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Abstract 

For the approximate representation of large data sets over a parameter domain 
in· JR2, many geological and other applications require the construction of surfaces 
which have minimal energy, i.e., minimal curvature. One way to achieve this is by 
solving a fourth order elliptic partial differential equation. Its discretization by a 
difference scheme makes it particularly easy to incorporate (appropriate approxi-
mations of) known data points. Because of the solution of the resulting symmetric 
linear system being the most CPU-demanding step, we investigate first the perfor-
mance of a preconditioned conjugate gradient method with an SSOR and a RILU 
preconditioner. However, since the partial differential operator does not contain 
mixed derivatives, using an alternating-direction-implicit scheme (ADI method) 
which has been employed successfully in the past for second order problems, to-
gether with Cholesky factorization of the corresponding one-dimensional operators 
provides a fast and effective method for the problem at hand. 

The computational studies show that an instationary ADI method is superior to 
the above mentioned preconditioned conjugate gradient solvers both with respect 
to work load and accuracy of the solution. For the fourth order model problem 
considered in this paper, the instationary ADI method with Wachspress paramet.ers. 
results in a number of iterations that is essentially independent of the number of 
variables. 

1 Introduction 
To represent surfaces approximating scattered data, many users prefer grid functions. 
These are discrete functions defined on a grid overlapping n c JR2 in the parameter 
domain with equally spaced nodes in each coordinate direction called a regular grid. By 
using spline interpolation methods as described e.g. in [2], from the grid functions one 
can easily obtain continuous functions on JR2 for visualization and other purposes. 

To generate a grid function on a given regular grid that approximates a large set of 
scattered data, a method consisting of three steps has been developed in [3]. In the first 
and second stages called regularization and approximation, the grid function is assigned 
function values at nodes lying in regions with high data density by a local approximation 
scheme .. The last step denoted by extrapolation determines the remaining function values 
of the grid function in a global fashion by minimizing its 'curvature' (in a sense yet to be 
made precise). 

This method does not interpolate the given scattered data set. Its main area of appli-
cation is rather in situations where there are large point sets that should be approximated 
and the data need and should not be interpolated. Such data occur in many applications, 
and the three step procedure for scattered data approximation described above is used in 
several commercial products through the SINTEF Scattered D.ata Library (SISCAT) [5]. 
One example of an application area for this method is the construction of a geological 
surface over a bivariate regular grid where the data is given on contours or seismic tracks. 

Due to the typically large amount of resulting data, methods like using radial basis 
functions (e.g. thin plate splines [15]) cannot be employed any more for the construction 
of a grid function having minimal energy. The extrapolation process given in [3] yields to 
the problem of solving a fourth order symmetric elliptic partial differential equation. This 
equation is discretized using a difference method which makes it particularly easy to incor-
porate the scattered data conditions, leading to a large system of linear equations. Since 
the system matrix P is symmetric, positive definite and sparse, a natural choice to solve 
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the linear equations is to use a conjugate gradient method (CG method). Unfortunately, 
the convergence speed of this iterative method is disturbingly low due to its dependence 
on the spectral condition number of P which in the present case is of order O(h-4), where 
h is the grid spacing. Therefore, preconditioning with the aim of reducing the condition 
number becomes an essential task, thus resulting in the preconditioned conjugate gradient 
method (PCG method). Here we have used two standard preconditioners in the PCG 
method which both reduce the condition number to O(h-2 ). The first one is an SSOR 
preconditioner which is based on an additive decomposition of P. The second choice is 
the RIL U preconditioner derived from an incomplete factorization of P into triangular 
matrices, see e.g. [7] or [11]: 

However, it turns out in the computational studies that an instationary alternating-
direction-implicit method (ADI method) is superior to the above mentioned PCG methods 
for the present problem with respect to the overall amount of work and the reduced error. 
In fact, the number of iterations for the ADI method grows very slowly as a function 
of the number of variables which is not at all the case for the PCG schemes. In the 
ADI approach the matrix P is decomposed additively into its parts from the difference 
operators in each coordinate direction in the parameter domain. The iteration is based on 
alternatingly solving the corresponding linear systems based on one-dimensional fourth 
order problems exactly (after reordering of nodes) by computing the inverses of these 
pentadiagonal :r;natrices directly by means of Cholesky decomposition. A description of 
all these methods, though only for second order problems, together with convergence 
proofs can be found e.g. in [11]. 

The ADI method as described here has also been applied to linear systems arising from 
scattered data problems .with discontinuities as developed in (4]. In this paper, we will 
focus on a model problem capturing the main difficulties of the extrapolation problem of 
the scattered data approximation method, and not consider the discontinuities here. First 
tests [17] indicate that the method still works well even though one of the main theoretical 
requirements, the commutativity condition (21) below of the difference operators in each 
coordinate direction, is violated. 

This paper is structured as follows. In the next section, we briefly recall the regu-
larization and approximation steps of the scattered data procedure from [3], and give a 
more thorough review of the extrapolation step. Based on some observations regarding 
the main difficulties in solving the linear equations connected to the extrapolation step, 
we formulate a model problem in Section 3. In Section 4, we briefly discuss the precon-
ditioned conjugate gradient method as well as give·· a description of the stationary and 
instationary ADI methods. In Section 5 we experiment with these solvers on the model 
problem in Section 3. Section 6 gives some concluding remarks. 

2 Review of the scattered data method 
Following the ideas for the construction of grid functions in [3], let { ( s k, Yk) E JR2 x JR, k in 
some finite index set K} be a given set of scattered data. Let further G := nn(h1ZZxh2ZZ) 
be a grid with grid spacing h1 , h2 > 0, where n is some bounded rectangular domain in 
IR2 . We assume that n contains the scattered points S := { sk, k E K}. 

In the regularization step, a subset D. c G is determined by requiring that in a region 
around each a E D there are sufficiently many data points. The precise construction 
is that a density function describing the scattered data density at each point in n is 
determined. Then the nodes in D are· those in G where the density exceeds a certain 
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threshold value. For a discussion of the regularization step see [13]. 
In the approximation step, a data set {(a, za) E JR2 x JR, a E D} is computed by 

the application of some local approximation scheme. Choosing for each a E D a local 
approximation operator depending on a relatively small subset of {(sk, Yk), k E K} in 
the neighborhood of a then yields values for the grid function on D. For this purpose, 
one may e.g. employ Shepard's method [16] or a polynomial least squares approach, or 
use radial basis functions like thin plate splines [15]. 

In the extrapolation step, the values on U = G\D are computed by employing a global 
scheme for minimizing a measure of the curvature of the surface under the restriction of 
interpolating the values on D. The various point sets are shown in Figure 1. 
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Figure 1: This figure explains the notation used to define the different sets of points. The 
entire grid is denoted by G, the scattered data points, marked by '+' are denoted by S, the 
grid points located close to the data-points are denoted by D and are marked by 'D ', and 
finally the set of grid points not close enough to any data point are unmarked and denoted 
byU=G\D. 

To minimize the curvature of a continuous function u over a bivariate domain n at 
each point of u in every direction leads to considering the problem 

at r = 0 where 

min I(u) 
uEC2 (!1) 

7r (
82 )

2 

I( u) = In la w( </>) Br2 u(x + r cos</>, y + r sin</>) def> dx dy. (1) 

Here w(¢), O ::; ¢ < 7r, is some weight distribution. We note that with w = 1, the Euler 
equation for (1) is essentially the same as the Euler equation for the thin plate spline 
functional [9] 

(2) 

where we abbreviate fx := ~' fy := ~ for any sufficiently smooth function f = f (x, y). 
Thus, (1) can be viewed as a generalization of (2). 
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For our purpose we choose 

w ( ¢) = <50 ( ¢) + <5 ~ ( ¢)' 

where Ox is the delta distribution. Thus, the functional becomes 

(3) 

which means that the curvature is minimized along the x- and y-axes of the parameter 
domain. This functional is very well suited for the modeling of faulted geological surfaces 
[4] and, as we will see later on, it leads to a system of linear algebraic equations which 
are amenable to be solved by an ADI method. For more general weights w, see [12]. 

The minimization of I( u) as defined in (3) leads to the Euler equations 

lo ( U,,,, V,,,, + Uyy Vyy) dx dy = Q (4) 

for any bounded test function v E C2 (f2). One approach to solve (4) would be to employ 
finite elements in such a Galerkin-type formulation. We will, however, continue to work in 
the grid setting and compute the values on U directly through a finite difference approach 
since this makes it easy to incorporate the known values on D. 

Assuming now sufficiently high smoothness of u, we can integrate equation ( 4) by 
parts to obtain 

(5) 

Here, we assume either that u satisfies the natural boundary conditions (i.e., second and 
third order boundary normal derivatives vanish) or that the test function is restricted to 
some appropriate subspace of C2 (f2). Of course, without posing any further conditions on 
u, any cubic polynomial satisfies (5). 

Since our goal is to interpolate the data given on D c G c n, this leads to the 
requirement for solving 

Uxxxx + Uyyyy 0 inf2\D, (6) 
u( a) - Za , a E D, 

and in addition some natural boundary conditions if necessary to guarantee uniqueness 
of u. 

To discretize (6), we will approximate the derivatives by finite differences on the grid 
G = n n (h1Zl x h2 Zl). The discretized differential operator should only be applied to the 
nodes of U = G \ D as the interpolation conditions are to be fulfilled on D. This leads to 
the N = #U equations 

1 1 
hi (Hz)a + h~ (Vz)a = 0, a EU, 

where the horizontal and vertical difference operators H and V are defined by 

and 
(V Z) a = Za-2d2 - 4za-d2 + 6za - 4Za+d2 + Za+2d2 

with direction vectors d1 = (1, o)T and d2 = (0, lf. 
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We will in the following assume that h1 == h2 in which case we might replace (7) by 
(H z)a + (V z) 0 == 0. This leads to the definition of the difference operator 

(Pz)a == (Hz)a + (Vz) 0 , (8) 
i.e., P can be identified with a 9-point-difference stencil of the form 

1 
-4 

1 -4 12 -4 1 (9) 
-4 

1 

Since G is a finite grid, the stencil has to be modified close to the boundary of n. For 
example, if a E U and a+ 2d1 ti. G, the horizontal operator H could be modified to , 

(Hz)a == Za-2d1 - 4za-dl + 5z0 - 2za+d1, 

and if also a+ d1 tf, G, it would read 

(H z)a == Za-2dl - 2za-dl + Za. 

These alterations correspond to a discretization of the natural boundary conditions Uxxx == 
Uxx == 0 across a vertical boundary. Similar conditions can be posed on V. For further 
details on such discretizations see [1], p. 137. 

Given the above discretization of boundary conditions together with mild restrictions 
on the number and location of the nodes in D, it is shown in [4] that the operator P is 
symmetric and positive definite on the space of grid functions supported in U, i.e., for 
any grid functions x and y such that Xa = Ya. = 0 for all a ¢ U we have 

(Px, y) - (x, Py), 
(Px, x) > 0 , x-:/= 0, 

where ( ·, ·) denotes the Euklidian inner product. The conditions for positive definiteness 
is that there exist at least four nodes in D that are not zeroes of any bilinear function 
which is a very weak condition. In fact, the results in [4) also covers the introduction 
of discontinuities in the grid function (faults) treated as internal boundary conditions 
towards the faults. 

Since P is symmetric, positive definite and sparse, a natural approach for solving 
the linear equations (7) i~ to use some kind of conjugate gradient iteration. Without 
preconditioning, this can be implemented simply by storing z in a matrix and applying 
the stencil (9) to z in order to perform the matrix-vector product, i.e., it is not necessary 
to assemble the matrix. This is done in [3] where it is indeed observed in the computations 
that the number of conjugate gradient iterations grows very fast as a function of the size 
of the grid as predicted by the theory. In fact, for a sparse data set D and a fine grid 
G, the spectral condition number of P is O(N2 ) where N == #U. The convergence rate 
of the CG method is then close to zero, c.f. (14), which means that there is hardly any 
improvement in each iteration step when N is large. While N is smaller and thus also the 
condition number of P when more data Dis given, the convergence rate also depends on 
the distribution of the data which is reflected in the constants in O(N2). In view of this 
observation, the model problem given in the next section is chosen such that all the given 
data is assembled around the boundary. Thus, the example is rather 'ill-conditioned' in 
the sense that the constants in O(N2 ) will be quite large. 
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3 A model problem 
Given an integer n ~ 2, let h = 1/(n - 1). In the model problem we will use a domain n 
on the form n = [-2h, 1+2h]2 and we define G = n n h7L2. Furthermore, let 

D = {a E G : a tj; (0, 1]2}, 

and define U = G \ D. Then U consists of N = n x n nodes on a uniform grid covering the 
unit square. The data nodes D lie on two more outer grid lines parallel to the boundaries 
of the unit sq are. The input data will be sampled from a test function on D, thus we do not 
consider the regularization and approximation steps of the scattered data approximation 
algorithm. Neither do we consider derivative type boundary conditions. The boundary 
conditions will be of Dirichlet type, clamping the value and the cross boundary derivative 
of the solution at the boundary. 

With this setup we are able to study the effect of approximating scattered data sets 
containing regions with little data. Large values of n are to be interpreted as large 'holes' 
in a scattered data set. 

Let f be some test function and define 

Za = f (a) for all a ED. (10) 

To compute Za for a EU we must solve the linear system 

(Pz)a = (Hz)a + (Vz)a = 0, a EU. (11) 

In' order to apply the equation solvers in the next section, we will need to formulate (11) 
by assembling the coefficient matrix. For this purpose let ba = -(Pz)a, where Za = f (a) 
if a E D and Za = 0 otherwise. Then a grid function z with Za = 0 for all a E D solves 
our pro bl em if 

(Pz)a = (Hz)a + (Vz)a = ba, a EU. 

Enumerating the grid nodes vertically beginning with the lower left corner of U, one 
obtains a linear system of equations 

Pz = (H + V)z = b (12) 

where we keep the notation P, Hand V for the corresponding N x N matrices. With the 
vertical ordering V has a dense band of band width 2. That is, V has two side diagonals 
on each side of the main diagonal. It is also block diagonal with blocks of size n x n, 
each block corresponding to the one variable problem induced by a vertical grid line. The 
matrix H has band width 2(n- l). However, using a horizontal ordering the situation for 
H and V is reversed. 

For the PCG methods used in the next section, the ordering is not of primary impor-
tance since we will only need to perform matrix-vector products, a.nd hence we can store 
Pin a matrix format supporting sparse matrices. However, for the ADI method we.~m 
use Cholesky factorizations of matrices related to H and V, and with the vertical orderi£.g 
this would create fill-in in H. To avoid this we will use a vertical ordering for V and a 
horizontal ordering for H in the implementation of the ADI method. 
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4 Solving the linear equations (12) 

4.1 Preconditioned conjugate gradient methods 
The convergence speed R of the CG method (Algorithm 4.1 below with C ==I, the identity 
matrix) depends on the spectral condition number 

(13) 

where Amax(P) and Amin(P) are the maximal and minimal eigenvalues of P, in such a way 
that it slows down exponentially with decreasing grid spacing,. i.e., 

JK(P) - 1 
R ==-log . 

JK(P) + 1 
(14) 

An example of this dramatic effect for the present situation is given in [3]. The fourth 
power of h in (13) relates to the fact that the differential operator in (8) is of order four. 

It is therefore of primary importance to precondition the linear system, i.e., to replace 
(12) by 

CPz== Cb 

where C is some symmetric positive definite matrix approximating p-1 . One would call 
C a 'good' preconditioner for P if K(CP) << K(P) and if the matrix-vector product GP 
is not too costly, typically of the same computational complexity as for performing Pz. 

Below' we provide an outline of the preconditioned conjugate gradient method as it 
can be found in e.g. [11]. 

Algorithm 4.1 PCG method 
r f- b - Pz, z start vector 
gt-Cr 
p f-g 
a+-(r,g) 
residuaLerror f- J(r, r) 
while (residual_error > error_wanted) { 

(}' 
at- ---(p, Pp) 
zt-z+ap 
r f- r- aPp 
gt-Cr 
anew f- (r,g) 

f3 anew +----
(}' 

a f- anew 
pf- g + f3p 
residuaLerror f- JM 
} 

Here ( ·, ·) denotes as before the Euklidian inner product. 

7 



In the examples in Section 5 we have set C to be the SSOR preconditioner, derived 
from the classical successive overrelaxation iteration for symmetric matrices, and the RILU 
preconditioner, based on incomplete factorization. For fourth order problems, one expects 
then K,(CP) = O(h-2 ). For more information on these and other types of preconditioner, 
see [7] or [11]. 

4.2 ADI methods 
An alternative approach to solve (12) which is somewhat different from the PCG method 
with SSOR or RILU preconditioner is motivated by the fact that the stencil (9) does 
not contain mixed derivatives. The idea is to define an iteration based on the splitting 
P = H + V, leading to the ADI method. The theory for the ADI method in this subsection, 
as it was developed for second order problems, has been taken from the survey [ 6] where 
also all the proofs of the statements and a number of examples and computations (though 
from more than thirty years ago) can be found. 

Introducing an iteration parameter p > 0, we may write equation (12) as 

Pz = (H +pl+ V - pI)z = b 

which gives the relations 

z - (V + pI)-1(b - (H - pI)z), 
z - (H + pI)-1(b - (V - pI)z). 

Note that the matrices H and V will always be symmetric and positive semi-definite. 
For the model problem in Section 3 they are actually positive definite. Therefore, for any 
p > 0, V +pl and H +pl are positive definite and their inverses are therefore well defined. 

Using a single iteration parameter p, the stationary ADI method reads as follows: 

Algorithm 4.2 (Stationary ADI method) 
z start vector, p iteration parameter 
r-<-- b - Pz 

. residuaLerror -<-- .j(r, r) 
while (residual_error > error_wanted) { 

z-<-- (V + pl)-1 (b - (H - pl)z) 
z-<-- (H + pl)-1 (b - (V - pI)z) 
r-<-- b - Pz 
residuaLerror -<-- .j(r, r) 
} 

By ordering the grid points vertically when assembling V and horizontally when assem-
bling H as mentioned before, both matrices will be pentadiagonal, i.e., they have the 
four side diagonals directly adjacent to the main diagonal (band width. 2). The same 
ordering principles are used for H + pl and V + pl. The inverses of H + pl and V + pl 
are determined by Cholesky decomposition ahead of the iteration loop. Since these are 
2-banded, the decompositions are performed quickly without fill-ins. 

The application of the inverses inside the iteration loop are performed by forward-
backward substitutions. Again by the 2-banded structure, these actions are O(N) opera'.'" 
tioris. By using a vertical ordering of the N-vector, we must, however, reorder the vectors 
into a horizontal ordering before an operation involving His performed. 
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It can be shown that Algorithm 4.2 converges for any fixed iteration parameter p > O 
[6]. In fact, it is well-known [10] that every stationary iterative method x +-- Tx + b 
converges if and only if the spectral radius A(T) := maxi IAt(T) I of the error reduction 
matrix T satisfies A(T) < 1 where At(T) are the eigenvalues of T. In Algorithm 4.2, one 
has T = (V + plt1(H -pl)(H + pJ)-1(V -pl) for which it can be shown with arguments 
from linear algebra that its 'spectral radius is less than one for any positive p since H, V 
and pl are real symmetric positive definite matrices [6], p. 195. 

According to [ 6], the optimal choice of p depends on the smallest and biggest eigen-
values of H and V. In our implementation we computed these eigenvalues using power 
iterations, cf. [10]. It turns out that the eigenvalues can be found with very few iterations. 
In the examples in Section 5 three power iterations proved to be sufficient to determine 
satisfactory approximations to the maximum and minimum eigenvalues. 

Now, denote by aH, bH and av, bv the minimal and maximal eigenvalues of Hand V, 
respectively. Define 

Fi .- ( b H - va;;fJii) ( bv - va;;fJii) 
bH + v'aHbH bv + v'aHbH ' 

(~:::) (:::~). 
If F1 < F2 then the optimal choice for the iteration parameter is 

p := JaHbH, (15) 

otherwise, one should set 
p := Javbv. (16) 

With such p, the convergence rate of the stationary ADI method, Algorithm 4.2, is then 
at least 

R = -logF, 
For the sit.uation at hand of one-dimensional fourth order differential operators H and V, 
we typically have 

(17) 
Here X rv Y means. that there exist constants c1 , c2 independent of any parameters X 
or Y may depend on such that c1Y :::; X :::; c2Y, and h is the grid spacing as in (13). 
Thus, p rv h2 with either of the two choices (15) or (16), and the convergence rate of the 
stationary ADI method is then at least 

R =-log(~~:~:~:) ( ~:: ~:~:) 
with some constants c1 , c2 , c3 , c4 • Thus, if h rv 2-j and j large, the speed of convergence 
will be comparably slow. Tests for second order problems performed in [6] show that 
the stationary ADI method behaves essentially like the classical successive overrelaxation 
method. 

However, the rate of convergence of ADI methods can be considerably improved by 
using a possibly different iteration parameter in each iteration step leading to an insta-
tionary ADI method, see [6] or [1], pp. 206-212. The algorithm for determining these 
parameters denoted now by Pi, i = 1, ... , m, for some fixed m E ffi1 can be formulated as 
follows and has to be done only once. 
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Algorithm 4.3 (Determination of iteration parameters) 

1. Let a := min{ aH, av} and b := max{bH, bv} where aH, av, bH, bv are the mini-
mal and maximal eigenvalues of JI and V, respectively, and set 

a 
c=b 

2. Find the, smallest integer m such that 

( y'2 - 1)2m ::=; C (18) 
3. Determine Pi, i = 1, ... , m, as 

( 
a ) 2~~1 

Pi=b b , i= 1, ... ,m, (19) 
or 

Pi = b ( ~ ) ,;.-:_•, , m~2, i=l, ... ,m, (20) 

The parameters determined in (19) are called Peaceman-Rachford parameters, while the 
ones in ( 20) are commonly -referred to as W achspress parameters. 

These parameters are now used successively in a cyclic order in the following procedure. 

Algorithm 4.4 (Instationary ADI method) 
i=l 
z start vector, Pi iteration parameter 
r f- b- Pz 
residuaLerror f- /(i:;) 
while (residual_error > error_wanted) { 

z +-- (V + pJ)-1 (b - (H - pJ)z) 
z +--(JI+ pJ)-1(b - (V - pJ)z) 
r f- b- Pz 
residuaLerror f- -j(r, r) 
i+-i+l 
if (i = m + 1){ 

i=l 
} } 

Remark 4.5 The instationary ADI method in Algorithm 4.4 converges provided that 
H, V are positive definite and that they commute, i.e., 

HV=VJI, (21) 

see {6}. For the model problem from Section 3 where the given data is assembled around 
the boundary, this is indeed the case for the corresponding H and V. When data is 
given inside the domain to approximate e.g. discontinuities across faults, the respective 
operators H and V do not satisfy the commutativity condition any more. However, the 
first corresponding tests {17} indicate that the instationary ADI method still works well and 
converges fast. It seems as if one could indeed use the method for practical computations 
as long as the amount of data 'in the interior does not force JIV - V JI to deviate from 
the zero matrix in too many places. A corresponding theoretical and computational study 
will be reported elsewhere. 
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In Algorithm 4.4, the inverses (V + pJ)-1, (H + pJ)-1 are determined exactly by Cholesky 
decomposition of V +Pi!· and H +Pi and can be computed ahead of the iteration for each 

. of the iteration parameters. However, for large systems this might be too costly with 
respect to storage. In this case the alternative would be to recompute these factorizations 
at each iteration step. As it is seen from the examples, the number of iterations turns out 
to be not much larger than m, hence this could be a good alternative for large problems. 
However, in the examples below we did precompute the factorizations. 

The Wachspress parameters seem to be superior to the Peaceman-Rachford parameters 
in many cases ([1], p. 209), and this holds true also for the present problem, cf. Section 
5. The rate of convergence in this case is in average for fixed m 

2 (1 - 2(m-o/C) 2 R= -- log . . m 1 + 2(m-o/C . 
Recalling (17) gives c rv h4 for the fourth order problem we are concerned with so that 
m ~ 3 yields already an improved rate of convergence compared to .the stationary ADI 
method. In view of (18) which roughly corresponds to 2-2m ::::; h4 in this case, a grid 
spacing h rv 2-i yields m ~ 2j so that m becomes bigger the finer the mesh size is. For 
large m, one has 2<m-o/C ~ v'2 - 1 so that 

2 ( . In) 3.5 R~ -- log 3-2v2 ~ - . 
m m 

This means that the convergence rate in average decreases when m grows. However, as it 
is confirmed by Table 3 below, when the number of grid points in each coordinate direction 
is doubled, m is only increased by one and, accordingly, the number of iterations only 
grows very slowly. 

5 Computational results 
These experiments are performed in the framework of the model problem discussed in 
Section 3. Initially, we considered several test functions fin (10) sampled on D. However, 
since the corresponding iteration counts were comparable for all the runs, the interpolation 
values on D for the runs corresponding to the tables below are sampled from the quadratic 
polynomial 

· f ( x, y) = 3x2 + 4y2 + 9xy + 6x + 8y 

only. Since f then satisfies the corresponding partial differential equation ( 6) exactly, we 
are able to compare the numerical solutions to the analytic solution of the problem. 

Define the discrete L 2 norm by 

llullh = (h2 L u!)112 
• 

a.EU 

For all the runs the iterations are stopped when the kth residual rk = b - Pzk satisfies 

The number of iterations for a given run is denoted by k* We choose z0 = 0 as start vector 
for the iterations for all runs. 

Before the iteration loop starts for the ADI methods, the maximal and minimal eigen-
values of H and V are determined by using three power iterations. In addition, the 
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Cholesky factorizations for H + pJ and V + Pil are precomputed for each iteration pa-
rameter. Since the work involved in one iteration for the PCG method and one iteration 
for the ADI method are not directly comparable, we have estimated the total work in-
volved for each of the methods. This work is designated in number of N-fiops, where one 
N-fiop is the amount of work required to perform one inner product. 

PCG RILU PC.G SSOR Stat. ADI Instat. ADI 
N k* N-fiops k* N-fiops k* N-fiops k* N-fiops 

100 16 384 20 480 57 2,127 10 536 
400 36 864 37 888 183 6,537 13 659 

1,600 93 2,232 77 1,848 * * 15 765 
6,400 302 7,248 179 4,296 * * 18 888 

Table 1: The number of iterations {k*), and the number of inner product equivalents 
{N-ftops), needed to fulfill the stopping criterion llrk llh :::; 10-3 • 

In Table 1 we have compared the number of iterations and the number of N-fiops 
for all methods. Good relaxation parameters for the preconditioners in the PCG method 
are determined experimentally. The values chosen are 0.955 for the RILU preconditioner 
and 1.9 for the SSOR preconditioner. Note that the number k* of iterations for the PCG 
methods as well as for the stationary ADI method grows very fast as a function of the 
number N of variables. However, for the instationary ADI method, where we have used 
Wachspress iteration parameters here, the number of iterations is low and grows at a very 
low rate. As it can be seen, the work load counted in N-fiops favors the instationary 
ADI method already at N = 400, i.e., for a 20 x 20 grid. The '*' in the column for the 
stationary ADI method means that this method would need more than 400 iterations to 
reach the tolerance llrkllh :::; 10-3 • 

N II PCG RILU I PCG SSOR I Stat. ADI I Instat. ·ADI I 
100 2.7 x 10-4 4.0 x 10-4 5.0 x 10-4 3.7 x 10-4 

400 1.3 x 10-3 2.6 x 10-3 7.4 x 10-4 6.6 x 10-4 

1,600 1.1 x 10-2 1.3 x 10-2 * 5.1x10-4 

6,400 1.4 x 10-1 9.6 x 10-2 * 1.5 x 10-3 

Table 2: The error II! - zk* llh between the analytic solution f and the final iterate zk*. 

Table 2 shows the error II! - zk* llh between the analytic solution f and the final 
iterate zk* for the runs in Table 1. We observe that the error is essentially bounded for 
the instationary ADI method, while it increases for the PCG methods. Thus, even if 
llrkllh :::; 10-3 for all methods, the solution zk* looses accuracy with decreasing h for the 
PCG methods, while the accuracy is independent of h for the instationary ADI method. 
This property of the instationary ADI method is confirmed in Table 3. The reason for the 
growing error in the PCG solution is that the preconditioned iteration matrix A = C P is 
'ill-conditioned' due to the type of data used. Therefore, the error llz* - zk* llh, z* = p-1b, 
need not be small even if llrk* llh = llP(~* - zk*) llh is small. This effect is not observed for 
the instationary ADI method. 
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In Table 3 we have shown the results of running the instationary ADI method on large 
grids, using both the Peaceman-Rachford and the Wachspress parameters. The number 
of iterations is low and essentially independent of the grid size for both parameter types. 
Also, the accuracy in the solution remains bounded as the grid size increases. Concluding 
our experiments, it is fair to say that these computational results are very good for a 4th 
order problem. 

Peaceman-Rachford Wachspress 
N m k* II! - zk· llh N-flops k* II!~ zk· llh N-flops 

10,000 9 36 8.1x10-4 1,536 17 5.1x10-4 871 
40,000 10 40 1.7 x 10-3 1,694 21 1.1 x 10-3 1,029 
90.,000 11 44 1.5 x 10-3 1,852 20 1.5 x 10-3 1,012 
160,000 12 46 9.3 x 10-3 1,940 22 9.6 x 10-4 1,100 
250,000 13 40 7.2 x 10-3 1,748 23 3.0 x 10-3 1,153 

Table 3: This table shows the results of running the instationary ADI method on large 
grids using the two types . of iteration parameters. The length of the cycles is denoted by 
m {number of iteration parameters in Algorithm 4.3}. The number of iterations needed 
to fulfill the stopping criterion llrkllh :::; 10-3 is denoted by k*, and the number of inner 
product equivalents is denoted by N-fiops. In addition the table shows the error II! - zk* llh 
between the analytic solution f and the final iterate zk*. 

6 Concluding remarks 
This paper discusses the application of preconditioned conjugate gradient methods as well 
as stationary and instationary ADI methods to linear algebraic equations stemming from 
a finite differep.ce discretization of the fourth order elliptic partial differential equation 
Uxxxx + Uyyyy = b. This equation is solved as part of a scattered data approximation 
scheme where it is used as a smoothing technique to fill in unknown values in a partially 
determined grid. The particular form, not involving mixed derivatives, is used to make it 
easy to handle discontinuity conditions connected to the scattered data problem. 

The results prove that the instationary ADI method is superior to the other methods, 
both with respect to the work involved and with respect to accuracy of the solution. For 
the instationary ADI method the number of iterations is essentially independent of the 
grid size, a property not shared by the other solvers where the number of iterations grows 
very fast as a function of the grid size. 

We remark that the use of the ADI methods is suggested by the fact that the stencil 
(9) does not contain mixed derivatives. If such terms are included to enforce smoothness 
of the surface also in other than the coordinate directions, the grid points could not be 
ordered any more in such a way that the matrices H and V are banded without many 
zeroes in between. One alternative to compute the Cholesky decomposition of H or V 
would then be to use an iterative method like the conjugate gradient method instead for 
the updates of z within an ADI method. Another approach would be to split P into 
several components, e.g. by introducing ordering also along diagonals in the grid. Or, one 
could use one iteration of the ADI method with P given by (9) as a preconditioner for 
the PCG method applied to the operator with mixed derivatives. 
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In general, it is fair to say that the fast solution of large fourth order problems is 
not an easy question. To avoid the requirement on the high regularity of the solution 
when discretizing the problem (6) with a difference method, one usually rather employs a 
variational approach. Thus, an alternative would be to use finite elements in a Galerkin 
method for (4) combined with some approach to incorporate the known grid function 
values into the problem formulation. Because of the dramatic effect of the condition 
number for fourth order problems, a multilevel (see (8]) or multigrid preconditioner (see 
e.g. (11]) which exists for these types of variational problems yielding a 0(1) growth-
rate in a PCG method is worth considering. Also the given data could be handled by 
appending these as side conditions by Lagrange multipliers as in [14]. However, in these 
cases the construction of several grids of different gridsize with a consistent' treatment of 
the given data conditions it is not so clear. 
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