
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Local surrogate responses in the Schwarz alternating method for

elastic problems on random voided domains

Martin Drieschner1, Robert Gruhlke2,

Yuri Petryna1, Martin Eigel2, Dietmar Hömberg2,3,4

submitted: March 28, 2022

1 Technische Universität Berlin
Department of Civil Engineering, Chair of Structural Mechanics
Gustav-Meyer-Allee 25
13355 Berlin
Germany
E-Mail: martin.drieschner@tu-berlin.de

yuriy.petryna@tu-berlin.de

2 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: robert.gruhlke@wias-berlin.de

martin.eigel@wias-berlin.de
dietmar.hoemberg@wias-berlin.de

3 Department of
Mathematical Sciences
NTNU
Alfred Getz vei 1
7491 Trondheim
Norway

4 Technische Universität Berlin
Institut für Mathematik
Str. des 17. Juni 136
10623 Berlin
Germany

No. 2928

Berlin 2022

2020 Mathematics Subject Classification. 35R60, 65N12, 65N22, 65J10, 97N50.

Key words and phrases. Domain decomposition, Schwarz alternating method, random domain, artificial neural net-
work (ANN), linear elasticity, stress concentrations, experimental validation.

The authors gratefully acknowledge the financial support of the German Research Foundation (DFG) within the Subpro-
ject 4 (312928137) of the Priority Program "Polymorphic uncertainty modelling for the numerical design of structures –
SPP 1886".



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


Local surrogate responses in the Schwarz alternating method for
elastic problems on random voided domains

Martin Drieschner, Robert Gruhlke,
Yuri Petryna, Martin Eigel, Dietmar Hömberg

Abstract

Imperfections and inaccuracies in real technical products often influence the mechanical be-
havior and the overall structural reliability. The prediction of real stress states and possibly re-
sulting failure mechanisms is essential and a real challenge, e.g. in the design process. In this
contribution, imperfections in elastic materials such as air voids in adhesive bonds between fiber-
reinforced composites are investigated. They are modeled as arbitrarily shaped and positioned.
The focus is on local displacement values as well as on associated stress concentrations caused
by the imperfections. For this purpose, the resulting complex random one-scale finite element
model is numerically solved by a new developed surrogate model using an overlapping domain
decomposition scheme based on Schwarz alternating method. Here, the actual response of local
subproblems associated with isolated material imperfections is determined by a single appropri-
ate surrogate model, that allows for an accelerated propagation of randomness. The efficiency
of the method is demonstrated for imperfections with elliptical and ellipsoidal shape in 2D and
3D and extended to arbitrarily shaped voids. For the latter one, a local surrogate model based
on artificial neural networks (ANN) is constructed. Finally, a comparison to experimental results
validates the numerical predictions for a real engineering problem.

1 Introduction

Stress concentrations in engineering structures can initiate local cracking with a following crack prop-
agation through the structure, and at worst, lead to global structural failure [1, 28]. Such phenomena
can be observed due to geometrical or material discontinuities. Therefore, it is necessary to investigate
in detail the influence of such imperfections, inaccuracies and inhomogeneities on the overall system
behavior. In general, air voids resulting from manufacturing processes or environmental conditions
are unavoidable in many different materials like asphalt mixtures [19], die-cast ZAMAK [17], epoxy
resin [15], mortar or concrete [13]. In [23], an extensive overview with a broad spectrum of numerical
investigations of holes in plates is given. Experiments on holed structures can be found in the liter-
ature, e.g. in [16] where the shear failure behavior of lipped channel beams have been studied. The
experiments have indicated that the main factor influencing the strength is the ratio of the depth of web
openings to the clear height of the web. Yielding and buckling of plate girders with perforated webs
under axial compression and bending moment have been investigated in [27]. The influence of the
hole location on the ultimate load capacity has been verified experimentally and numerically. Some-
times, the air void properties like amount, size, position and shape are uncertain or vaguely detectable
by non-destructive testing (NDT) like in adhesive bonds of rotor blades of wind turbines [22]. For this,
some studies have already been done by the authors, see [18, 7, 6, 10]. Motivated by the presence of
air voids in diverse engineering applications, this work sets its focus to efficient numerical simulations
of linear elastic materials with random voids.
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The challenge in the numerical simulations of these type of problems lies in the fact that the solutions
contains many multiscale features and thus require very fine meshes to resolve them. Such problems
have been investigated in the deterministic setting using reduced basis and generalized multiscale
finite element methods, exemplarily in [3, 4].

In the setting of random domains containing a random number of voids parametrized by random
parameters, two main challenges arise. The first challenge is introduced by the possible unknown
correlation structure of the random input variables. The second challenge is caused by the possi-
ble high-dimensional parameter space. Both aspects may not allow a straightforward application of
surrogate models leading to the application of sampling approaches.

Motivated by the application in mind detecting local behavior such as stress concentrations, a com-
bined technique is developed in this work based on global sampling and local surrogate techniques.
Here, the main idea is to propagate uncertainty in a substructuring framework based on localized
random dependence. Such ideas have been applied successfully in the context of partial differential
equations with random coefficients in the smooth case using Schur complement formalism [5] and in
the non-smooth case including composite materials in [11] based on FETI-DP. These techniques are
extended to the case of random domains, locally allowing for non-matching meshes in a formalism
of overlapping substructuring methods based on the Schwarz alternating method [25]. This approach
allows for fine meshes around the local features, while using a moderately sized discretization of the
remaining domain.

Surrogates are trained in an offline phase and replace the system response of a neighbored area
of an isolated void. Hence, no meshing, assembling and solving in the neighborhood of material im-
perfections is required in the online phase. Consequently, the idea can be interpreted as an effective
reduction of degrees of freedom in the remaining domain and yields an accelerated propagation of un-
certainty. The developed method combines the advantages from both worlds: Sampling to circumvent
the curse of dimensionality and surrogate techniques for the fast propagation of uncertainty without
the need of additional numerical computation in the online phase.

The accelerated scheme is then applied on linear elastostatic problems defined on domains with
isotropic material and star-shaped voids in 2D and 3D, with the special case of elliptical and ellipsoidal
shapes.

The remainder of this paper is organized as follows: Section 2 provides the linear elastostatic bound-
ary value problem for two- and three-dimensional holed structures. The Schwarz alternating method
to decompose the model and the local problems having localized uncertainty in the subdomain are de-
scribed in Section 3. Strategies for the surrogate response of the problem formulation are presented
in Section 4. The application of the presented models on three examples is given in Section 5. The
solutions of the proposed surrogate modeling approaches are compared with those of the one-scale
model. Furthermore, experimentally determined strains are used for validation of the numerical meth-
ods. Finally, some concluding remarks and an outlook on the ongoing work are given in Section 6.

2 Parametric elastostatic model for holed domains

This Section 2 is devoted to the description of the linear elastostatic model equation on random do-
mains. The focus is on the prediction of displacements and principal stresses in the neighborhood of
material imperfections modeled by random voids.

DOI 10.20347/WIAS.PREPRINT.2928 Berlin 2022



Local surrogate based Schwarz alternating method 3

2.1 Model of random voids

Let pΩ, σ,Pq be a random space. Let D̂ Ă Rd, d “ t2, 3u, be a reference body which is occupied by
a random number N “ Npωq P N of random holed structures

Ppωq “ tPkpωq, k “ 1, . . . , Nu Ă D̂, ω P Ω, (1)

yielding a holed LIPSCHITZ domain Dpωq “ D̂zPpωq. It is assumed that the random dependency
of the voids Pkpωq P Ppωq is encoded by a random vector ξpωq “ pξ1pωq, . . . , ξNpωqq with
ξkpωq : Ω Ñ Ξk Ă Ξ0 Ă RMkă8 such that Pkpωq “ P pξkpωqq for k “ 1, . . . , N with a joint
distribution of ξ from which samples can be drawn. In general img ξ “: Ξ Ă

ŚN
k“1 Ξk with strict

inclusion, for example in the case, when the random voids are correlated by geometric constraints. In
what follows, the notations of parameter identification p “ ξpωq P Γ and pk “ ξkpωq are used. Note
that the case of periodic perforations is included for which the parameterization may be simplified,
using global parameters for distance and size only.

In the application in mind, each void is elliptical/ ellipsoidal or star-shaped. The latter structures are
generated by the choice of a random vantage point and a finite number of random radii in preselected
angular directions. Trigonometric interpolation is then applied in radial direction to obtain a continuous
model of the void. Since the presented approach relies on the use of local coordinate systems asso-
ciated to each Pk, its parameterization pk does not contain midpoint or vantage point information. In
the case of elliptical/ ellipsoidal voids, pk P Rd only corresponds to radii whereas pk P RMk is a
vector of Mk radii associated to predetermined angles in an associated local polar coordinate system
for star-shaped voids.

2.2 Random model equation

Consider a linear elastostatic boundary value problem of the form

fpωq “ ´ divσ equilibrium eq. *

ε “
“

∇u`∇Tu
‰

{2 strain-displacement eq. in Dpωq,
σ “ C : ε constitutive eq.
u “ 0 Dirichlet b.c. on Γ0,

σ ¨ n “ gpωq Neumann b.c. on Γσ,
σ ¨ n “ 0 Neumann b.c. on Γσ,0pωq,

(2)

with deterministic disjoint boundary segments Γ0,Γσ Ă BD̂ with BD̂ “ Γ0 Y Γσ, |Γ0| ą 0 and

a realization of the void boundary Γσ,0pωq :“ B
´

Ť

PPPpωq P
¯

. Note that the case of random holed

structures intersecting with the boundary of D̂ has been excluded since Γ0 and Γσ are assumed to
be deterministic. Let the random data C, fpωq and gpωq be regular enough in x P Dpωq such that
the LAX-MILGRAM theorem applies to ensure existence and uniqueness of a (weak) pointwise solution
upωq P V :“ H1

Γ0
pDpωqqd solving the variational formulation for almost all ω P Ω

ż

Dpωq

σpuq : εpvq dx “

ż

Dpωq

fpωq ¨ v dx`

ż

Γσ

gpωq ¨ vdS, for all v P V. (3)

For the applications in Section 5, the reference body D̂ is a rectangle (L ˆ W ) for d “ 2 or a
cuboid (L ˆ W ˆ T ) for d “ 3, respectively. Furthermore, fpωq is modeled as f ” 0 and the
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deterministic material response C is given as C “ λI2 b I2 ` 2µI4 with second- and forth-order
identity tensors I2 and I4. The LAMÉ constants λ “ Eν{rp1` νqp1´ 2νqs and µ “ E{r2p1` νqs
with given YOUNG’s modulus E and POISSON’s ratio ν describe isotropic material. Holed domains are
exemplarily illustrated in Fig. 1.

P1

P2

P3

P4

P5

(a) Arbitrarily shaped voids in 2D

P1

P2

P3

P4

(b) Ellipsoidal voids in 3D

Figure 1: Schematic holed domain Dpωq according to Eq. (2).

2.3 Quantities of interest

The general objective is to predict the displacement field upxq in the overall holed domain Dpωq.
Furthermore, stress concentrations around the included voids Pkpωq are often of interest for practical
issues, e.g. for a qualitative and quantitative comparison with experimentally determined failure mech-
anisms and ultimate loads [10]. The maximum first principal stress and the minimum third principal
stress are to be determined:

σ1,max “ σ1,maxpωq “ ess sup
xPDpωq

λmaxpσpuqrxsq, (4)

σ3,min “ σ3,minpωq “ ess inf
xPDpωq

λminpσpuqrxsq. (5)

Here λmaxpAq and λminpAq denote the largest and smallest eigenvalue of a matrix A, respectively.
Finally, in the practical example in Section 5.3, the axial strains εx have to be measured which can
easily calculated from the displacement field by

εx “ εxpxq “
B

Bx
uxpxq. (6)

3 Local surrogate based on substructuring and random voids

In this Section 3, the proposed method to solve the linear elastostatic problem in Eq. (2) in the presence
of random voids in an accelerated sampling framework is presented. The acceleration is based on the
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D0pωq

BP in
k

BP out
k

Fn

BDkpωq “ BP
out
k

BP in
k

local x-axis

local y-axis¨β1

¨β2

Pk

Figure 2: Schematic domain decomposition. Left: Domain D0pωq with rectangular cutouts P inpωq.
Right: Subdomain Dkpωq with void Pkpωq and surrounding domains tP in

k pωq, P
out
k pωqu based on

relative values tβ1, β2u in the local coordinate system.

Schwarz alternating method, which is an overlapping substructuring method, where the response of
the subproblems associated with the random voids is substituted by suitable surrogate models. The
Schwarz alternating method allows to use independent and possible non-matching meshes. Conse-
quently, while local subproblems based on fine meshes do not cause additional computational effort by
using the surrogate response, the workload is determined by the iteration number and the computation
of the system defined on the remaining domain.

3.1 Schwarz alternating method

When approximating a solution of a real problem by using the finite element method (FEM), the ac-
curacy mainly depends on the quality and size of the mesh on the one hand (h-convergence) and
the degree of the underlying shape functions within the elements on the other hand (p-convergence).
In the presence of geometric details, such as the arbitrarily shaped voids in mind, a necessary fine
mesh resolution significantly increases the workload of the associated FEM computation. In partic-
ular as the mesh sizes decrease, the condition number of the associated algebraic systems grows
and encourages the need of so called preconditioning. A popular class of preconditioners is based on
substructuring or domain decomposition techniques [26], which is the underlying approach of choice
for the introduced method. The technique developed in this contribution is based on the overlapping
Schwarz alternating method [25].

Let ω P Ω and recall our random domain of interest Dpωq resulting from a set of random holed
structures Ppωq. Assume that there exist sets of simpler geometries

P#
pωq “ tP#

1 pωq, . . . , P
#
N pωqu, with # P tin,outu, (7)

such that Pkpωq Ă P in
k pωq Ă P out

k pωq with P out
k pωq X P out

k1 pωq “ H if k ‰ k1. Furthermore, define
the domain as D0pωq :“ D̂zP inpωq and the subdomains as Dkpωq :“ P out

k pωq for k “ 1, . . . , N ,
see Fig. 2. The terminology “simpler geometry” is motivated by a reduced workload due to the domain
D0pωq even if quantities of interest associated to the random structures within the subdomainsDkpωq
are of particular importance, such as local stress concentrations. Then, Eq. (2) is reformulated for
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¨k “ ¨|Dk as

fpωq “ ´ divσk *

εk “
“

∇uk `∇Tuk
‰

{2 in Dkpωq for k “ 1, . . . , N
σk “ C : εk

(8)

with coupling by Dirichlet boundary conditions for k “ 1, . . . , N such that
$

&

%

u0 “ 0 on Γ0,
σ0 ¨ n “ gpωq on Γσ,
u0 “ uk on BP in

k pωq,

"

σk ¨ n “ 0 on BPkpωq,
uk “ u0 on BP out

k pωq.
(9)

Alternating iterations between these equations given an initial Dirichlet trace until convergence are
then conducted in the classical Schwarz alternating method.

3.2 Local subproblems

The Eqs. (8)–(9) in the subdomain Dkpωq for k ą 0 associated with a single void Pkpωq are inves-
tigated in the following, especially the need of accurate mesh resolutions. Furthermore, a family of
parametrized meshes within the discretization process itself is presented. This approach is essential
to enable suitable surrogate response techniques in Section 4.

3.2.1 Mesh resolution and accuracy

For illustration, the void P1 of Fig. 1 has been separated and investigated briefly. Uniaxial tension
has been applied in horizontal direction. The maximum first principal and the minimum third principal
stress using Eqs. (4)–(5) have been calculated for different amounts of elements on the boundaries
BP out

1 (here with rectangular shape) and BP1, respectively. It has been determined that a relatively
high amount of elements on BP1 should be used, at least 120. Also the amount of elements on
BP out

1 influences the stress values, leading in total to a high amount of degrees of freedom for an
accurate prediction of local stress concentrations, see Fig. 3. As a compromise between efficiency
and accuracy, the configuration with 40 elements on BDk and 360 elements on BPk has been used in
the following. Furthermore, a layer with nearly square-shaped elements has been added around the
void to increase the accuracy of the stress prediction on the voids, see also Fig. 3.

3.2.2 Parameter model

Given the structure of the random voids, in particular the parameter dependence of an isolated Pk
from pk, the construction of a single parameter dependent model is envisaged. Then, this model can
replace, over the loop of sample realizations, the response of any subproblem within Eqs. (8)–(9) for
k “ 1, . . . , N . Geometries P in

k and P out
k of possibly rotated rectangular (d “ 2) or cuboid (d “ 3)

shape are considered, which are aligned with the void in a local coordinate system and sized by
fixed relative ratios β2 ą β1 ą 0, see Fig. 2. Throughout the iterative process within the Schwarz
alternating method, the local problems on Dkpωq “ P out

k pωq with void Pk depending on pk only differ
by a change of the Dirichlet boundary condition on BDkpωq.

Finally, let Sppkq denote the corresponding linear solution operator, mapping the current Dirichlet
trace to the local solution.

DOI 10.20347/WIAS.PREPRINT.2928 Berlin 2022
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#DOF = 2248 #DOF = 81232

#DOF = 8920

(a) Maximum first principal stress

#DOF = 2248 #DOF = 81232

#DOF = 8920

(b) Minimum third principal stress

Figure 3: Stress convergence plots for the subdomain D1 with outer boundary BD1 “ BP
out
1 and an

arbitrarily shaped void P1 with boundary BP1.

3.2.3 Smooth parameter dependent family of discretization

Motivated by Section 3.2.1, a fixed mesh discretization scheme is used for a fixed range of parameters
pk. Let Ξ0 “

ŤL
`“1 Ξ`

0, L P N, be a disjoint partition of the local hold all domain Ξ0 defined in
Section 2.1.

For fixed ` “ 1, . . . , L, any subdomain Dk “ P out
k with void Pk “ Pkppkq for pk P Ξ` is discretized

by a mesh M` “M`ppkq such that:

1 There are N` P N vertices on BPk.

2 There are N`,xi P N, i “ 1, . . . , d equidistantly distributed vertices on BP in
k and BP out

k .

3 The mesh M`ppkq of P out
k zPk is the result of a reference mesh M̂` with reference void P̂` and

surrounding reference rectangles/ cuboids tP̂ in
` , P̂

out
` u under a smooth mapping Ψ`, such that

Ψ`pM̂`,pkq “M`ppkq.

Automatic mesh generators are restricted to the first two rules and consequently introduce a non-
continuous parametric family of meshes in the sense that computations based on these meshes lead
to non-continuous trajectories with regard to pk, see Fig. 4 for a counter example. Fortunately, this
issue is resolved by the smooth mesh transformation Ψ`. The consequences of this construction are
illustrated in Fig. 4 yielding piecewise continuous trajectories based on the partition using different
reference meshes.

3.2.4 Explicit construction of Ψ for d “ 2

An explicit construction of a smooth mesh transformation Ψ is exemplarily described for d “ 2 in
the following. Note that since P out

k and P in
k are (rotated) rectangles, there exists an affine map that

transforms Dkpωq in such a way that P in
k gets mapped onto r´1, 1s2. Let M̂ be a reference mesh

defined on r´1, 1s2zP̂ with a reference star-shaped void P̂ and let P Ă r´1, 1s2 be a target star-
shaped void, both having 0 as midpoint such that BRminp0q Ă P̂ , P Ă BRmaxp0q, 0 ă Rmin ă

DOI 10.20347/WIAS.PREPRINT.2928 Berlin 2022
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Figure 4: A simple elliptical void parametrized by ratio parameter ρ “ r2{r1 as in Section 4.2.1 is
meshed using a fixed amount of points on the inner and outer boundary. For qin “ qout “ p4, 4, 4, 4q.
Two trajectories from entries of the matrix representation C` in Eq. (14) of the compressed operator
C` from Eq. (13) are plotted. Left: Example trajectory using underlying automatic mesh generation,
demonstrating lack of continuity. Right: Using different reference meshes M̂` for ` “ 1, 2, 3, 4 for
a partition Ξ0 “ r1, 2s Y r2, 3s Y r3, 4s Y r4, 5s, the transformation Ψ` yields piecewise smooth
trajectories with controlled discontinuities with respect to the partition of Ξ0.

Rmax ă 1. Let θ Ñ F̂pθq and θ Ñ Fpθq denote a parameterization of the boundary of P̂ and P
respectively in local polar coordinates. Furthermore, define F̂n :“ tF̂p2πi{nq, i “ 0, . . . , n ´ 1u
and Fn :“ tFp2πi{nq, i “ 0, . . . , n ´ 1u for n P N. Assume that F̂n are the vertices of the
reference void P̂ in M̂ and consider the virtual points F̂2n and F2n. Then the transformation

Ψpx̂,F2nq “

2n
ÿ

i“1

χipr̂qφipθ̂q, x̂ “ r̂rcos θ̂, sin θ̂sT (10)

with tφiu forms a smooth partition of unity of r0, 2πs with φipiπ{nq “ 1, suppφi “ rpi´1qπ{n, pi`
1qπ{ns and splines χi P Ckr0,

?
2s for k ě 2. The spline χi is a strong monotonic interpolation

polynomial with χip|F̂piπ{nq|q “ |Fpiπ{nq| with input and output being radial components in the
local coordinate system. Furthermore, χi coincides with the identity outside of rRmin, Rmaxs. Then,
apart from forward and backward affine rescalings of r´1, 1s2 and Dkpωq, Ψ of Eq. (10) can be used
as underlying parameter depending transformation by noting the relation of parameter pk to F2n. In
Fig. 5, the construction based on different reference meshes corresponding to elliptical voids with
different ratios is depicted.

4 Surrogate strategies for local subdomains

Based on the fixed mesh design of the local subproblems described in the previous Section 3, different
surrogate strategies are developed in this Section 4. By using them, the computational costly finite
element analysis of each local subproblem stated in Dkpωq can efficiently be replaced to accelerate

DOI 10.20347/WIAS.PREPRINT.2928 Berlin 2022
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(a) Reference domain
M̂1 with circular void

(b) Target domain exam-
ple based on M̂1

(c) Reference domain
M̂2 with elliptical void

(d) Target domain exam-
ple based on M̂2

Figure 5: Based on two reference meshes M̂`, local subdomains are discretized by construction of
Ψ`. The transformations are non-linear in the inner rectangles P̂ in

` and linear in the remaining area
P̂ out
` zP̂

in
` (` “ 1, 2).

the iteration process of the Schwarz alternating method. For a given realization of random voids,
this approach can be interpreted as a (multiplicative or additive) Schwarz alternating method with
inexact local solutions. The convergence of the discretized and thus algebraic problem then may follow
from [2].

4.1 Compressed local solution operator C`

The parameter pk P Ξ`
0 is given for fixed ` “ 1, . . . , L as in Section 3.2.3. The fixed discretiza-

tion of M̂` implies a parameter dependent linear solution operator Sh` ppkq « S`ppkq of the local
problem of fixed shape having a void Pkppkq. This operator takes the current (interpolated) Dirich-
let trace on BP out

k and returns a (interpolated) Dirichlet trace on BP in
k with regard to the underlying

mesh discretizations of D0pωq and Dkpωq. Consequently, the input and output are usually mesh size
dependent.

Motivated by the regularity of upωq in Dpωq, a mesh independent compression is envisaged. For a
continuous functionu : P out

k Ñ Rd with trace tru, a continuous piecewise Lagrange polynomial trace
interpolation I#

q , # P tin,outu of order q “ pq1, . . . , qQdq P NQd , Qd “ 4 and Qd “ 6 for d “ 2
and d “ 3 respectively, of the form

I#
q ptruq “ polynomial of degree qi on the i-th segment of BP#

k (11)

is constructed. The segments correspond to edges for d “ 2 and facettes for d “ 3.

LetNq denote the degrees of freedom of the interpolation scheme. In case of q “ pq, . . . , qq, it holds

Nq “

#

4qd for d “ 2 pux,uyq,

2 p3q2 ` 1q d for d “ 3 pux,uy,uzq.
(12)

For a vector c P RNq , I#
q rcs represents the interpolation module of Eq. (11) and defines a function on

the boundary BP#
k with degrees of freedom setted to c. Vice versa for given trace tru, let I#

q rtrus P

DOI 10.20347/WIAS.PREPRINT.2928 Berlin 2022
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RNq be the vector of degrees of freedom c. Now allowing for different interpolation order q# for
# P tin,outu, the latter constructions imply the following compressed mapping

C` : RNqout ˆ Ξ`
0 Ñ RNqin

pcout,pkq ÞÑ cin :“ C`pcout,pkq “ I in
qin

“

tr
`

Sh` ppkq ˝ Iout
qoutrcouts

˘‰

.
(13)

Using this compressed mapping, a compressed Schwarz alternating method is proposed, summarized
in Algorithm 1. The case Nqout ‰ Nqin may occur in the case of matching or non-matching meshes.

Algorithm 1 Compressed Schwarz alternating method

Require: N “ Npωq, ξpωq “ p “ pp1, . . . ,pNq, β2 ą β1 ą 0, ulim

Ensure: discrete solution uhpωq « upωq
pDkpωqq

N
k“1 Ð define subdomains based on tβ1, β2u as in Fig. 2

pBP#
k q

N
k“1 Ð define local boundaries for # P tin,outu

pM`ppkqq
N
k“1 Ð construct local mesh families using Ψ` from Section 3.2.3

iÐ 0 initialize iteration number
uih,0 Ðinitialize random discrete Dirichlet boundary condition on BDkpωq, k “ 1, . . . , N

precompute discrete solution operator Sh0 on D0pωq based on factorization of stiffness matrix K0

while convergence criteria (ulim) not met do
for k “ 1, . . . , N in parallel do

compute uih,k on BP in
k using C` from Eq. (13) based on local meshes

end for
iÐ i` 1
solve Eqs. (8)–(9) with Sh0 for uih,0 on D0pωq using traces trui´1

h,k on pBP in
k q

N
k“1

compute traces truih,0 on pBP out
k q

N
k“1

end while

compute uhpωq “ puih,kq
N
k“1 based on converged Dirichlet traces

4.2 Surrogate design

The evaluation of the compressed operators C` in Algorithm 1 still involves the approximate solution of
a local PDE system in Dkpωq in each iteration step. The structure of C` is used to propose a suitable
surrogate to replace this rather expensive step. Note that it is possible to accelerate the sampling
process only with a finite number ` “ 1, . . . L of surrogates, since FEM computations have to be
performed only on the coarse domain D0pωq per sample. In particular no meshing and local FEM
computation associated to the voids is necessary in the online phase of computation.

It has been observed first that cout ÞÑ C`pcout,pkq is a linear map for fixed pk P Ξ` and f ” 0. It is
composed of a linear solution operator and linear interpolation operators. Consequently, this map can
be interpreted as a matrix-valued function

C` : Ξ` Q pk ÞÑ C`ppkq P RNqout ,Nqin . (14)

Based on the size of pk,Nqout , Nqin and the linear substructure, the design of the surrogate can be
defined. Note that the evaluation of C`ppkq can be realized in parallel by solving Nqout local Dirichlet
problems with associated interpolation degree of freedom vectors cout “ εem for some ε ą 0 and
unit vector em for m “ 1, . . . , Nq, see Fig. 6.
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(a) ux for cout “ εe1 (b) uy for cout “ εe1

(c) ux for cout “ εe32 (d) uy for cout “ εe32

Figure 6: Displacement field u “ pux,uyq in the local subdomain with an elliptical void Pkppkq for
certain scaled unit vectors εem with ε “ 10´5, qout “ p4, 4, 4, 4q and d “ 2.

4.2.1 Surrogate for elliptical or ellipsoidal voids

An elliptical in d “ 2 or an ellipsoidal void in d “ 3 is denoted as Pk and can be parametrized by
its midpoint and radii r1, . . . , rd. Due to the isotropic behavior of the underlying material in Eq. (2),
the local parameterization can be restricted to the radii only. Furthermore, recall the fixed choice of
tβ1, β2u and the corresponding relative fixed structures tP in

k , P
out
k u. Then the mapping C`p¨, coutq

from Eq. (13) for fixed cout associated to radii parameterization only changes its values if the ratios of
radii ρ “ r2{r1 for d “ 2 or ρ21 “ r2{r1 and ρ31 “ r3{r1 for d “ 3 change. The parameterization
of an elliptical/ ellipsoidal void can consequently be reduced to pk “ ρ for d “ 2 or pk “ pρ21, ρ31q

for d “ 3. Due to the expected smoothness of the matrix-valued mapping pk ÞÑ C` for pk P Ξ`
0, the

surrogate takes the form of a Chebyshev interpolation

C`ppkq «
ÿ

αPΛ

CαTαppkq (15)

with (tensorized) Chebyshev polynomials pTαqαPΛ, matrix-valued coefficients pCαqαPΛ and index set
Λ Ă Nd´1.

4.2.2 Surrogate for star-shaped voids for d “ 2

The parameter pk P Ξk Ă Ξ0 Ă RMk has to be considered in case of arbitrarily shaped voids. AsMk

gets large, the use of tensorized surrogate schemes gets limited by the curse of dimensionality. The
surrogate class of choice is an artificial neural network (ANN). Based on the underlying structure of C`,
it is necessary to learn a surrogate either with pMk `Nqoutq-dimensional input and Nqin-dimensional
output or with Mk-dimensional input and pNqout ˆ Nqinq-dimensional output. Note that the first men-
tioned input output relation is needed in case of C` being non-linear in both input parameters. In what
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follows the matrix valued case is utilized. The star-shaped voids may also be parametrized only by radii
ratios ρi1 “ ri{r1 with regard to θi with i “ 2, . . . ,Mk, using the same argument as in Section 4.2.1.
The radial component r1 for θ1 is fixed, which reduces again the number of initial parameters by one.
Consequently, a star-shaped void is encoded in the parameter pk “ pρi1q

Mk
i“2 yielding the surrogate

approach
C`ppkq « ANNppkq. (16)

The actual structure of the used ANN is discussed in Section 5.2.

5 Applications

In the following, three different models according to Section 2 are presented to demonstrate the appli-
cability and usefulness of the developed surrogate model strategies. In Section 5.1, a two-dimensional
plate perforated by elliptical voids is investigated. The application on the holed domain of Fig. 1a with a
mixture of circular, elliptical and arbitrarily shaped voids is shown in Section 5.2. A three-dimensional
problem is given in Section 5.3, where the numerical predictions are validated by experimentally mea-
sured strains.

5.1 Application 1: elliptical voids in a 2D plate

In Fig. 7a, a sample of a holed two-dimensional domain D with N “ 20 elliptical voids is shown. The
radii ratios pk “ ρ are given as t3{2, 2{3, 1.0, 2{5, 5{2u and the voids are quadrupled in vertical
direction. The domain is loaded in horizontal direction on the right and fixed on the left. The result-
ing displacement fields pux,uyq and the maximum first/ minimum third principal stress on kth void
pσ1,max, σ3,minqk are given in Fig. 7b–7d.

Based on the proposed Schwarz alternating method with local surrogate responses from Section 3.1
and 4, the two-scale model in Fig. 8a has been developed. The skeletal domainD0 withN rectangular
holes P#

k and N subdomains Dk, each one with an elliptical void Pk inside, are coupled by an
overlapping area based on relative values tβ1, β2u “ t0.10, 0.20u, see Fig. 8a. The domain is
extremely simplified and consists only of 14326 degrees of freedom (instead of 105150 degrees of
freedom in the one-scale model). Furthermore, the system stiffness matrix K0 associated with D0 is
assembled only once and factorized at the beginning of the solution process. During the iteration, the
Dirichlet boundary values uk on BP in

k are successively replaced until convergence. Convergence is
given if the deviation of the Dirichlet trace to the reference solution of the one-scale model is smaller
than a defined threshold of ulim “ 10´2, that means if

‖ud,k,i ´ ud,k,ref‖
‖ud,k,ref‖

ă ulim “ 10´2
@d “ tx, yu and @k “ t1, . . . , Nu. (17)

The subdomains of the two-scale model are solved by using the surrogate model from Section 4.2.1
based on decomposed ratio input domain Ξ0 “ r1, 2s Y r2, 3s Y r3, 4s Y r4, 5s using Chebyshev
polynomials with Λ “ t0, . . . , 4u and a compression degree of q “ qin “ qout. The resulting
accuracy of the surrogate is shown in Table 1.

The horizontal and vertical displacement fields are shown in Fig. 8b–8c in D0. Converged Dirichlet
boundary values uk on BP in

k for each void lead to same displacement values in the overall domain.
The deviations of the principal stresses pσ1,max, σ3,minqk on the voids to the solutions of the one-scale
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(a) Holed domain D (b) Stress values pσ1,max, σ3,minqk on voids

(c) Horizontal displacement field ux rms (d) Vertical displacement field uy rms

Figure 7: Holed 2D domain and quantities of interest by solving the one-scale model.

Table 1: Chebychef interpolation quality regarding ρÑ }}Cpρq`}F}8.

domain q “ p2, 2, 2, 2q q “ p10, 10, 10, 10q q “ p21, 21, 21, 21q

r1, 2s 8.7 ¨ 10´6 1.3 ¨ 10´5 4.2 ¨ 10´5

r2, 3s 4.4 ¨ 10´6 5.7 ¨ 10´6 6.1 ¨ 10´6

r3, 4s 2.9 ¨ 10´6 2.3 ¨ 10´6 5.4 ¨ 10´6

r4, 5s 2.3 ¨ 10´6 4.1 ¨ 10´6 6.3 ¨ 10´6

model are shown in Fig. 8d. The maximum deviation of around 1% can be detected for the maximum
first principal stress on void 7. A smaller value of ulim would decrease the deviations toward zero
during the Schwarz alternating method.

5.2 Application 2: arbitrarily shaped voids in a 2D plate

The extension to arbitrarily shaped voids is shown in this Section 5.2. The underlying holed domain
of Fig. 1a consists of one circular, one rotated elliptical and three arbitrarily shaped voids. For the two
first mentioned shapes, the surrogate model from Section 4.2.1 is used again. For the latter ones, the
surrogate model from Section 4.2.2 is used with different values of the compression degree q “ qin “
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(a) Domain D0 and one subdomain D1

X 7

Y 1.02329

(b) Deviation to Fig. 7b: p∆σ1,max,∆σ3,minqk

(c) Horizontal displacement field ux rms (d) Vertical displacement field uy rms

Figure 8: Two-scale model and deviations to the quantities of interest achieved by solving the one-
scale model.

qout. For all ANNs, the Huber loss function with varying values for δHuber serves as objective function.
The hyperband algorithm [21] and a following grid search [12] leads to “optimal” ANN parameters,
some of them are given in Table 2. The quality of the individual ANNs is reflected by the training
and validation loss values. It is worth mentioning, that the ANN dimension increases by higher q
values leading to higher loss values in the underlying problem. The displacement fields ux and uy
are depicted in Fig. 9, by solving both the one-scale model and the two-scale model. Due to the
convergence of the Dirichlet boundary values uk on BP in

k , the displacement values in the overall
domain D0 matches the displacement values of the one-scale model quite well. Finally, the stress
values pσ1,max, σ3,minqk on each void and the relative deviations are listed in Table 3. The deviations
are as well very small depending on the defined threshold of ulim “ 10´2 for convergence during the
Schwarz alternating method.

5.3 Application 3: comparison with experimentally measured strains

Investigating adhesive bonds for rotor blades of wind turbines is usually conducted on special rep-
resentative sub-components. One of them is called the Henkel beam (HB), developed by the Fraun-
hofer Institute for Wind Energy and Energy System Technology (IWES) within the european UpWind-
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Table 2: Some determined “optimal” ANN parameters and ANN quality values.

parameter q “ p2, 2, 2, 2q q “ p10, 10, 10, 10q q “ p21, 21, 21, 21q

δHuber 0.01 0.01 0.01
layers 4 4 2

neurons per layer 128 2048 2048 256 512 1024 2048 1024 512 512
activation function relu swish relu

dropoutrate 0.0 0.2 0.3
optimizer adam RMSprop adam

training loss 6.8 ¨ 10´4 8.6 ¨ 10´4 6.5 ¨ 10´3

validation loss 6.7 ¨ 10´5 5.6 ¨ 10´4 6.6 ¨ 10´3

(a) Horizontal displacement field ux rms (b) Vertical displacement field uy rms

Figure 9: Displacement fields either by solving the one-scale or the two-scale model.

project [24]. Extensive experimental and numerical studies have been conducted inhouse by the au-
thors and former employees, see [22, 18, 7, 6, 20, 8, 9]. The Henkel beam is a three-dimensional
composite structure with reinforcements near the fixations on the left and near the load application
point on the right, see Fig. 10a. The upper adhesive bond (Fig. 10b) between the upper flange and the
web is defined as the bond of interest in the unreinforced region between r570, 1320smm. Applying
a vertical load leads to axial strains εx in the bond which matches the theoretical solution quite well
in the case of a perfect bond, see Fig. 10c. In the presence of inaccuracies and imperfections, which
typically appear during the manufacturing process of adhesive bonds in rotor blades, the measured
axial strains differ from the theoretical solution. In one Henkel beam (HB10), four relatively large imper-
fections have been included in advance within the region of r690, 890smm and have been scanned
by a computer tomographic device, see Fig. 10d. For simplification purposes, the air voids are ap-
proximated by ellipsoids without rotation (φk,x{y{z “ 0˝) in the following. The remaining parameters
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Table 3: Stress values pσ1,max, σ3,minqk rN{m
2s on each void.

void one-scale model two-scale model
(relative deviation in brackets)

k σ1,max σ3,min σ1,max σ3,min

1 1295 ´6100 1295 p˘0.00%q ´6121 p`0.34%q
2 1575 ´6997 1568 p´0.44%q ´6996 p´0.01%q
3 2762 ´5953 2767 p`0.18%q ´5966 p`0.22%q
4 1179 ´4169 1175 p´0.34%q ´4172 p`0.07%q
5 1877 ´6237 1877 p˘0.00%q ´6223 p´0.22%q

(a) Henkel beam model (b) Cross-section in the reinforced region

(c) Axial stress σx in the adhesive bond without imper-
fections

(d) CT scan for air void detection

Figure 10: The Henkel beam as an example for a real engineering problem. The focus is on axial
strains εx in the upper adhesive bond.

are listed in Table 4. The experimentally measured axial strains εx and their numerical predictions are
compared in Fig. 11. The numerical predictions results from the one-scale model and the two-scale
model in which the surrogate model from Section 4.2.1 (using Chebyshev polynomials by degree 4 for
each radii ratio) is applied for the four subdomains.

The numerically predicted axial strains are higher on average than the experimentally determined
values. In the numerical models, the strain has been evaluated directly on the upper boundary of
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Table 4: Air void properties (approximated by ellipsoids with φk,x{y{z “ 0˝ for simplification).

air void midpoint coordinates rmms radii rmms
k mk,x mk,y mk,z rk,x rk,y rk,z

1 692.5 5.0 11.6 23.6 3.9 9.4
2 783.3 5.0 11.6 15.6 2.1 8.6
3 831.2 5.0 11.6 8.8 2.4 8.3
4 855.2 5.0 11.6 8.4 3.9 6.5

Figure 11: Axial strain εx in the upper adhesive bond in the critical area of interest between
r570, 1320smm.

the adhesive bond what could not been enabled in the conducted real experiments. The fiber-optic
sensors have been installed as near as possible on the upper boundary, but with an offset toward
inside. The imperfections lead to higher axial strains which could be determined both experimentally
and numerically. The location of the four large imperfections could be detected perfectly. The measured
and predicted strain values near the air voids differ by a maximum of 20%. Reasons could be the
simplification to ellipsoids without rotation in the numerical prediction as well as inaccuracies in the
conducted measurements. Nevertheless, the axial strains predicted by the one-scale and by the two-
scale model are very similar which validates the developed method in the numerical sense for the
three-dimensional case.
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6 Conclusions and outlook

A new developed surrogate model using an overlapping domain decomposition scheme based on
Schwarz alternating method is presented in this contribution. The developed approach is applied on
different two- and three-dimensional problems and finally also compared to experimentally determined
structural responses. By using this method, it is possible to efficiently predict the local structural be-
havior with associated values like displacements, strains and stresses. The computational costly nu-
merical analyses of holed subdomains are replaced by appropriate surrogate models leading to an
acceleration compared to the classical Schwarz alternating method. In particular the workload in one
iteration step effectively depends on the forward-backward solving of the factorized stiffness matrix
K0pωq associated to D0pωq, since in comparison the effort of surrogate based responses of local
subproblems can be neglected. The introduction of simple surrounding geometries, denoted as P out

k

within this work, and the possibility to apply non-matching meshes between overlapping subdomains
allows for simpler and coarser meshing of D0pωq. This in turn renders a comparable low cost compu-
tational model per iteration step. The application is beneficial if a high amount of very small and closely
positioned voids with complicated shapes would extremely increase the complexity of a corresponding
one-scale model.

The solution of the local subproblem are displacement values depending on two input parameters,
whose influence is separable: the shape of the included void and the present Dirichlet values on the
boundary of the subproblem. The shape of the included void can be parametrized in normalized form
(the smallest parameter is set to 1) leading to a reduction of the dimension by one. For elliptical and
ellipsoidal voids, the resulting parameter space can efficiently be interpolated by (tensorized) Cheby-
shev polynomials with a small polynomial degree of 4. The parameter space is higher dimensional for
arbitrarily shaped voids for which a surrogate model based on ANN has successfully been constructed.
The mapping of the present Dirichlet values on the boundary of the subproblem on the solution values
is determined as linear. A compressed mapping is investigated in which interpolations using Lagrange
polynomials are used, separated according to the underlying Dirichlet value and the submodel bound-
ary. The deviation of the interpolation to the displacement on the boundary has to be small enough to
ensure convergence in the compressed Schwarz alternating method. An adaptive approach is imple-
mented which determines the necessary polynomial degree of the underlying Lagrange polynomials.

The presented concept can be extended in multiple directions. First, the chosen design of the surro-
gates has relied on the linearity of the compression operator C` which has resulted from the linearity
of the underlying solution operator of the local subproblems. Thus the extension to non-linear partial
differential equations would require surrogate responses of the form RNqin ,Mk Ñ RNqout . Second,
the compression of the degrees of freedom associated to the Dirichlet-to-Dirichlet relation has been
realized by Lagrange interpolation. More advanced reduction techniques such as reduced basis pro-
jections could be applied. Note that one deals with functions on the transmission interface only. In
particular they may have limited dependence on the multiscale behavior of the solution close to the
voids, if the distance of voids and their surrounding domain boundary gets bigger. Third, the exten-
sion to deterministic anisotropic materials would require the inclusion of a parameterization of P out

k to
the input space of the surrogates. In this work, fixed relative values β1, β2 have been defined which
are redundant in the isotropic case. Finally, for sake of simplicity, this work has relied on the classical
Schwarz alternating method based on Dirichlet-to-Dirichlet transmission conditions, which cause slow
convergence speed in cases of small overlapping domains. The presented techniques can also be for-
mulated in the framework of optimized Schwarz alternating methods [14] to improve the convergence
rate during the iterative solution process.

DOI 10.20347/WIAS.PREPRINT.2928 Berlin 2022



Local surrogate based Schwarz alternating method 19

References

[1] Ted L. Anderson. Fracture mechanics - fundamentals and applications. CRC Press, Boca Raton, 2017.

[2] Michele Benzi, Andreas Frommer, Reinhard Nabben, and Daniel B Szyld. Algebraic theory of multiplicative Schwarz
methods. Numerische Mathematik, 89(4):605–639, 2001.

[3] Eric T. Chung, Yalchin Efendiev, Guanglian Li, and Maria Vasilyeva. Generalized multiscale finite element methods
for problems in perforated heterogeneous domains. Applicable Analysis, 95(10):2254–2279, 2016.

[4] Eric T. Chung, Maria Vasilyeva, and Yating Wang. A conservative local multiscale model reduction technique for
stokes flows in heterogeneous perforated domains. Journal of Computational and Applied Mathematics, 321:389–
405, 2017.

[5] Andres A. Contreras, Paul Mycek, Olivier P. Le Maître, Francesco Rizzi, Bert Debusschere, and Omar M. Knio.
Parallel domain decomposition strategies for stochastic elliptic equations part b: accelerated monte carlo sampling
with local pc expansions. SIAM Journal on Scientific Computing, 40(4):C547–C580, 2018.

[6] Martin Drieschner, Robert Gruhlke, Yuri Petryna, Martin Eigel, and Dietmar Hömberg. Analysis of model and data
uncertainties for the failure of adhesive bonds in composite materials. PAMM, 20(1):e202000081, 2021.

[7] Martin Drieschner, Hermann G. Matthies, Truong-Vinh Hoang, Bojana V. Rosić, Tim Ricken, Carla Henning,
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