈]0, τ̄ [,

Em(t) +

∫ t

0

(DVisc(vm | v∞))(τ)dτ +

∫ t

0

∫
Ω

M(ρm)∇P(µm − µ∞) : ∇P(µm − µ∞) dxdτ

≤
∫ t

0

∫
Ω

(∂tρ
∞ + div(ρ∞ v∞)) · (gm(pm)− pm v)− (ρm · v − 1) (∂tp

∞ + v∞ · ∇p∞) dxdτ

+ Em(0) +

∫
Ω

p∞(x, ·) (ρm(x, ·) · v − 1) dx
∣∣∣t
0

+

∫ t

0

Rm(τ) dτ ,

with a quadratic remainder termRm(t) =
∑4

i=1Rm,i(t) defined by

Rm,1(t) :=

∫
Ω

(
(%m − %∞) (∂tv

∞ + (vm · ∇)v∞) + %∞ [(vm − v∞) · ∇]v∞
)
· (v∞ − vm) dx

Rm,2(t) :=

∫
Ω

(v∞ − vm) (ρm − ρ∞) : (∇µ∞ + 1N ⊗ b) dx
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Rm,3(t) :=−
∫

Ω

(M(ρm)−M(ρ∞))∇µ∞ · ∇(Pµm − µ∞) dx

Rm,4(t) :=

∫
Ω

(∂tρ
∞ + div(ρ∞ v∞)) ·

(
Dk(ρm)−Dk(ρ∞)−D2k(ρ∞) (ρm − ρ∞)

)
dx .

Next we want to estimate each part of the right-hand side in Prop. 5.1, showing either that it tends to
zero, or that it is controlled by the relative energy functional.

Some elementary bounds. For ease of writing, we drop the index m on the state in this section.
Since the incompressible state ρ∞ is subject to the constraint

∑N
i=1 ρ

∞
i (x, t) vi = 1, it obviously

follows that

%min :=
1

maxi=1,...,N vi
≤ %∞(x, t) ≤ 1

mini=1,...,N vi
=: %max for all (x, t) ∈ Qτ̄ . (57)

Moreover, with an index i0 such that vi0 = min v (vi0 = max v), we have

1

%∞
− vi0 =

∑
i 6=i0

ŷi(ρ
∞) (vi − vi0) .

Since in (C) we assume that the strong solution ρ∞ possesses uniformly positive densities, all larger
than r0 > 0 it follows that∣∣∣∣ 1

%∞(x, t)
− vi0

∣∣∣∣ ≥ inf
vi 6=vj
|vi − vj| (N − 1)

r0

%max

.

Thus, we even can find constants rmin > %min and rmax < %max such that

rmin ≤ %∞(x, t) ≤ rmax for all (x, t) ∈ Qτ̄ . (58)

Note that at each (x, t) ∈ Q,

fm(ρ)− fm(ρ∞)− µ̂m(ρ∞)(ρ− ρ∞) =
1

2
D2fm(θ ρ+ ρ∞) (ρ− ρ∞) · (ρ− ρ∞) ,

with a θ ∈ [0, 1]. Invoking the Lemma B.1 of the appendix, there is λ1 > 0 such that

N∑
i,j=1

D2
ijf

m(ρ)ξi ξj ≥ λ1 |ξ|2 for all ξ ∈ RN and all ρ s.t. p1 ≤ p̂m(ρ) ≤ p2 .

Under the assumptions of Theorem 4.1 it follows that

fm(ρ)− fm(ρ∞)− µ̂m(ρ∞)(ρ− ρ∞) ≥ λ1

2
|ρ− ρ∞|2 . (59)

For the proof of Theorem 4.1, we can rely on the boundedness of pressure. In view of ∂pgm(p̂m(ρ)) ·
ρ = 1, we have

1

max ∂pgm(p̂m(ρ))
≤ % ≤ 1

min ∂pgm(p̂m(ρ))
,

and since we assume that {gm} converges in C2([p1, p2]) this implies that

a0 := inf
m∈N, s∈[p1,p2]

1

max ∂pgm(s)
≤ % ≤ sup

m∈N, s∈[p1,p2]

1

min ∂pgm(s)
=: b0 . (60)

We proceed with estimating the remainders in the relative energy inequality of Prop. 5.1.
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Estimate ofRm,1 By means of Hölder’s inequality and (59)

∫
Ω

(%− %∞) ∂tv
∞ · (v∞ − v) dx ≤

√
N |∂tv∞|L3 |v∞ − v|L6(Ω)

(∫
Ω

|ρ− ρ∞|2 dx
) 1

2

≤
√

2N

λ1

|∂tv∞|L3 |v∞ − v|L6 (Em(t))
1
2 ,

Next we have the Korn inequality and the Sobolev embedding theorem∫
Ω

S(∇(v∞ − v)) : ∇(v∞ − v) dx ≥ c ‖v∞ − v‖2
W 1,2

0 (Ω)
≥ c′ ‖v∞ − v‖2

L6(Ω) . (61)

Thus, by means of the Young inequality, we can easily prove for 0 < ε < 1 arbitrary that∣∣∣∣∫
Ω

(%− %∞) ∂tv
∞ · (v∞ − v) dx

∣∣∣∣ ≤εDVisc(vm | v∞)(t) +
C2

ε
|∂tv∞|2L3 Em(t) , (62)

where C depends on Ω via c′ and on p1, p2 via λ1. With (v · ∇)v∞ in the place of ∂tv∞, use of
|v∇v∞|L3 ≤ |v|L6 |∇v∞|L6 ≤ c |∇v|L2|∇v∞|L6 helps finding that∣∣∣∣∫

Ω

(%− %∞) (v · ∇)v∞ · (v∞ − v) dx

∣∣∣∣ ≤εDVisc(vm | v∞)(t)

+
C2

ε
|∇v∞|2L6 |∇v|2L2 Em(t) , (63)

Since %(x, t) ≥ a0 owing to (60),∣∣∣∣∫
Ω

%∞
(
(v∞ − v) · ∇

)
v∞ · (v∞ − v) dx

∣∣∣∣ ≤ rmax√
a0

∫
Ω

|∇v∞| |v∞ − v| |√% (v∞ − v)| dx

≤ rmax√
a0

|∇v∞|L3 |v∞ − v|L6 (2 Em(t))
1
2 ≤ εDVisc(vm | v∞)(t) +

C

ε
|∇v∞|2L3 Em(t) . (64)

Overall, the first remainder obeys

|Rm,1| ≤ εDVisc(vm | v∞)(t) +
C

ε
ψm(t) Em(t) , (65)

in which ‖ψm‖L1(0,τ̄) ≤ ‖∂tv∞‖2
L3,2(Q) + ‖∇v∞‖2

L6,∞(Q) (supm ‖∇vm‖2
L2(Q) + ‖∇v∞‖2

L2(Q)).

Estimate ofRm,2. The contribution
∫

Ω
(v∞−v) (ρ−ρ∞) : (∇µ∞+ 1N ⊗ b) dx to the remainder

exhibits the same structure as the first integral of Rm,1, where ∇µ∞ and 1N ⊗ b play the part of
1N ⊗ ∂tv∞. Hence, repeating the arguments used above in this case, we obtain that

∣∣Rm,2
∣∣ ≤εDVisc(vm : v∞)(t) +

C

ε
(|∇µ∞|2L3 + |b|2L3) Em(t) , (66)

In order to estimate the remaining parts, we must discuss additional positivity questions for the densi-
ties and the eigenvalues of mobility tensor.
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Estimate of Rm,3 At this stage, to first show a way widely free of technicalities, we simply assume
that all densities are uniformly positive according to (48), in which s0 is independent on m. We show
later how to remove this assumption. Then, in view of (B3), the mobility matrixM(ρ) possessesN−1
strictly positive eigenvalues, and the remaining zero eigenvalue is associated with the vector 1N . We
call λmin(·) (λmax(·)) the smallest strictly positive eigenvalue (the largest eigenvalue) of M(·). Then,
using also (50),

λmax(ρ) ≤ λ̄ (1 + |ρ|) , λmin(ρ) ≥ inf
min r≥s0

λ0(r) = λ̄0 > 0 ,

with λ0 from (B3) and a positive constant λ̄. If the densities are positive and (48) hold, the chemical
potentials µi = gi(p̂

m(ρ)) + RT/Mi ln x̂i(ρ) are defined everywhere in the domain. We denote
M †(ρ) the Moore-Penrose pseudo–inverse of M(ρ). Since M is symmetric, we have M †M = P =
MM †. Then, using the Cauchy-Schwarz inequality and the Young inequality

|(M(ρ)−M(ρ∞))∇µ∞ · ∇(µ− µ∞)| = |M †(M(ρ)−M(ρ∞))∇µ∞ ·M(ρ)∇(µ− µ∞)|

≤
(
M(ρ)M †(M(ρ)−M(ρ∞))∇µ∞ ·M †(M(ρ)−M(ρ∞))∇µ∞

) 1
2

× (M(ρ)∇(µ− µ∞) · ∇(µ− µ∞))
1
2

≤ ‖M †(ρ)‖
1
2 ‖M(ρ)−M(ρ∞)‖∞ |∇Pµ∞| (M(ρ)∇(µ− µ∞) · ∇(µ− µ∞))

1
2

≤ 1

4 ελmin(ρ)
‖M(ρ)−M(ρ∞)‖2

∞ |∇Pµ∞|2 + εM(ρ)∇(µ− µ∞) · ∇(µ− µ∞) .

Since ρ 7→ M(ρ) is Lipschitz continuous on RN
+ according to (B1), calling the Lipschitz constant

‖∂M‖L∞ we have ‖M(ρ) −M(ρ∞)‖ ≤ ‖∂M‖L∞ |ρ − ρ∞|. Therefore, using the equivalence of
all norms on RN ,

|(M(ρ)−M(ρ∞))∇µ∞ · ∇(µ− µ∞)|

≤ cN ‖∂M‖2
∞

4 ε λ̄0

|ρ− ρ∞|2∞ |∇Pµ∞|2 + εM(ρ)∇(µ− µ∞) · ∇(µ− µ∞) . (67)

Overall, the estimation ofRm,3 yields∫
Ω

|(M(ρ)−M(ρ∞))∇µ∞ · ∇(µ− µ∞)| dx

≤ ε

∫
Ω

M(ρ)∇(µ− µ∞) · ∇(µ− µ∞) dx+
C

ε
|∇Pµ∞|2L∞ Em(t) , (68)

where we remark that C essentially depends on the constant s0 of (48) and the constants p1, p2 of
Theorem 4.1.

Estimate ofRm,4 Recall that k(ρ) is given by (34). Thus Dk(ρ) = (RT/M) ln x̂(ρ) make sense
only if all densities are strictly positive. Here we show a straightforward estimate relying again on (48).
Later we will provide an alternative to treat this remainder for weak solutions in general. For positive
densities, we easily find that

|Dk(ρ)−Dk(ρ∞)−D2k(ρ∞)(ρ− ρ∞)| ≤ sup
θ∈]0,1[

|D2k(θ ρ+ (1− θ) ρ∞)|∞ |ρ− ρ∞|2 .
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We recall that D2
ijk(r) = (RT/MiMj n̂(r)) (δij/x̂i(r)− 1), allowing to show that

|D2
ijk(θ ρ+ (1− θ) ρ∞)| ≤ RT maxM

(minM)2 min{ρi, ρ∞i }
≤ RT maxM

(minM)2 min{s0, r0}
,

where we assume min ρ ≥ s0 and min ρ∞ ≥ r0. It follows that

|Rm,4| ≤ c |∂tρ∞ + div(ρ∞ v∞)|L∞ Em(t) . (69)

5.2 The convergence argument

We collect the estimates (65), (66), (68) and (69). Writing now again ρm, vm etc., for all 0 < t ≤ τ̄ ,
they yield

Em(t) ≤ Em(0) +

∫
Ω

p∞(x, ·) (ρm(x, ·) · v − 1) dx
∣∣∣t
0

+

∫ t

0

∫
Ω

(∂tρ
∞ + div(ρ∞v∞)) · (gm(pm)− v pm)− (ρm · v − 1) (∂tp

∞ + v∞ · ∇p∞)dxdτ

− (1− 2ε)

∫ t

0

∫
Ω

S(∇(v − v∞)) : ∇(v − v∞) +M(ρ)∇(µ− µ∞) : ∇(µ− µ∞) dx

+
C

ε

∫ t

0

ψm(τ) Em(τ) dτ . (70)

Here the function ψm obeys

‖ψm‖L1(0,τ̄) ≤‖∂tv∞‖2
L3,2 + ‖∇v∞‖2

L6,∞ (sup
m
‖∇vm‖2

L2 + ‖∇v∞‖2
L2) + ‖∇µ∞‖2

L3,2

+ ‖b‖2
L3,2 + ‖∇Pµ∞‖2

L∞,2 + ‖∂tρ∞ + div(ρ∞ v∞)‖L∞,1 . (71)

From the Gronwall Lemma it follows that Em(t) ≤ |Am(t)| exp(supm ‖ψm‖L1(0,τ̄)), in which

Am(t) := Em(0) +

∫
Ω

p∞(x, ·) (ρm(x, ·) · v − 1) dx
∣∣∣t
0

+

∫ t

0

∫
Ω

(∂tρ
∞ + div(ρ∞v∞)) · (gm(pm)− v pm)− (ρm · v − 1) (∂tp

∞ + v∞ · ∇p∞)dxdτ .

In order to prove that Am tends to zero, we first show that the initial relative energy Em(0) tends to
zero. Theorem 4.1 assumes that vm(0) = v0 = v∞(0). Moreover p̂m(ρ0,∞) = p0 and gm(p0) = 0
imply that fm(ρ0,∞) = −p0 + k(ρ0,∞) and that Dfm(ρ0,∞) = Dk(ρ0,∞), hence

Em(0) =

∫
Ω

fm(ρ0,m(x))− fm(ρ0,∞(x))− µ̂m(ρ0,∞(x)) · (ρ0,m(x)− ρ0,∞(x)) dx

=

∫
Ω

gm(p̂m(ρ0,m)) · ρ0,m − (p̂m(ρ0,m)− p0) dx (72)

+

∫
Ω

k(ρ0,m)− k(ρ0,∞)−Dk(ρ0,∞) (ρ0,m − ρ0,∞) dx .

Since k is fixed and, by assumption, ρ0,∞ is uniformly positive, the second member in (72), right-hand
side is easily shown to converge to zero, since we assume that ρ0,m → ρ0,∞ in L1(Ω). As to the first
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member, we define p0,m := p̂m(ρ0,m) satisfying ∂pgm(p0,m)·ρ0,m = 1. The assumption gm(p0) = 0
can be used to show that

gm(p̂0,m) · ρ0,m − (p0,m − p0) = (gm(p0,m)− gm(p0)− ∂pgm(p0,m) (p0,m − p0)) · ρ0,m

=

∫ 1

0

∂pg
m(p0 + λ p0,m)− ∂pgm(p0,m) dλ · ρ0,m (p0,m − p0) .

Since in Theorem 4.1, we assume that p1 ≤ p0,m ≤ p2, we easily show that∫
Ω

gm(p0,m) · ρ0,m − (p0,m − p0) dx ≤ 2 sup
m
|%0,m|L1 (p2 − p1) sup

s∈[p1,p2]

|∂pgm(s)− v| ,

which tends to zero since ∂pg
m → v uniformly on [p1, p2]. Next, use of ∂pgmi (p0) = vi and∑N

i=1 ρ
m
i ∂pg

m
i (pm) = 1 yields

1− v · ρm =
N∑
i=1

(∂pg
m
i (pm)− vi) ρ

m
i and |1− v · ρm| ≤ |∂pgm(pm)− v|∞ %m .

Since p1 ≤ pm(x, t) ≤ p2, we have |1 − v · ρm| ≤ sups∈[p1,p2] |∂pgm(s) − v| b0 with b0 from (60).
Thus v · ρm −→ 1 strongly in L∞(Qτ̄ ) which implies that

sup
0<t<τ̄

∫
Ω

|p∞(x, t)| |ρm(x, t) · v − 1| dx ≤ ‖p∞‖L1(Qτ̄ ) ‖ρm · v − 1‖L∞ ,∫ τ̄

0

∫
Ω

|ρm · v − 1| |∂tp∞ + v∞ · ∇p∞| dxdτ ≤ ‖∂tp∞ + v∞ · ∇p∞‖L1 ‖ρm · v − 1‖L∞ ,

and both terms tend to zero. Similarly, the assumptions of Theorem 4.1 allow to show that

|gm(pm)− v pm| ≤ sup
p1≤s≤p2

|gm(s)− v s| → 0 (73)

and thus also
∫ t

0

∫
Ω
|∂tρ∞ + div(ρ∞v∞)| |gm(pm)− v pm| dxdτ tends to zero.

Overall lim supm→∞ sup0<t<τ̄ |Am(t)| = 0, hence lim supm→∞ sup0<t<τ̄ Em(t) = 0. Using (70)
with t = τ̄ also

lim sup
m→∞

∫ τ̄

0

DVisc(vm | v∞)(τ) dτ +

∫
Qτ̄

M(ρm)∇(µm − µ∞) : ∇(µm − µ∞) dxdτ = 0 .

(74)

Let us verify the convergence claims in Theorem 4.1. Since supt Em(t) → 0, we easily show that
ρm → ρ∞ in L1,∞(Qτ̄ ), while (74) imply that vm → v∞ in L2W 1,2. We next turn proving a conver-
gence result for {pm}. Under the assumption (48), we can introduce

µm =
RT

M
ln x̂(ρm) + gm(pm) =

RT

M
ln x̂(ρm) + hm + v pm , (75)

with hm := gm(pm) − v pm, which we have shown in (73) to converge to zero in L∞(Q). Let
η ∈ RN be the vector of (51) satisfying η · v = 1 and, if v 6‖ 1N , also η · 1N = 0. Multiplication
in (75) with η yields η · µm = η · ((RT/M) ln x̂(ρm) + hm) + pm. We subtract the mean-value
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(η · µm)M =
∫

Ω
(η · µm)M dx/|Ω| on both sides of this identity, we define ζ̄m := −(η · µm)M ,

pm∗ := pm + ζ̄m, and ζm := η · µm − (η · µm)M , and we get

pm∗ = ζm − η ·
(RT
M

ln x̂(ρm) + hm
)
. (76)

Note that {ζm} possesses zero mean-value over Ω for all t. Since η is perpendicular to 1N , we can
estimate |∇(η · (µ− µ∞))| ≤ |η| |∇P(µ− µ∞)|. Employing (74), we show that∇ζm → η · ∇µ∞
in L2(Q). Hence ζm → η · µ∞ − (η · µ∞)M in L2(0, τ̄ ; W 1,2(Ω)), and (76) shows that

pm∗ −→ η · µ∞ − η · RT
M

ln x̂(ρ∞)− (η · µ∞)M = p∞ − (η · µ∞)M in L2(Q) .

Since (η · µ∞)M = 0 due to (C), the latter shows that pm∗ → p∞ in L2(Q).

The proof of Theorem 4.1 is now complete under the additional uniform positivity assumption (48). At
some technical cost, this condition can be removed as explained in the Appendix, Section E.

In the second part of the paper, we investigate the convergence of weak solutions under relaxing the
a priori condition (53) on pressure control.

6 Rigorous convergence for rescaled weak solutions

In this section we prove the convergence to the incompressible limit for certain rescaled weak solutions
to the problems ( IBVP

m
). At the difference of the previous section, it is possible to show that these

solutions exist globally in time. The main results available on the local- and global-in-time resolvability
of the problems (IBVP), (IBVP∞) are recalled in the appendix, Section C. Readers might be interested
to consult this short survey before starting with the present paragraph which is more technical than
the previous one.

Here we begin by showing, in the section 6.1, that if we reinforce the assumptions on the mobility
tensor to (B3′), the sequence of ”pressures” {p̄m∆} associated with the rescaled weak solutions satisfy
a bound in L1 independently on m. Then, a modified form of the relative energy inequality is shown
to be valid in Section 6.2. It allows to prove the convergence of weak solutions under the assumptions
(41) and (C).

6.1 Technical estimates for the pressure-field

We commence by stating the existence of weak solutions together with some natural bounds.

6.1.1 Existence of weak solutions

We let ξ1, . . . , ξN−1, ξN with ξN := (1, 1, . . . , 1) = 1N be a basis of RN , and let η1, . . . , ηN denote
the dual basis. Then, the vectors η1, . . . , ηN−1 constitute a basis of the orthogonal complement of
the vector 1N in RN . A rectangular ”projection” matrix Π ∈ RN×N−1 with the vectors ξ1, . . . , ξN−1

as columns is further introduced via

Π := [ξ1, . . . , ξN−1] . (77)
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One introduces the new variables (entropic variables, diffusive variables)

qi :=
N∑
j=1

ηij µj for i = 1, . . . , N − 1 , (78)

and reformulate the problem (IBVP) using the change of variables

(ρ1, . . . , ρN) ←→ (%, q1, . . . , qN−1) . (79)

The proof that there is a bijection between these variables uses the definition of the chemical potentials
(13). If the free energy function ρ 7→ f(ρ) is a so-called co-finite function of Legendre type on RN

+ ,
which is the key assumption in the investigations [BD21a], [DDGG20], the equations (13) can be
inverted by means of the convex conjugate function

f ∗(w) := sup
r∈RN+

{w · r − f(r)} for w ∈ RN ,

and (13) is equivalent with

ρi = ∂wif
∗(µ1, . . . , µN) for i = 1, . . . , N . (80)

Using the definition (78) of q, we next express the vector µ in new coordinates via

µ =
N−1∑
i=1

qi ξ
i + µ · ηN 1N = Π q + µ · ηN 1N .

Summing up over i = 1, . . . , N in (80) implies that % = 1N · ∂wf ∗(Π q + µ · ηN 1N). This defines
implicitly µ · ηN = M (%, q1, . . . , qN−1) with a function M of % and q. Now, all thermodynamic
quantities can be introduced as functions of the variables % and q1, . . . , qN−1, among others

p = f ∗(µ) = f ∗
(

Πq + M (%, q) 1N
)

=: P (%, q) pressure, (81)

ρ = ∂wf
∗
(

Πq + M (%, q) 1N
)

=: R(%, q) densities. (82)

For the ideal model (8), we have the equivalent representation:

p =p̂(ρ1, . . . , ρN) = P (%, q) ,

µ = g(p) +
RT

M
lnx =g(p̂(ρ)) +

RT

M
ln x̂(ρ) = Πq + M (%, q) 1N ,

(83)

where p̂ is the function introduced in (10) and x̂(ρ) is defined in (33).

Let us next consider rescaled problems ( IBVP
m

). In this case, the change of variables is performed
using the free energy function f̄m of (32), with the data ḡm1 , . . . , ḡ

m
N from (28).

We switch from the main variables to the entropic variables (79) as just explained. After this procedure,
the rescaled pressure p̄∆ associated with a solution (%̄, q̄) to ( IBVP

m
) obeys a representation

p̄∆ = Pm(%̄, q̄1, . . . , q̄N−1) = π̂m(ρ̄) . (84)
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We recover the full vector of chemical potentials as µ̄ = Πq̄ + M̄m(%̄, q̄) 1N , the mass densities as
ρ̄ = (∇ρ̄f̄

m)−1(µ̄) = ∇µ̄(f̄m)∗(µ̄) and, by construction, it also follows that

µ̄i = µ̂mi
(
p̄∆, x̄

)
= ḡmi (p̄∆) +

1

M̄i

ln x̄i . (85)

Applying the existence result of Appendix, Prop. D.1, we see that the rescaled variables (%̄m, q̄m, v̄m)
provide a weak solution to ( IBVP

m
). Under the assumption (B3′), we also obtain the following uniform

bounds:

sup
m∈N
‖%̄m‖Lγ,∞(QR) < +∞, sup

m∈N
‖∇̄v̄m‖L2(QR) < +∞ ,

sup
m∈N
‖
√
%̄m v̄

m‖L2,∞(QR) < +∞, sup
m∈N
‖∇̄q̄m‖L2(QR) < +∞ ,

sup
m∈N

N−2∑
i=1

‖q̄mi ‖L2(QR) < +∞, sup
m∈N

1√
m
‖q̄m‖L2(QR) < +∞ .

(86)

Moreover, Lemma D.2 shows that

lim sup
m→∞

‖ρm · v̄ − 1‖L1,∞(QR) = 0 . (87)

Now, the crucial task is to obtain bounds on the sequence of rescaled pressure variations {p̄m∆}. Due
to the fact that we rescale with the large parameter m, this bound has to be discussed independently.
In order to simplify the discussions from the viewpoint of notations, we shall from now drop the bars
on the state variables and differential operators - while keeping it on the constitutive functions. Hence
we write % and q instead of %̄ and q̄, etc. For similar reasons, we redefine Ω = ΩR and Q = QR,
τ̄ = τ̄ /tR, etc. Whenever we assume that the functions ḡ1, . . . , ḡ

N satisfy the assumptions (A), we
use p0 = 1 therein. We shall write πm instead of pm∆ .

6.1.2 A uniform property of Pm.

Several properties of the change of variables (79) and the fields P and R of (81), (82) were inves-
tigated in [DDGG20], but the estimates established there are not independent of the parameter m
and cannot be used directly for the incompressible limit. It is our aim to next we prove some uniform
estimates for the present context.

Throughout this section we restrict to a special choice of {ξ1, . . . , ξN} where, in addition to ξN = 1N ,
we require that ξN−1 = v̄. This is possible if v̄ is not parallel to 1N which is the common case. We let
{η1, . . . , ηN} be the dual basis. Then ηN−1 · v̄ = 1. As exhibited in [Dru21a], [BD21b] the component
qN−1 plays a very special part in the analysis of the incompressible model. For a vector inX ∈ RN−1,
we hence shall employ the notation X = (X ′, XN−1) with X ′ = (X1, . . . , XN−2).

For fixed functions ḡ1, . . . , ḡN satisfying (A1)-(A3), recall that (35), (36) allows to introduce a function
p̂ such that

∑N
i=1 ḡ

′
i(p̂(ρ)) ρi = 1. This implies, in particular, that

min ḡ′(p̂(ρ)) ≤ 1

%
≤ max ḡ′(p̂(ρ)) and [max ḡ′]−1(1/%) ≤ p̂(ρ) ≤ [min ḡ′]−1(1/%) .

For states such that 0 < a ≤ % ≤ b < +∞, we therefore have

p̂0(1/b) := [max ḡ′]−1(1/b) ≤ p̂(ρ) ≤ [min ḡ′]−1(1/a) =: p̂1(1/a) . (88)
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Lemma 6.1. Assume that ḡ satisfies (A1)− (A3) and (A′), and define ḡm ∈ C2(]−m, +∞[) via
(28). Then the function Pm of (84) belong to C1(]0,+∞[×RN−1) and it is strictly increasing in the
first variable. In addition, there are constants C1, C2 > 0 independent on m such that

|Pm(%, q)| ≤C1

(
ln

1

min{%̄max − %, %− %̄min}
+ |q|

)
,

|Pm(%, q)− qN−1| ≤C2

([
ln

1

min{%̄max − %, %− %̄min}

]2

+ |q′|+ |q|
2

m

)
,

for all q ∈ RN−1 and for all % subject to %̄min = 1/max v̄ < % < 1/min v̄ = %̄max.

Proof. The fact that for all q ∈ RN−1, the function % 7→ Pm(%, q) is strictly increasing on R+, was
proved in [DDGG20]. We next prove in two steps the bound for |Pm|.
Given (%, q) ∈ R+×RN−1, we recall (83) and define µ := Πq+M̄m(%, q) and ρ = (∇ρ̄f̄

m)−1(µ).
With x = x̂(ρ) and π = Pm(%, q) = π̂m(ρ), we then get µ = ḡm(π) + 1/M̄ lnx, according to
(85). Recall that

∑N
i=1 ḡ

′
i(1 +π/m) ρi = 1 characterises 1 +π/m = p̂(ρ), where p̂ is the pressure-

function introduced in (36). Therefore, (88) implies that p̂0(min v̄) ≤ p̂(ρ) ≤ p̂1(max v̄) whenever
1/max v̄ ≤ |ρ|1 ≤ 1/min v̄. Thus, under this restriction, we find that p̂0 ≤ 1 + π/m ≤ p̂1. We
let k1 (kN ) be an index such that ḡ′k1

= min ḡ′ (ḡ′kN = max ḡ′) according to the assumption (A′),
allowing to define a constant

d0 := min
{

inf
i 6=k1, 1≤s≤p̂1

ḡ′i(s)− ḡ′k1
(s), inf

i 6=kN , p̂0≤s≤1
ḡ′kN (s)− ḡ′i(s)

}
> 0 . (89)

Upper bound for Pm: For all i 6= k1 the definition of µ yields ḡmi (π) − ḡmk1
(π) = 1/Mk1 lnxk1 −

1/Mi lnxi + µ · (ei − ek1), implying that

ḡmi (π)− ḡmk1
(π) ≤ − 1

Mi

lnxi +
√

2 |Pµ| . (90)

Let yi = ŷi(ρ) (cf. (33)). Since π = π̂m(ρ), the definition (30) of the rescaled pressure yields

N∑
i=1

yi (∂πḡ
m
i (π)− ∂πḡmk1

(π)) =
1

%
− ∂πḡmk1

(π) .

In view of (A′) and since ∂πḡ
m
i (π) = ḡ′i(1 + π/m), we can rely on the fact that ∂πḡmk1

(π) =
min ∂πḡ

m(π). We fix an index i1 such that yi1 = maxi 6=k1 yi, the latter implies that

1

%
− ∂πḡmk1

(π) ≤ (N − 1) yi1 (∂πḡ
m
kN

(π)− ∂πḡmk1
(π)) .

Since yi1 ≤ maxM
minM

xi1 we get

xi1 ≥
minM

maxM (N − 1) %

1− % ∂πḡmk1
(π)

∂πḡmkN (π)− ∂πḡmk1
(π)

.

We choose i = i1 in (90), and we now obtain that

ḡmi1 (π)− ḡmk1
(π) ≤− 1

Mi1

ln
( minM

maxM (N − 1) %

1− % ∂πḡmk1
(π)

∂πḡmkN (π)− ∂πḡmk1
(π)

)
+
√

2 |Pµ| =: S .

(91)
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Since ḡmi (1) = 0 for i = 1, . . . , N due to (28),

ḡmi (π) =ḡmi (π)− ḡmi (0) =

∫ 1

0

∂πḡ
m
i (θ π) dθ π =

∫ 1

0

ḡ′i

(
1 +

θ

m
π
)
dθ π ,

and it follows that ḡmi1 (π) − ḡmk1
(π) =

∫ 1

0
(ḡ′i1 − ḡ′k1

)(1 + θ π/m) dθ π. For π ≥ 0 (equivalent to
p̂ ≥ 1) we see that ḡmi1 (π)− ḡmk1

(π) ≥ d0 π with the constant of (89). We combine the latter with (91)
and, using also Young’s inequality, we obtain that π ≤ S/d0.

Now let us estimate the quantity S of (91). If we assume that 1/max v̄ < % < 1/min v̄, then with

ε0 :=
1

%

1− % min v̄

max v̄ −min v̄
,

we have 1/% = min v̄ (1− ε0) + max v̄ ε0. If π ≥ 0, then ḡ′k(1 + π/m) ≤ ḡ′k(1) = v̄k, thus

% ≤ 1

∂πḡmk1
(π) (1− ε0) + ∂πḡmkN (π) ε0

yielding also %
∂πḡ

m
kN

(π)− ∂πḡmk1
(π)

1− % ∂πḡmk1
(π)

≤ 1

ε0
.

This allows to bound

S ≤ 1

minM
ln
(maxM (N − 1)

minM ε0

)
+
√

2 |Pµ| .

Lower bound for Pm: For the lower bound we argue similarly. In the same way as (90), we prove that
ḡmi (π)− ḡmkN (π) ≤ −1/Mi lnxi +

√
2 |Pµ|. Again, the definition of the pressure implies that∑

i 6=kN

yi (∂πḡ
m
i (π)− ∂πḡmkN (π)) =

1

%
− ∂πḡmkN (π) ,

and, adapting the definition of i1 so that yi1 = maxi 6=kN yi we obtain that

yi1 ≥
1

(N − 1) %

∂πḡ
m
kN
%− 1

∂πḡmkN − ∂πḡ
m
k1

.

It follows that

ḡmi1 (π)− ḡmkN (π) ≤ − 1

Mi1

ln
( minM

maxM (N − 1) %

% ∂πḡ
m
kN

(π)− 1

∂πḡmkN (π)− ∂πḡmk1
(π)

)
+
√

2 |Pµ| .

Now if π ≤ 0 (p̂ ≤ 1), then

ḡmi1 (π)− ḡmkN (π) =

∫ 1

0

(ḡ′i1 − g
′
kN

)
(

1 +
θ

m
π
)
dθ π ≥ d0 |π| .

We finish as for the upper bound. Next we discuss the combination Pm(%, q)− qN−1 =: P̃m(%, q).

Bounds for P̃m: Starting from (85), we also get

µi − v̄i qN−1 =
1

Mi

lnxi + ḡmi (π)− v̄i π + v̄i π̃ . (92)

For all i 6= k1, (92) yields

(v̄i − v̄k1) π̃ =ḡmk1
(π)− v̄k1 π − (ḡmi (π)− v̄i π) + 1/Mk1 lnxk1 − 1/Mi lnxi
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+ (µ− v̄ qN−1) · (ei − ek1) .

Note that lnxk1 ≤ 0 and that, due to the concavity of ḡ,

ḡm(π)− v̄ π = m
(
ḡ
(

1 +
π

m

)
− ḡ(1)− ḡ′(1)

π

m

)
≤ 0 . (93)

Since (µ− v̄ qN−1) · (ei − ek1) = Π′q · (ei − ek1), with Π′q =
∑N−2

k=1 qk ξ
k = Π(q′, 0),

(v̄i − v̄k1) π̃ ≤ −(ḡmi (π)− v̄i π)− 1

Mi

lnxi +
√

2 |Π′q| . (94)

We choose i = i1 in (94), and we now obtain that

(v̄i1 − v̄k1) π̃ ≤− (ḡmi1 (π)− v̄i1 π)− 1

Mi1

ln
( minM

maxM (N − 1) %

1− % ∂πḡmk1
(π)

∂πḡmkN (π)− ∂πḡmk1
(π)

)
+
√

2 |Π′q| . (95)

The term with the logarithm on the right-hand side of (95) can be estimate as in the case of (91).
Recalling the identity (93) we also have

ḡm(π)− v̄ π =

∫ 1

0

∫ θ

0

ḡ′′
(

1 + λ
π

m

)
dλdθ

π2

m
. (96)

Thus, exploiting the inequalities (88), we find that |ḡm(π)− v̄ π| ≤ supp̂0<s<p̂1
|ḡ′′(s)| (π)2/m. Since

π = Pm(%, q), it can be estimated using the first claim. We obtain that

π2 ≤ C2
1

(
ln

1

min{%̄max − %, %− %̄min}
+ |q|

)2

.

Overall, (95) implies that

d0 π̃ ≤C2
1

supp̂0<s<p̂1
|ḡ′′(s)|

m

(
ln

1

min{%̄max − %, %− %̄min}
+ |q|

)2

+ C
(

ln
1

min{%̄max − %, %− %̄min}
+ |Π′q|

)
.

We prove the lower bound for π̃ similarly.

6.1.3 Controlling {πm} for type-I weak solutions

In this section, we begin with proving a uniform L1−bound for the sequence of pressures. It turns out
easier to obtain a bound for the functions π̃m := πm − qmN−1 as for πm directly. Note that π̃m =

P̃m(%, q) = Pm(%, q) − qmN−1 corresponds to the nonlinear part P∞ of the pressure function (cf.
(134) that occurs in the analysis of the incompressible model: [Dru21a], [BD21b].

Then, we are able to show that the crucial quantity |ḡm(πm)− v̄ πm| in the relative energy inequality
tends to zero on certain subsets. We begin the proof of these statements with a useful preliminary.

Lemma 6.2. Assume that (ρm, vm) is a weak solution to ( IBVP
m

). For 0 < a < b < +∞ and
t ∈]0, τ̄ [ we let Ωa,b(t) := {x : a ≤ %m(x, t) ≤ b}. If a < %̄min = 1/max v̄ and b > %̄max =
1/min v̄ then

inf
0<t<τ̄

|Ωa,b(t)| > |Ω| −
‖ρm · v̄ − 1‖L1,∞

min{b/%̄max − 1, 1− a/%̄min}
for all m ∈ N .
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Proof. For the choices 0 < a < %̄min and b > %̄max, we can show that

ρm · v̄ ≥ min v̄ %m ≥ b

%̄max

> 1 for %m ≥ b ,

ρm · v̄ ≤ max v̄ %m ≤ a

%̄min

< 1 for %m ≤ a .

Therefore, |ρm · v̄ − 1| ≥ k1 := min{b/%̄max − 1, 1− a/%̄min} on Ωc
a,b(t). This implies that

sup
0<t<τ̄

|Ωc
a,b(t)| ≤ k−1

1 ‖ρm · v̄ − 1‖L1,∞ .

The pressure bound in L1 for incompressible systems is expected (see [FLM16], [Dru21a]). Here we
show that it is valid uniformly for the approximating sequences.

Lemma 6.3. We assume that ḡ satisfies all assumptions of Lemma 6.1. Assume that (ρm, vm) is a
weak solution to ( IBVP

m
), where the mobility tensor satisfies (B1), (B2) and (B3′). We let wm

0 :=
1
|Ω|

∫
Ω
%0,m(x) dx, and we assume that %̄min < infmwm

0 and supmwm
0 < %̄max. Then, the sequence

{π̃m} is uniformly bounded in L1(Q).

Proof. For s > 0 and a fixed b > max{%̄max, supm |%0,m|L∞} we let

L(s) :=

{
2b− b2

s
if s ≥ b

s for 0 ≤ s < b

We can verify that L ∈ C1(R+) and L(s) − sL′(s) = 2b (1 − b/s)χ[b,+∞[(s). The assumptions
imply that the total mass density %m is a renormalised solution to the continuity equation. Then the
following identities are valid in the sense of distributions:

∂tL(%m) + div(L(%m) vm) = (L(%m)− %m L′(%m)) div vm over Qτ̄ ,

∂t

(
L(%m)

)
M

=
1

|Ω|

∫
Ω

(L(%m)− %m L′(%m)) div vm dx over (0, τ̄) .
(97)

Since L(%m(0)) = L(%0,m) = %0,m, the latter and Lemma 6.2 imply that∣∣∣(L(%m)
)
M

(t)− wm
0

∣∣∣ =
1

|Ω|

∣∣∣ ∫ t

0

∫
Ω

(L(%m)− %m L′(%m)) div vm dxdτ
∣∣∣

≤ 2b

|Ω|
‖ div vm‖L2

(∫ t

0

|{x : %m(x, τ) ≥ b}| dτ
) 1

2

≤ 2 b t
1
2 supm ‖ div vm‖L2

|Ω| min{b/%̄max − 1, 1− a/%̄min}
1
2

‖ρm · v̄ − 1‖
1
2

L1,∞ .

We let α0 := min{%̄max − supmwm
0 , inf wm

0 − %̄min}. In view of (87) and (86) we can choose
m1 ∈ N such that

2 b t
1
2 supm ‖ div vm‖L2

|Ω| min{b/%̄max − 1, 1− a/%̄min}
1
2

‖ρm · v̄ − 1‖
1
2

L1,∞ ≤
α0

2
for all m ≥ m1 ,
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with the consequence that

wm
0 −

α0

2
≤
(
L(%m)

)
M

(t) ≤ wm
0 for all t ∈]0, τ̄ [, m ≥ m1 .

With the abbreviaton σm(t) :=
(
L(%m)

)
M

(t) the latter implies that

min{%̄max − σm(t), σm(t)− %̄min} ≥
α0

2
for all 0 < t < τ̄ , m ≥ m1 . (98)

We apply the result of Lemma 6.4 with g = L(%m) − (L(%m))M and, recalling (97), with f :=
−L(%m) vm −∇φm where φm is a solution to the Neumann problem for

−∆φm = (L(%m)− %m L′(%m)) div vm − 1

|Ω|

∫
Ω

(L(%m)− %m L′(%m)) div vm dx .

We easily show that ‖f‖L6,2(Qτ̄ ) ≤ cb supm ‖vm‖L2W 1,2 . Hence, for 1 ≤ p < +∞ arbitrary, we can
find a solution to div ηm = g such that

sup
m
‖ηm‖L∞(0,τ̄ ;W 1,p(Ω)) ≤ cp,b , sup

m
‖∂tηm‖L6,2(Qτ̄ ) ≤ cb sup

m
‖vm‖L2(0,τ̄ ;W 1,2(Ω)) . (99)

We insert ηm in the momentum balance equations. We obtain that∫
Qt

πm div ηm dxdτ =

∫
Ω

%m vm · ηm dx
∣∣∣t
0

+

∫
Qt

{−%m vm (∂tη
m + (vm · ∇)ηm) + S(∇vm) : ∇ηm + %m ηm3 } dxdτ .

Using the uniform bounds (86) and (99), we can show that all integrals on the right-hand side are
uniformly bounded. We want to spare the details here. Similar calculations will be performed in the
proof of Prop. 6.9. Hence supm |

∫
Qt
πm div ηm dxdτ | < +∞. Moreover∫

Qt

π̃m div ηm dxdτ =

∫
Qt

(πm − qmN−1) div ηm dxdτ =

∫
Qt

πm div ηm +∇qmN−1 · ηm dxdτ ,

implies together with supm ‖∇qm‖L2 < +∞ that also supm |
∫
Qt
π̃m div ηm dxdτ | < +∞. Using

the property that 0 < σm(t) < %̄max implies that σm(t) = L(σm(t)), we next see that∫
Qt

π̃m div ηm dxdτ =

∫
Qt

P̃m(%m, qm) (L(%m)− L(σm)) dxdτ

=

∫
Qt

|P̃m(%m, qm)− P̃m(σm, q
m)| |L(%m)− σm|+ P̃m(σm, q

m) (L(%m)− σm) dxdτ ,

where we used that s 7→ P̃m(s, ·) is nondecreasing. Hence, it follows that∫
Qt

π̃m div ηm dxdτ ≥
∫
Qt

|P̃m(%m, qm)| |L(%m)− σm| − 2 |P̃m(σm, q
m)| |L(%m)− σm| dxdτ .

Due to (98) and Lemma 6.1, |P̃m(σm, q
m)| ≤ C2 (ln2(2/α0)+|(qm)′|+|qm|2/m). Hence, it follows

that ∫
Qt

π̃m div ηm dxdτ ≥
∫
Qt

|P̃m(%m, qm)| |L(%m)− σm| dxdτ
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− c sup
m

(1 + ‖(qm)′‖L1 +
1

m
‖qm‖2

L2) .

We let Ω∗(t) := {x : L(%m(x, t))− σm(t)| ≥ α0/4}. Then we have shown that∫
Qt

π̃m div ηm dxdτ ≥ α0

4

∫ t

0

∫
Ω∗(τ)

|P̃m(%m, qm)| dxdτ − C ,

implying that supm
∫ t

0

∫
Ω∗(τ)

|P̃m(%m, qm)|dxdτ < +∞. If, otherwise, |L(%m) − σm| < α0/4,

then (98) implies that |L(%m) − wm
0 | ≤ 3α0/4. Hence L(%m) ∈]%̄min, %̄max[. This implies that

%̄min < %m < %̄max and that min{%̄max − %m, %m − %̄min} ≥ α0/4. Then, Lemma 6.1 yields

|P̃m(%m, qm)| ≤ c
(

ln
4

α0

+ |(qm)′|+ 1

m
|qm|2

)
in Ω \ Ω∗(t) .

We integrate this inequality over Ω \ Ω∗(t) and the claim follows using (86).

The strategy of so-called Bogowski estimates is well-known. We here apply the Th. 11.17 of [FN].
References to original literature are to find therein.

Lemma 6.4. Assume that Ω is a bounded domain of class C 0,1. Let 1 < p < +∞, 1 ≤ r ≤ +∞
and g ∈ Lp,r(Qτ̄ ) satisfy (g)M(t) ≡ 0 for almost all 0 < t < τ̄ . Moreover, we assume that
∂tg = div f in the sense of distributions, with a field f ∈ Lq,s(Q; R3) for some 1 < q < +∞,
1 ≤ s ≤ ∞. Then, the problem div η = g in Qτ̄ such that η = 0 on ∂Ω × (0, τ̄) possesses a
solution such that, with a constant c depending only on Ω and the involved exponents, the following
estimates are valid: ‖η‖LrW 1,p ≤ c ‖g‖Lp,r and ‖∂tη‖Lq,s ≤ c ‖f‖Lq,s .

6.1.4 Preliminaries for the convergence theorem

In order to prove convergence for terms involving the pressure, we shall need a little bit more than the
L1−bound. In particular, we must show in which sense we can expect that ḡm(πm) − v̄ πm tends
to zero, and we must establish that the L1−norm of the pressure tends to zero over sets where the
mass density is small or large. These points require further technical work. We begin with a useful
preliminary.

Lemma 6.5. We adopt the assumptions of Lemma 6.1 and of Lemma 6.2. For (x, t) ∈ Q, we define

Φm(x, t) := −ρm(x, t) ·
∫ 1

0
ḡ′′
(

1 + θ πm(x, t)/m
)
dθ. Then Φm is nonnegative, {Φm} is bounded

in L∞ and the following properties are valid:

(i) Letting 0 < p̂0 < p̂1 be as in (88), for all 0 < a < b < +∞ all 0 < t < τ̄

Φm(x, t) ≥ a inf{|ḡ′′i (s)| : p̂0(1/b) < s < p̂1(1/a), i = 1, . . . , N} over Ωa,b(t) ,

(ii) There is m1 ∈ N such that infm≥m1, 0<t<τ̄

∫
Ω

Φm(x, t) dx > 0.

Proof. We directly obtain that Φm is positive due to the concavity of ḡ.

Ad (i). Due to (36), 1 + πm/m = p̂(ρm) and (88) implies that p̂0(1/b) ≤ 1 + θ πm/m ≤ p̂1(1/a) in
Ωa,b(t) for all θ ∈ [0, 1]. By the definition of p̂ we then verify over Ωa,b(t) that

Φm =− ρ̄m ·
∫ 1

0

ḡ′′
(

1 + θ (p̂(ρm)− 1)
)
dθ ≥ %m min

i=1,...,N, θ∈[0,1]

∣∣∣ḡ′′i (1 + θ (p̂(ρm)− 1)
)∣∣∣ ,
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and (i) follows.

Ad (ii). Due Lemma 6.2, we can choose m1 ∈ N such that inf0<t<τ̄ |Ω%̄min/2,2%̄max(t)| > |Ω|/2, for
all m ≥ m1, and it follows from (i) that∫

Ω

Φm(x, t) dx ≥ %̄min

4
|Ω| min

p̂0(max v̄/2)≤s≤p̂1(2 max v̄)
min

i=1,...,N
|ḡ′′i (s)| .

This proves (ii). It remains to show the L∞-bound. Employing the growth conditions (A6), we get

−ρm · ḡ′′
(

1 + θ (p̂(ρm)− 1)
)
≤ c̄3 ρ

m ·
ḡ′
(

1 + θ (p̂(ρm)− 1)
)

1 + θ (p̂(ρm)− 1)
.

Let s̄ be the constant occurring in (A5). If p̂(ρm) > s̄ we estimate ḡ′(1+θ (p̂(ρm)−1)) ≤ ḡ′(1) = v̄,
and we obtain that

Φm ≤ c̄3 ρ
m · v̄

∫ 1

0

1

1 + θ (p̂(ρm)− 1)
dθ = c̄3 ρ

m · v̄ ln p̂(ρm)

p̂(ρm)− 1
.

Due to (39) we have %m ≤ c p̂1/γ(ρm), thus |Φm| ≤ c sups>s̄ s
1
γ ln s
s−1

. If p̂(ρm) ≤ s̄, then (A4) allows
to estimate ḡ′(p̂) ≤ c̄2/p̂ and thus

Φm ≤c̄3 ρ
m ·
∫ 1

0

ḡ′
(

1 + θ (p̂(ρm)− 1)
)

1 + θ (p̂(ρm)− 1)
dθ

≤c̄3 c̄2 %
m

∫ 1

0

1

(1 + θ (p̂(ρm)− 1))2
dθ ≤ c

%m

p̂(ρm)
.

Since %m ≤ c̄−1
1 p̂(ρm) due to (38), the claim follows.

Corollary 6.6. . Assumptions of Lemma 6.1, 6.5. If lim supm→∞
√
m |
∫

Ω
ρ0,m · v̄− 1 dx| = 0, then

limm→∞
1√
m
‖qm‖L2(Q) = 0 and for all 0 < a0 < b0 < +∞∫ τ̄

0

∫
Ωa0,b0

(τ)

|ḡm(πm)− πm v̄)| dxdτ → 0 for m→ +∞ .

Proof. Due to (86), {qmi } is bounded in L2(Q) for i = 1, . . . , N − 2. Hence {qmi /
√
m} obviously

tends to zero in L2(Q). In order to show that also {qmN−1/
√
m} converges to zero in L2, we at first

exploit the equations (25). Multiplying with the vector v̄ and integrating over Ω, we get ∂t(ρm·v̄)M = 0.
Hence, for all 0 ≤ t ≤ τ̄ ,

m

∫
Ω

ρm(x, t) · v̄ − 1 dx = m

∫
ΩR

ρ0,m(x) · v̄ − 1 dx . (100)

With the function Φm of Lemma 6.5, we further note that

ρm · v̄ − 1 = ρm ·
(
ḡ′(1)− ḡ′

(
1 +

πm

m

))
= Φm πm

m
. (101)

Now, the identity (100) implies that
∫

Ω
Φm πm dx = m

∫
Ω
ρ0,m(x) · v̄− 1 dx, which we use to prove

that

(qmN−1)M(t)

∫
Ω

Φm dx = m

∫
Ω

ρ0,m · v̄ − 1 dx−
∫

Ω

Φm
(
π̃m + qmN−1 − (qmN−1)M

)
dx .
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With k0 := infm≥m1,0<t<τ̄

∫
Ω

Φm(x, t) dx > 0, this allows to bound

k0 |(qmN−1)M(t)| ≤ m

∣∣∣∣∫
Ω

ρ̄0,m · v̄ − 1 dx

∣∣∣∣+ sup
m
‖Φm‖L∞

∫
Ω

|π̃m|+ |qmN−1 − (qmN−1)M | dx

Invoking Lemma 6.3, {π̃m} is bounded in L1(Q) while, owing to the Poincaré inequality and (86),
{qm − (qm)M} is bounded in L2(Q). Hence

lim sup
m→∞

1√
m
‖(qmN−1)M‖L1(0,τ̄) = 0 and lim sup

m→∞

1√
m
‖qmN−1‖L1(Q) = 0 . (102)

To show the strong convergence to zero in L2, we use the inequality (cf. Appendix, Lemma D.3, (i))

1

m
max

k=1,...,N−1
|(qmk )M(t)|2 ≤ C1

(∫
Ω

(f̄m(ρ̄) + 1)
1
2 dx

)2

+
C2

m
|∇q̄m|2L1(Ω) ,

valid with C1, C2 independent on m. Up to constants, the right-hand is estimated by the sum of∫
Ω
|f̄m|+ 1 dx which is uniformly bounded in L∞(0, τ̄) and of m−1 |∇q̄m|2L1(Ω), which converges to

zero in L1(0, τ̄). Thus, {m−1 |(qmN−1)M(t)|2} is equi-integrable over (0, τ̄). Since (102) implies that
it converges pointwise to zero, we then easily prove the convergence to zero in L2(0, τ̄), for instance
using Egoroff’s theorem.

Next we want to prove the second convergence result. By means of (93), (96), there is λ ∈ [0, 1]
such that ḡmi (πm) − v̄i π

m = 1
2
ḡ′′(1 + λπm/m) (πm)2/m. Using the property (88), we find that

p̂0(1/b0) ≤ 1 + πm/m ≤ p̂1(1/a0) in Ωa0,b0(t), implying that

|ḡmi (πm)− v̄i π
m| ≤ 1

2
sup

p̂0<s<p̂1

|ḡ′′(s)| (π
m)2

m

over Ωa0,b0(t). Due to Lemma 6.1, we have |πm| ≤ c (1 + |qm|) on Ωa0,b0(t). Thus, m |ḡmi (πm) −
v̄i π

m|χΩa0,b0
(t) ≤ c (1 + |qm|2) and the convergence to zero in L1 follows from the first claim.

The discussion of the energy inequality and of the stability estimate is more technical in the case of
weak solutions We next set up some further preliminaries.

For 0 ≤ t ≤ τ̄ , and 0 < a0 < b0 < +∞, we let

Ωb0,+(t) = {x ∈ Ω : %(x, t) ≥ b0} and Ωa0,−(t) = {x ∈ Ω : %(x, t) ≤ a0} ,
Ωa0,b0(t) = {x ∈ Ω : a0 ≤ %(x, t) ≤ b0} .

(103)

The occurrence of these sets is typical for the discussion of singular limits in fluid dynamics, see [FN].
For the multicomponent case, we define another essential set in which all densities are strictly positive

Bs0,+(t) = Bs0,+(t; a0, b0) := {x ∈ Ωa0,b0(t) : min
i=1,...,N

ρi(x, t) ≥ s0} for s0 > 0 . (104)

Lemma 6.7. We let (ρ∞, p∞, v∞) be subject to (C) and (ρ, v) satisfy (47). With rmin := infQ %
∞

and rmax := supQ %
∞ (cf. (58)) and 0 < δ0 arbitrary, we define a0 := rmin − δ0 and b0 :=

rmax + δ0. Moreover we let r0 := inf(x,t)∈Qτ̄ , i=1,...,N ρ
∞
i (x, t) and 0 < s0 < r0. With Em(t) =

Em(ρ, v | ρ∞, v∞)(t) there are C, C ′ > 0 such that, for all m ∈ N and all 0 ≤ t ≤ τ̄ ,

Em(t) ≥ C
(
|Ωa0,−(t)|+

∫
Ωb0,+(t)

|ρ|γ dx
)

and Em(t) ≥ C ′ |Ωa0,b0(τ) \Bs0,+(τ)| .
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Proof. Since |ρ− ρ∞| ≥ |%− %∞|/
√
N , the bounds (58) for %∞ imply that{

|ρ(x, t)− ρ∞(x, t)| ≥ δ0√
N

for %(x, t) ≤ rmin − δ0 ,

|ρ(x, t)− ρ∞(x, t)| ≥ δ0√
N (rmax+δ0)

%(x, t) for %(x, t) ≥ rmax + δ0 .
(105)

The Lemma B.2 allows for the coercivity

f̄m(ρ)− f̄m(ρ∞)−Df̄m(ρ∞)(ρ− ρ∞) ≥λ1

2

|ρ− ρ∞|2

ω(%, %∞)
, (106)

where ω(%, %∞) := max{%, %∞}
(
1 + max{%, %∞}

)θ0 and (105) then shows that

Em(t) ≥ λ1

2rmax(1 + rmax)θ0
δ2

0

N
|Ωa0,−(t)|+ λ1

2

δ2
0

N b2
0(1 + 1/b0)θ0

∫
Ωb0,+(t)

[%(x, t)]1−θ0 dx .

(107)

By means of Lemma B.2, we can also infer for % ≥ R1 that

f̄m(ρ)− f̄m(ρ∞)−Df̄m(ρ∞) · (ρ− ρ∞) ≥ c0 |ρ|γ − f̄m(ρ∞)−Df̄m(ρ∞) · (ρ− ρ∞) .

Using Young’s inequality and the bounds established in Lemma B.2 for f̄m(ρ∞) and Df̄m(ρ∞), we
easily can prove with r0 = mini,(x,t)∈Q ρ

∞
i (x, t) that

|Df̄m(ρ∞) · (ρ− ρ∞)| ≤ 1

minM

∣∣∣ ln r0 minM min v̄

maxM

∣∣∣ |ρ− ρ∞|
≤c0

2
|ρ|γ + C(γ, T,M, r0, rmax) ,

which implies that f̄m(ρ)−f̄m(ρ∞)−Df̄m(ρ∞)·(ρ−ρ∞) ≥ c0
2
|ρ|γ−c′1. With b1 := max{R1, b0}

we obtain that

Em(t) ≥ c0

2

∫
Ωb1,+(t)

|ρ|γ dx− c′1 |Ωb1,+(t)| ≥ c0

2

∫
Ωb0,+(t)

|ρ|γ dx−
(
c′1 +

c0b
γ
1

2

)
|Ωb0,+(t)| .

(108)

We distinguish two cases. At first, if θ0 ≤ 1, then (107) shows directly that |Ωb0,+(t)| ≤ c Em(t), and
(108) implies that

∫
Ωb0,+(t)

|ρ|γ dx ≤ C Em(t). At second, if θ0 > 1, then with b2 > b0 arbitrary

|Ωb0,+(t)| = |Ωb0,b2(t)|+ |Ωb2,+(t)| ≤ bθ0−1
2

∫
Ωb0,b2 (t)

%1−θ0 dx+
1

bγ2

∫
Ωb2,+(t)

%γ dx

≤ bθ0−1
2

∫
Ωb0,+(t)

%1−θ0 dx+
1

bγ2

∫
Ωb0,+(t)

%γ dx .

We combine the latter with (107) and it follows that

|Ωb0,+(t)| ≤ bθ0−1
2

2N b2
0(1 + 1/b0)θ0

λ1δ2
0

Em(t) +
1

bγ2

∫
Ωb0,+(t)

%γ dx .

Thus, (108) helps showing that

Em(t) ≥c0

2

∫
Ωb0,+(t)

|ρ|γ dx−
(
c′1 +

c0b
γ
1

2

) 2N bθ0−1
2 b2

0(1 + 1/b0)θ0

λ1δ2
0

Em(t)
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− 1

bγ2

(
c′1 +

c0b
γ
1

2

) ∫
Ωb0,+(t)

%γ dx .

Choosing b2 such that N
γ
2 (c′1 +

c0b
γ
1

2
)/bγ2 ≤ c0/4, it follows that

∫
Ωb0,+(t)

|ρ|γ dx ≤ C Em(t).

In order to prove the second inequality, we observe that, if mini ρi ≤ s0 < mini ρ
∞
i = r0, then

|ρ− ρ∞| ≥ r0 − s0 > 0. Hence,

(r0 − s0)2 ≤ b0(1 + b0)θ0
|ρ− ρ∞|2

ω(%, %∞)
in Ωa0,b0(τ) \Bs0,+(τ) ,

and integration yields the claim.

These bounds allow to prove the following useful estimate.

Lemma 6.8. Let F : Qτ̄ → RN×3 be some given field, and assume that (ρ∞, p∞, v∞) satisfies the
conditions (C). Then, there is a constant C depending only on ρ∞ such that, for all m ≥ 1 and for
almost all 0 < t < τ̄ ,∣∣∣∣∫

Ω

F (·, t) : (ρ− ρ∞)⊗ (v − v∞) dx

∣∣∣∣ ≤C |F (·, t)|L3 |∇(v∞ − v)|L2 (Em(t))
1
2 .

Proof. Consider Ωc
b0,+

(t) = {x : %(x, t) ≤ b0}. By means of Hölder’s inequality∫
Ωc
b0,+

(t)

F : (ρ− ρ∞)⊗ (v∞ − v) dx =

∫
Ωc
b0,+

(t)

ω(%, %∞)
1
2 F :

ρ− ρ∞

ω(%, %∞)
1
2

⊗ (v∞ − v) dx

≤
√
b0 (1 + b0)

θ0
2 |F |L3 |v∞ − v|L6(Ω)

(∫
Ωc
b0,+

(t)

|ρ− ρ∞|2

ω(%, %∞)
dx

) 1
2

≤
√

2b0 (1 + b0)
θ0
2 |F |L3 |v∞ − v|L6 (Em(t))

1
2 ,

For the integral over Ωb0,+(t), with the help of Hoelder’s inequality and the fact that % ≥ b0 ≥ rmax ≥
%∞ we argue that∣∣∣∣∣

∫
Ωb0,+(t)

F : (ρ− ρ∞)⊗ (v∞ − v) dx

∣∣∣∣∣
≤

(∫
Ωb0,+(t)

|ρ− ρ∞|γ dx

) 1
γ

|v∞ − v|L6 |F |L3 |Ωb0,+(t)|
1
2
− 1
γ

≤
√
N
(

1 +
rmax

b0

)(∫
Ωb0,+(t)

|%|γ dx

) 1
γ

|v∞ − v|L6 |F |L3 |Ωb0,+(t)|
1
2
− 1
γ .

Then, invoking Lemma (6.7), the Poincaré inequality and the Sobolev embedding theorem, we can
show that∣∣∣∣∣
∫

Ωb0,+(t)

F : (ρ− ρ∞)⊗ (v∞ − v) dx

∣∣∣∣∣ ≤ C |F |L3 (Em(t))
1
γ |∇(v∞ − v)|L2 (Em(t))

1
2
− 1
γ .
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Next we prove the main result in this section, a complement to the L1−bound for {π̃m}, which is
necessary to discuss the relative energy inequality in the weak solution case.

Proposition 6.9. Let ḡ satisfy all assumptions of Lemma 6.1, and assume that (ρm, vm) is a weak
solution to ( IBVP

m
), where the mobility tensor satisfies (B1), (B2) and (B3′). We let (ρ∞, p∞, v∞)

be a strong solution to (IBVP∞) subject to (C). We define: µ∞ = p∞ v̄ + (1/M̄) ln x̂(ρ∞) and for
all 1 ≤ k ≤ N − 1, q∞k = ηk · µ∞, and p̃∞ := p∞ − q∞N−1. With rmin and rmax denoting the lower
and upper bound of %∞ over Q, we let 0 < δ0 < min{%̄max − rmax, rmin − %̄min}, a0 := rmin − δ0

and b0 := rmax + δ0. Then, there is a positive number C = C(δ0) depending on the data such that,
for all ε > 0 and 0 ≤ t ≤ τ̄ and all m ∈ N∫ t

0

∫
Ωc
a0,b0

(τ)

|π̃m| dxdτ ≤ ε

∫
Qt

|∇(vm − v∞)|2 + |∇(qm − q∞)|2 dxdτ

+
C

ε

∫ t

0

ψm(τ) Em(τ) dτ +
C

m

∫
Qt

|qm|2 dxdτ ,

with ψm(t) = 1 + |v∞(·, t)|2L∞ + |p̃∞(·, t)|L∞ + |(q∞)′(·, t)|L∞ + |(qm)′(·, t)|L1 + |π̃m(·, t)|L1 .

Proof. Throughout the proof, we re-denote ρ = ρm, µ = µm, etc.

We choose a nonincreasing, nonnegative function L : R+ → R such that L(s) = 1 for all 0 ≤ s ≤
rmin − 2δ0 and L(s) = 0 for all s ≥ rmin − δ0, and such that that |L′(s)| ≤ 4 δ−1

0 for all s ∈ R+.

Consider the auxiliary function g(x, t) := L(%(x, t)) defined in Q. With 1 ≤ p < +∞ arbitrary, and
with χ denoting the characteristic function of the set Ωa0,−(t), use of |L| ≤ χ yields

|g(·, t)|Lp(Ω) = |L(%(·, t))|Lp(Ω) ≤ |{x : %(x, t) < a0}|
1
p ≤ c(δ0) (Em(t))

1
p , (109)

where we employed Lemma 6.7 (cf. (107)). Moreover, since |L′(%)| ≤ 4δ−1
0 χ and |L(%)| ≤ χ,

|(L′(%) %− L(%)) div v|L2(Ω) ≤c(δ0) |χ div v|L2(Ω)

≤|χ div(v − v∞)|L2(Ω) + | div v∞|L∞(Ω) |Ωa0,−(t)|
1
2

≤| div(v − v∞)|L2(Ω) + c(δ0) | div v∞|L∞(Ω) (Em(t))
1
2 .

(110)

For all 1 < s ≤ 6 and for s′ := s/(s − 1), W 1,s′(Ω) embedds into L
3s

(2s−3)+ (Ω) ⊆ L2(Ω). We call
cS(s) the embedding constant. This with the help of (97) shows that

|∂tg|[W 1,s′ (Ω)]∗ ≤|g v|Ls(Ω) + cS(s) |(L′(%) %− L(%)) div v|L2(Ω)

≤|g (v − v∞)|Ls(Ω) + |v∞|L∞ |g|Ls(Ω) + cS(s) |(L′(%) %− L(%)) div v|L2(Ω) .

We invoke (109) and (110), and we obtain that

|∂tg|[W 1,s′ (Ω)]∗ ≤ c
(
|v − v∞|W 1,2(Ω) + |v∞|L∞ (Em(t))

1
s + | div v∞|L∞ (Em(t))

1
2

)
.

Let div η = g(x, t)− (g)M(t) according to Lemma 6.4. Then, for all 1 ≤ p < +∞ and 1 < s ≤ 6,
Lemma 6.4 implies that there are constants Cb depending on p and the Bogovski operator such that

|η(·, t)|W 1,p(Ω) ≤ Cb |g(·, t)|Lp(Ω) ≤ c(δ0) (Em(t))
1
p ,

|∂tη(·, t)|Ls(Ω) ≤ Cb |∂t(g− (g)M)|[W 1,s′ (Ω)]∗)

≤ c
(
|(v − v∞)(·, t)|W 1,2(Ω) +

(
|v∞|L∞(Em(t))

1
s + | div v∞|L∞(Em(t))

1
2

))
.

(111)
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Inserting η into the weak formulations of ( IBVP
m

) and (IBVP∞) yields∫
Qt

π̃ (g− (g)M) dxdτ =

∫
Ω

%v · η dx
∣∣∣t
0

+

∫
Qt

{η · ∇qN−1 + (S(∇v)− % v ⊗ v) : ∇η − % v ∂tη + % η3} dxdτ ,∫
Qt

p̃∞ (g− (g)M) dxdτ =

∫
Ω

%∞ v∞ · η dx
∣∣∣t
0

+

∫
Qt

{η · ∇q∞N−1 + (S(∇v∞)− %∞ v∞ ⊗ v∞) : ∇η − %∞ v∞ ∂tη + %∞ η3} dxdτ .

We subtract both identities and we proceed with some estimates. Use of (111) and Young’s inequality
yields ∣∣∣∣∫

Ω

η · ∇(qN−1 − q∞N−1) dx

∣∣∣∣ ≤|η|L2 |∇(q − q∞)|L2 ≤ c (Em(t))
1
2 |∇(q − q∞)|L2

≤ε |∇(q − q∞)|2L2 +
c2

ε
Em(t) . (112)

Similarly, invoking (111) and Poincaré’s inequality,∣∣∣∣∫
Ω

S(∇(v − v∞)) : ∇η dx
∣∣∣∣ ≤c |v∞ − v|W 1,2(Ω) |∇η|L2(Ω) ≤ c |∇(v∞ − v)|L2(Ω) (Em(t))

1
2

≤ε |∇(v∞ − v)|2L2(Ω) +
c2

4ε
Em(t) . (113)

We next consider the acceleration terms, where we first expand as follows:

% v ⊗ v − %∞ v∞ ⊗ v∞ = % (v − v∞)⊗ (v − v∞)

+ (%− %∞)
(

(v − v∞)⊗ v∞ + v∞ ⊗ (v − v∞) + v∞ ⊗ v∞
)

+ %∞
(

(v − v∞)⊗ v∞ + v∞ ⊗ (v − v∞)
)
.

Now we derive a series of estimates. At first, with s = 6γ/(2γ − 3)∣∣∣∣∫
Ω

% (v − v∞)⊗ (v − v∞) : ∇η dx
∣∣∣∣

≤
∣∣∣% 1

2

∣∣∣
L2γ
|√% (v − v∞)|L2 |v − v∞|L6(Ω) |∇η|Ls

≤ ‖%‖
1
2
Lγ,∞ (2Em(t))

1
2 cS |v − v∞|W 1,2 ‖∇η‖Ls,∞ ≤ C (Em(t))

1
2 |∇(v − v∞)|L2 .

Second, using Lemma 6.8 with F = 1N ⊗ (v∞ · ∇)η,∣∣∣∣∫
Ω

(%− %∞) (v − v∞)⊗ v∞ : ∇η dx
∣∣∣∣ ≤ C (Em(t))

1
2 |v − v∞|W 1,2 |v∞|L∞ ‖∇η‖L3,∞

≤ C |v∞|L∞ (Em(t))
1
2 |∇(v − v∞)|L2 .

Next we decompose Ω = Ωa0,b0(t) ∪ Ωc
a0,b0

, where a0 = rmin − δ0 and b0 := rmax + δ0 according
to (103). On the set Ωa0,b0(t), we have % ≤ b0. Invoking also (111) and (106),∣∣∣∣∣

∫
Ωa0,b0

(t)

(%− %∞) v∞ ⊗ v∞ : ∇η dx

∣∣∣∣∣ ≤√b0(1 + b0)
θ0
2 |v∞|2L∞

∣∣∣ %− %∞

ω
1
2 (%, %∞)

∣∣∣
L2
|∇η|L2
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≤ C |v∞|2L∞ (Em(t))
1
2 (Em(t))

1
2 .

Choosing p = γ′ in (111), use of Lemma 6.7 implies that∣∣∣∣∣
∫

Ωc
a0,b0

(t)

(%− %∞) v∞ ⊗ v∞ : ∇η dx

∣∣∣∣∣ ≤|v∞|2L∞ |(%− %∞)χΩc
a0,b0

(t)|Lγ |∇η|Lγ′

≤c |v∞|2L∞ (Em(t))
1
γ

+ 1
γ′ ,

and by similar means |
∫

Ω
%∞ (v− v∞)⊗ v∞ : ∇η dx| ≤ rmax |v∞|L3 |v− v∞|L6 |∇η|L2 . Overall

the acceleration term is estimated as∣∣∣∣∫
Ω

(% v ⊗ v − %∞ v∞ ⊗ v∞) : ∇η dx
∣∣∣∣ ≤ ε |∇(v∞ − v)|2L2(Ω) +

C2

ε
|v∞|2L∞ Em(t) . (114)

Next we consider the terms with time derivatives, and we decompose

% v − %∞ v∞ = % (v − v∞) + (%− %∞) v∞ .

With |v∞|L∞div
:= |v∞|L∞ + | div v∞|L∞ , use of (111) implies that∣∣∣∣∣

∫
Ωc
b0,+

(t)

% (v − v∞) · ∂tη dx

∣∣∣∣∣ ≤√b0 |
√
% (v − v∞)|L2 |∂tη|L2

≤
√

2b0 (Em(t))
1
2 (t) |∂tη|L2 ≤ c

√
b0 (Em(t))

1
2 (|∇(v − v∞)|L2 + |v∞|L∞div

(Em(t))
1
2 )

≤ ε |∇(v − v∞)|2L2 + c
√
b0

(c√b0

4ε
+ |v∞|L∞div

)
Em(t) ,∣∣∣∣∣

∫
Ωc
b0,+

(t)

(%− %∞) v∞ · ∂tη dx

∣∣∣∣∣ ≤√b0(1 + b0)
θ0
2

∣∣∣ %− %∞

ω
1
2 (%, %∞)

∣∣∣
L2
|v∞|L∞ |∂tη|L2

≤ c |v∞|L∞ (Em(t))
1
2 (|∇(v∞ − v)|L2 + |v∞|L∞div

(Em(t))
1
2 ) .

Moreover, invoking (111) and Lemma 6.7 again, with Ē := supm sup0<t<τ̄ Em(t) < +∞,∣∣∣∣∣
∫

Ωb0,+(t)

% (v − v∞) · ∂tη dx

∣∣∣∣∣ ≤ ∣∣∣√%χΩb0,+(t)

∣∣∣
L2γ
|√% (v∞ − v)|L2 |∂tη|

L
2γ
γ−1

≤ c (Em(t))
1

2γ (Em(t))
1
2

(
|∇(v∞ − v)|L2 + (|v∞|L∞ (Em(t))

γ−1
2γ + | div v∞|L∞ (Em(t))

1
2 )
)

≤ ε |∇(v∞ − v)|2L2 + c
(cĒ 1

γ

4ε
+ |v∞|L∞ + Ē

1
2γ | div v∞|L∞

)
Em(t) .

Here we used 2γ/(γ − 1) ≤ 6 to employ (111) with s = 2γ/(γ − 1). In order to estimate the next
contribution, we define: If γ ≤ 2, then s1 := γ/(γ − 1) and s2 = +∞; If γ > 2, then s1 = 2 and
s2 := 2γ/(γ − 2). We have 1/γ + 1/s1 + 1/s2 = 1 and 1/γ + 1/s2 ≥ 1/2. By means of Hölder’s
inequality and (111) it follows that∣∣∣∣∣

∫
Ωb0,+(t)

(%− %∞) v∞ · ∂tη dx

∣∣∣∣∣ ≤ |(%− %∞)χΩb0,+(t)|Lγ |Ωb0,+(t)|
1
s2 |v∞|L∞ |∂tη|Ls1

≤ c (Em(t))
1
γ

+ 1
s2 |v∞|L∞

(
|∇(v∞ − v)|L2 + (| div v∞|L∞ (Em(t))

1
2 + |v∞|L∞ (Em(t))

1
s1 )
)
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≤ c |v∞|L∞
[
Ē
] 1
γ

+ 1
s2
− 1

2
(Em(t))

1
2

(
|∇(v∞ − v)|L2 + | div v∞|L∞ (Em(t))

1
2

)
+ c |v∞|2L∞ Em(t) .

Hence, the integral with time derivatives obeys∣∣∣∣∫
Ω

(% v − %∞ v∞) : ∂tη dx

∣∣∣∣ ≤ ε |∇(v∞ − v)|2L2(Ω) +
C2

ε
|v∞|2L∞div

Em(t) . (115)

The term |
∫

Ω
(% − %∞) η3 dx| is easily treated by similar means. At last we consider the intergals

involving the pressure. At first∣∣∣∣∫
Ω

p̃∞ (g− (g)M) dx

∣∣∣∣ ≤ 2 |p̃∞|L∞ |g|L1 ≤ 2 |p̃∞|L∞ |Ωa0,−(t)| ≤ c Em(t) . (116)

Moreover, using that (g)M depends only on time, the bound (109) implies that∣∣∣∣∫
Ω

π̃m (g)M dx

∣∣∣∣ ≤ |g|L1 |π̃m|L1 ≤ c |π̃m|L1 Em(t) , (117)

Hence, with the help of (112), (113), (114), (115), (116), (117),∣∣∣∣∫ t

0

∫
Ω

π̃ L(%) dxdτ

∣∣∣∣ ≤ε (‖∇(v∞ − v)‖2
L2(Qt)

+ (‖∇(q∞ − q)‖2
L2(Qt)

)

+
C

ε

∫ t

0

(|v∞|2L∞ + |∇v∞|L∞ + |p̃∞|L∞|+ |π̃m|L1) Em(τ) dτ .

(118)

On the support of L(%), we know that %(x, t) ≤ rmin− δ0. Hence %(x, t)− %∞(x, t) ≤ 0. Since P̃m
is increasing in the first argument (cf. Lemma 6.1), we get (π̃ − P̃m(%∞, q))L(%) ≤ 0. We thus can
write

π̃ L(%) =(π̃ − P̃m(%∞, q))L(%) + P̃m(%∞, q)L(%)

=− |π̃ − P̃m(%∞, q)|L(%) + P̃m(%∞, q)L(%) ,

implying that − π̃ L(%) ≥|π̃|L(%)− 2 |P̃m(%∞, q)|L(%) . (119)

Since min{%̄max − %∞, %∞ − %̄min} ≥ δ0, the properties of P̃m proved in Lemma 6.1 show that
|P̃m(%∞, q)| ≤ c (ln(1/δ0) + |q′|+ |q|2/m). With the help of (119) we see that

−π̃ L(%) ≥|π̃|L(%)− C(δ0) (1 + |(q − q∞)′|+ |(q∞)′|)L(%)

− C(δ0)
1

m
(1 + |q|)2 L(%) .

Then, invoking Young’s inequality again, we conclude 0 < ε < 1 arbitrary that

−π̃ L(%) ≥|π̃|L(%)− ε |q′ − (q∞)′ − (q − q∞)′M)|2 L(%)

− C(δ0)
(1

ε
+ |(q − q∞)′M |+ |(q∞)′|+ |q|

2

m

)
L(%) .

Since |Ωa0,−(t)| ≤ cEm(t), we bound∫
Ω

(ε−1 + |(q − q∞)′M |+ |(q∞)′|)L(%) dx ≤ c
(
ε−1 + |(q − q∞)′|L1 + |(q∞)′|L∞

)
Em(t) .
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We use also the Poincaré inequality for functions with mean value zero and, with 0 < ε arbitrary, we
conclude that ∣∣∣∣∫

Ω

π̃ L(%) dx

∣∣∣∣ ≥ ∫
Ω

|π̃|L(%) dx− cΩ ε

∫
Ω

|∇(q − q∞)|2 dx

− c ((4ε)−1 + |(q − q∞)′|L1 + |(q∞)′|L∞) Em(t)− C

m

∫
Ω

|q|2 dx ,

which we integrate in time and combine with (118). Without essential modifications, we can obtain the
same result with a function L : R+ → R such that L(s) = 1 for all s ≥ rmax + 2δ0 and L(s) = 0
for all s ≤ rmax + δ0. The support of L(%) is then contained in Ωb0,+(t). This proves the claim.

Finally, we state two auxiliary estimates that shall also be of use in the proof of the convergence
theorem.

Lemma 6.10. We adopt the same assumptions as in Lemma 6.1 and Coro. 6.6. Let further a0 and
b0 be defined as in (103) and 0 < s0 < r0 = inf(x,t)∈Qτ̄ , i=1,...,N ρ

∞
i (x, t). Suppose that η ∈

L∞(Qτ̄ ; {1N}⊥). Then, there are functions {om} such that om → 0 in L1(Qτ̄ ) and such that, for all
0 < t < τ̄ and 0 < ε < 1,∫ t

0

∫
Ωa0,b0

(τ)\Bs0,+(τ)

∣∣∣ N∑
i−1

ηi
1

M̄i

ln x̂i(ρ
m)
∣∣∣ dxdτ ≤ ε

∫
Qt

|∇(qm − q∞)|2 dxdτ

+ C

∫ t

0

(
ε−1 ‖η‖2

L∞ + (|(q∞)′|L∞ + |(qm)′|L1) ‖η‖L∞
)
Em(τ) dτ + ‖om‖L1(Qt) ,

where Bs0,+(t) is defined in (104) and C is a constant depending on a0, b0 and s0 − r0.

Proof. In the sets Ωa0,b0(t) the density % is strictly positive. Hence, all densities ρ1, . . . , ρN are pos-
itive almost everywhere for weak solutions of type-I (cf. Th. C.2). Since πm is finite, the chemical
potentials µmi = ḡmi (πm) + (1/M̄i) ln x̂i(ρ

m) are finite almost everywhere. If η attains values in the
orthogonal complement of 1N , we get

N∑
i=1

ηi
1

M̄i

ln x̂i(ρ
m) =η · (µm − ḡm(πm)) = η · (Πqm − ḡm(πm))

=η ·
(

Π′qm −
(
ḡm(πm)− πm v̄

)
− π̃m v̄

)
,

where we used the identities π̃m = πm − qmN−1 and Πqm − qmN−1 v̄ = Π′qm. Hence, over a set
Ωa0,b0(t) we obtain that

∣∣∣ N∑
i=1

ηi
1

M̄i

ln x̂i(ρ
m)
∣∣∣ ≤ C |η| (|(qm)′|+ |π̃m|+ |ḡm(πm)− πm v̄|) ,

with a constant C that depends only on |Π| and |v̄|. In order to estimate |π̃m|, we rely on Lemma 6.1,
yielding ∣∣∣ N∑

i=1

ηi
1

M̄i

ln x̂i(ρ
m)
∣∣∣ ≤ C |η|

(
1 + |(qm)′|+m−1 |qm|2 + |ḡm(πm)− πm v̄|

)
≤ C |η| (1 + |(qm − q∞)′|+ |(q∞)′|+ om) ,
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with om(x, t) :=m−1 |qm(x, t)|2 + χΩa0,b0
(t) |ḡm(πm(x, t))− πm(x, t) v̄| .

To see that om → 0 in L1(Qτ̄ ), we invoke (86) and the Corollary 6.6. With the help of Young’s
inequality, we obtain that∣∣∣ N∑

i=1

ηi
1

M̄i

ln x̂i(ρ
m)
∣∣∣ ≤ε |qm − q∞ − (qm − q∞)M |2 +

C2

ε
|η|2

+ C |η| (1 + |(q∞)′|+ |((qm)′ − (q∞)′)M |+ om) .

We integrate over Ωa0,b0(τ) \Bs0,+(τ) for τ ∈]0, t[. Observe that∫
Ωa0,b0

(τ)\Bs0,+(τ)

|η| (1 + |(q∞)′|+ |((qm)′ − (q∞)′)M |) dx

≤|η(·, τ)|L∞ (1 + |(q∞)′(·, τ)|L∞ + |(qm)′(·, τ)− (q∞)′(·, τ)|L1) |Ωa0,b0(τ) \Bs0,+(τ)| .

Invoking Lemma 6.7 it follows that∫
Ωa0,b0

(τ)\Bs0,+(τ)

|η| (1 + |(q∞)′|+ |((qm)′ − (q∞)′)M |) dx

≤c |η(·, τ)|L∞ (1 + |(q∞)′(·, τ)|L∞ + |(qm(·, τ)− q∞(·, τ))′|L1) Em(τ) .

Finally, we invoke the Poincaré inequality to control
∫
Qt
|q − q∞ − (q − q∞)M |2 using the gradient.

Integrating in time, we are done.

6.2 The convergence proof for weak solutions

As the mass densities do not need being bounded from below as assumed in Prop. 5.1, the two
last integrals in the expression of the remainder Rm(t) are not finite. In order to obtain an iden-
tity similar to Prop. 5.1 in the weak solution context, we must provide a substitute for the vector
of chemical potentials. The techniques to employ would be different for the two types of weak so-
lutions distinguished in Section C. Here we however discuss only the case of a uniformly positive
Onsager operator (cf. (B3′), weak solutions of type-I). Under the assumption (B3′), the variable q be-
longs to L2(0, τ̄ ; W 1,2(Ω;RN−1)) and the identity J = −M(ρ) Π∇q. holds over the domain. Let
0 < δ0 < 1, a0 := rmin − δ0 and b0 := rmax + δ0. The sets Ωa0,b0(t) and Bs0,+(t) are as in (103),
(104). Following the appendix, Section E, we can derive the following variant of Prop. 5.1.

Proposition 6.11. Let (ρ, v) satisfy ( IBVP
m

) and (ρ∞, p∞, v∞) satisfy (IBVP∞). Then

Em(t) +

∫ t

0

DVisc(vm | v∞)(τ) dτ +

∫ t

0

∫
Ω

ΠTM(ρ)Π∇(q − q∞) : ∇(q − q∞) dxdτ

≤
∫ t

0

∫
Ωa0,b0

(τ)

(∂tv
∞ + div(ρ∞ v∞)) · (ḡm(π)− π v̄)− (ρ · v̄ − 1) (∂tp

∞ + v∞ · ∇p∞)dxdτ

+

∫
Ω

p∞(x, ·) (ρm(x, ·) · v̄ − 1) dx
∣∣∣t
0

+ Em(0) +

∫ t

0

(Rm(τ) + Em(τ)) dτ ,

with the remainder Rm and the additional error Em. We have Rm =
∑4

i=1Rm,i, where Rm,i is as
in Proposition 5.1 for i = 1, 2 and

Rm,3(t) := −
∫

Ω

(M(ρ)−M(ρ∞))∇µ∞ · (Π∇q − µ∞) dx
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Rm,4(t) :=

∫
Bs0,+(t)

(∂tρ
∞ + div(ρ∞ v∞)) ·

(
Dk̄(ρ)−Dk̄(ρ∞)−D2k̄(ρ∞) (ρ− ρ∞)

)
dx ,

and, with η∞ := ∂tρ
∞ + div(ρ∞ v∞),

Em(t) :=

∫
Ωa0,b0

(t)\Bs0,+(t)

η∞ ·
(
Dk̄(ρ)−Dk̄(ρ∞)−D2k̄(ρ∞) (ρ− ρ∞)

)
dx

+

∫
Ωc
a0,b0

(t)

η∞ ·
(
Π′(q − q∞)−D2k̄(ρ∞) (ρ− ρ∞)

)
+ (p̃∞ − π̃) div v∞ dx .

Next we want to prove convergence. The arguments are however more technical in this case than in
Section 5, since the pressure is not bounded. We at first consider the remainder Rm, and we notice
that it essentially possesses the same expression as in Prop. 5.1. For the estimate ofRm,1, employing
the Lemma 6.8 with F = 1N ⊗ ∂tv∞, we obtain that∣∣∣ ∫

Ω

(%− %∞) ∂tv
∞ · (v∞ − v) dx

∣∣∣ ≤ C |∂tv∞|L3 |∇(v∞ − v)|L2 (Em(t))
1
2 .

Invoking (61) and the Young inequality, we obtain the estimate (62), and (63) is also proved as above.
The integral |

∫
Ωc
a0,−

(t)
%∞
(
(v∞ − v) · ∇

)
v∞ · (v∞ − v) dx| can be controlled exactly as in (64).

Moreover, use of (107) shows that∣∣∣∣∣
∫

Ωa0,−(t)

%∞
(
(v∞ − v) · ∇

)
v∞ · (v∞ − v) dx

∣∣∣∣∣ ≤ rmax |∇v∞|L6 |v∞ − v|2L6 |Ωa0,−(t)|
1
2

≤ rmax |∇v∞|L6 (|v∞|W 1,2 + |v|W 1,2) |v∞ − v|W 1,2 |Ωa0,−(t)|
1
2

≤ ε

∫
Ω

S(∇(v∞ − v)) : ∇(v∞ − v) dx+
C

ε
|∇v∞|2L6 (|v∞|W 1,2 + |v|W 1,2)2 Em(t) .

Overall, the first remainder Rm,1 still obeys (65), with ε > 0 arbitrary, the same function ψ(t), but a
possibly different constant C . As to Rm,2, since (65) holds true, the contributions

∫
Ω

(v∞ − v) (ρ −
ρ∞) : ∇µ∞ dx and

∫
Ω

(v∞ − v) b (%− %∞) dx are estimated as above, yielding (66).

For the estimate of Rm,3, the argument must be somewhat updated. Consider the symmetric matrix
M̃(ρ) = ΠTM(ρ) Π with Π from (77). For w ∈ RN−1 and k = 1, . . . , N − 1, ηk · PΠw =
ηk · Πw = wk due to the choice of Π and of {η1, . . . , ηN−1} being the dual basis. Hence, with
cη := supk=1,...,N−1 |ηk|∞ we see that |w| ≤ cη |PΠw|. We employ (B3′) to see that

ΠTM(ρ) Πw · w ≥ λ0

cη
|w|2 for all w ∈ RN−1 (120)

and M̃(ρ) is uniformly positive definite and invertible. We have

(M(ρ)−M(ρ∞))∇µ∞ : (Π∇q −∇µ∞) = (M̃(ρ)− M̃(ρ∞))∇q∞ : ∇(q − q∞) .

Arguing first as in Section 5.1, we rely on the smallest positive eigenvalue of M(ρ) and show that (cp.
(67))

|(M̃(ρ)− M̃(ρ∞))∇q∞ · ∇(q − q∞)|

≤ c ‖∂M‖2
∞

4 ε λ0

|ρ− ρ∞|2∞ |∇q∞|2 + ε M̃(ρ)∇(q − q∞) · ∇(q − q∞)
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≤ ω0 ‖∂M‖2
∞

4 ε λ0

|∇q∞|2 |ρ− ρ
∞|2

ω(%, %∞)
+ ε M̃(ρ)∇(q − q∞) · ∇(q − q∞) ,

where we used the fact that max{%, %∞} ≤ b0, hence ω(%, %∞) ≤ b0(1 + b0)θ0 =: ω0 in Ωb0,−(t).

In order to also treat the integral over Ωb0,+(t) we now observe that ‖M̃−1(ρ)‖2 ≤ cη/λ0. Hence,
with λ̄ from (50) we can also bound

|(M̃(ρ)− M̃(ρ∞))∇q∞ · ∇(q − q∞)| = |(I− M̃−1(ρ)M̃(ρ∞))∇q∞ · M̃(ρ)∇(q − q∞)|

≤
(
M̃(ρ) (I− M̃−1(ρ)M̃(ρ∞))∇q∞ · (I− M̃−1(ρ)M̃(ρ∞))∇q∞

) 1
2

×
(
M̃(ρ)∇(q − q∞) · ∇(q − q∞)

) 1
2

≤ ‖M̃(ρ)‖
1
2

(
1 + cη

‖M̃(ρ∞)‖
λ0

)
|∇q∞| (M̃(ρ)∇(q − q∞) · ∇(q − q∞))

1
2

≤ |Π|
√
λ̄
(

1 + cη |Π|2 (1 + rmax)
λ̄

λ0

)√
1 + |ρ| |∇q∞| (M̃(ρ)∇(q − q∞) · ∇(q − q∞))

1
2 .

Hence, invoking also (107)∫
Ωb0,+(t)

|(M̃(ρ)− M̃(ρ∞))∇q∞ · ∇(q − q∞)| dx

≤ C

∫
Ωb0,+(t)

√
1 + |ρ| |∇q∞| (M̃(ρ)∇(q − q∞) · ∇(q − q∞))

1
2 dx

≤ C |∇q∞|L∞
(∫

Ω

M̃(ρ)∇(q − q∞) · ∇(q − q∞) dx
) 1

2
(∫

Ωb0,+(t)

1 + |ρ| dx
) 1

2

≤ ε

∫
Ω

M̃(ρ)∇(q − q∞) · ∇(q − q∞) dx+
C ′

4ε
|∇q∞|2L∞ Em(t) ,

Overall, the estimation ofRm,3 yields (68) again, possibly with a different constant.

For estimating Rm,4, we exploit that Dk̄(ρ) − Dk̄(ρ∞) − D2k̄(ρ∞) · (ρ − ρ∞) is integrated on
Bs0,+(t) in which inf(x,t),i=1,...,N ρi(x, t) ≥ s0 > 0 and %(x, t) ≤ b0. Thus, the same procedure as
in Section 5.1 can be applied for estimating this integral, to the result (69).

Overall, the estimate (70) is also valid and together with the inequality of Prop. 6.11, we get

Em(t) + (1− 2ε)

∫ t

0

DVisc(vm | v∞)(τ) +

∫
Ω

M̃(ρm)∇(qm − q∞) : ∇(qm − q∞) dx dτ

≤
∫ t

0

∫
Ωa0,b0

(τ)

∂tρ
∞ + div(ρ∞ v∞) · (ḡm(π)− v̄ πm)− (ρm · v̄ − 1) (∂tp

∞ + v∞ · ∇p∞)dxdτ

+ Em(0) +

∫
Ω

p∞(x, ·) (ρm(x, ·) · v̄ − 1) dx
∣∣∣t
0

+
C

ε

∫ t

0

ψm(τ) Em(τ) dτ +

∫ t

0

Em(τ) dτ .

Here M̃(·) = ΠTM(·)Π, and the function ψm obeys (71), so that {ψm} is uniformly bounded in
L1(0, τ̄).

It remains to show how to control the error term Em. In the estimates, we abbreviate η∞ := ∂tρ
∞ +

div(ρ∞ v∞), which is a L∞−field with values in the orthogonal complement of 1N . We next consider
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successively every contribution to Em. At first, invoking Young’s inequality, and noting that Lemma 6.7
implies that |Ωc

a0,b0
(t)| ≤ c Em(t), we see that∣∣∣∣∣

∫ t

0

∫
Ωc
a0,b0

(τ)

η∞ · Π′(q − q∞) dxdτ

∣∣∣∣∣ ≤ ε

∫ t

0

∫
Ω

|q − q∞ − (q − q∞)M |2dxdτ

+

∫ t

0

(
1

4ε
|η∞|2L∞ + |q′ − (q∞)′|L1 |η∞|L∞) |Ωc

a0,b0
(τ)| dτ

≤ε′
∫
Qt

|∇(q − q∞)|2dx+ c

∫ t

0

(
1

4ε′
|η∞|2L∞ + |q′ − (q∞)′|L1 |η∞|L∞) Em(τ) dτ .

Second, we can use Lemma 6.7 again to show that∣∣∣∣∣
∫ t

0

∫
Ωc
a0,b0

(t)

η∞ ·D2k̄(ρ∞) (ρ− ρ∞) dxdτ

∣∣∣∣∣ ≤c(r0)

∫ t

0

|η∞|L∞
∫

Ωc
a0,b0

(τ)

|ρ− ρ∞| dxdτ

≤c
∫ t

0

|η∞|L∞ Em(τ) dxdτ .

For all 0 < ε < 1, the Proposition 6.9 implies that∣∣∣∣∣
∫ t

0

∫
Ωc
a0,b0

(τ)

π̃ div v∞ dxdτ

∣∣∣∣∣ ≤ ‖ div v∞‖L∞
∫ t

0

∫
Ωc
a0,b0

(τ)

|π̃| dxdτ

≤ ‖ div v∞‖L∞ ε
∫
Qt

|∇(qm − q∞)|2 + |∇vm − v∞|2 dxdτ

+ ‖ div v∞‖L∞ C ε−1

∫ t

0

ψm(τ) Em(τ) dτ + C ‖ div v∞‖L∞
1

m
‖qm‖2

L2(QT ) .

With (107), we next see that∣∣∣∣∣
∫ t

0

∫
Ωc
a0,b0

(t)

p̃∞ div v∞ dxdτ

∣∣∣∣∣ ≤ c

∫ t

0

|p̃∞|L∞ | div v∞|L∞ Em(τ) dτ .

It was shown in Lemma 6.10 that∫ t

0

∫
Ωa0,b0

(τ)\Bs0,+(τ)

η∞ ·Dk̄(ρ) dxdτ ≤ ε

∫
Qt

|∇(qm − q∞)|2 dxdτ

+ C

∫ t

0

(
ε−1 ‖η∞‖2

L∞ + (|(q∞)′|L∞ + |(qm)′|L1) ‖η∞‖L∞
)
Em(τ) dτ + ‖om‖L1(Qt) .

Finally, invoking Lemma 6.7, we bound∫
Ωa0,b0

(t)\Bs0,+(t)

η∞ ·
(
−Dk̄(ρ∞)−D2k̄(ρ∞) (ρ− ρ∞)

)
dx

≤ c(r0, rmax, b0) |η∞|L∞ |Ωa0,b0(t) \Bs0,+(t)| ≤ c |η∞|L∞ Em(t) .

Thus the error satisfies the bound∫ t

0

Em(τ) dτ ≤ ε

∫
Qt

M̃(ρm)∇(qm − q∞) : ∇(qm − q∞) dx+
C

ε

∫ t

0

ψ̃m(τ) Em(τ) dτ ,
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ψ̃m(τ) := |η∞|2L∞ + (1 + |(qm)′|L1 + |(q∞)′|L1) |η|L∞)

+ ‖ div v∞‖L∞ ψm(τ) + |p̃∞|L∞ | div v∞|L∞ .

Hence, with õm = C (‖om‖L1(Q) + ‖ div v∞‖L∞m−1 ‖qm‖2
L2(Q)), we see that

Em(t) + (1− 3ε)

∫ t

0

(
DVisc(vm | v∞)(τ) +

∫
Ω

M̃(ρm)∇(qm − q∞) : ∇(qm − q∞) dx
)
dτ

≤ C

ε

∫ t

0

ψ̃m(τ) Em(τ) dτ + õm +

∫ t

0

∫
Ωa0,b0

(t)

(∂tρ
∞ + div(ρ∞ v∞)) · (ḡm(π)− v̄ πm)dxdτ

−
∫ t

0

∫
Ω

(ρm · v̄ − 1) (∂tp
∞ + v∞ · ∇p∞) dxdτ + Em(0) +

∫
Ω

p∞(x, ·) (ρm(x, ·) · v̄ − 1) dx
∣∣∣t
0
.

Next we want to establish the convergence of the right-hand side. We first consider the initial relative
energy Em(0). Since vm(0) = v0 = v∞(0),

Em(0) =

∫
Ω

ḡm(π̂m(ρ0,m)) · ρ0,m − π̂m(ρ0,m) dx

+

∫
Ω

k̄(ρ0,m)− k̄(ρ0,∞)−Dk̄(ρ0,∞) (ρ0,m − ρ0,∞) dx .

Since ρ0,∞ and ρ0,m → ρ0,∞ in L1(Ω), the second term tends to zero. Recalling that 1 +π0,m/m =
p̂(ρ0,m) we can show that

ḡm(π̂m(ρ0,m)) · ρ0,m − π̂m(ρ0,m)

=

∫ 1

0

ḡ′(1 + λ [p̂(ρ0,m)− 1])− ḡ′(p̂(ρ0,m)) dλ · ρ0,m (p̂(ρ0,m)− 1) .

Since in Theorem 4.3, we assume that ρ0,m is uniformly positive and bounded, and that p̂(ρ0,m)− 1
converges to zero in L1(Ω), we easily see that Em(0)→ 0.

Invoking (87), we can further show that

sup
0<t<τ̄

∣∣∣∣∫
Ω

p∞(x, t) (ρm(x, t) · v̄ − 1) dx

∣∣∣∣+

∫
Qτ̄

|ρm · v̄ − 1| |∂tp∞ + v∞ · ∇p∞| dxdτ → 0 .

Due to Cor. 6.6,
∫ τ̄

0

∫
|Ωa0,b0(τ)

|∂tρ∞ + div(ρ∞ v∞)| · |ḡm(π) − v̄ πm|dxdτ tends to zero. Hence,
using the Gronwall–Lemma as in Section 5.2, we conclude that

lim sup
m→∞

sup
0<t<τ̄

Em(t) = 0 and (121)

lim sup
m→∞

∫
Qτ̄

S(∇(vm − v∞)) : ∇(vm − v∞) + M̃(ρm)∇(qm − q∞) : ∇(qm − q∞) dxdτ = 0 .

Finally let us verify the convergence claims of Theorem 4.3. The convergence ρm → ρ∞ in L1(Ω) for
all t, and vm → v∞ in L2(0, τ̄ ; W 1,2(Ω;R3)), are direct consequences of (121).

We next turn proving a convergence result for {πm}. On the sets Ωa0,b0(t) recall that

N−1∑
k=1

qmk ξ
k + M̄m(%m, qm) =

1

M̄
ln x̂(ρm) + ḡm(π̂m(ρm))

=
1

M̄
ln x̂(ρm) + hm + v̄ π̂m(ρm) ,

(122)
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with hm := χΩa0,b0
(t) (ḡm(π̂m(ρm)) − v̄ π̂m(ρm)), which we have shown to converge to zero in

L1(Qτ̄ ) (cp. Cor. 6.6).

Let η ∈ RN according to (51) satisfy η · v̄ = 1 and η · 1N = 0. Multiplication in (122) with η yields

qmN−1 = η ·
(

1
M̄

ln x̂(ρm) + hm
)

+ π̂m(ρm). Subtracting the mean-value (qmN−1)M on both sides of

this identity yields, for πm∗ := π̂m(ρm)− (qmN−1)M , and ζm := qmN−1 − (qmN−1)M ,

πm∗ = ζm − η ·
( 1

M̄
ln x̂(ρm) + hm

)
. (123)

Since {ζm} possesses zero mean-value over Ω, it is bounded in L2(0, τ̄ ; W 1,2(Ω)). Employing
(121), ζm → q∞N−1−(q∞N−1)M in L2(0, τ̄ ; W 1,2(Ω)). OnBs0,+(t), the functions η · 1

M̄
ln x̂(ρm) are

uniformly bounded. Using Lemma 6.10, we also see that
∫ T

0

∫
Ωa0,b0

\Bs0,+
|η ·( 1

M̄
ln x̂(ρm))| dxdτ →

0. Then, (123) shows that {χΩa0,b0
(t) π

m
∗ } is dominated by a strongly convergent sequence in L1(Q)

and converges pointwise, which yields

χΩa0,b0
(t) π

m
∗ −→ q∞N−1 − (q∞N−1)M − η ·

1

M̄
ln x̂(ρ∞) strongly in L1(Q) . (124)

Note that πm∗ = π̃m+qmN−1−(qmN−1)M , and
∫ τ̄

0

∫
Ωb0,+(τ)∪Ωa0,−(τ)

|π̃m| dxdτ → 0 is a consequence

of Prop. 6.9. Since also∫
Ωb0,+(τ)∪Ωa0,−(τ)

|qmN−1 − (qmN−1)M | dx ≤|qmN−1 − (qmN−1)M |L2 |Ωb0,+(τ) ∪ Ωa0,−(τ)|
1
2

≤c |∇qm|L2 (Em(τ))
1
2 ,

we see that χΩc
a0,b0

(t) π
m
∗ → 0 in L1(Q), and (124) implies that

πm∗ −→ q∞N−1 − (q∞N−1)M − η ·
1

M̄
ln x̂(ρ∞) = p∞ strongly in L1(Q) .

We shall motivate only very shortly the proof of Theorem 4.5 for the convergence of weak solutions
to weak solutions to (IBVP∞). It relies on the a priori bounds (86), Lemma 6.3 and the convergence
property (87) valid for the sequence {%m, qm, vm}. With these bounds at hand, we can pass to the
limit as in the sections 8–11 of [Dru21a] and obtain the convergence up to subsequences to a weak
solution with defect measure for (IBVP∞).
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A Rescaling of the PDEs

We first introduce in well-known manner average quantities in order to rescale the equations (5). These
are: pav (pressure), vav (modulus of velocity), %av (density). We further denote by ḡ the constant of
gravitational acceleration.

Next we introduce reference quantities: tR = vav/ḡ (time), LR = tR vav = (vav)2/ḡ (position),
(cR)2 := pav/%av (speed of compression waves), ηR := %av vav LR (viscosity), MR := %av T tR
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(mobility), gR := %av/pav (free energy). These choices of the reference quantities are dictated by the
wish that, after rescaling the PDEs, the Mach- number is the only one small parameter.

From now, all these constants will be denoted with the sup-script R independently of whether it is an
average or an arbitrary reference-value. We renormalise time and space via t := t̄ tR and x = x̄ LR.
For a function f = f(x, t), its renormalisation is defined via f̄(x̄, t̄) := f(LR x, tR t̄)/fR, where fR

is a reference quantity with the same physical dimension as f . For b = −ḡ e3, the rescaled equations
(5) assume the form

%̄ (∂t̄v̄ + v̄ · ∇̄v̄) + div S(∇̄v̄) +
1

Ma2
∇̄p̄ = −%̄ e3 , with Ma =

vR

cR
=

√
%R vR√
pR

, (125)

where Ma is called the Mach-number. We also introduced

S(∇̄v̄(x̄, t̄)) = 2 η̄ (∇̄v̄(x̄, t̄))sym + λ̄ divv̄(x̄, t̄) I, with η̄ = η/ηR, λ̄ = λ/ηR .

In this place there is an important observation concerning the comparison of the multicomponent case
with the single-component case.

Remark A.1. The Froude number Fr is the ratio
√

g tR

vR . Our choice of the scaling guarantees that

Fr = 1. In the single-component case, a typical scaling uses a bounded ratio Fr2/Ma in (125).
This can not be expected to yield a limit in the general multicomponent case. Let formally expand
p̄ = p0 + p1 Ma + p2 Ma2 + . . ., and choose Fr2 = Ma. Then, matched asymptotics in (125)
requires that ∇p1 = −%̄ e3. In general, this equation has no solution p1 for a non constant %̄. Now,
the mass density of a multicomponent liquid is not approximately constant at low Mach-number. For
instance, consider a mixture of incompressibile liquids subject to (10). Then

∑N
i=1 ρi/ρ

R
i = 1, where

ρR
i are the densities of the fluids at reference conditions (cf. (1)). Hence, the total mass % is subject

to the constraint 1/% = 1/
∑N

i=1 ρ
R
i yi with the mass fractions yi. Except for the very singular case

of all the ρR
i s being identical, a constant mass density will occur only in the case of mixtures where a

single dominant widely dominate, which are called dilute.

Next we want to normalise of the mass continuity equations. We define

µ̄j(x̄, t̄) :=
1

Ma2

1

gR

(
gj

(
pR p̄(x̄, t̄)

)
− gj(pR)

)
+

RT

(vR)2Mj

ln x̄j(x̄, t̄) . (126)

Note that the fractions are normalised using the refrence-value xR
j = 1. Since pR/gR = %R,

∇̄ µ̄j(x̄, t̄)
T

=
%R ∂pgj

(
pR p̄(x̄, t̄)

)
Ma2 T

∇̄p̄(x̄, t̄) +
R

(vR)2Mj

∇̄ ln x̄j(x̄, t̄)

=
LR

(vR)2 T

(
∂pgj(p(x, t))∇p+

RT

Mj

∇ lnxj(x, t)
)

=
LR

(vR)2
∇µj
T
.

We infer that

J i(x, t) = −
N∑
j=1

Mij∇
µj
T

= −
N∑
j=1

(vR)2Mij

LR
∇̄ µ̄j(x̄, t̄)

T
= −(vR)2MR

LR T

N∑
j=1

M̄ij ∇̄µ̄j(x̄, t̄) .

Using the special choice of MR = %R T tR, we then infer for the normalised partial mass densities
ρ̄i(x̄, t̄) := ρi(x̄ L

R, t̄ tR)/%R that

∂t̄ρ̄i + div
(
ρ̄i v̄ −

N∑
j=1

M̄ij ∇̄µ̄j
)

= 0 , (127)
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in which µ̄j obeys (126). We let p̄∆(x̄, t̄) := (p̄(x̄, t̄) − 1)/Ma2. For s ∈]Ma−2, +∞[ -this is the
maximal possible range of p̄∆ for p̄ being positive- we define a new function

gMa
j (s) :=

1

Ma2

1

gR

(
gj
(
pR [1 + Ma2 s]

)
− gj(pR)

)
.

Then, we can rewrite (126) as µ̄j = gMa
j (p̄∆) + (1/M̄j) ln x̄j , in which M̄j is a normalised molar

mass defined via M̄j := Mj (vR)2/(RT ). We note that (gMa
i )′(s) = %R ∂pgi(p

R [1 + Ma2 s]),
which implies that

(gMa
i )′(p̄∆) = %R ∂pgi

(
p
)

and
N∑
i=1

(gMa
i )′(p̄∆) ρ̄i =

N∑
i=1

∂pgi(p) ρi .

Since p(x, t) = p̂(T, ρ(x, t)) with the implicit function p̂(T, ·) defined by (10), the latter shows that
p̄∆(x̄, t̄) = π̂(ρ̄(x̄, t̄)), where now π̂ is the implicit function defined by the normalised equation of
state

∑N
i=1(gMa

i )′(π) ρ̄i = 1 with solution π = π̂(ρ̄1, . . . , ρ̄N). Overall, we can write the system
(125), (127) as

∂t̄ρ̄i + div
(
ρ̄i v̄ −

N∑
j=1

M̄ij ∇̄µ̄j
)

=0 ,

%̄ (∂t̄v̄ + v̄ · ∇̄v̄) + div S(∇̄v̄) + ∇̄p̄∆ =− %̄ e3 ,

where the Mach number does not occur explicitly. Indeed, it occurs only at the level of the constitutive
equations. For Ma−2 =: m and p∆ =: π, the constitutive model is given by

µ̄i = µ̂mi (π, x̄i) :=ḡmi (π) +
1

M̄i

ln x̄i with ḡmi (π) = m
(
ḡi
(
1 +

π

m

)
− ḡi(1)

)
,

with the normalised functions ḡi(s) = gi(p
R s)/gR. Note also that these definitions allow to show that

the chemical potentials are rescaled via µ̄i(x̄, t̄) = (µi(L
R x̄, tR t̄)−µR

i )/(vR)2 with µR
i := gi(p

R).

B Uniform properties of the free energy function

We let m ∈ N and gm1 , . . . , g
m
N satisfy all assumptions (A1)–(A3). For ρ ∈ RN

+ and p > 0, we let

V m(p, ρ) :=
∑N

i=1 ∂pg
m
i (p) ρi. Exploiting (A3), we verify that V m(p, ρ) → 0 for p → +∞, while

V m(p, ρ) → +∞ for p → 0. Since (A2) implies that p 7→ V m(p, ·) is decreasing, the equation
V m(p, ρ) = 1 possesses a unique solution p = p̂m(ρ) for all ρ ∈ RN

+ . We easily check that

∂ρi p̂
m(ρ) = − ∂pg

m
i (p̂m(ρ))

∂2
pg

m(p̂m(ρ)) · ρ
. (128)

For ρ ∈ RN
+ , we recall that the free energy function is given by (cp. (11))

fm(ρ) =
N∑
i=1

ρi g
m
i (p̂m(ρ))− p̂m(ρ) +RT

N∑
i=1

ρi
Mi

ln x̂i(ρ) .

Lemma B.1. Assume that gm is subject to (A1) − (A3). Then, fm belongs to C2(RN
+ ) and is a

function of Legendre–type on RN
+ . Moreover, the following properties are valid:
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(i) If (A4) is valid, then fm ∈ C(RN
+ );

(ii) If both (A4) and (A5) hold, then fm is co-finite (Dfm : RN
+ → RN is surjective);

(iii) If (A4) is valid with constants c̄1, c̄2 independent on m then

c̄1 % ≤ p̂m(ρ) ≤ c̄2 % for 0 < p̂m(ρ) < s̄ .

(iv) If (A5) is valid with constants independent onm and v0 := lim infm→∞min ∂pg
m(s̄) > 0 then

(
β v0

maxα

) maxα
maxα−1

s̄ %
maxα

maxα−1 ≤p̂m(ρ) ≤
(

maxα max v

β

) β
β−1

s̄ %
β
β−1 for p̂m(ρ) ≥ s̄

(v) Under the assumptions of (iii), (iv), there are c0, c1 > 0 such that fm(ρ) ≥ c0 |ρ|γ − c1 for all
ρ ∈ RN

+ and all m ∈ N with γ = maxα/maxα− 1;

(vi) If {gm} is bounded in C2(K) for every compact subset K ∈ R+, then, there is a positive
function λ1 ∈ C(]0,+∞[) such that

λmin(D2
ρ,ρf

m(ρ)) ≥ λ1(p̂m(ρ)) , for all ρ ∈ RN
+ , m = 1, 2, . . .

(vii) If (A4)− (A6) are valid with constants independent on m, and if the assumptions (iii), (iv) hold,
then there is λ1 > 0 such that for all ρ ∈ RN

+ , m ≥ 1,

λmin(D2
ρ,ρf

m(ρ)) ≥ λ1

% (1 + %)θ0
with θ0 := 2

β

β − 1

( 1

β
− 1

maxα

)
.

Proof. Owing to (128) and (A1), p̂m ∈ C1(RN
+ ). The expressions for Dfm(ρ) was already obtained

in (54). It shows that fm ∈ C2(RN
+ ), and the Hessian D2fm(ρ) is given in (55). Let υm(ρ) :=

∂pg
m(p̂m(ρ)) and Km(ρ) := −1/

∑N
k=1 ∂

2
pg

m
k (p̂m(ρ)) ρk. Using the function k of (34), D2fm is

equivalently expressed

D2fm(ρ) = Km(ρ) υm(ρ)⊗ υm(ρ) +D2k(ρ) .

In order to show that fm is strictly convex, we first note that

%

RT
M

1
2 Y

1
2 D2k(ρ)Y

1
2 M

1
2 = I−

√
x⊗
√
x ,

where M = diag(M1, . . . ,MN), Y = diag(y1, . . . , yN) and
√
x = (

√
x1, . . . ,

√
xN) with y =

ŷ(ρ) and x = x̂(ρ). The matrix on the right-hand side is the projection onto the orthogonal comple-
ment of span{

√
x}. Hence, for η ∈ RN arbitrary

%

RT
D2k(ρ)η · η ≥ |Y −

1
2 M− 1

2 η|2 − (Y −
1
2 M− 1

2 η ·
√
x)2 .

We let η1 := Y −
1
2 M− 1

2 η − (Y −
1
2 M− 1

2 η ·
√
x)
√
x be the projection. Then

η − Y
1
2 M

1
2 η1 = (Y −

1
2 M− 1

2 η ·
√
x)Y

1
2 M

1
2
√
x .
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We multiply the latter with υm(ρ). Since Y
1
2 M

1
2
√
x = ρ/

√
% n̂(ρ), and since υm(ρ) · ρ = 1, it

follows that η = Y
1
2 M

1
2 η1 + ρ (υm(ρ) · η− υm(ρ) · Y 1

2 M
1
2 η1). The latter clearly allows to bound

|η| ≤
√

maxM (1 + |ρ| |υm(ρ)|) |η1|+ |ρ| |υm(ρ) · η|

≤
√
RT maxM (1 + |ρ| |υm(ρ)|)

√
%

RT
D2k(ρ)η · η +

|ρ|√
Km

√
Km |υm(ρ) · η|

≤max
{√

%RT maxM (1 + |ρ| |υm(ρ)|), |ρ|√
Km

}√
D2fm(ρ)η · η .

Recall that |υm(ρ)| ≤ N max ∂pg
m(p̂m(ρ)) and that |ρ| ≤ N1/2 % ≤ N1/2/min ∂pg

m(p̂m(ρ)).
Hence we see that

D2fm(ρ)η · η ≥min
{ RT

% maxM (1 +N
3
2

max ∂pgm(p̂m(ρ))

min ∂pgm(p̂m(ρ))
)2
,
Km(ρ)

N %2

}
|η|2 . (129)

This shows that fm is strictly convex.

In order to prove that fm is a function of Legendre-type, it remains to prove that |∇fm(ρ)| → +∞
as ρ→ ρ0 with ρ0

i = 0 for some i (essential smoothness). If ρ→ ρ0 6= 0, then it is readily seen that
p̂m(ρ)→ p̂m(ρ0) finite due to the definition of p̂m. Hence, recalling (54),

|∇fm(ρ)| ≥ − 1

mi

ln x̂i(ρ)− sup
m
|gm(p̂m(ρ))| → +∞ for ρ→ ρ0 s.t. ρ0

i = 0, |ρ0| > 0 .

If ρ → 0, then p̂m(ρ) → 0 and gmi (p̂m(ρ)) → −∞ both result of (A3). Then (54) shows that
∂ρif

m(ρ)→ −∞ for i = 1, . . . , N .

We next discuss the growth conditions. Using (A4) and ∂pgm(p̂m(ρ)) · ρ = 1 directly yields (iii). For
p̂m(ρ) ≥ s̄, we can integrate (A5) to show that

(
min gm(s̄)

s̄
1

maxα maxα
%

)γ
≤ p̂m(ρ) ≤

(
max gm(s̄)

s̄
1
β β

%

) β
β−1

(130)

and since (A5) implies that maxα s̄ ∂pg
m(s̄) ≥ gm(s̄) ≥ β s̄ ∂pg

m(s̄), we get (iv). In order to prove
the lower bound for fm, we reason as in the Lemma 6.1 of [Dru21b]. First, we use the fact that gm is
concave and increasing to show with the help of (A5) that

0 ≤ gm(p̂m(ρ)) · ρ− p̂m(ρ) ≤ gm(s̄) · ρ ≤ maxα ∂pg
m(s̄) · ρ

≤ maxα ∂pg
m(p̂m(ρ)) · ρ = maxα if 0 < p̂m(ρ) ≤ s̄ .

If p̂m(ρ) ≥ s̄, then (A5) implies that gm(p̂m(ρ)) · ρ− p̂m(ρ) > (β − 1) p̂m(ρ), and (iv) can be used
to show that

gm(p̂m(ρ)) · ρ− p̂m(ρ) ≥ (β − 1)

(
β v0√
N maxα

)γ
s̄ |ρ|γ if p̂m(ρ) ≥ s̄ .

Hence, combining the two latter results,

(β − 1)

(
β min ∂pg

m(s̄)√
N maxα

)γ
s̄ |ρ|γ ≤gm(p̂m(ρ)) · ρ− p̂m(ρ) + (β − 1) s̄
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=fm(ρ)− k(ρ) + (β − 1) s̄ .

It remains to observe that |k(ρ)| ≤ c |ρ| with c = N3/2/(eminM). Thus, Young’s inequality allows
to prove (v) with

c0 =
β − 1

2

(
β v0√
N maxα

)γ
s̄ , c1 = (β − 1) s̄+ c(γ) .

In order to prove that fm is co-finite, we must show that the equations∇fm(ρ) = µ are solvable for
all µ in RN . As shown in [DDGG20], a sufficient condition is that the equation

N∑
i=1

exp(Mi (µi − gmi (s))) = 1 ,

possesses a unique solution s = s(µ) for all µ in RN . This is the case if gmi (s) converges to −∞
for s → 0 for at least one i, and if gmi (s) tend to +∞ for s → ∞ for every i. These two conditions
clearly result of (A4), (A5).

We next prove the bounds for the smallest eigenvalue of D2fm. Due to (129), it is sufficient to bound
the quotients min ∂pg

m(p̂m(ρ))/max ∂pg
m(p̂m(ρ)) and Km(ρ)/% from below in order to obtain a

bound.

We note that Km(ρ)/% ≥ 1/(%2 |∂2
pg

m(p̂m(ρ))|1). Thus, for this term, it is sufficient to bound
%2 |∂2

pg
m(p̂m(ρ))| from above.

For the bound in (vi), recall that 1/max ∂pg
m(p̂m(ρ)) ≤ % ≤ 1/min ∂pg

m(p̂m(ρ)) is a conse-
quence of (10). Hence %2 |∂2

pg
m(p̂m(ρ))| ≤ |∂2

pg
m(s)|/min2 ∂pg

m(s). The function λ1(s) of (vi) is
thus obtained as

λ1(s) := inf
m

min
{ RT min ∂pg

m(s)

maxM (1 +N
3
2

max ∂pgm(s)

min ∂pgm(s)
)2
,

min2 ∂pg
m(s)

N |∂2
pg

m(s)|

}
.

For the case (vii), max ∂pg
m(s)/min ∂pg

m(s) ≤ c̄2/c̄1 for 0 < s ≤ s̄ due to (A4). For s ≥ s̄, we
use ∂ggm(s̄) ≤ v, min ∂gg

m(s̄) ≥ v0 and (A5) implies that

max ∂pg
m(s)

min ∂pgm(s)
≤ maxα

β

max gm(s̄)

min gm(s̄)

(s
s̄

) 1
β
− 1

maxα ≤
(

maxα

β

)2
max v

v0

(s
s̄

) 1
β
− 1

maxα
.

In connection with (iv), this implies that max ∂pgm(p̂m(ρ))

min ∂pgm(p̂m(ρ))
≤ c′

(
1 + %

β
β−1 ( 1

β
− 1

maxα)
)

. If (A6) holds then

1

Km(ρ)
=

N∑
k=1

|∂2
pg

m(p̂m(ρ))| ρk =
1

p̂m(ρ)

N∑
k=1

p̂m(ρ) |∂2
pg

m(p̂m(ρ))| ρk

≤ c̄3

p̂m(ρ)

N∑
k=1

∂pg
m(p̂m(ρ)) ρk =

c̄3

p̂m(ρ)
.

Hence, Km(ρ) ≥ c̄−1
3 p̂m(ρ). The inequalities p̂m(ρ) ≥ c̄1 % or p̂m(ρ) ≥ c %γ for p small or large (cf.

(iii), (iv)) can be exploited to obtain that Km(ρ)/% is bounded below as desired.
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To obtain uniform properties for the free energy in the case of the rescaling, we at first recall the
definition (32) of f̄m. Let ḡ1, . . . , ḡN be the normalised functions of (29). If we assume that ḡ is subject
to the assumptions (A), then we can construct a strictly convex free energy function f̄ , satisfying all
claims of Lemma B.1, via

f̄(ρ̄) = ḡ(p̂(ρ̄)) · ρ̄− p̂(ρ̄) + k̄(ρ̄) =: f̄1(ρ̄) + k̄(ρ̄) where
N∑
i=1

ḡ′i(p̂(ρ̄)) ρ̄i = 1 .

Due to the latter definition of p̂, note that p̂(ρ̄) = 1 iff v̄ · ρ̄ = 1 with v̄ = ḡ′(1). For m ∈ N, we next
define π̂m(ρ̄) := m (p̂(ρ)− 1). Then, using that

f̄1(ρ̄) = ḡ(p̂(ρ̄)) · ρ̄− p̂(ρ̄) = ḡ
(

1 +
π̂m(ρ̄)

m

)
· ρ̄− 1− π̂m(ρ̄)

m
,

it is readily seen that

m (f̄1(ρ̄)− ḡ(1) · ρ̄+ 1) = m
(
ḡ
(

1 +
π̂m(ρ̄)

m

)
− ḡ(1)

)
· ρ̄− π̂m(ρ̄) .

Thus, we also obtain the representation

f̄m(ρ̄) = m (f̄1(ρ̄)− ḡ(1) · ρ̄+ 1) +
N∑
i=1

ρ̄i
M̄i

ln x̂i(ρ̄) .

This allows to verify the growth properties. Since f̄1(ρ̄) ≥ c0 |ρ̄|γ − c1 with constants c0, c1 indepen-
dent of m, we obtain that

f̄m(ρ̄) ≥m (c0 |ρ̄|γ − (c1 − 1)− |ḡ(1)| |ρ̄|)− N3/2 max M̄

e (min M̄)3/2
|ρ̄|) ≥ m

c0

2
|ρ̄|γ

for all |ρ̄| ≥ max
{(6(c1 − 1)

c0

) 1
γ
,
(6|ḡ(1)|

c0

) 1
γ−1

,
( 6N3/2 max M̄

c0 e (min M̄)3/2

) 1
γ−1

)
}
.

Moreover the Hessian satisfies

D2
ρ̄,ρ̄f̄

m(ρ̄) = mD2
ρ̄,ρ̄f̄1(ρ̄) +D2

ρ̄,ρ̄k̄(ρ̄) ≥ D2
ρ̄,ρ̄f̄(ρ̄) ,

proving by means of Lemma B.1 that the smallest eigenvalue λ1 can be chosen independently on m.

Next we prove an additional growth property. We consider 0 < θ̄ < 1 and ρ̄ subject to −m <
π̂m(ρ̄) ≤ −m θ̄. Since π̂m > −m, the identity ḡ′(1 + π̂m(ρ̄)/m) · ρ̄ = 1 is valid and, together with
(A4) for ḡ, it allows to show that %̄ ≤ c̄−1

1 (1 + π̂m(ρ̄)/m) ≤ c̄−1
1 (1− θ̄), and that

ḡm(π̂m(ρ̄)) =

∫ 1

0

ḡ′
(

1 + θ
π̂m(ρ̄)

m

)
dθ π̂m(ρ̄) ≥ c̄2

∫ 1

0

1

1 + θ π̂m(ρ̄)
m

dθ π̂m(ρ̄)

=c̄2
m

π̂m(ρ̄)
ln
(

1 + θ
π̂m(ρ̄)

m

)
π̂m(ρ̄) ≥ c̄2

θ̄
| ln(1− θ̄)| π̂m(ρ̄) .

Hence, for all ρ̄ subject to 0 < π̂m(ρ̄) ≤ −m θ̄, we have

ḡm(π̂m(ρ̄)) · ρ̄ ≥ −|ḡm(π̂m(ρ̄))|∞ %̄ ≥ −
c̄2

c̄1

1− θ̄
θ̄
| ln(1− θ̄)|
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implying that

ḡm(π̂m(ρ̄)) · ρ̄− π̂m(ρ̄) ≥ −π̂m(ρ̄)
(

1− c̄2

c̄1

1− θ̄
θ̄
| ln(1− θ̄)|

)
,

We can choose θ̄ = θ̄(c̄1, c̄2) near to one, and we get

f̄m(ρ̄)− k̄(ρ̄) ≥ 1

2
|π̂m(ρ̄)| whenever −m < π̂m(ρ̄) ≤ −m θ̄ .

Note that, if ρ̄ → 0 and π̂m(ρ̄) → −m, and f̄m(ρ̄) → m. Hence the latter inequality extends to
ρ̄ = 0. Using these and similar arguments, we can prove the following statement.

Lemma B.2. Assume that ḡ is subject to the assumptions (A1) − (A6). Then, f̄m belongs to

C2(RN
+ ) ∩ C(RN

+ ) and is a co-finite function of Legendre–type on RN
+ such that f̄m(0) = m. There

are constant c̄0, R1 > 0 and λ1 > 0 such that, for all m ∈ N,

f̄m(ρ̄) ≥ c̄0 |ρ|γ for all |ρ̄| ≥ R1 , λmin(D2
ρ̄,ρ̄f̄

m(ρ̄)) ≥ λ1

%̄ (1 + %̄)θ0
for all ρ̄ ∈ RN

+ ,

with γ = maxα/maxα− 1 and θ0 = 2β (1/β − 1/maxα)/(β − 1) (β, α1, . . . , αN from (A5)).
There is 0 < θ̄ < 1 independent on m such that

f̄m(ρ̄) ≥ 1

2
|π̂m(ρ̄)| whenever π̂m(ρ̄) ≤ −m θ̄ .

For all r ∈ RN
+ subject to

∑N
i=1 ri v̄i = 1 with v̄ = ḡ′(1), we can bound

|f̄m(r)| ≤ 1

min v̄

(N
e

maxM

minM

)
, |Df̄m(r)| ≤ − 1

minM
ln
(minM min v̄

maxM
min r

)
.

C Survey of existence results for multicomponent fluids

Both for the compressible problem (IBVPm) (or its rescaled variant ( IBVP
m

) and for the incompressible
model (IBVP∞), the local-in-time existence of strong solutions starting from sufficiently regular initial
data is known from the papers [BD21a], [BD21b]. About well-posedness results for the compress-
ible case, let us also mention [Gio99], Ch. 9 and the papers [GM13], [PSZ19a], [PSZ19b], [Dru22].
Moreover the existence of certain global-in-time weak solutions has been proved in [DDGG20] and
[Dru21b].

In the most references, the existence results for compressible models (this means (IBVPm) with m <
+∞) rely on a change of variables allowing to exhibit the parabolic-hyperbolic normal form of the PDE
system (4), (5). Indeed, theN partial mass densities ρ1, . . . , ρN , cannot enjoy full parabolic regularity,
because, summing up over i = 1, . . . , N in (4) and using the property (15) of {Mij}, the total mass
density % is seen to be subject to the continuity equation ∂t%+ div(% v) = 0. For this reason, beside
the ’hyperbolic variable’ %, further N − 1 ’diffusive variables’ are needed to allow exhibiting the full
parabolic regularity inherent to diffusion.

Canonically, the differences µ1 − µN , . . . , µN−1 − µN occurring in (16) are considered. However,
in order to study the incompressible limit, we shall introduce a slightly more general way which, still,
exploits linear combinations of the chemical potentials. Beside this possibility, another more compli-
cated approach of choosing diffusive variables was introduced in [Dru21b] in order to treat the weak
solution theory of multicomponent systems with Maxwell–Stefan diffusion (cf. (42), (43)). In this case,
the linear proportionality between the mobility coefficients and the densities allows for not more than
weighted for the gradients of µi − µN , and the control degenerates for vanishing densities.
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C.1 Strong solutions

The change of variables (79) of the section 6.1.1 allows to introduce strong and weak solutions with
mixed parabolic-hyperbolic regularity. For an overview of the original ideas, we refer to the Chapter
8 of [Gio99] for an overview. We let ξ1, . . . , ξN with ξN = 1N be the basis used to perform the
transformation, and η1, . . . , ηN be the dual basis. Next, we can multiply the mass continuity equations
(4) with the axes ξ1, . . . , ξN . With Rk(%, q) := ξk ·R(%, q) for k = 1, . . . , N − 1, where R is the
map of (82), we obtain the equivalent system of equations

∂tRk(%, q) + div
(
Rk(%, q) v −

N−1∑
`=1

M̃k`(%, q)∇q`
)

=0 for k = 1, . . . , N − 1 ,

∂t%+ div(% v) =0 .

(131)

Here we have introduced the N − 1×N − 1 Onsager matrix

M̃k`(%, q) := ξkM(R(%, q)) ξ` for k, ` = 1, . . . , N − 1 ,

or, equivalently M̃(%, q) = ΠTM(R(%, q)) Π, where Π is from (77). Under the condition (B3), the

matrix M̃(·) can be shown to be symmetric and strictly positive definite on regular states, because we
factorised the kernel span(ξN) of M(ρ) by the projection (cf. (120)).

For the new variables (%, q1, . . . , qN−1) and v, the PDE system (5) reads

∂t(% v) + div(% v ⊗ v − S(∇v)) +∇P (%, q) = % b . (132)

The system (131), (132) is a parabolic-hyperbolic system in normal form. Another viewpoint is to
see it as a compressible Navier–Stokes system coupled, via the pressure, to a parabolic system of the
general form for the variables q1, . . . , qN−1. In [BD21a], adopting this second viewpoint, we performed
some well-posedness analysis for this PDE system in the strong solution class

% ∈ W 1,1
p,∞(Qt∗), q ∈ W 2,1

p (Qt∗ ; RN−1), v ∈ W 2,1
p (Qt∗ ; R3) ,

with an index p > 3 and where t∗ is some (small) constant determined by the data. Strictly positive
mass densities of class W 1

p (Qt∗ ; RN) are recovered with the help of the map R. For the interested
readers, the full assumptions necessary for the short-time existence result can be read in [BD21a]:
They amount to requiring (A1)-(A3) for g1, . . . , gN and (B1)-(B3) for {Mij}, where the smoothness in
(A1) has to be increased to C3 and the one in (B1) to C2. The domain Ω should be assumed of class
C 2.

C.1.1 Incompressible model

For the incompressible case (IBVP∞), the mathematical structure of the PDE system is exhibited with
a similar change of variables. However, we are faced with a singular potential f∞ (cf. (22)) where
f∞(ρ) = +∞ everywhere outside of the surface S0 of states satisfying (20): S0 := {ρ ∈ RN

+ :∑N
i=1 vi ρi = 1}, with the vector v of (19). Interestingly, the convex conjugate

(f∞)∗(µ) := sup
ρ∈S0

{µ · ρ− f∞(ρ)} for µ ∈ RN ,
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is a smooth convex function, though it is not strictly convex. In fact, (f∞)∗ is affine in the direction of
v and we have

(f∞)∗(w + s v) = (f∞)∗(w) + s for all w ∈ RN , s ∈ R . (133)

This property can be exploited by further specialising the choice of the basis ξ1, . . . , ξN used for the
projection. In addition to ξN = 1N , we choose ξN−1 := v. This is possible if, among the species, at
least two have a different specific volume. In this way, the vectors 1N and v are not parallel.

We again define qi = ηi · µ for i = 1, . . . , N − 2 and, since the combination ζ := µ · ηN−1 plays
a very special role, we single it out with an independent name. Next we can, as in the compressible
case, eliminate µ · ηN = M (%, q1, . . . , qN−2) using the equation

% = 1N · ∇(f∞)∗
(

Π q + M 1N
)
,

in which the component ζ does not occur owing to the property (133).

As shown in [BD21b], the change of variables (ρ1, . . . , ρN) ↔ (%, q1, . . . , qN−2, ζ) yields for the
pressure and the densities the following expressions

p = (f∞)∗
(N−2∑
k=1

qk ξ
k + M (%, q) 1N

)
+ ζ =: P∞(%, q) + ζ pressure,

ρ = ∇µ(f∞)∗
(N−2∑
k=1

qk ξ
k + M (%, q) 1N

)
=: R∞(%, q) densities .

(134)

The equivalent expression of the PDEs (4) for the new variables %, q1, . . . , qN−2 and ζ is an elliptic–
parabolic–hyperbolic system, which reads

∂tR
∞
k (%, q) + div

(
R∞k (%, q) v −

N−2∑
`=1

M̃k`(%, q, ζ)∇q` − Ak(%, q, ζ)∇ζ
)

= 0

for k = 1, . . . , N − 2 ,

− div
(
d(%, q, ζ)∇ζ +

N−2∑
`=1

A`(%, q, ζ)∇q`
)

= 0 ,

∂t%+ div(% v) = 0 .

(135)

Here R∞k (%, q) = R∞(%, q) · ξk for k = 1, . . . , N − 2, while the diffusion coefficients are given by

M̃k`(%, q, ζ) :=ξkM(P∞(%, q) + ζ, R(%, q)) ξ` , for k, ` = 1, . . . , N − 2 ,

A`(%, q, ζ) :=ξ`M(P∞(%, q) + ζ, R(%, q)) ξN−1 , for ` = 1, . . . , N − 2 ,

d(%, q, ζ) :=ξN−1M(P∞(%, q) + ζ, R(%, q)) ξN−1 .

In the new variables, the equation (5) reads

∂t(%v) + div(% v ⊗ v − S(∇v)) +∇P∞(%, q) +∇ζ = % b . (136)

The system (135), (136) has been analysed in the paper [BD21b] for the case that the thermodynamic
diffusivities M(p, ρ) = M(ρ) satisfy (B1)–(B3) and do not depend on pressure. Then we find a
unique strong solution in the class

% ∈ W 1,1
p,∞(Qt∗), q ∈ W 2,1

p (Qt∗ ; RN−2), ζ ∈ W 2,0
p (Qt∗) , v ∈ W 2,1

p (Qt∗ ; R3) , (137)
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where p > 3 and t∗ is some (small) constant determined by the data.

We recover strictly positive partial mass densities subject to (20) by defining ρ := R∞(%, q) with R
from (134). This implies that ρ ∈ W 1

p (Qt∗ ; RN).

We note that the regularity required in the assumption (C) for (IBVP∞) is stronger than (137). Next we
formulate an existence theorem for the incompressible model, where the regularity is improved from
’strong’ to ’classical’. This shall be useful to prove that (C) is valid and the weak solutions to (IBVPm)
converge to the unique regular solution to (IBVP∞) at least for a small time-interval.

Theorem C.1. Let Ω ⊂ R3 be a domain of class C 2,α with a 0 < α ≤ 1. We assume that g1, . . . , gN
belong to C3(]0,+∞[) and are strictly concave functions satisfying (A2), (A3), and that the entries
of {Mij} are functions of class C2(RN

+ ) satisfying (B2) and (B3). If the initial data satisfy v0 ∈
C2,α(Ω; R3), v0 = 0 on ∂Ω and ρ0 ∈ C2,α(Ω; RN), infx∈Ω mini ρ

0
i (x) ≥ s0 > 0, and ρ0(x) ·v ≡

1, then the boundary-value-problem (IBVP∞) possesses a local solution (ρ∞, p∞, v∞) such that
ρ∞1 , . . . , ρ

∞
N ∈ W 1

∞(Qτ̄ ) and v∞ ∈ C2+α,1+α/2(Qτ̄ ; R3).

For a full proof we refer to the upcoming survey [Dru].

C.2 Weak solutions

While for the theory of strong solutions, the initial data provide, at least for a short time, the strict
positivity of the densities, the existence theory for global weak solutions has to face the additional
difficulty how to make sense of the model for vanishing species.

The main mathematical problem concerns the way how to appropriately express diffusion. Indeed,
recall that the chemical potentials are defined via µi = ∂ρif(ρ). If f is a function of Legendre type,
then it is by definition essentially smooth, and this implies the blow-up of the gradient on the boundary
of RN

+ :
|µ| = |∇ρf(ρ)| → +∞ for min

i=1,...,N
ρi → 0 + .

Hence, in the case that ρi = 0 on some set of positive measure, several expressions in the PDEs
that involve the chemical potentials must be transformed in order to remain meaningful under even
extreme behaviour of the system. In this point, the appropriate weak solution concept is affected by
the properties of the matrixM(ρ). In particular, it depends on the behaviour of the positive eigenvalues
of M(ρ) for mini ρi → 0+. Recall that the crucial property for the definition of weak solutions is the
inequality (46). Now, let us represent µ = Πq + M 1N . Using (6) and the constraint (15), we obtain
that

−
∫
Qt

J : ∇µ dxdτ =
N∑

i,j=1

∫
Qt

Mij(ρ)∇µi · ∇µj =
N−1∑
k,`=1

∫
Qt

ξkM(ρ) ξ`∇qk · ∇q` dxdτ

=

∫
Qt

M̃(%, q)∇q · ∇q dxdτ . (138)

The smallest eigenvalue of M(ρ) is always zero due to (B2). If we assume that the second small-

est eigenvalue is uniformly positive, that is, (B3′) is valid, then the Onsager operator M̃(%, q) =
ΠTM(ρ)Π generates a uniformly positive quadratic form, and, with λ0 as in (B3′) and cη from
(120), we shall have −

∫
Qt
J : ∇µ dxdτ ≥ (λ0/cη)

∫
Qt
|∇q|2 dxdτ . Thus it is possible and

natural to perform the weak existence theory using the variables q1, . . . , qN−1, and we obtain q ∈
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L2(0, τ̄ ; W 1,2(Ω; RN−1)) as in the paper [DDGG20]. The second case occurs if the positive eigen-
values of M(ρ) degenerate for mini ρi → 0+. This occurs for instance if the matrix M(·) is con-
structed from inversion of the Maxwell–Stefan equations (cf. (42), (43)). In this case we cannot expect
to control the gradients of q if the densities do not remain strictly positive. In the papers [Dru21b], we
tried to find a suitable substitute for the diffusive variables. Here too, reinforcing of the condition (B3)
is needed, but it is more complex than (B3′).

Next we sketch in more details these two possible scenarios.

C.2.1 Compressible model: Weak solutions of type-I

In the paper [DDGG20] devoted to electrolytes, we imposed the conditions (B1), (B3′). Then there are
two constants 0 < λ0 ≤ λ̄ < +∞ such that

λ0 |Pη|2 ≤M(ρ)η · η ≤ λ̄ (1 + |ρ|) |Pη|2 for all η ∈ RN , ρ ∈ RN
+ . (139)

This corresponds to a uniformly positive Onsager tensor.

Moreover, the free energy function must provide a coercivity estimate f(ρ) ≥ c0 |ρ|γ−c1 with γ ≥ 9
5

5.
Then, we obtain the existence of a weak solution vector (%, q, v) in the class

% ∈ L∞(0, τ̄ , Lγ(Ω)), q ∈ L2(0, τ̄ ; W 1,2(Ω; RN−1)),

v ∈ L2(0, τ̄ ; W 1,2(Ω; R3)),
√
% |v| ∈ L∞(0, τ̄ ; L2(Ω; R3)) .

(140)

Technically, this result exploits the compactness theory for compressible Navier–Stokes equations in
connection with the control on∇q in L2(Qτ̄ ).

Interestingly, the partial mass densities of the species, which are recovered via the map ρi = Ri(%, q)
of (82), are almost everywhere strictly positive unless the vacuum % = 0 occurs of some set of positive
measure. To the present state of knowledge, a vacuum cannot be prevented in the weak theory of
compressible Navier–Stokes equations.

For i = 1, . . . , N , the diffusion fluxes are expressed via J i = −
∑N−1

k=1 e
iM(ρ) ξk∇qk. This

expression makes everywhere sense on the domain provided that ρ 7→ M(ρ) is continuous on RN
+ ,

in particular up to % = 0. The pressure p = P (%, q) (cf. (81)) associated with the weak solution and
the diffusion flux matrix satisfy

p ∈ Lr(Qτ̄ ) with r = min{1 + 1/γ, 5/3− 1/γ} , J ∈ L2(0, τ̄ ; L
2γ

1+γ (Ω; RN×3)) . (141)

In the dissipation inequality (46), the diffusion ζDiff is re-interpreted via (138). In particular, weak
solutions satisfy ∫

Qt

ΠTM(ρ) Π∇q · ∇q dxdτ < +∞ . (142)

The weak solutions (%, q, v) satisfy the weak form of the equations (131), (132), while ρ = R(%, q)
satisfies with v and p = P (%, q) the weak form of (4), (5). We resume these claims in the following
theorem.

5We expect that γ > 3
2 is sufficient as for compressible Navier-Stokes, but this was not shown in [DDGG20]
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Theorem C.2. Assume that g1, . . . , gN are subject to the assumptions (A1)− (A5), and that {Mij}
satisfies (B1), (B2) and (B3′). Moreover, ρ0 ∈ L∞(Ω;RN) satisfies infi=1,...,N, x∈Ω ρ

0,i(x) > 0
and v0 ∈ L2(Ω; R3). Then, the problem (IBVPm) possesses at least one weak solution such that
(140), (141) and (142) are valid. Introducing Q+(%) := {(x, t) : %(x, t) > 0}, we can show that
mini ρi(x, t) > 0 almost everywhere in Q+(%), and that Πq + M (%, q) = RT/M ln x̂(ρ) +
g(p̂(ρ)) for almost all (x, t) ∈ Q+(%).

Remark that in the paper [DDGG20], the existence has been proved in the more general context of
electro-chemistry, where there is an additional equation for the electric field. As a counterpart, only
a special choice of g1, . . . , gN was considered: gi(p) = g0(p) vi. Nevertheless, all approximation
arguments carry over to (IBVPm). We refer to the forthcoming survey paper [Dru] for full proofs.

C.2.2 Compressible model: Weak solutions of type-II

The assumption (B3′) of a uniformly positive Onsager tensor is in particular problematic in the study
mixtures with dilute constituents. The second approach on diffusion is a positive Onsager–tensor with
singular diffusivities, as it for instance arises from inversion of the Maxwell–Stefan equations (see the
example (42)). In this case we do not obtain a control on∇q in the fashion of (138). Presently, it does
not seem possible to treat in the framework of weak solutions the Maxwell–Stefan–Navier–Stokes
system as it is naturally formulated in the literature. However, in the paper [Dru21b], we developed a
theory of weak solutions on the idea that the Maxwell–Stefan diffusion coefficients might exhibit certain
singularities at very low (or very large) pressure.

In this paper, instead of the change of variables (82), we represented the vector of mass densities via

ρ = X (p, w1, . . . , wN) , (143)

where p is the pressure and w1, . . . , wN a normalised state subject to the constraint

p̂(T, w1, . . . , wN) = p0 ,

where p0 is a reference pressure, and p̂(T, ·) is the representation resulting of the equation of state
(10). This means that the mass densities are represented by a point w on the isobar p = p0, and
departure from this isobar is ”measured” by the pressure variable. It can next be shown that the
quotients ρi/wi are bounded away from zero and from above by certain functions of pressure only.
This indicates that, in the range of finite pressures, the variable wi tends to zero if and only if ρi tends
to zero. Hence, for a mobility matrix of Maxwell-Stefan type (cf. (43)), we have

d0(p)PT(W−1R)W P ≤M(ρ) ,

with R = diag(ρ), W = diag(w) and P = I− 1N ⊗ ŷ(ρ). Since the entries of the diagonal matrix
W−1R are below by functions on pressure, we get

d̃0(p)PTW P ≤M(ρ) .

Under certain conditions formulated in the paper [Dru21b] for the thermodynamic diffusivity Mij for
extreme pressures, we can a priori prove that infp d̃0(p) > 0, and the diffusion in the energy inequality
(46) yields ζDiff ≥ c |∇

√
w|2. Since p̂(w) = p0, we have w · v = 1 and it follows that w is bounded.

In this way, the bound on the gradient of the square-root yields also a control on |∇w|2 ≤ c ζDiff . The
control on the total mass density % in L∞(0, τ̄ ; Lγ(Ω)) subject to the continuity equation, combined
with the control on∇

√
w and∇w in L2(Q; RN) allow to perform the technical part of the analysis.
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In this approach, the diffusion flux matrix is integrated to the solutions vector. A weak solution vector
consists of (ρ, v, J) with

ρ ∈ L∞(0, τ̄ ; Lγ(Ω; RN)), v ∈ L2(0, τ̄ ; W 1,2(Ω;R3)),
√
% |v| ∈ L∞(0, τ̄ ; L2(Ω;R3)) ,

J ∈ L2(0, τ̄ ; L
2γ

1+γ (Ω; RN×3)) .

The weak solution satisfies the distributional formulation of (4), (5) and, moreover, use of the associ-
ated normalised mass densities w ∈ L∞(Qτ̄ ; RN)∩L2(0, τ̄ ; W 1,2(Ω; RN)), which are introduced
via (143), yields for the diffusion fluxes the following identities:

J i = −
N∑
j=1

Mij(ρ)∇µj a.e. in Q+ := {(x, t) ∈ Q : inf
i
ρi(x, t) > 0} ,

J i = 0 in {(x, t) ∈ Q : ρi(x, t) = 0, %(x, t) > 0} ,

J i = −
N∑
j=1

(M(ρ)D2f(w)︸ ︷︷ ︸
=:Γ

)ij∇wj in {(x, t) ∈ Q : %(x, t) > 0} .

Hence, the relationship between gradients of the state variables and diffusion fluxes is specified every-
where but for the vacuum set. For this type of solutions, we also obtain an energy inequality. Unfortu-
nately, this point was not completely enlighted in the paper [Dru21b] and it shall have to be discussed
in further publications. Let us note that, in (46), we can identify

−
∫
Qt

ζDiff dxdτ = −
∫
Qt

K(ρ)
J√
w
· J√

w
dxdτ ,

where, for ρ = X (p, w), the matrix K is symmetric and positive definite on the orthogonal comple-
ment of span(ρ/

√
w). Hence, for weak solutions, we also obtain a control on J/

√
w inL2(Q; RN×3).

C.2.3 Weak solutions to the incompressible model

The existence analysis for weak solutions to the incompressible model was tackled in [Dru21a], but
only the approach using the assumption (B3′) or (139) of a uniformly positive Onsager operator, which
simplifies the handling of diffusion, was implemented up to now. Hence the solution vector consists
of (%, q1, . . . , qN−2, ζ, v). Due to the volume constraint

∑N
i=1 ρi vi = 1, the total mass density is

interval [%min, %max] with the constants of (57). Hence % ∈ L∞(Qτ̄ ) is also strictly positive, and the
solution class is

q1, . . . , qN−2, ζ ∈ L2(0, τ̄ ; W 1,2(Ω)), v ∈ L2(0, τ̄ ; W 1,2(Ω; R3)) ∩ L∞(0, τ̄ ; L2(Ω;R3)) .

The main problem of the analysis concerns the pressure, which satisfies a bound only in L1(Qτ̄ ). In
the paper [Dru21a], the pressure is affected by a singular measure: p = (P∞(%, q) + ζ) dλ4 + dκ,
where λ4 denotes the four-dimensional Lebesgue–measure, and the regular measure κ is concen-
trated in the a set of Lebesgue–measure zero. It can be shown that at every point (x, t) of the singular
set where the Lebesgue value of % exists, one of the threshold %min or %max of density is attained.

The partial mass densities are recovered as ρi = R∞i (%, q) with the map of (134). These are non-
negative L∞ functions. Moreover, ρi is even strictly positive almost everywhere. The weak solutions
satisfy the weak form of (4) and (5), where the pressure p = P (%, q) + ζ is supplemented by a
singular measure κ.
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D A priori bounds for the rescaled system

Proposition D.1. Consider thermodynamic functions ḡ1, . . . , ḡN satisfying (A) with γ ≥ 9/5. As-
sume moreover that {M̄ij} is subject to (B1), (B2) and (B3′). Then, there exists a weak so-
lution (ρ̄m, v̄m) to the problem ( IBVP

m
) with initial data (ρ̄0,m, v̄0). The corresponding variables

(%̄m, q̄m, v̄m) satisfy∫
ΩR

( %̄m(x, t)

2
|v̄m(x, t)|2 + f̄m(ρ̄m(x, t))

)
dx

+

∫ t

0

∫
ΩR

S(∇v̄m) : ∇v̄m + ΠT M̄(ρ̄m)Π∇q̄m : ∇q̄m dxdτ

≤
∫

ΩR

(%m0 (x)

2
|v0(x)|2 + f̄m(ρ̄0,m(x))

)
dx−

∫ t

0

∫
ΩR

%̄m v̄m3 dxdτ

(144)

and a uniform bound for the norms defined in (140) is valid.

Proof. Owing to the Lemma B.2 the rescaled free energies f̄m satisfy all requirements of Theorem
C.2, so we obtain the global existence of a weak solution (%̄m, q̄m, v̄m) so that (144) is valid. From
the latter, we can directly read off the bound

sup
m∈N
‖ρ̄m‖Lγ,∞(QR) + ‖

√
%̄m v̄

m‖L2,∞(QR) + ‖∇̄v̄m‖L2(QR) + ‖∇̄q̄m‖L2(QR) < +∞ .

It remains to show how to obtain a bound for q̄m, since the bounds derived in the paper [DDGG20] for
q̄m in L2,1 were not shown to be uniform in m. In a first step we prove convergence to an incompress-
ible state and a weighted convergence property for the pressure.

Lemma D.2. We adopt the assumptions of Prop. D.1 and we let (%̄m, q̄m, v̄m) be a weak solution to
( IBVP

m
). Then ‖ρ̄m · v̄ − 1‖L1,∞(QR) → 0 for m→∞.

Proof. We have |ḡm(πm) · ρm − πm| = f̄m(ρm) + |k̄(ρm)|. Since |k̄(ρm)| ≤ c |ρm| with c =
N3/2/(emin M̄), we can bound supm ‖ḡm(πm) · ρm − πm‖L1,∞ using the bounds for f̄m and ρm

in L1,∞. Recalling that 1 + πm/m = p̂(ρm) we see that

ḡm(πm) · ρm − πm =mρm ·
(
ḡ
(

1 +
πm

m

)
− ḡ(1)− ḡ′

(
1 +

πm

m

) πm
m

)
=mρ ·

(
ḡ(p̂(ρm))− ḡ(1)− ḡ′(p̂(ρm)) (p̂(ρm)− 1)

)
≥%mm min

i

{
ḡi(p̂(ρ

m))− ḡi(1)− ḡ′i(p̂(ρm)) (p̂(ρm)− 1)
}
,

which shows that

lim sup
m→∞

m

∫
Ω

%m min
i

{
ḡi
(
p̂(ρm)

)
− ḡi(1)− ḡ′i

(
p̂(ρm)

)
(p̂(ρm)− 1)

}
dx < +∞ . (145)

Due to Lemma B.2, there is a fixed 0 < θ̄ < 1 such that πm < −m θ̄ implies that |ḡm(πm) · ρm −
πm| ≥ |πm|/2 ≥ θ̄ m/2. Hence, invoking supm ‖ḡm(πm) · ρm − πm‖L1,∞ < +∞ again,

lim sup
m→∞

m |{x : πm(x, t) < −m θ̄}| < +∞ . (146)
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For a > 0 arbitrary consider the set ωma (t) := {x ∈ Ω : |p̂(ρm(x, t)) − 1| > a}. Then, due to
(146),

lim sup
m→∞

m
∣∣∣ωma (t) ∩ {x : πm(x, t) < −m θ̄}

∣∣∣ < +∞ . (147)

In the complement {x : πm(x, t) < −m θ̄}c, we know that 1 + πm(x, t)/m ≥ 1 − θ̄ which, due
to the definition of πm and p̂, implies that %m > 1/max ḡ′(1 − θ̄) = a0 > 0. Hence, exploiting the
strict concavity of ḡ, we find in ωma (t) ∩ {x : πm(x, t) < −m θ̄}c that

%m min
i

{
ḡi(p̂(ρ

m))− ḡi(1)− ḡ′i(p̂(ρm)) (p̂(ρm)− 1)
}
≥ a0 c(a) > 0

with c(a) := inf
|s−1|>a

min
i
{ḡi(s)− ḡi(1)− ḡ′i(s) (s− 1)} .

Now, (145) yields lim supm→∞m
∣∣∣ωma (t) ∩ {x : πm(x, t) < −m θ̄}c

∣∣∣ < +∞, and with (147),

lim sup
m→∞

m |ωma (t)| < +∞ for all a > 0, t > 0 . (148)

Next, we recall (101) and πm/m = p̂(ρm)− 1 allow to bound

|1− ρm · v̄| ≤ |ρm|
∫ 1

0

|ḡ′′(1 + λ (p̂(ρm)− 1))| dλ |p̂(ρm)− 1| .

If π̂m(ρm) ≥ −θ̄ m, we have p̂(ρm) ≥ 1 − θ̄. Hence, if π̂m(ρm) ≥ −θ̄ m and p̂(ρm) ≤ 2, we get
|1−ρm · v̄| ≤ C1 |̂̄p(ρm)−1|. For b > 0, consider now sets ω̃mb (t) := {x : |1−ρm(x, t) · v̄| ≥ b}.
We have just shown that

ω̃mb (t) ∩ {x : πm ≥ −θ̄ m} ∩ {x : p̂(ρm) ≤ 2} ⊆ ωma1
(t) with a1 = b/C1 .

Then, we can easily observe that ω̃mb (t) ⊆ {x : πm < −m θ̄} ∪ ωma1
(t) ∪ ωm1 (t), and (146) and

(148) imply that lim supm→∞m |ω̃mb (t)| < +∞ for all b > 0 and t > 0. Thus

‖ρm · v̄ − 1‖L1(Ω) ≤b |(ω̃mb (t))c|+ sup
m
‖1− ρm · v̄‖Lγ,∞ |ω̃mb (t)|1−

1
γ ≤ b |Ω|+ C

( 1

m

)1− 1
γ
.

Thus lim supm→∞ sup0<t<τ̄ ‖ρm · v̄ − 1‖L1(Ω) ≤ b |Ω|. Since b > 0 was arbitrary, we can not let
b→ 0, proving the strong convergence in L1,∞(Q).

Lemma D.3. We adopt the assumptions of Prop. D.1, and of Lemma D.2. Moreover, assume that
the initial states satisfy m

∫
Ω
ρ̄0,m · v − 1 dx → 0 and that w0,m

i :=
∫

Ω
ρ0,m
i (x) dx/|Ω| satisfies

inf{w0,m
i : 1 = 1, . . . , N, m ≥ 1} > 0. Then

(i) There are C1, C2 independent on m such that for almost all 0 < t < τ̄ ,

1

m
max

k=1,...,N−1
|(q̄mk )M(t)|2 ≤ C1

(∫
Ω%̄min/2,2%̄max (t)

(f̄m(ρ̄) + 1)
1
2 dx

)2

+
C2

m
|∇q̄m|2L1(Ω) .

(ii) supm∈N ‖(q̄m)′‖L2(QR) < +∞ and supm∈N
1√
m
‖q̄m‖L2(QR) < +∞.
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Proof. Let ΩR
+(t) := {x : %̄(x, t) > 0} = {x : π(x, t) > −m}. For x ∈ ΩR

+(t), we let

µ̄i(x, t) := ḡmi (π(x, t)) +
1

M̄i

ln x̄i(x, t) . (149)

Further we let i1 = i1(x, t) be the largest index such that µ̄i1 = maxi=1,...,N µ̄i. For all i 6= i1, we
obtain in ΩR

+(t) that 0 ≥ µ̄i − µ̄i1 ≥ ḡmi (π)− ḡmi1 (π) + 1
M̄i

ln x̄i, and this implies that

ρ̄i |µ̄i1 − µ̄i| ≤ ρ̄i |ḡmi (π)− ḡmi1 (π)|+ %̄

e minM
.

Let a1 = %̄min/2 and b1 = 2%̄max. With p̂0 and p̂1 from (88), recall that |ḡm(π)| ≤ c |π| over
Ωa1,b1(t), with c := supp̂0(1/b1)<s<p̂1(1/a1) |ḡ′(s)|. After some elementary steps, we thus obtain that

ρ̄i |µ̄i1 − µ̄i| ≤ C(a1, b1) (|π|+ 1) over Ωa1,b1(t) . (150)

For i = 1, . . . , N , and w ∈ RN , we define Ti(w) := wi − maxw. Then the map T is Lipschitz
continuous on RN , it assumes only negative values, and T (w + λ 1N) = T (w) for all (w, λ) ∈
RN × R. We define q∗m = T (Πq̄m). Using the chain rule for Sobolev functions, we obtain that
‖∇q∗‖L2(QR) ≤ ‖∂T‖L∞(RN ) ‖∇q̄‖L2(QR). In Ωa1,b1(t), (150) implies that

ρ̄i |q∗i | ≤C1 (|π|+ 1) ,

ρ̄i |(q∗i )M(t)| ≤C1 (|π|+ 1) + b1 |q∗i − (q∗i )M(t)| .

We integrate this inequality and we obtain that

|(q∗i )M(t)|
∫

Ωa1,b1
(t)

ρ̄i dx ≤ C1

∫
Ωa1,b1

(t)

(|π|+ 1) dx+ b1 |q∗i − (q∗i )M(t)|L1(Ω) . (151)

Since a1 < %̄min and b1 > %̄max the Lemma 6.2 shows that

sup
0<t<τ̄

|Ωc
a1,b1

(t)| ≤ k−1
1 ‖ρ̄m · v̄ − 1‖L1,∞ .

Hence, with w
0,m
i :=

∫
Ω
ρ0,m
i (x) dx/|Ω|, it also follows that∫

Ωa1,b1
(t)

ρ̄i dx ≥
∫

Ω

ρ̄i dx− ‖ρ̄i‖Lγ,∞ |Ωc
a1,b1

(t)|1−
1
γ

≥|Ω|w0,m
i − k

1
γ
−1

1 sup
m
‖ρ̄m‖Lγ,∞ (‖ρ̄m · v̄ − 1‖L1,∞)1− 1

γ .

For m large enough, we achieve for i = 1, . . . , N that
∫

Ωa1,b1
(t)
ρ̄i dx ≥ |Ω| infi,mw

0,m
i /2. There-

fore, invoking also the Poincaré inequality to estimate q − (q)M in (151), it follows that

1

2
inf
i,m

w
0,m
i max

i=1,...,N
|(q∗i )M(t)| ≤ C1

∫
Ωa1,b1

(t)

|π| dx+ C2 |∇q̄|L1(Ω) . (152)

We further note that∣∣∣ ∫ 1

0

ḡ′(1 + θ
πm

m
)− ḡ′(1 +

πm

m
) dtθ · ρ̄

∣∣∣ |πm| = |ḡm(πm) · ρ̄− πm| = f̄m(ρ̄) + |k̄(ρ̄)| ,
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to show that, on Ωa1,b1(t) we can bound

%̄

2
inf

p̂0(1/a1)≤s≤p̂1(1/b1)
min |ḡ′′(s)| π

2

m
≤ f̄m(ρ̄) + |k̄(ρ̄)| .

Thus, π2/m ≤ c (f̄m(ρ̄) + 1). Squaring (152) and dividing by m yields

1

m
max

i=1,...,N
|(q∗i )M(t)|2 ≤ C̃1

(∫
Ωa1,b1

(t)

(f̄m(ρ̄) + 1)
1
2 dx

)2

+
C̃2

m
|∇q̄|2L1(Ω) .

Now, the definition of T implies that Πq̄m = T (Πq̄m) + (max Πq̄m) 1N . Since ηk · 1N = 0 for
k = 1, . . . , N − 1, it follows that q̄mk = ηk · T (Πq̄m) and (i) follows.

Ad (ii). It is readily seen by means of (i) that supm∈N
1
m
‖(q̄m)M‖2

L2(0,τ̄) < +∞. Due to the Poincaré

inequality, this also means that q̄m/
√
m is bounded in L2(QR).

To prove the second bound, we start from (149) again, and we introduce

µ̃i := µ̄i − v̄i π = ḡmi (π)− v̄i π +
1

M̄i

ln x̄i .

We choose an index i2 such that µ̃i2 = max µ̃. Applying the same steps as just seen, we can obtain
over Ωa1,b1(t) that

ρ̄i |Ti(µ̃)| ≤ ρ̄i |ḡmi (π)− v̄i π − (ḡmi2 (π)− v̄i2 π)|+ b1

e minM
.

On Ωa1,b1(t), we can bound |ḡm(π)− v̄ π| ≤ C (f̄m(ρ̄) + 1). It follows that∣∣∣(Ti(µ̃)
)
M

(t)
∣∣∣ ≤ C̃1

∫
Ω

f̄m(ρ̄) + 1 dx+ C̃2

∣∣∣Ti(µ̃)−
(
Ti(µ̃)

)
M

∣∣∣
L1(Ω)

.

We let q∗∗ := T (Π′ q̄) of which we control the gradient. Recall that µ̃ = Π′q̄ + M (%̄, q̄) on ΩR
+(t).

Hence T (µ̃) = T (Π′ q̄) = q∗∗ on Ωa1,b1(t). Thus

‖(q∗∗)M‖L2(0,τ̄) ≤ C (‖f̄m(ρ̄)‖L1,2 + ‖∇q̄‖L1,2) .

Using that Π′q̄ = q∗∗ + max Π′ q̄ 1N , we finally obtain the bound in L2(QR) for {Π′q̄m}.

E Proof of the relative energy inequality

In this section we provide the proof of Prop. 5.1 and Prop. 6.11, and another variant of the relative
energy inequality. Even for weak solutions, the vector fields ρ and % v possess certain distributional
time derivatives that generate weak continuity in time. For u = (u1, u2, u3) : Qτ̄ → R3 and
r = (r1, . . . , rN) : Qτ̄ → RN sufficiently smooth, we can therefore rely for all 0 ≤ t ≤ τ̄ on the
identity ∫

Ω

(
%
|u|2

2
− % u · v − f(r)− µ̂(r) · (ρ− r)

)
dx
∣∣∣t
0

=

∫ t

0

d

dt

∫
Ω

(
%
|u|2

2
− % u · v − f(r)− µ̂(r) · (ρ− r)

)
dxdτ . (153)
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Here f = fm or f = f̄m according to which of the problems (IBVP) or ( IBVP
m

) is considered.

The time–derivative in the right-hand side is next computed. Using the continuity equation and the
Navier–Stokes equations, we can replace the occurrences of ∂t% with− div(%v), and those of ∂t(% v)
with div(−% v ⊗ v + S− p I) + % b in the sense of distributions. This procedure yields

d

dt

∫
Ω

(
%
|u|2

2
− % v · u

)
dx =

∫
Ω

% ∂tu · (u− v) + % (v · ∇u) · u (154)

− % (v · ∇)u · v + S(∇v) : ∇u− p div u− % b · u dx .

We next want to compute the remaining terms in (153). Note that ∂tr · µ̂(r) = ∂tf(r). The weak
formulation of (4) tested with ψ = µ̂(r) yields

d

dt

∫
Ω

ρ · µ̂(r) dx−
∫

Ω

ρ · ∂tµ̂(r) dx =

∫
Ω

(ρ v + J) : ∇µ̂(r) dx . (155)

Collecting the identities (46), (56) and (153), (154) and (155), we obtain that

E(t) ≤E(0)−
∫ t

0

∫
Ω

S(∇v) : ∇(v − u) + ζDiff + J : ∇µ̂(r) dxdτ

+

∫ t

0

∫
Ω

% (∂tu+ (v · ∇)u) · (u− v)− p div u+ % b · (v − u) (156)

− ∂tµ̂(r) · (ρ− r)− ρ v : ∇µ̂(r) dxdτ .

In order to use this identity in connection with solutions to the incompressible system, it is useful to
re-express∫

Ω

% (∂tu+ (v · ∇)u) · (u− v) dx =

∫
Ω

|r|1 (∂tu+ (u · ∇)u) · (u− v) dx+R1(t) ,

R1(t) :=

∫
Ω

(%− |r|1) (∂tu+ (v · ∇)u) · (u− v) + |r|1 [(v − u) · ∇]u · (u− v) dx .

Here we use the notation |r|1 :=
∑N

i=1 ri. Next we let (ρ∞, p∞, v∞) be a solution to the incom-
pressible model. With r = ρ∞, |r|1 =: %∞ and u = v∞, this implies that %∞ (∂tv

∞+(v∞ ·∇)v∞)+
∇p∞ = div S(∇v∞) + %∞ b. From (156), we thus infer

E(t) ≤E(0)−
∫ t

0

∫
Ω

S(∇(v − v∞)) : ∇(v − v∞) + ζDiff + J : ∇µ̂(ρ∞) dxdτ

+

∫ t

0

∫
Ω

−p div v∞ −∇p∞ · (v∞ − v) + (%− %∞) b · (v − v∞) dxdτ

−
∫ t

0

∫
Ω

∂tµ̂(ρ∞) · (ρ− ρ∞) + ρ v : ∇µ̂(ρ∞) dxdτ +

∫ t

0

R1(τ) dτ .

In the incompressible case, the state is restricted by the constraint (20) and, using the condition that
∂pg(p0) = v, we have the identities 1 =

∑N
i=1 ρ

∞
i vi =

∑N
i=1 ρ

∞
i ∂pgi(p

0). It follows that p̂(ρ∞) =
p0. We define the chemical potentials µ∞i for the incompressible system via (21). Then, under the
condition that gm(p0) = 0 (or ḡm(1) = 0 for the rescaled problem), it follows that µ∞i = p∞ vi +
RT/Mi ln x̂i(ρ

∞) = p∞ vi + µ̂i(ρ
∞). Hence ∇µ̂(ρ∞) = ∇(µ∞ − v p∞). Moreover, the mass

continuity equations (4) imply that∫ t

0

∫
Ω

(ρ v + J) : v ⊗∇p∞ dxdτ = −
∫ t

0

∫
Ω

(ρ · v − 1) ∂tp
∞ dxdτ
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+

∫
Ω

{(ρ(x, t) · v − 1) p∞(x, t)− (ρ0(x) · v − 1) p∞(x, 0)} dx .

With the abbreviation Ẽ(t) := E(t)−
∫

Ω
(ρ(x, t) · v − 1) p∞(x, t) dx, we obtain that

Ẽ(t) ≤ Ẽ(0)−
∫ t

0

∫
Ω

S(∇(v − v∞)) : ∇(v − v∞) + ζDiff + J : ∇µ∞ dxdτ

+

∫ t

0

∫
Ω

p div v∞ +∇p∞ · (v∞ − v) + (%− %∞) b · (v − v∞)− (ρ · v − 1) ∂tp
∞

− ∂tµ̂(ρ∞) · (ρ− ρ∞) + ρ v : ∇µ∞ dxdτ +

∫ t

0

R1(τ) dτ .

The next steps consist of transforming the right-hand sides in order to obtain quadratic remainders. At
first, we can expand ρ v = (ρ− ρ∞) (v − v∞) + (ρ− ρ∞) v∞ + ρ∞ v. We verify that

ρ∞ v : ∇µ∞ =ρ∞ v : ∇µ̂(ρ∞) + ρ∞ · v v · ∇p∞

=ρ∞ v : ∇
(
g(p0) +

RT

M
ln x̂(ρ∞)

)
+ ρ∞ · v v · ∇p∞ = v · ∇p∞ .

Here we used that
∑N

i=1 ρ
∞
i ∇x̂i(ρ∞) = 0 and

∑N
i=1 vi ρ

∞
i = 1. Hence we attain

Ẽ(t) ≤ Ẽ(0)−
∫ t

0

∫
Ω

S(∇(v − v∞)) : ∇(v − v∞) + ζDiff + J : ∇µ∞ dxdτ

−
∫ t

0

∫
Ω

p div v∞ +∇p∞ · v∞ + ∂tµ̂(ρ∞) · (ρ− ρ∞) + (ρ− ρ∞) v∞ : ∇µ∞ dxdτ

−
∫ t

0

∫
Ω

(ρ · v − 1) ∂tp
∞ dxdτ +

∫ t

0

(R1(τ) +R2(τ)) dτ , (157)

R2(τ) =

∫
Ω

(ρ− ρ∞) (v − v∞) : ∇µ∞ + (%− %∞) b · (v − v∞) dx .

This is the first basic inequality valid for every type of weak solution. Next we want to use the stabili-
sation properties of diffusion, and there will be a branching in the discussion.

E.1 Positive solutions and weak solutions of type-I

In this case we can rely on ζDiff = −J : ∇Πq = M(ρ)∇Πq : ∇Πq, where the meaning of the
variable q is explained in (78). With D := ΠTM(ρ) Π∇(q − q∞) : ∇(q − q∞) ≥ 0, it follows that

ζDiff + J : ∇µ∞ = ΠTM(ρ)Π∇(q − q∞) : ∇q
=D + ΠT(M(ρ)−M(ρ∞)) Π∇(q − q∞) : ∇q∞ +M(ρ∞)Π∇(q − q∞) : ∇µ∞

=D + ΠT(M(ρ)−M(ρ∞)) Π∇(q − q∞) : ∇q∞ − J∞ : Π∇(q − q∞) .

By means also of (157), we obtain that

Ẽm(t) ≤ Ẽm(0)−
∫ t

0

∫
Ω

S(∇v − v∞) : ∇(v − v∞) + D − J∞ : ∇(Πq − µ∞) dxdτ

−
∫ t

0

∫
Ω

p div v∞ +∇p∞ · v∞ + ∂tµ̂(ρ∞) · (ρ− ρ∞) + (ρ− ρ∞) v∞ : ∇µ∞ dxdτ

−
∫ t

0

∫
Ω

(ρ · v̄ − 1) ∂tp
∞ dxdτ +

3∑
i=1

∫ t

0

Ri(τ) dτ ,

(158)
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in whichR3(t) := −
∫

Ω
(M(ρ)−M(ρ∞)) (Π∇q −∇µ∞) : ∇µ∞ dx.

We use the fact that (ρ∞, p∞, v∞) is a strong solution to the incompressible model (IBVP∞) to show
that ∫

Ω

J∞ : ∇(Πq − µ∞) dx =

∫
Ω

(∂tρ
∞ + div(ρ∞ v∞)) · (Πq − µ∞) dx .

For 0 < a0 < b0 < +∞, 0 < t < τ̄ we let Ωa0,b0(t) = {x : a0 ≤ %(x, t) ≤ b0}. On Ωa0,b0(t),
the density is finite and strictly positive. Hence, the entire vector of chemical potentials is finite almost
everywhere, and it obeys µ = Πq+M (%, q) 1N (cf. (83)). All densities are strictly positive on this set,
and we can split µ = gm(p) + Dk(ρ) with Dk(ρ) = (RT/M) ln x̂(ρ). Now, due to the continuity
equation for (IBVP∞) (∂t%∞ + div(%∞ v∞) = 0), we obtain the identity

(∂tρ
∞ + div(ρ∞ v∞)) · (Πq − µ∞) = (∂tρ

∞ + div(ρ∞ v∞)) · (µ− µ∞) in Ωa0,b0(t) .

We introduce the abbreviation η∞ := ∂tρ
∞ + div(ρ∞ v∞). It follows that

η∞ · (µ− µ∞) = η∞ · (Dk(ρ)−Dk(ρ∞)) + η∞ · g(p)− div v∞ p∞ . (159)

Moreover, since D2k(ρ∞) ρ∞ = 0,

∂tµ̂(ρ∞) · (ρ− ρ∞) =∂tρ
∞ ·D2k(ρ∞) (ρ− ρ∞)

=η∞ ·D2k(ρ∞) (ρ− ρ∞)− div(ρ∞ v∞)D2k(ρ∞) (ρ− ρ∞)

=η∞ ·D2k(ρ∞) (ρ− ρ∞)− v∞ · ∇Dk(ρ∞) (ρ− ρ∞) . (160)

By means of (159) and (160), we see that∫
Ω

J∞ : ∇(Πq − µ∞)− ∂tµ̂m(ρ∞) · (ρ− ρ∞) dx =

∫
Ω

v∞ · ∇Dk(ρ∞) · (ρ− ρ∞) dx

+

∫
Ωa0,b0

(t)

η∞ · (Dk(ρ)−Dk(ρ∞)−D2k(ρ∞) (ρ− ρ∞)) dx

+

∫
Ωa0,b0

(t)

η∞ · gm(p)− div v∞ p∞ dx+

∫
Ωc
a0,b0

(t)

η∞ ·
(
Πq − µ∞ −D2k(ρ∞)(ρ− ρ∞)

)
dx .

Since Πq = Π′q + qN−1 v̄, we also note also that∫
Ωc
a0,b0

(t)

η∞ ·
(
Πq − µ∞ −D2k(ρ∞)(ρ− ρ∞)

)
dx

=

∫
Ωc
a0,b0

(t)

η∞ ·
(
Π′(q − q∞)−D2k(ρ∞)(ρ− ρ∞)

)
+ div v∞ (qN−1 − q∞N−1) dx .

Splitting Ωa0,b0(t) into Bs0,+(t) and its complement, we introduce

R4(t) :=

∫
Bs0,+(t)

(∂tρ
∞ + div(ρ∞v∞)) · (Dk(ρ)−Dk(ρ∞)−D2k(ρ∞) (ρ− ρ∞)) dx ,

E1(t) :=

∫
Ωc
a0,b0

(t)

(∂tρ
∞ + div(ρ∞v∞)) ·

(
Π′(q − q∞)−D2k(ρ∞)(ρ− ρ∞)

)
dx

+

∫
Ωa0,b0

(t)\Bs0,+(t)

(∂tρ
∞ + div(ρ∞v∞)) · (Dk(ρ)−Dk(ρ∞)−D2k(ρ∞) (ρ− ρ∞)) dx .
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We get

Ẽm(t) ≤ Ẽm(0)−
∫ t

0

∫
Ω

S(∇(v − v∞)) : ∇(v − v∞) + D dxdτ

+

∫ t

0

∫
Ω

χΩa0,b0
(t)(η

∞ · g(p)− div v∞ p∞) + χΩc
a0,b0

(t) div v∞ (qN−1 − q∞N−1) dxdτ

+

∫ t

0

∫
Ω

(p∞ − p) div v∞ − (ρ− ρ∞) v∞ : ∇(µ∞ −Dk(ρ∞))− (ρ · v̄ − 1) ∂tp
∞ dxdτ

+

∫ t

0

E1(τ) +
4∑
i=1

Ri(τ) dτ .

We define p = p̃+ qN−1 and p∞ = p̃∞ + q∞N−1 and get

χΩa0,b0
(τ)(η

∞ · g(p)− div v∞ p∞) + χΩc
a0,b0

(τ) div v∞ (qN−1 − q∞N−1) + (p∞ − p) div v∞

= χΩa0,b0
(τ)η

∞ · (g(p)− v p) + χΩc
a0,b0

(τ) (p̃∞ − p̃) div v∞ .

We define E2(t) :=
∫

Ωc
a0,b0

(t)
(p̃∞ − p̃) div v∞ dx. It remains to observe that

(ρ− ρ∞) v∞ : ∇(µ∞ −Dk(ρ∞)) = (ρ · v − 1) v∞ · ∇p∞ ,

and (158) yields

Ẽm(t) ≤Ẽm(0)−
∫ t

0

∫
Ω

S(∇(v − v∞)) : ∇(v − v∞) + D dxdτ

+

∫ t

0

∫
Ωa0,b0

(τ)

(∂tρ
∞ + div(ρ∞v∞) · (g(p)− v p) dxdτ

−
∫ t

0

∫
Ω

(ρ · v̄ − 1) (∂tp
∞ + v∞ · ∇v∞) dxdτ +

∫ t

0

∑
i=1,2

Ei(τ) +
4∑
i=1

Ri(τ) dτ .

This establishes the Proposition 6.11. Moreover, suppose that infi ρi(x, t) ≥ s0 for almost all (x, t) ∈
Q. Then |Ω \ Bs0,+(t)| = 0 for almost all 0 < t < τ̄ . Letting a0 → 0+ and b0 → +∞, we see that
Ei(t) = 0 for all t ∈ [0, τ̄ ]. This proves Prop. 5.1.

E.2 Another form of the relative energy inequality

In order to prove the Theorem 4.1 we adopted the simplifying positivity assumption (48). Here we want
to motivate how this assumption can be removed.

In the case that the strict positivity of the densities and even the uniform positivity (B3′) of {Mij(ρ)}
fail, the proof of a relative energy inequality is more delicate. Nevertheless, we can obtain a result
by means of techniques developed for weak solutions of type-II, in particular the re-parametrisation
ρ = X (p, w1, . . . , wN) of (143), where w = (w1, . . . , wN) is a diffusive variable subject to
p̂m(w) = p0. We have first to recall a few basic properties concerning this transformation.

Some preliminaries: Let ρ and w be related via (143). Then it was shown in [Dru21b] that P(µ̂(ρ)−
µ̂(w)) = 0 is valid. Hence, for all i 6= j we obtain that

1

Mi

ln x̂i(ρ)− 1

Mj

ln x̂j(ρ) + gmi (p̂m(ρ))− gmj (p̂m(ρ)) =
1

Mi

ln x̂i(w)− 1

Mj

ln x̂j(w) ,
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where we also used that gm(p0) = 0. We choose j = i1 with i1 such that x̂i1(w) = max x̂(w) ≥
1/N . With p = p̂m(ρ), it follows that

1

Mi

ln x̂i(w) ≥ 1

minM
ln

1

N
+

1

Mi

ln x̂i(ρ) + gmi (p)− gmi1 (p) ,

and this implies that

x̂i(w) ≥ (N)−
maxM
minM x̂i(ρ) exp

(
Mi (min g(p)−max g(p))

)
.

Similarly, with j = i2 with i2 such that x̂i2(ρ) = max x̂(ρ) ≥ 1/N , it follows that

x̂i(ρ) ≥ (N)−
maxM
minM x̂i(w) exp

(
Mi (min g(p)−max g(p))

)
.

The quotients ρi/wi are nothing else but x̂i(ρ)/x̂i(w) times n̂(ρ)/n̂(w). Since p̂m(w) = p0 by
definition, we have

∑
iwi vi = 1. The latter implies that 1/maxi{Mivi} ≤ n̂(w) ≤ 1/mini{Mivi},

hence ρi/wi is seen to be bounded below and above via

min{Mv}
maxM

( 1

N

)maxM
minM

% exp
(
Mi (min g(p)−max g(p))

)
≤ ρi
wi

(161)

≤ max{Mv}
minM

N
maxM
minM % exp

(
Mi (max g(p)−min g(p))

)
.

This can be used to show that, if {Mij} satisfies the typical conditions of a Maxwell-Stefan mobility
matrix, the product M(ρ)D2fm(w) is bounded by a function of p and %. To see this, we express

M(ρ)D2fm(w) = (M(ρ)R−1) (RW−1)W D2fm(w) ,

withR = diag(ρ) andW = diag(w). IfM(ρ)R−1 is bounded, the claim is obvious. Now, a Maxwell-
Stefan mobility tensor satisfies (43), thus d0 P ≤M(ρ)R−1 ≤ d1 P.

Assume that (ρ, v) is a weak solution of type-II. For 0 < p1 < p2 < +∞ we define

Ωp1,p2(t) := {x ∈ Ω : p1 ≤ p̂m(ρ(x, t)) ≤ p2} .

In this set the density % is bounded and strictly positive: We here can refer to the inequalities (38) and
(39). Since

√
w ∈ L2(0, τ̄ ; W 1,2(Ω; RN)) we obtain a representation

J = −2M(ρ)D2fm(w)W
1
2 ∇
√
w . (162)

For s0 > 0, define Bs0,+(t) := {x ∈ Ωp1,p2(t) : min ρ(x, t) ≥ s0}. In the set Bs0,+(t) all ρi are
finite and strictly positive. Thus, after some straightforward manipulations using (161), it is found that

min x̂(w) ≥ ε0 := c inf
s∈[p1,p2]

exp(maxM (min gm(s)−max gm(s)) on Bs0,+(t) (163)

where c = c(N,M, v) > 0 is some constant. This helps introducing another appropriate substitute
for the chemical potentials. For s ∈ R and ε > 0, we define s(ε) := min{s, ε}, and x̂(ε) :=
((x̂1)(ε), . . . , (x̂N)(ε)). Using the chain rule for Sobolev functions we can verify that the function

µ̃εi :=
RT

Mi

ln(x̂i(w))(ε) , (164)
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belongs to L2(0, τ̄ ; W 1,2(Ω)) and L∞(Q). For 0 < ε ≤ ε0, the bound (163) shows that µ̃εi = µ̂i(w)
on Bs0,+(t). From now we denote µ̃i := µ̃ε0i , x̃i = (x̂i(w))(ε0). We then have

Pµ = Pµ̂(w) = Pµ̃ in Bs0,+(t) . (165)

As a substitute for the stabilising contribution of diffusion (that is M(ρ)∇(µ − µ∞) : ∇(µ − µ∞))
we define, in Ωp1,p2(t),

D := M(ρ) (2D2fm(w)W
1
2 ∇
√
w −∇µ∞) : (2D2fm(w)W

1
2 ∇
√
w −∇µ∞) ≥ 0 ,

InBs0,+(t), we by construction have D = M(ρ)∇(µ̃−µ∞) : ∇(µ̃−µ∞). With these preliminaries,
we can prove a more general version of the relative energy inequality.

Proposition E.1. Let (ρ, v) be a weak solution to (IBVPm) with associated diffusive variables w. Let
(ρ∞, p∞, v∞) satisfy (IBVP∞). Then, with µ̃ according to (164),

Em(t) +

∫
Qt

S(∇(v − v∞)) : ∇(v − v∞) + χΩp1,p2 (τ) D dxdτ

≤
∫
Qt

χBs0,+(τ)

(
∂tρ
∞ + div(ρ∞ v∞)

)
· (gm(p)− p v)− (ρ · v − 1) (∂tp

∞ + v∞ · ∇p∞) dxdτ

+ Em(0)−
∫

Ω

p∞(x, ·) (ρm(x, ·) · v − 1) dx
∣∣∣t
0

+

∫ t

0

Rm(τ) + Em(τ)dτ .

in which Rm =
∑4

i=1Rm,i where Rm,i possesses the same representation as in Prop. 6.11 for
i = 1, 2, 4 and Rm,3(t) := −

∫
Bs0,+(t)

(M(ρ) −M(ρ∞))∇µ∞ · ∇(µ̃ − µ∞) dx. Moreover, the

functional Em(t) obeys

Em(t) := −
∫

Ω

χΩc
p1,p2

(t) J : ∇µ∞ − χΩp1,p2 (t)\Bs0,+(t) (J : ∇µ∞ +M(ρ)∇µ∞ · ∇µ∞) dx

+

∫
Bc
s0,+

(t)

(
J∞ : ∇(µ̃− µ∞) + (∂tρ

∞ + div(ρ∞ v∞)) · (µ̃− µ∞ −D2k(ρ∞)(ρ− ρ∞))

+ (p∞ − p) div v∞
)
dx .

Proof. To start with, we as previously obtain the identity (157). In the present context we next write

ζDiff + J : ∇µ∞ = ζ + 2 J : ∇µ∞ +M(ρ)∇µ∞ · ∇µ∞︸ ︷︷ ︸
=:D

−J : ∇µ∞ −M(ρ)∇µ∞ · ∇µ∞ .

We cannot identify D everywhere in Ω. However, the non-negativity of ζDiff implies that D ≥ 2 J :
∇µ∞ +M(ρ)∇µ∞ · ∇µ∞. Thus

ζDiff + J : ∇µ∞ ≥ χΩp1,p2 (t) (D − J : ∇µ∞ −M(ρ)∇µ∞ · ∇µ∞) + χΩc
p1,p2

(t) J : ∇µ∞

≥ χΩp1,p2 (t) D − χBs0,+(t) (J : ∇µ∞ +M(ρ)∇µ∞ · ∇µ∞)

+ χΩc
p2,p1

(t) J : ∇µ∞ − χΩp1,p2 (t)\Bs0,+(t) (J : ∇µ∞ +M(ρ)∇µ∞ · ∇µ∞) .

We obtain that

Ẽm(t) +

∫ t

0

∫
Ω

S(∇(v − v∞)) : ∇(v − v∞) + χΩp1,p2 (t) D dxdτ
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≤ Ẽm(0) +

∫ t

0

∫
Ω

χBs0,+(t)(J : ∇µ∞ +M(ρ)∇µ∞ : ∇µ∞) dxdτ

+

∫ t

0

∫
Ω

−p div v∞ −∇p∞ · v∞ − ∂tµ̂(ρ∞) · (ρ− ρ∞)− (ρ− ρ∞) v∞ : ∇µ∞

− (ρ · v − 1) ∂tp
∞ dxdτ +

∫ t

0

Em,1(τ) +Rm,1(τ) +Rm,2(τ) dτ ,

Em,1(t) := −
∫

Ω

χΩc
p1,p2

(t) J : ∇µ∞ − χΩp1,p2 (t)\Bs0,+(t) (J : ∇µ∞ +M(ρ)∇µ∞ · ∇µ∞) dx

We recall (164) and (165) to see that, in the set Bs0,+(t),

J : ∇µ∞ +M(ρ)∇µ∞ : ∇µ∞ =(M(ρ)−M(ρ∞))∇µ∞ : ∇(µ̃− µ∞)

+ J∞ : ∇(µ̃− µ∞) ,

We define Rm,3(t) = −
∫
Bs0,+(t)

(M(ρ) − M(ρ∞))∇(µ̃ − µ∞) · ∇µ∞ dx and together with

Em,2(τ) :=
∫
Bc
s0,+

(t)
J∞ : ∇(µ̃− µ∞) dx, we obtain that

Ẽm(t) +

∫
Qt

S(∇(v − v∞)) : ∇(v − v∞) + χΩp1,p2 (τ) D dxdτ ≤ Ẽm(0)

+

∫
Qt

J∞ : ∇(µ̃− µ∞)− p div v∞ −∇p∞ · v∞ − ∂tµ̂(ρ∞) · (ρ− ρ∞) dxdτ

−
∫
Qt

(ρ− ρ∞) v∞ : ∇µ∞ + (ρ · v − 1) ∂tp
∞ dxdτ +

∫ t

0

∑
i=1,2

Em,i(τ) +
3∑
i=1

Rm,i(τ) dτ .

From now on the steps are essentially the same as for the type–one weak solution. First∫
Ω

J∞ : ∇(µ̃− µ∞) dx =

∫
Ω

(∂tρ
∞ + div(ρ∞ v∞)) · (µ̃− µ∞) dx .

On Bs0,+(t), the identity P(µ̃− µ) = 0 is valid and, since ∂t%∞ + div(%∞ v∞) = 0, hence

η∞ · (µ̃− µ∞) = η∞ · (µ− µ∞) = η∞ · (Dk(ρ)−Dk(ρ∞) + gm(p))− div v∞ p∞ .

After a few steps (cp. (160))∫
Ω

J∞ : ∇(µ̃− µ∞)− ∂tµ̂(ρ∞) · (ρ− ρ∞) dx =

∫
Ω

v∞ · ∇Dk(ρ∞) · (ρ− ρ∞) dx

+

∫
Bs0,+(t)

η∞ · (Dk(ρ)−Dk(ρ∞)−D2k(ρ∞) (ρ− ρ∞)) + η∞ · gm(p)− div v∞ p∞ dx

+

∫
Bc
s0,+

(t)

η∞ ·
(
µ̃− µ∞ −D2k(ρ∞) · (ρ− ρ∞)

)
dx .

WithRm,4(t) =
∫
Bs0,+(t)

η∞ · (Dk(ρ)−Dk(ρ∞)−D2k(ρ∞) (ρ− ρ∞)) dx and with

Em,3(t) :=

∫
Bc
s0,+

(t)

η∞ · (µ̃− µ∞ −D2k(ρ∞) · (ρ− ρ∞)) + (p∞ − p) div v∞ dx ,

the claim follows.
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Finally let us motivate why, relying on Prop. E.1, the proof of Theorem 4.3 can disclaim the positivity
assumption (48). We first note that the assumption (53) yields |Ω \ Ωp1,p2(t)| = 0. At second, we
observe that the estimation of the remainder Rm can be essentially performed as in the simplified
proof. So we have only to discuss the error functional Em. Certain of the contributions in Em can be
controlled, even without assuming (53). On Ωp1,p2(t), we can employ Young’s inequality and estimate

|J : ∇µ∞ +M(ρ)∇µ∞ · ∇µ∞| = |M(ρ) (2D2fm(w)W
1
2 ∇
√
w −∇µ∞) : ∇µ∞|

≤ εD +
1

4ε
M(ρ)∇µ∞ · ∇µ∞ .

Hence, recalling also (107),∣∣∣ ∫
Ω

χΩp1,p2 (t)\Bs0,+(t) (J : ∇µ∞ +M(ρ)∇µ∞ · ∇µ∞) dx
∣∣∣ ≤ ε

∫
Ωp1,p2 (t)

D dx

+
λ̄

4ε
‖∇µ∞‖2

L∞

∫
Ωp1,p2 (t)\Bs0,+(t)

|ρ| dx ≤ ε

∫
Ωp1,p2 (t)

D dx+
C

ε
Em(t) .

Similar observations and (164) are used to show with ε0 from (163) that∣∣∣ ∫
Bc
s0,+

(τ)

(∂tρ
∞ + div(ρ∞ v∞)) · (µ̃− µ∞ −D2k(ρ∞)(ρ− ρ∞))dxdτ

∣∣∣
≤ ‖∂tρ∞ + div(ρ∞ v∞)‖L∞

(
‖µ̃− µ∞‖L∞ |Bc

s0,+
(τ)|+ c

∫
Bc
s0,+

(τ)

|ρ− ρ∞| dx

)
≤ c ‖∂tρ∞ + div(ρ∞ v∞)‖L∞ (ln ε−1

0 + ‖µ∞‖L∞) Em(τ) .

There are however terms in Em that we cannot control otherwise than by the assumption that p1 <
pm < p2. At first we consider

∫
Bc
s0,+

(t)
J∞ : ∇(µ̃ − µ∞) dxdτ . In order to estimate this term,

we recall that Bc
s0,+

(t) = Ωp1,p2(t) \ Bs0,+(t). We also note that the construction (164) implies
that ∇µ̃i has support over the set ωiε0,+(t) := {x : x̂i(w)(x, t) > ε0}. We choose i1 such that
x̂i1(w) = mini x̂i(w). For all i 6= i1, µ̃i1 = 1/Mi1 ln ε0 in ωiε0,−(t) := Ω \ ωiε0,+(t). Hence
∇µ̃i1 = 0 in ωiε0,−(t). This allows to express

J∞ : ∇(µ̃− µ∞) = J∞ : (∇µ̃−∇µ̃i1 1N −∇µ∞ +∇µ∞i1 1N)

=
N∑
i=1

J∞,i ·
(
χωiε0,+(t) (∇µ̃i −∇µ̃i1)− (∇µ∞i −∇µ∞i1 )

)
=

N∑
i=1

χωiε0,+(t) J
∞,i ⊗ (ei − ei1) : (∇µ̃−∇µ∞)−

N∑
i=1

χωiε0,−(t) J
∞,i · (∇µ∞i −∇µ∞i1 ) .

In ωiε0,+(t), we have x̃i ≥ ε0, hence wi ≥ ε0 min{Mv}/maxM , and (161) shows that there is a
certain function r0 such that ρi ≥ r0(p1, p2, ε0) > 0. Then

|J∞,i ⊗ (ei − ei1) : (∇(µ̃− µ∞))| =
∣∣∣J∞,i ⊗ (ei − ei1)

√
ρi

:
√
ρi (∇(µ̃− µ∞))

∣∣∣
≤ ε ρi |(∇µ̃−∇µ∞) · (ei − ei1)|2 +

|J∞,i|2

4 ρi ε
.
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On Ωp1,p2(t), this allows for the estimates

|J∞,i · ∇(µ̃i − µ∞i )| ≤ ε ρi |(∇µ̃−∇µ∞) · (ei − ei1)|2 +
C(p1, p2, ε0)

ε
|J∞,i|2 .

Overall, after exploiting that D ≥ d0

∑N
i=1 ρi |Pi(∇µ̃−∇µ∞)|2, we see that∣∣∣∣∣

∫
Bc
s0,+

(t)

J∞ : ∇(µ̃− µ∞) dxdτ

∣∣∣∣∣ ≤
∫
Bc
s0,+

(t)

εD +
C

ε
|J∞|2 dx .

Finally it remains to consider∣∣∣ ∫
Bc
s0,+

(t)

(p∞ − p) div v∞ dx
∣∣∣ ≤ (|p∞|L∞ + p2 − p1) | div v∞|L∞ |Bc

s0,+
(t)| ≤ ψm(t) Em(t) .

Hence, we can obtain the Gronwall inequality and the convergence argument needed for Theorem 4.1,
without having assumed the strict positivity of the densities. It remains to show only the convergence of
the pressure. Here we cannot rely on (75) over the whole domain Ω, but only inBs0,+(t). Accordingly,
we define ζ̄m := −(η · µ̃m)M , pm∗ := pm + ζ̄m χBs0,+(t), and ζm := η · µ̃m − (η · µ̃m)M , and
instead of (76) we get

pm∗ = χBs0,+(t)

(
ζm − η ·

(RT
M

ln x̂(ρm) + hm
))

+ pm χBs0,+(t) . (166)

As above, we show that ∇ζm → η · ∇µ∞ in L2(Q). Hence ζm → η · µ∞ − (η · µ∞)M in
L2(0, τ̄ ; W 1,2(Ω)), and (166) pm∗ → p∞ in L2(Q).
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