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On the existence of generalized solutions to a spatio-temporal
predator-prey system

Dietmar Hömberg, Robert Lasarzik, Luisa Plato

Abstract

In this paper we consider a pair of coupled non-linear partial differential equations describing
the interaction of a predator-prey pair. We introduce a concept of generalized solutions and show
the existence of such solutions in all space dimension with the aid of a regularizing term, that is
motivated by overcrowding phenomena. Additionally, we prove the weak-strong uniqueness of these
generalized solutions and the existence of strong solutions at least locally-in-time for space dimension
two and three.
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1 Introduction

In this paper, we consider a pair of coupled partial differential equations modelling the spatio-temporal
interaction of a predator-prey pair. For Ω being a bounded C2-domain in Rd for some d ∈ N with d ≥ 2
and T > 0, we are going to consider the following model

∂tu− ν∆u+ κ∇ · (u∇w) = (αw − β)u in (0, T )× Ω, (1a)

∂tw − µ∆w = (γ − δu)w in (0, T )× Ω, (1b)

u = u0 on {0} × Ω, (1c)

w = w0 on {0} × Ω, (1d)

∇u · n = 0 on [0, T ]× ∂Ω, (1e)

∇w · n = 0 on [0, T ]× ∂Ω. (1f)

The variable u : [0, T ]× Ω→ R represents the number of predators, w : [0, T ]× Ω→ R the number
of prey and n denotes the outer normal vector of Ω. All other appearing variables are positive constants.

The system considered is inspired by an application in biological pest control. In the production of orna-
mental plants, as for example roses, it is desirable to reduce the use of chemical pesticides. This can be
achieved by releasing natural enemies of the pest involved, which do not have a damaging effect on the
plants. A typical example of such a predator-prey pair is the two-spotted spider mite (Tetranychus urticae)
and the predatory mite (Phytoseiulus persimilis), see [37] for a detailed discussion of this predator-prey
pair.

In order to describe the interaction of these two populations over a bounded domain and on a finite time
horizon, we consider a typical Lotka–Volterra system coupled with diffusive movement of both populations
over the whole domain, modelling the random movement of the mite populations. The Lotka–Volterra
model was first introduced in form of an ordinary differential equation in 1920 by Alfred J. Lotka [29] and
in 1926 by Vito Volterra [40] describing the evolution of the number of predators and prey in time. It makes
the following assumptions. The prey population is assumed to grow exponentially with rate γ if there are
no predators present and decline by predation with a rate proportional to the number of predators −δu.
The predator population is assumed to decline exponentially in the absence of prey with rate −β and
has a natality rate proportional to the number of prey available αw. Even though the model has some
drawbacks, as the lack of capturing saturation effects, it is a good starting point for the investigation of
population dynamics, see [33, Ch. 3.1].

The considered model (1) is very close to the model introduced in [8] and identical to it except for the
non-linear higher-order coupling term κ∇· (u∇w), we include this cross-diffusion term in order to model
the predator’s hunting behaviour as some directed movement towards higher concentrations of prey.
This so called chemotaxis, or in the case of a predator-prey model also referred to as prey-taxis, was first
introduced by Evelyn F. Keller and Lee A. Segel in 1970 and 1971, see [20] and [21], where the movement
of one-celled organisms under the influence of some chemical attractant was considered.

Similar models to the one above have been of interest to researchers in the mathematical and numerical
analysis of partial differential equations over the last decades [5]. Replacing the prey-taxis coefficient κ by
a function χ(u) dependent on the predator density u and presuming various conditions on this function,
the existence of weak or even classical solutions to models similar to (1) is known. Assuming that χ(u)
vanishes for large values of the predator density u and considering a different response function on
the right-hand side, classical solutions are known to exists in dimensions d = 1, 2, 3, see [31, 39] and
weak solutions exist in all space dimensions [6]. Presuming some smallness condition for the prey-taxis
coefficient κ, the existence of classical solution is also proven in all space dimensions in [42].
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Existence of generalized solutions 3

Renormalized solutions were considered in [41]. Here, the equation constitutive for the solution is a weak
formulation for some smooth function of the solution u. In [41] the global existence of these solutions was
shown for a chemotaxis model including the non-linear coupling term κ∇ · (u∇w) with the prey-taxis
coefficient κ = 1 in all space dimension d ≥ 4.

Another generalized solution concept for a Keller–Segel model was considered in [24], with a weak for-
mulation for the prey and some weak inequalities for the coupled quantity upwq for some p, q ∈ (0, 1).
Here it was still necessary to impose some smallness conditions on the prey-taxis coefficient.

To the best of the authors knowledge model (1) was not yet considered in this generality, with no con-
straints, apart from the positivity, on the prey-taxis coefficient κ.

Our definition of generalized solution consists of a weak formulation for the prey equation for w and two
inequalities for the predator u, see Definition 2.1 below. These two inequalities bear some resemblance to
mass conservation (in)equalities and entropy inequalities, as they include the total number of predators∫

Ω
u dx and the term −

∫
Ω

lnu dx commonly associated to the entropy of a physical system. Since
reasonable a priori estimates seem to be out of reach for the function u itself, we rather formulate the
solvability concept for a non-linear function of the predator variable, namely lnu. With this, we follow
the landmark paper [12], where renormalized solutions were introduced for the first time in the context of
Boltzmann equations. Similar concepts with a similar non-linear transformation of u have been considered
for different versions of the Keller–Segel model [23, 11].

Our main motivation to make these inequalities constitutive in our definition of generalized solutions is
purely mathematical. With these inequalities we are able to prove a relative energy inequality, an estimate
for the so-called relative energy,

R(u,w|ũ, w̃) =

∫
Ω

u− ũ− ũ(lnu− ln ũ) +
κ2

µν
ũ|w − w̃|2 dx

for u and ũ two different predator and w and w̃ two different prey populations, which is inspired by the
Kullback–Leibler divergence. This distance measure has many names, one of which is relative entropy,
and many application areas. In its original form it measures the difference of two probability densities and
is commonly used in information theory but also finds its application in biological system as the Lotka–
Volterra model, see [2]. The relative energy serves nowadays as a general tool in the analysis of PDEs
and is used to consider aside from the weak-strong uniqueness of solutions also long-time behaviour,
singular limits, convergence of numerical schemes [4] or comparison with reduced models and even
optimal control [25].

The deviation from the solution concept of the commonly used weak solutions allowed us to tackle the
higher-order non-linear coupling introduced by the Keller–Segel prey-taxis term in (1). The meaningful-
ness of this solution concept is further supported by the fact that weak-strong uniqueness holds, which is
a consequence of the above mentioned relative energy inequality.

In the numerical simulations, we performed to visualize the influence of the prey-taxis, the bias of the
random motion of the predator u modelled by the diffusion towards higher concentration of prey is clearly
visible. This suggests that model (1) is suitable to model the populations of a predator-prey pair which
includes some hunting behaviour, as it is needed for certain applications in biological pest control.

Plan of the paper: The paper is structured as follows. In the next section we collect the main results. In
Section 3, we present some numerical simulations motivating the chosen model and illustrating the effect
of the prey-taxis term. In Section 4, we proof the existence of generalized solutions using the special
regularization of adding a term modelling overcrowding. The weak-strong uniqueness proof is conducted
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in Section 5, whereas the existence of strong solutions locally-in-time in dimension two and three is proven
in Section 6. The Appendix contains certain technical lemmata.

Notation: Before we begin with the main part of this work, we make some remarks on our notation. By
Ω ⊆ Rd, we denote a bounded C2-domain with d ≥ 2. The variable T ∈ (0,∞) denotes the finite time
horizon. By n, we denote the outer-normal vector of the domain Ω. For any Banach space V we denote
the dual pairing between V ∗ and V by 〈·, ·〉V . In the remainder of this paper we will drop the subscript
V for the sake of readability as it will be clear from the context which space is meant. Additionally, we
will sometimes use the shorthand notation Lr(V ) for the Bochner space Lr(0, T ;V ). Furthermore, we
denote the space of abstract functions of bounded variation with values in V by BV([0, T ];V ). The
space of weakly continuous functions with values in V is denoted by Cw([0, T ];V ) and the space of V -
valued regular measures on [0, T ] byM(0, T ;V ), see for example [10] for an introduction. We generally
use C > 0 for constant upper bounds, where the exact value of C may change throughout a calculation
without this being indicated in the notation.

2 Main results

We start off by defining the appropriate spaces for our solutions. We first define the regularity space of
the solution X . We say (u,w) ∈ X if

u ∈ L∞(0, T ;L1(Ω)),

lnu ∈ L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;L1(Ω)) ∩ BV([0, T ];W 1,p(Ω)∗),

u > 0 a.e. in (0, T )× Ω,

w ∈ L∞((0, T )× Ω) ∩ L2(0, T ;W 1,2(Ω)),

∂tw ∈ L2(0, T ;W 1,2(Ω)∗ + L1(Ω)),

w ≥ 0,

where p > d and the sum X = X1 + X0 of two Banach spaces X0 and X1 continuously embedded
into a Hausdorff topological vector spaceH is the set of all elements x ∈ H such that there are x0 ∈ X0

and x1 ∈ X1 with x = x0 + x1, see [7, p. 97]. The here given sum of Banach spaces is well-defined
since both L1(Ω) and W 1,2(Ω)∗ are continuously embedded into the space of distributions D′(Ω). We
now define the generalized solutions as follows.

Definition 2.1 (Generalized solution). We say (u,w) ∈ X is a generalized solution to (1) if the population
inequality for the predator∫

Ω

u dx

∣∣∣∣t
0

+ β

∫ t

0

∫
Ω

u dx ds ≤ α

∫ t

0

∫
Ω

wu dx ds (2)

and the logarithmic inequality for the predator

−
∫

Ω

lnuϑ dx

∣∣∣∣t
0

+

∫ t

0

∫
Ω

ν|∇ lnu|2ϑ− ν∇ lnu · ∇ϑ− κϑ∇w · ∇ lnu+ κ∇w · ∇ϑ dx ds

≤
∫ t

0

∫
Ω

(β − αw)ϑ− lnu ∂tϑ dx ds (3)
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Existence of generalized solutions 5

hold for all ϑ ∈ C1([0, T ];L∞(Ω)) ∩ L2(0, T ;W 1,2(Ω)) non-negative and all t ∈ [0, T ]. Additionally,
the prey equation is fulfilled in the weak sense, that is∫

Ω

wϕ dx

∣∣∣∣t
0

−
∫ t

0

∫
Ω

w∂tϕ− µ∇w · ∇ϕ− δuwϕ dx ds =

∫ t

0

∫
Ω

γwϕ dx ds (4)

holds for all ϕ ∈ C1([0, T ];L∞(Ω)) ∩ L2(0, T ;W 1,2(Ω)) and all t ∈ [0, T ]. Moreover, the initial
conditions for the prey w are fulfilled in L2(Ω) and the initial conditions for the predator u are fulfilled in
L1(Ω).

Remark 2.2. The energy inequality (2) is formally derived by testing the predator equation (1a) with the
test function ϕ ≡ 1 and relaxing the equality to an inequality. The logarithmic inequality (3) is formally
derived by testing the predator equation (1a) withϕ = −ϑ

u
and again relaxing the equality to an inequality.

Remark 2.3. The values of the solution (u,w) at time zero are well-defined in the given spaces as along
as the initial conditions (u0, w0) live in the appropriate spaces, i.e. lnu0, u0 ∈ L1(Ω) and w0 ∈ L2(Ω),
since by the definition of X we have lnu ∈ BV([0, T ];W 1,p(Ω)∗) and

w ∈ L∞(0, T ;L2(Ω)) ∩ Cw([0, T ];W 1,p(Ω)∗) ↪→ Cw([0, T ];L2(Ω)).

The main result of this work is the proof, that such solutions exist under certain assumptions on the initial
data, which are formulated in the following theorem.

Theorem 2.4 (Existence of generalized solution). Let Ω ⊆ Rd be a smooth and bounded domain with
d ∈ N, d ≥ 2. Additionally assume u0 ∈ L1(Ω) with u0 > 0 almost everywhere in Ω as well as
lnu0 ∈ L1(Ω) and w0 ∈ L∞(Ω) with w0 ≥ 0 almost everywhere in Ω. Then there exists a generalized
solution (u,w) ∈ X to (1) in the sense of Definition 2.1.

To see that our generalized solution concept is meaningful, we show weak-strong uniqueness. To do that
we need the notion of a strong solution. We define strong solutions in the following way.

Definition 2.5 (Strong solution). We call the pair (ũ, w̃) strong solution to the system (1) on [0, T̃ ] for
some T̃ > 0 to the initial data u0, w0 ∈ C3(Ω) non-negative, if

ũ, w̃ ∈ C1([0, T̃ ]× Ω) and ∆ũ,∆w̃ ∈ C([0, T̃ ]× Ω),

w̃ and ũ are non-negative and the equations (1a)–(1f) are fulfilled pointwise.

Theorem 2.6 (Weak-strong uniqueness). Let (ũ, w̃) be a strong solution according to Definition 2.5
for the initial conditions u0, w0 ∈ C3(Ω) non-negative, with u0 bounded away from zero. Then every
generalized solution (u,w) ∈ X emanating from the same initial values coincides with the strong solution
and thus the generalized solution is unique.

In the final part of this paper we show that under stronger assumption on the initial conditions, we indeed
have at least local-in-time existence of strong solution.

Theorem 2.7 (Local existence of weak solution). For d ∈ {2, 3}, u0 ∈ W 1,2(Ω) and w0 ∈ W 2,6(Ω)
both fulfilling zero Neumann boundary conditions there is a T ∗ > 0 such that (1) has a weak solution
(u,w) with

u ∈ W 1,2(0, T ∗;L2(Ω)) ∩ L2(0, T ∗;W 2,2(Ω)) ∩ L∞(0, T ∗;W 1,2(Ω)),

w ∈ W 1,6(0, T ∗;L6(Ω)) ∩ L6(0, T ∗;W 2,6(Ω)) ∩ L∞(0, T ∗;W 2,2(Ω)).
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The necessary a priori estimates for this result are given at the end of the paper. Given smoother initial
data we can deduce even more regularity of the local solution so that we obtain strong solution.

Proposition 2.8 (Local existence of strong solution). For d ∈ {2, 3} and w0, u0 ∈ C3(Ω) non-negative
and both fulfilling zero Neumann boundary conditions, we find that the solutions from Theorem 2.7 are
strong solutions.

3 Numerical simulations

With the application of model (1) in biological pest control in mind, we performed some numerical sim-
ulations illustrating the influence of the prey-taxis term in the predator equation, using the finite element
method and the python package FEniCS. The non-linear, higher-order coupling prey-taxis term made
the existence proof of solutions quite challenging, but it also made the modelling of a certain hunting
behaviour possible as can be seen, when keeping the diffusion coefficients constant and increasing the
coefficient of the prey-taxis term.

Simulations of another Keller–Segel model were conducted in [17]. As described there, blow-up solution
are known to exists for certain initial values and as we have seen in Section 1 also the value of the prey-
taxis coefficient played a crucial role in various existence proofs. With these difficulties in mind, we would
like to point out that the simulations performed here are only used as a visualization tool and we do not
claim any accuracy.

Numerical simulations were performed over the domain Ω = [−1, 1]2, discretized by a regular triangula-
tion with nx = ny = 200 and choosing the final time T = 10 and continuous P1-Lagrange elements for
u and continuous P2-Lagrange elements for w.

Additionally, we chose the coefficients of system (1) to be

ν = 0.1, µ = 0.01, α = 2.0, β = 0.8, γ = 0.8, δ = 2.0, κ ∈ {0, 1, 2, 3}

and the initial conditions

u0 = 4 exp(−30(x+ 0.6)2 − 30(y − 0.6)2),

w0 = 2 exp(−9(x+ 0.4)2 − 9(y + 0.5)2) + 2 exp(−9(x− 0.5)2 − 9(y − 0.4)2).

Note that the case κ = 0 is not covered by our analysis, but was part of our numerical simulations for
illustration purposes. In this case the difficult prey-taxis term in (1a) vanishes and the existence of weak
solution should follow by standard means. The initial conditions are visualized in Figure 1.

For κ = 0 the densities at time t = 0.4 are shown in Figure 2. The initial concentration of predators and
prey in Gaussians has already spread out slightly as one would expect from diffusive movement. Here no
predators have accumulated at the peaks of the prey density yet.

In contrast for κ = 1 and t = 0.4 we have a higher concentration of predators were prey is plenty, see
Figure 3. Here the biased movement towards higher concentration of prey, modelled by the prey-taxis
term is nicely visible. To further illustrate this accumulation of predators, a surface plot of the densities at
t = 0.4 for κ = 1 is depicted in Figure 4.
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Existence of generalized solutions 7

(a) Initial condition u0 for the predator. (b) Initial condition w0 for the prey.

Figure 1: Initial conditions.

(a) Predator density u. (b) Prey density w.

Figure 2: Mite densities for κ = 0 at t = 0.4.

4 Existence of generalized solutions

4.1 The regularized system

Now we introduce the regularizing term −ε u|u|p−1 on the right-hand side of the predator equation (1a),
where ε > 0 is the regularizing coefficient, which we will take to zero in the proof of the existence of
generalized solutions, and p > max{d, 4}. So the system we are considering in this section is identical
to the system (1) with (1a) replaced by

∂tu− ν∆u+ κ∇ · (u∇w) = (αw − β)u− ε u|u|p−1 in (0, T )× Ω. (5a)

DOI 10.20347/WIAS.PREPRINT.2925 Berlin 2022
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(a) Predator density u. (b) Prey density w.

Figure 3: Mite densities for κ = 1 at t = 0.4.

(a) Predator density u. (b) Prey density w.

Figure 4: Surface plot of the mite densities for κ = 1 at t = 0.4.

4.2 Existence of weak solution to the regularized system

The chosen regularization term allows for an easy attainable estimate of u in Lp+1(0, T ;Lp+1(Ω)) and
with the use of maximal Lp-regularity in the prey equation (1b) we get rather strong estimates for ∇w,
which we need to estimate the prey-taxis term in (5a), which is the term with the prefactor κ.

Lets start by defining our notion of weak solutions. We first define our solution space. We say w ∈W if

w ∈ L2(0, T ;W 1,2(Ω)) and ∂tw ∈ L2(0, T ;W 1,2(Ω)∗)

and we say that u ∈ U if

u ∈ L2(0, T ;W 1,2(Ω)) ∩ Lp+1(0, T ;Lp+1(Ω)) =: U ,
∂tu ∈ L2(0, T ;W 1,2(Ω)∗) + Lq(0, T ;Lq(Ω)) = U∗.

DOI 10.20347/WIAS.PREPRINT.2925 Berlin 2022
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Here, q > 1 denotes the conjugate exponent of p+1. The time derivative ofw and u are to be understood
in the distributional sense, that is ut ∈ U∗ is the weak time derivative of u ∈ U if∫ T

0

〈u(t), ϕ〉φ′(t) dt = −
∫ T

0

〈ut(t), ϕ〉φ(t) dt (6)

holds for all ϕ ∈ Lp+1(Ω) ∩W 1,2(Ω) and φ ∈ C∞0 (0, T ). We then write ∂tu = ut. The time derivative
of w is defined similarly with test functions ϕ ∈ W 1,2(Ω).

Definition 4.1 (Weak solution to the regularized system). We say that a pair (u,w) ∈ U×W is a weak
solution to problem (5), if

� u,w ≥ 0,

� w ∈ L∞((0, T )× Ω),

� ∇w ∈ Lp(0, T ;L∞(Ω)),

the integral equalities∫ t

0

〈∂tu, ψ〉 ds+

∫ t

0

∫
Ω

ν∇u · ∇ψ − κu∇w · ∇ψ − (αw − β)uψ + εu|u|p−1ψ dx ds = 0, (7)∫ t

0

〈∂tw,ϕ〉 ds+

∫ t

0

∫
Ω

µ∇w · ∇ϕ− (γ − δu)wϕ dx ds = 0 (8)

are fulfilled for all ϕ ∈ L2(0, T ;W 1,2(Ω)) and all ψ ∈ U and almost all t ∈ (0, T ) and the initial
conditions are fulfilled in the sense of traces in L2(Ω).

Theorem 4.2 (Existence of weak solutions to the regularized system). For every pair of initial data
(u0, w0) with non-negative u0 ∈ Lp(Ω) and non-negative and bounded

w0 ∈
{
w ∈ W 2,p(Ω) | ∇w · n = 0 on ∂Ω

}
there exists a weak solution according to Definition 4.1 to the regularized system (5).

Proof. We only give a rough outline of the proof since it mainly follows the standard procedure of de-
coupling the system, using a Galerkin approximation to tackle the single equations and Schauder’s fixed
point theorem to show the existence of a solution to the coupled equations. A detailed proof for d = 2
can be found in [34]. The existence and uniqueness of a weak solution w to the prey equation (1b) for
fixed non-negative ū ∈ Lp(Lp) follows from Theorem 8.30 and Theorem 8.34 in [36]. The non-negativity
and boundedness of w follows from a comparison principle, see Lemma 4.3 below. The additional reg-
ularity of w follows from the maximal Lp-regularity of the Laplace operator, see [9, Thm. 8.2]. Here the
assumptions that Ω has a C2-boundary and the initial condition w0 fulfills some compatibility condition
are needed.

For fixed w̄ ∈ W non-negative and bounded with ∇w̄ ∈ Lp(L∞), the existence of a weak solution
u ∈ U to (5a) with w replaced by w̄ can be shown via a standard Galerkin discretization using the
Gelfand triple W 1,2(Ω) ∩ Lp+1(Ω) = V ⊆ L2(Ω) ⊆ V ∗ and Minty’s trick to handle the monotone
regularization term. Here we needed the integration by parts rule for elements of U and the continuous
embedding of U into C([0, T ];L2(Ω)), which can be proven analogously to the well-known versions of
these results for the space W. We obtained the non-negativity of u by testing equation (5a) with u− and
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applying Gronwall’s inequality. Additionally we obtained a constant Lp(Lp)-bound for u by using 1 as a
test function.

Defining the solution operator T : Lp(Lp) → Lp(Lp), which maps a non-negative ū ∈ Lp(Lp) to the
solution of (5a) with w = w̄, where w̄ is the solution of (1b) with u replaced by ū. Using these existence
results and a priori estimates, we find that T is a well-defined self-map on a bounded, convex and closed
subset of the Banach space Lp(Lp). The continuity can be proven by testing appropriately, using Lp-
interpolation inequalities and maximal Lp-regularity of the heat equation. For any bounded sequence
(ūn)n ⊆ Lp(Lp) the sequence and (T (ūn))n is bounded in Lp+1(Lp+1), were the bound depends on
ε, and the strong convergence of a subsequence of (T (ūn))n in Lp(Lp) follows by Vitali’s theorem, see
[14, Thm. 5.6]. This implies the compactness of T and Schauder’s fixed point theorem then implies the
existence of a weak solution to (5).

4.3 A priori estimates

In order to show the existence of generalized solutions according to Definition 2.1, we show some a priori
estimates for solutions (uε, wε) of the regularized system. These a priori estimates will allow us to extract
a convergent subsequence, whose limit fulfills our notion of generalized solutions.

At first, we proved the following comparison principle for the prey variable.

Lemma 4.3 (Comparison principle for w). Let u ∈ L1(0, T ;L1(Ω)) be non-negative and assume that w
and w are a sub- and a super-solution of (1b), i.e. w and w fulfill equation (1b) in the weak sense with
the equality sign replaced by ≤ and ≥, respectively, and

w,w ∈ L2(0, T ;L∞(Ω) ∩W 1,2(Ω)),

∂tw, ∂tw ∈ L2(0, T ;L1(Ω) +W 1,2(Ω)∗),

0 ≤ ess inf(0,T )×Ω w ≤ ess sup(0,T )×Ω w <∞,
0 ≤ ess inf(0,T )×Ω w ≤ ess sup(0,T )×Ω w <∞

hold as well as w(0,x) ≤ w(0,x) a.e. in Ω. Then

w(t,x) ≤ w(t,x) a.e. in (0, T )× Ω (9)

holds.

Proof. Subtracting the equation for the sub-solution w and the super-solution w and testing the resulting
inequality with (w − w)+ := max{0, w − w}, we obtain

1

2
‖(w(t)− w(t))+‖2

L2(Ω) +

∫ t

0

∫
Ω

µ|∇(w − w)+|2 + δu|(w − w)+|2 dx ds

=
1

2
‖(w(0)− w(0))+‖2

L2(Ω) + γ

∫ t

0

∫
Ω

|(w − w)+|2 dx ds,

where we integrated the first term by parts. The standard integration by parts rule can be generalized to
this case by an approximation with smooth functions, cf. Corollary 7.4 in the Appendix. An application of
Gronwall’s inequality yields

‖(w(t)− w(t))+‖2
L2(Ω) ≤ ‖(w(0)− w(0))+‖2

L2(Ω) e
2γt = 0,

by the assumption for the initial values and our proof is complete.
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Corollary 4.4 (Boundedness of w). Let u ∈ L1(0, T ;L1(Ω)) and w0 ∈ L∞(Ω) be non-negative. Then
the solution w of (1b) fulfills

0 ≤ w ≤ ess supx∈Ωw0(x)eγt. (10)

Proof. One easily checks that 0 is a sub- and ess supx∈Ωw0(x)eγt is a super-solution to (1b). Then the
assertion follows from Lemma 4.3.

Proposition 4.5 (A priori estimates). Assume that the initial values can be bounded independently of ε.
That is lnu0ε and u0ε are bounded in L1(Ω) independently of ε and w0ε is bounded in L∞(Ω) indepen-
dently of ε. For a solution (uε, wε) to the approximate system (5) we have the following a priori estimates

‖uε‖L∞(L1) + ε
1
p ‖uε‖Lp(Lp) + ‖lnuε‖L∞(L1) + ‖∇ lnuε‖L2(L2) + ‖∂t lnuε‖L1(W 1,p(Ω)∗) ≤ C, (11a)

‖wε‖L∞((0,T )×Ω) + ‖∇wε‖L2(L2) + ‖wεuε ln(uεwε + 1)‖L1(L1) + ‖∂twε‖L2(W 1,p(Ω)∗) ≤ C, (11b)

where the constant C is independent of ε.

Remark 4.6. A sequence of initial values fulfilling the boundedness assumptions and the appropriate
regularity criteria is constructed in the proof of Theorem 2.4 below.

Proof. The L∞((0, T )×Ω)-bound of wε follows from Corollary 4.4. Note that this bound is independent
of ε as long as w0ε is bounded independently of ε. Testing equation (1b) with wε, we get

1

2
‖wε(T )‖2

L2(Ω)+µ ‖∇wε‖
2
L2(L2)+δ

∫ T

0

∫
Ω

uεw
2
ε dx dt ≤ γ ‖wε‖2

L∞((0,T )×Ω) |Ω|T+
1

2
‖w0ε‖2

L2(Ω) ,

which gives the L2(L2)-bound for ∇wε, since uε is non-negative. Using ϕ ≡ 1 as a test function in the
predator equation (5a), we get∫ t

0

〈∂tuε(τ), 1〉 dτ +

∫ t

0

∫
Ω

εupε + βuε dx dτ = α

∫ t

0

∫
Ω

wεuε dx dτ. (12)

By the non-negativity of uε, we obtain

‖uε(t)‖L1(Ω) ≤ ‖u0ε‖L1(Ω) + α ‖wε‖L∞((0,T )×Ω)

∫ t

0

‖uε(τ)‖L1(Ω) dτ,

for almost all t ∈ (0, T ). An application of Gronwall’s inequality then yields

‖uε(t)‖L1(Ω) ≤ eα‖wε‖L∞((0,T )×Ω) ‖u0ε‖L1(Ω) (13)

for almost all t ∈ (0, T ). Additionally, (12) implies

ε ‖uε‖pLp(Lp) ≤ α ‖wε‖L∞((0,T )×Ω) Te
α‖wε‖L∞((0,T )×Ω) ‖u0ε‖L1(Ω) .

Now we have shown that the first two terms of (11a) and (11b) have constant upper bounds independent
of ε. To derive an estimate for the third and fourth term in (11a) we use − 1

uε+λ
as a test function in the

predator equation (5a) for some λ ∈ (0, 1). This yields∫ t

0

〈
∂tuε(s),

−1

uε(s) + λ

〉
ds+

∫ t

0

∫
Ω

ν∇uε∇
(
−1

uε + λ

)
dx ds

=

∫ t

0

∫
Ω

κuε∇wε∇
(
−1

uε + λ

)
+ εup−1

ε

uε
uε + λ

+ (αwε − β)
−uε
uε + λ

dx ds.
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We chose this test function, as we have only shown that uε ≥ 0 holds and therefore we are not allowed
to test with 1/uε, Using integration by parts and Young’s inequality we can estimate

−
∫

Ω

ln(uε + λ)

∣∣∣∣t
0

dx +
ν

2

∫ t

0

∫
Ω

|∇ ln(uε + λ)|2 dx ds ≤ κ2

2ν

∫ t

0

∫
Ω

|∇wε|2 dx ds

+ ε

∫ t

0

∫
Ω

p− 1

p
upε +

1

p
dx dt+

(
β + α ‖wε‖L∞((0,T )×Ω)

)
T |Ω|. (14)

By the already derived estimates for the first two terms of (11a) and (11b), this gives a constant upper
bound for−

∫
Ω

ln(uε(t) + λ) dx as long as
∫

Ω
ln(u0ε + λ) dx is bounded, which is the case since u0ε

is assumed to be bounded in L1(Ω), as can be seen from the following estimate∫
Ω

ln(uε(t) + λ) dx =

∫
{uε(t)+λ≤1}

ln(uε(t) + λ) dx

+

∫
{uε(t)+λ>1}

ln(uε(t) + λ) dx ≤ ‖uε(t)‖L1(Ω) + λ|Ω| ≤ C (15)

for some C > 0, where we use ln(uε(t) +λ) ≤ 0 for uε(t) +λ ≤ 1 and ln(uε(t) +λ) ≤ uε(t) +λ for
uε(t) + λ > 1. The constant upper bound follows from the fact, that we already know that uε is bounded
in the L∞(L1)-norm, cf. equation (13). We can now derive a constant upper bound for the L1-norm of
lnuε(t). We estimate

‖ln(uε(t) + λ)‖L1(Ω) = −
∫
{uε(t)+λ<1}

ln(uε(t) + λ) dx +

∫
{uε(t)+λ≥1}

ln(uε(t) + λ) dx

= −
∫

Ω

ln(uε(t) + λ) dx + 2

∫
{uε(t)+λ≥1}

ln(uε(t) + λ) dx ≤ C, (16)

where we use (14) and (15). To get the L∞(L1)-bound for lnuε, we take λ to zero from above. Since the
logarithm is continuous, we have

lim inf
λ↓0

| ln(uε(t) + λ)| = | ln(uε(t))|,

where we define ln(0) := −∞. By Fatou’s lemma we can estimate∫
Ω

| lnuε(t)| dx =

∫
Ω

lim inf
λ↓0

| ln(uε(t) + λ)| dx ≤ lim inf
λ↓0

∫
Ω

| ln(uε(t) + λ)| dx ≤ C,

where the constant upper bound follows from (16). Thus we get the L∞(L1)-bound of lnuε and we have
uε(t) > 0 almost everywhere. Similarly, we get the bound for∇ lnuε. We already have that∇ ln(uε+λ)
is bounded in L2(L2) by equation (14). Again using Fatou’s lemma we get

‖∇ lnuε‖L2(L2) =

∫ T

0

∫
Ω

1

u2
ε

|∇uε|2 dx dt =

∫ T

0

∫
Ω

lim inf
λ↓0

1

(uε + λ)2
|∇uε|2 dx dt

=

∫ T

0

∫
Ω

lim inf
λ↓0

|∇ ln(uε + λ)|2 dx dt ≤ lim inf
λ↓0

∫ T

0

∫
Ω

|∇ ln(uε + λ)|2 dx dt ≤ C.

In order to show the L1(L1)-bound of uεwε ln(uεwε + 1), we note that

0 ≤ uεwε ln(uεwε + 1) ≤ uεwε ln((uε + 1)(wε + 1)) = uεwε ln(uε + 1) + uεwε ln(wε + 1)
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holds and it suffices to show a L1(L1)-bound for uεwε ln(uε + 1) and uεwε ln(wε + 1) separately. The
upper bounds for uε and ∇ lnuε from (11a) can be transferred to ln(uε + 1) and ∇ ln(uε + 1). We
test the prey equation (1b) by ln(uε + 1). It can be shown by an approximation with smooth functions,
see [43, Ex. 21.3c] that this is indeed an admissible test function since uε ∈ L2(W 1,2) and uε + 1 is
bounded away from zero by 1. We then have

∇ ln(uε + 1) =
1

uε + 1
∇uε.

Using ∂twε ln(uε + 1) = −∂t ln(uε + 1)wε + ∂t(ln(uε + 1)wε) and integration by parts we get

δ

∫ T

0

∫
Ω

wεuε ln(uε + 1) dx dt ≤
∫ T

0

∫
Ω

∂t ln(uε + 1)wε dx dt+ µ ‖∇wε‖L2(L2)

‖∇ ln(uε + 1)‖L2(L2) + (1 + γT ) ‖wε‖L∞((0,T )×Ω) ‖ln(uε + 1)‖L∞(L1)

+ ‖wε‖L∞((0,T )×Ω) ‖ln(u0ε + 1)‖L1(Ω) . (17)

All terms on the right-hand side except the first are already known to be bounded by a constant. To upper
bound the first term on the right-hand side, we test (5a) with wε

uε+1
, which is an admissible test function,

since wε and uε lie in L2(0, T ;W 1,2(Ω)) and wε is bounded,∫ T

0

∫
Ω

∂tuε
wε

uε + 1
dx dt+

∫ T

0

∫
Ω

ν∇uε · ∇
(

wε
uε + 1

)
− κuε∇wε · ∇

(
wε

uε + 1

)
dx dt

=

∫ T

0

∫
Ω

(αwε − β)wε
uε

uε + 1
− εup−1

ε wε
uε

uε + 1
dx dt.

Rearranging the terms and calculating the gradients yield∫ T

0

∫
Ω

∂tuε
wε

uε + 1
dx dt = −

∫ T

0

∫
Ω

ν∇ ln(uε+1)·∇wε−νwε|∇ ln(uε+1)|2−κ uε
uε + 1

|∇wε|2

+ κ
uε

uε + 1
∇wε · ∇ ln(uε + 1) dx dt+

∫ T

0

∫
Ω

(αwε − β)wε
uε

uε + 1
− εup−1

ε wε
uε

uε + 1
dx dt.

Using ∂t ln(uε + 1)wε = wε

uε+1
∂tuε, we find a constant upper bound for

∫ T
0

∫
Ω
∂t ln(uε + 1)wε dx dt,

by estimating uε
uε+1

by one and using the already derived a priori estimates for the second and fourth
term in (11a) and the first two terms in (11b). Now all terms on the right-hand side of (17) are known to
be bounded and we find that ‖wεuε ln(uε + 1)‖L1(L1) is bounded, since uεwε ln(uε + 1) ≥ 0.

First testing (1b) with ln(wε + 1) and then with wε

wε+1
we find an L1(L1)-bound of uεwε ln(wε + 1) in a

similar manner. This shows the upper bound for the third term in (11b).

Using equation (1b) tested with ϕ ∈ W 1,p(Ω), yields∫
Ω

∂twεϕ dx =

∫
Ω

(γ − δuε)wεϕ− µ∇wε · ∇ϕ dx

≤ C ‖ϕ‖W 1,p

(
‖wε‖L∞((0,T )×Ω) (γ + δ ‖uε‖L1(Ω)) + µ ‖∇wε‖L2(Ω)

)
,

where we used p > d such that W 1,p(Ω) ↪→ L∞(Ω). Noting that the right-hand side is bounded in
L2(0, T ) independently of ε, we obtain the upper bound for ∂twε in L2(W 1,p(Ω)∗).
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To obtain the upper bound for ∂t lnuε in L1(W 1,p(Ω)∗), we first note that a regularized form of the
logarithmic inequality (3) holds with an equality sign on the approximate level. To see that we use− ϑ

uε+λ

as a test function in (5a) for an arbitrary ϑ ∈ C1([0, T ];L∞(Ω)) ∩ L2(0, T ;W 1,2(Ω)) and λ ∈ (0, 1).
This yields,

−
∫

Ω

∂t ln(uε + λ)ϑ dx +

∫
Ω

ν|∇ ln(uε + λ)|2ϑ− ν∇ ln(uε + λ) · ∇ϑ

+ κ
uε

uε + λ
∇wε · ∇ϑ− κ

uε
uε + λ

ϑ∇wε · ∇ ln(uε + λ) dx

=

∫
Ω

(β − αwε)
uε

uε + λ
ϑ+ ε|uε|p−1 uε

uε + λ
ϑ dx.

We take λ ↓ 0 and pull the limit into the integral, which we are allowed to do by the following reasoning.
Note that −∂t ln(uε + λ) is monotonically increasing for λ ↓ 0, thus, by the monotone convergence
theorem, we can pull the limit into the integral in the first term. For the other integrals we note that we
have pointwise convergence in λ and that we can find an integrable dominating function by the estimates
from the first three terms of (11a) and the first two terms of (11b). The dominating functions of the terms
including λ are given by

|∇ ln(uε + λ)|2 =
1

(uε + λ)2
|∇uε|2 ≤

1

u2
ε

|∇uε|2 = |∇ lnuε| and
uε

uε + λ
≤ 1.

Thus by Lebesgue’s dominated convergence theorem we can also pull the limit λ ↓ 0 into the remaining
integrals with equality and we get

−
∫

Ω

∂t lnuεϑ dx +

∫
Ω

ν|∇ lnuε|2ϑ− ν∇ lnuε · ∇ϑ+ κ∇wε · ∇ϑ

− κϑ∇wε · ∇ lnuε dx =

∫
Ω

(β − αwε)ϑ+ ε|uε|p−1 ϑ dx, (18)

where we used the convergence of uε
uε+λ

→ 1 for λ ↓ 0 pointwise almost everywhere as we have uε > 0

almost everywhere due to the fact that lnuε is bounded in L∞(L1), cf. equation (13).

Using the test function ϑ = −ϕ for some ϕ ∈ W 1,p(Ω) we can derive an estimate for ∂t lnuε in
L1(W 1,p(Ω)∗), by estimating∫

Ω

∂t lnuεϕ dx =

∫
Ω

ν|∇ lnuε|2ϕ− ν∇ lnuε · ∇ϕ+ κ∇wε · ∇ϕ

− κϕ∇wε · ∇ lnuε + (β − αwε)ϕ+ ε|uε|p−1 ϕ dx

≤ C ‖ϕ‖W 1,p(Ω)

(
1 + ‖∇ lnuε‖2

L2(Ω) + ‖∇wε‖2
L2(Ω) + ‖wε‖L∞((0,T )×Ω)

)
.

Note that this time the right-hand side is only in L1(0, T ) and thus we get the weaker bound for ∂t lnuε.

4.4 Convergence of approximate solutions

We now tend the regularization coefficient to zero and show the existence of generalized solutions for
vanishing regularization.
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Proposition 4.7 (Convergence of solutions). Let {(uε, wε)} be a sequence of solutions to the approxi-
mate system (5). Then there exists a pair (u,w) ∈ X , such that the following convergences hold for a
subsequence ε ↓ 0,

wε ⇀ w in L2(W 1,2), (19)

wε → w in L2(L2), (20)

wε → w pointwise a.e. in (0, T )× Ω, (21)

wε ⇀
∗ w in L∞((0, T )× Ω) (22)

lnuε ⇀ lnu in L2(W 1,2), (23)

lnuε → lnu in L2(L2), (24)

lnuε → lnu pointwise a.e. in (0, T )× Ω, (25)

uε → u pointwise a.e. in (0, T )× Ω, (26)

wεuε → wu in L1(L1), (27)

lnuε ⇀
∗ lnu in BV([0, T ];W 1,p(Ω)∗), (28)

∂twε ⇀ ∂tw in L2(0, T ;W 1,p(Ω)∗), (29)

wε → w in Cw([0, T ];L2(Ω)). (30)

Proof. We will not relabel subsequences throughout this proof. The boundedness of {wε} and {∇wε}
in L2(L2) from Proposition 4.5 imply that there exists a subsequence weakly convergent in L2(W 1,2)
to some w ∈ L2(W 1,2), since L2(L2) is reflexive. Additionally, due to the boundedness of {∂twε} in
L2(W 1,p(Ω)∗) and Aubin–Lions Lemma, see for example [36, Lem. 7.7], there exists a subsequence
{wε} strongly convergent to w in L2(L2) and thus we find another subsequence which converges point-
wise almost everywhere to w in (0, T ) × Ω. The uniform boundedness of {wε} in L∞((0, T ) × Ω)
additionally implies the weak*-convergence of a subsequence to w in L∞((0, T ) × Ω), see for exam-
ple [15, Thm. A.2.18].

Since {∇ lnuε} is bounded in L2(L2) there is a subsequence, which is weakly convergent in L2(L2).
By Poincaré’s inequality, see Theorem 13.27 in [27, p. 432], we have

‖lnuε(t)− (lnuε)
ave (t)‖L2(Ω) ≤ C ‖∇ lnuε(t)‖L2(Ω) ≤ C (31)

for almost all t ∈ (0, T ), where for g ∈ L1(Ω) we define gave by

gave :=
1

|Ω|

∫
Ω

g(x) dx.

We find the constant upper bound for the L2(L2)-norm of lnuε by the a priori estimates from Proposi-
tion 4.5. Using the L∞(L1) a priori bound for lnuε, cf. the third term of (11a), we can estimate

(lnuε)
ave (t) =

1

|Ω|

∫
Ω

lnuε(t) dx ≤ 1

|Ω|
‖lnuε‖L∞(L1) ≤

1

|Ω|
C.

Plugging this into (31) and using the reverse triangle inequality of the norm, we obtain∫ T

0

‖lnuε(t)‖2
L2(Ω) dt ≤

∫ T

0

C2
(
‖∇ lnuε(t)‖L2(Ω) + 1

)2

dt ≤ C,

by the a priori estimate from the fourth term of (11a). Again we find a subsequence {lnuε}, which is
weakly convergent to some ξ ∈ L2(W 1,2). We define u := eξ. This implies the convergence from (23).
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Using the a priori bound on {∂t lnuε} and the compact embedding from Aubin–Lions Lemma, see [36,
Lem. 7.7], we find, as above, another subsequence {lnuε} converging strongly in L2(L2) to lnu and
pointwise almost everywhere. This implies that also uε → u pointwise almost everywhere and we have
shown the convergences from (23)–(26).

The product {uεwε} is bounded in L1(L1) and equi-integrable by Proposition 4.5. The equi-integrability
follows from the fact that uεwε ln(uεwε + 1) is bounded in L1(L1) by an application of the de la Vallée
Poussin theorem, see for example [27, p. 675], which is applicable since G : [0,∞) → [0,∞] with
x 7→ x ln(x + 1) is an increasing, convex function and fulfills G(|x|)

x
→ ∞ as x → ∞. By Vitali’s

theorem, see [14, Thm. 5.6], and the pointwise convergence of {uεwε} to uw, cf. convergences (21) and
(26), we can deduce the strong convergence of {uεwε} to uw in L1(L1).

By the reflexivity of L2(W 1,p(Ω)∗) we find a weakly convergent subsequence of {∂twε} convergent to
some η ∈ L2(W 1,p(Ω)∗). By the convergence of {wε} to w in L2(L2) we find η = ∂tw. Thus the limit
w is an absolutely continuous function with values in W 1,p(Ω)∗, i.e. w ∈ AC([0, T ];W 1,p(Ω)∗), and
consequently

w ∈ L∞(0, T ;L2(Ω)) ∩ Cw([0, T ];W 1,p(Ω)∗) ↪→ Cw([0, T ];L2(Ω)) (32)

by Lemma 8.1 in [28, p. 275]. We can additionally infer the convergence of a subsequence {wε} in
Cw([0, T ];L2(Ω)) as a consequence of the boundedness in the intersection space of (32), see Propo-
sition 4.9 in [13]. This gives the convergence in (30).

For the convergence of {∂t lnuε}, we consider {lnuε} as abstract functions of bounded variation, more
precisely in the space BV([0, T ];W 1,p(Ω)∗). We first show that {lnuε} is bounded in that space. To
that aim we show that {lnuε} is bounded in W 1,1(0, T ;W 1,p(Ω)∗) and use the continuous embedding

W 1,1(0, T ;W 1,p(Ω)∗) ↪→ BV([0, T ];W 1,p(Ω)∗).

The L1(0, T ;W 1,p(Ω)∗)-norm of {lnuε} is bounded since

L2(0, T ;L2(Ω)) ↪→ L2(0, T ;W 1,p(Ω)∗) ↪→ L1(0, T ;W 1,p(Ω)∗)

holds and the L1(0, T ;W 1,p(Ω)∗)-norm of {∂t lnuε} is bounded by the a priori estimate from (11a).
Thus we get

‖lnuε‖BV ≤ C

for some C > 0 independent of ε. By Corollary 3.11 from [18] we have that {lnuε} is relatively compact
in BV([0, T ];W 1,p(Ω)∗) and we can find a subsequence, which converges weak* in this space to some
l. By the convergence of lnuε → lnu in L2(L2) we can deduce l = lnu by possible redefining u on a
set of measure zero.

Proposition 4.8. Let {(uε, wε)} be the sequence of approximate solutions and (u,w) the limit from
Proposition 4.7. Under the assumption that wε(0) → w0 strongly in L2(Ω), we have ∇wε → ∇w in
L2(L2) as ε ↓ 0.

Proof. To show this convergence, we show that {∇wε} is a Cauchy sequence in L2(L2). This implies
the strong L2(L2)-convergence to some η ∈ L2(L2) and since {∇wε} converges weakly to ∇w in
L2(L2) we can identify the limit with η = ∇w.

For fixed ε, ε̃ > 0 we can subtract the equations for wε and wε̃ and test the equation with (wε − wε̃).
This yields

1

2

∫
Ω

(wε − wε̃)2 dx

∣∣∣∣t
0

+

∫ t

0

∫
Ω

µ|∇(wε − wε̃)|2 dx ds =

∫ t

0

∫
Ω

γ(wε − wε̃)2

− δ(uεwε − uε̃wε̃)(wε − wε̃) dx ds,
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Existence of generalized solutions 17

which in turn implies

µ

∫ t

0

∫
Ω

|∇(wε − wε̃)|2 dx ds ≤ 1

2

∫
Ω

(wε − wε̃)2(0) dx +

∫ t

0

∫
Ω

γ(wε − wε̃)2

− δ(uεwε − uε̃wε̃)(wε − wε̃) dx ds.

Since {wε} is strongly convergent in L2(L2) it is also a Cauchy sequence. Let ξ > 0 be arbitrary. Then
we find ε1 > 0, such that ∫ t

0

∫
Ω

γ(wε − wε̃)2 dx ds ≤ ξ

8

holds for all 0 < ε, ε̃ < ε1. Since {wε} is uniformly bounded in L∞((0, T ) × Ω) and pointwise almost
everywhere convergent to w and {uεwε} is pointwise almost everywhere convergent to uw and equi-
integrable in L1(L1), cf. Proposition 4.5, Vitali’s theorem, see [14, Thm. 5.6] yields∫ t

0

∫
Ω

−δuεwεwε dx ds→
∫ t

0

∫
Ω

−δuw2 dx ds.

Thus we find ε2 > 0, such that∫ t

0

∫
Ω

−δuεwεwε dx ds ≤
∫ t

0

∫
Ω

−δuw2 dx ds+
ξ

8

for all ε < ε2. By the strong convergence of {uεwε} , cf. (27), we find an ε3 > 0 such that∫ t

0

∫
Ω

δuεwεϑ ≤
∫ t

0

∫
Ω

δuwϑ dx ds+
ξ

8

for all ε < ε3 and ϑ ∈ L∞((0, T )× Ω). Since wε̃ ∈ L∞((0, T )× Ω) this inequality holds for ϑ = wε̃.
By the assumption on the strong convergence of {wε(0)}, we find ε4 > 0 such that

1

2

∫
Ω

(wε − wε̃)2(0) dx ≤ ξ

8

for all ε, ε̃ < ε4. Thus for all ε, ε̃ < min(ε1, ε2, ε3, ε4) we get

µ

∫ t

0

∫
Ω

|∇(wε − wε̃)|2 dx ds ≤ ξ

4
− 2δ

∫ t

0

∫
Ω

uw2 dx ds+
ξ

4

+ δ

∫ t

0

∫
Ω

uwwε̃ dx ds+
ξ

8
+ δ

∫ t

0

∫
Ω

uwwε dx ds+
ξ

8
. (33)

By the convergence from (22), we find 0 < ε5 < min(ε1, ε2, ε3, ε4), such that we have

δ

∫ t

0

∫
Ω

uwwε dx ds ≤ δ

∫ t

0

∫
Ω

uw2 dx ds+
ξ

8

for all ε < ε5. Plugging this estimate into the inequality (33) we get

µ

∫ t

0

∫
Ω

|∇(wε − wε̃)|2 dx ds ≤ ξ.

This shows that {∇wε} is indeed a Cauchy sequence in L2(L2) and our proof is complete.
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Proof (of Theorem 2.4). For every (u0, w0), fulfilling the conditions from Theorem 2.4, we find a se-
quence {(u0ε, w0ε)} of initial values fulfilling the assumptions from Theorem 4.2 and Proposition 4.5,
such that u0ε ⇀ u0 in L1(Ω) and w0ε → w0 in L2(Ω). Using mollifiers we find a sequence {w0ε} ⊆
C∞0 (Ω) such that w0ε ≥ 0, w0ε ⇀

∗ w0 in L∞(Ω) and

‖w0ε‖L∞(Ω) ≤ ‖w0‖L∞(Ω)

holds. Thus {w0ε} is uniformly bounded in ε and fulfills all the required assumptions. Applying an Lp-
interpolation theorem, we get the strong convergence w0ε → w0 in Lr(Ω) for all r ∈ [1,∞). Defining

u0ε :=

{
u0 if u0 ≤ nε,

nε if u0 > nε,

for a sequence {nε} ⊆ N with nε → ∞ as ε ↓ 0, we have constructed a sequence of approximate
initial conditions for the predator fulfilling the required assumptions.

The weak convergence (19) of {wε} from Proposition 4.7 implies∫ t

0

∫
Ω

wεg dx dt→
∫ t

0

∫
Ω

wg dx ds

for all g ∈ L2(L2) and all t ∈ (0, T ). Since we have ϑ ∈ L2(L2), ∇ϑ ∈ L2(L2) and ∂tϑ ∈ L2(L2),
we get ∫ t

0

∫
Ω

wε∂tϑ− µ∇wε · ∇ϑ dx ds→
∫ t

0

∫
Ω

w∂tϑ− µ∇w · ∇ϑ dx ds,∫ t

0

∫
Ω

γwεϑ dx ds→
∫ t

0

∫
Ω

γwϑ dx ds,

for all t ∈ (0, T ) and all ϑ ∈ C1([0, T ];L∞(Ω)) ∩ L2(0, T ;W 1,2(Ω)). The strong convergence of
{wεuε} in L1(L1) implies ∫ t

0

∫
Ω

δuεwεϑ dx ds→
∫ t

0

∫
Ω

δuwϑ dx ds

for all t ∈ (0, T ), since ϑ ∈ C1([0, T ];L∞(Ω)) ↪→ L∞((0, T )×Ω). Making use of the the convergence
of {wε} in Cw([0, T ];L2(Ω)), cf. (32), we find∫

Ω

wε(t)ϑ dx→
∫

Ω

w(t)ϑ dx

for all t ∈ [0, T ] and all ϑ ∈ C1([0, T ];L∞(Ω)). By the convergence of the initial data, we have∫
Ω

wε(0) dx =

∫
Ω

w0ε dx→
∫

Ω

w0 dx.

This shows that the limit identified in Proposition 4.7 fulfills the variational formulation (4). The equality of
w(0) = w0 in L2(Ω) follows by the convergence of the initial data {w0ε} in L2(Ω) and the convergence
of {wε} in Cw([0, T ];L2(Ω)), cf. (30). Since {wε} is pointwise almost everywhere convergent and
uniformly bounded in L∞((0, T )×Ω) this bound transfers to the limit and we get w ∈ L∞((0, T )×Ω).
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The Laplacian is a bounded linear map between W 1,2(Ω) and its dual W 1,2(Ω)∗. Since we know w to
be in L2(0, T ;W 1,2(Ω)), we find ∆w ∈ L2(0, T ;W 1,2(Ω)∗) and equation (1b) now implies

∂tw ∈ L2(0, T ;W 1,2(Ω)∗ + L1(Ω)).

Next, we show that the population and the logarithmic inequality for the predator, cf. equations (2) and
(3) respectively, are fulfilled. On the approximate level the population inequality (2) holds with equality,
cf. equation (12). By the strong convergence of {uεwε} in L1(L1) we get

α

∫ t

0

∫
Ω

uεwε dx ds→ α

∫ t

0

∫
Ω

uw dx ds.

Using the weak lower semicontinuity of the convex function x 7→ ex and the weak convergence of {lnuε}
we get

β

∫ t

0

∫
Ω

u dx ds = β

∫ t

0

∫
Ω

elnu dx ds ≤ lim inf
ε↓0

β

∫ t

0

∫
Ω

elnuε dx ds.

Using the boundedness of {lnuε} in L2(0, T ;L2(Ω))∩BV ([0, T ];W 1,p(Ω)∗) and applying Theorem
A.5 from [35], we find a subsequence of {lnuε} and an l ∈ L2(L2) ∩ L∞(W 1,p(Ω)∗), such that

lnuε ⇀
∗ l in L2(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,p(Ω)∗), (34)

lnuε(t) ⇀ l(t) in L2(Ω) for almost all t ∈ (0, T ). (35)

Since, we already have the strong convergence of {lnuε} inL2(L2) to lnu, we can identify the limit l with
lnu. The uniform boundedness of {lnu0ε} in W 1,p(Ω)∗, which is needed to apply Theorem A.5, follows
from the boundedness of {lnu0ε} in L1(Ω) and the continuous embedding of L1(Ω) into W 1,p(Ω)∗.
Using Lemma 7.2 from [32], we find that

lnuε(t) ⇀
∗ l̄(t) in W 1,p(Ω)∗ for all t ∈ [0, T ], (36)

for some l̄ ∈ BV([0, T ];W 1,p(Ω)∗). We find lnu = l̄ everywhere in [0, T ], after possibly redefining u
on a set of measure zero. Again using the weak lower semicontinuity of x 7→ ex, we get∫

Ω

u(t) dx =

∫
Ω

elnu(t) dx ≤ lim inf
ε↓0

∫
Ω

elnuε(t) dx = lim inf
ε↓0

∫
Ω

uε(t) dx

for all t ∈ [0, T ]. The weak convergence of the initial values implies∫
Ω

u0 dx = lim
ε↓0

∫
Ω

u0ε dx.

Putting these results together we get∫
Ω

u dx

∣∣∣∣t
0

+ β

∫ t

0

∫
Ω

u dx ds ≤ lim inf
ε↓0

∫
Ω

uε(t) dx

− lim
ε↓0

∫
Ω

u0ε dx + lim inf
ε↓0

β

∫ t

0

∫
Ω

uε dx ds+ lim inf
ε↓0

∫ t

0

∫
Ω

εuε|uε|p−1 dx ds

= lim inf
ε↓0

α

∫ t

0

∫
Ω

wεuε dx ds = α

∫ t

0

∫
Ω

wu dx ds,

for all t ∈ [0, T ]. This shows, that the population inequality (2) holds.
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To derive the logarithmic inequality (3), we use the regularized logarithmic equality from (18). To take the
limit ε ↓ 0 we note the following. By the weak lower semicontinuity of the norm and the weak conver-
gence (23), we get ∫ t

0

∫
Ω

ϑ|∇ lnu|2 dx ds ≤ lim inf
ε↓0

∫ t

0

∫
Ω

ϑ|∇ lnuε|2 dx ds,

where we used the fact, that ϑ ≥ 0 to pull it out of the absolute value. Using the strong convergence of
the sequence {∇wε} in L2(L2) to∇w, which is shown in Proposition 4.8, we can deduce that

∇ lnuε · ∇wε ⇀ ∇ lnu · ∇w in L1(L1).

By the convergence of the initial data, we get

lim
ε↓0

∫
Ω

lnu0ε(x)ϑ(0,x) dx =

∫
Ω

lnu0ϑ(0,x) dx,

for all ϑ ∈ C([0, T ];L∞(Ω)). Putting all this together, we see that the shown convergences are sufficient
to pass to the limit with ε ↓ 0 in the regularized logarithmic equality, where the equality becomes an
inequality,

−
∫

Ω

lnuϑ dx

∣∣∣∣t
0

+

∫ t

0

∫
Ω

ν|∇ lnu|2ϑ− ν∇ lnu · ∇ϑ− κϑ∇w · ∇ lnu+ κ∇w · ∇ϑ dx ds

≤ lim inf
ε↓0

[
−
∫

Ω

lnuεϑ dx

∣∣∣∣t
0

]
+ lim inf

ε↓0

∫ t

0

∫
Ω

ν|∇ lnuε|2ϑ dx ds

+ lim
ε↓0

∫ t

0

∫
Ω

−ν∇ lnuε · ∇ϑ− κϑ∇wε · ∇ lnuε + κ∇wε · ∇ϑ dx ds

= lim inf
ε↓0

∫ t

0

∫
Ω

(β − αwε)ϑ− lnuε∂tϑ+ ε|uε|p−1ϑ dx ds

=

∫ t

0

∫
Ω

(β − αw)ϑ− lnu∂tϑ dx ds

for all t ∈ [0, T ], where the regularizing term vanishes as ε goes to zero due to the boundedness of
ε1/puε in Lp(Lp) from Proposition 4.5. The fact that u fulfills the initial condition u0 in L1(Ω) follows from
the convergence for all t ∈ [0, T ] in W 1,p(Ω)∗ cf. (36) and the convergence of the initial data. For all
ϕ ∈ W 1,p(Ω) we have ∫

Ω

lnu0ϕ dx = lim
ε↓0

∫
Ω

lnu0εϕ dx =

∫
Ω

lnu(0)ϕ dx.

By a density argument we find lnu(0) = lnu0 in L1(Ω) and thus u(0) = u0 in L1(Ω). Using the
population inequality, we find that u is bounded in L∞(L1), where we used the L1(L1) integrability
of uw and the L1(Ω) integrability of u0. Again using the fact, that lnuε(t) ⇀ lnu(t) in L2(Ω) for
almost all t ∈ (0, T ), we can transfer the L∞(L1)-bound from {lnuε} to lnu by using the weak lower
semicontinuity of the norm. Thus we have shown that lnu ∈ L∞(L1), which implies u > 0 almost
everywhere. The non-negativity of w follows from the comparison principle, cf. Lemma 4.3.
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5 Weak-strong uniqueness

In order to justify that our solution concept is meaningful, we prove that it fulfills the weak-strong unique-
ness property. That is, if there exists a strong solution to the system (1) to some initial data, then all
generalized solution emanating from the same initial data coincide with the strong solution and thus this
solution is unique as long as it exists. In order to be able to prove such a property for the generalized
solutions, some additional properties of strong solutions are needed.

5.1 Properties of strong solution

Later on, in the proof of the weak-strong uniqueness, we would like to test with 1/ũ, for a strong solution
ũ to (1a). In order to justify that this is possible, we prove the following lemma.

Lemma 5.1. Let the initial condition u0 ∈ C3(Ω) be bounded away from zero by some l > 0. Then the
strong solution ũ from Definition 2.5 is bounded away from zero.

To be able to prove this lemma, we first show the following comparison principle.

Proposition 5.2 (Comparison principle for ũ). Let w̃ ∈ C1([0, T ] × Ω) with ∆w̃ ∈ C([0, T ] × Ω).
Assume that there exist a strong sub-solution u and a strong super-solution ū to (1a) with w = w̃,
fulfilling the non-negative initial data u0, ū0 ∈ C3(Ω) respectively. That is u and ū fulfill

u, ū ∈ C1([0, T ]× Ω) and ∆u,∆ū ∈ C([0, T ]× Ω),

are non-negative and it holds,

ut − ν∆u+ κ∇ · (u∇w̃) ≤ (αw̃ − β)u in (0, T )× Ω, (37)

ūt − ν∆ū+ κ∇ · (ū∇w̃) ≥ (αw̃ − β)ū in (0, T )× Ω, (38)

u = u0 on {0} × Ω, (39)

ū = ū0 on {0} × Ω, (40)

∇u · n = 0 on [0, T ]× ∂Ω, (41)

∇ū · n = 0 on [0, T ]× ∂Ω. (42)

If additionally we have u0 ≤ ū0, then u(t,x) ≤ ū(t,x) holds everywhere in [0, T ]× Ω.

Proof. Subtracting (38) from (37) and testing the resulting inequality with (u− ū)+, we find∫ t

0

∫
Ω

∂t(u− ū)(u− ū)+ dx ds+

∫ t

0

∫
Ω

ν|∇(u− ū)+|2 − κ(u− ū)+∇w̃ · ∇(u− ū)+

+ β
(
(u− ū)+

)2
dx ds =

∫ t

0

∫
Ω

αw̃
(
(u− ū)+

)2
dx ds. (43)

Using Young’s inequality, collecting alike terms and integrating by parts we get

1

2

∥∥(u− ū)+(t)
∥∥2

L2(Ω)
≤
∫ t

0

(
α ‖w̃‖L∞((0,T )×Ω)) +

κ2

2ν
‖∇w̃(s)‖2

L∞(Ω)

)∥∥(u− ū)+(s)
∥∥2

L2(Ω)
ds.

An application of Gronwall’s inequality yields (u − ū)+ = 0 almost everywhere and with the continuity
of u and ū this equality extends to the whole domain [0, T ] × Ω. Thus we have u(t,x) ≤ ū(t,x)
everywhere in [0, T ]× Ω as claimed.
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Now we prove Lemma 5.1.

Proof (of Lemma 5.1). We will construct a sub-solution u∗ which is bounded away from zero and constant
in space. The predator equation for such a sub-solution then reads

∂tu+ (κ∆w̃ − αw̃ + β)u ≤ 0,

since all space derivatives of u vanish. We first consider the ordinary differential equation

∂tu+
(
κ ‖∆w̃‖L∞((0,T )×Ω) + α ‖w̃‖L∞((0,T )×Ω) + β

)
u = 0

with the initial value u(0) ≡ l. This ordinary differential equation can be solved explicitly by

u∗(t) = l exp
(
−
(
κ ‖∆w̃‖L∞((0,T )×Ω) + α ‖w̃‖L∞((0,T )×Ω) + β

)
t
)
.

The solution u∗ is monotonically decreasing and continuous, thus it is bounded from below on [0, T ] by
u∗(T ) and u∗(T ) > 0 holds. Now,

∂tu
∗ + (κ∆w̃ − αw̃ + β)u∗ ≤ ∂tu

∗ +
(
κ ‖∆w̃‖L∞((0,T )×Ω) + α ‖w̃‖L∞((0,T )×Ω)) + β

)
u∗ = 0

holds, since u∗ is non-negative, and thus u∗ is a sub-solution to (1a) and by the comparison principle
from Proposition 5.2 we conclude that ũ is bounded away from zero.

Now we have finished the technical groundwork for our proof of weak-strong uniqueness.

5.2 Relative energy estimates

Using the integration by parts formula from the Appendix, cf. Lemma 7.3, we can prove a relative energy
inequality, which serves as a strong tool when proving weak-strong uniqueness of generalized solutions.
In order to formulate this inequality we need the following definitions. We say (ũ, w̃) ∈ Y if

ũ, w̃ ∈ C1([0, T ]× Ω) and ∆ũ,∆w̃ ∈ C([0, T ]× Ω),

w̃, ũ ≥ 0 and ũ ≥ l > 0 for some l > 0

and ũ and w̃ fulfill zero Neumann boundary conditions.

Definition 5.3. For (u,w) ∈ X and a smooth test function (ũ, w̃) ∈ Y , we define the relative energy
R : X × Y → L∞(0, T ) by

R(u,w|ũ, w̃) =

∫
Ω

u− ũ− ũ(lnu− ln ũ) +
κ2

µν
ũ|w − w̃|2 dx, (44)

the relative dissipationW : X × Y → L1(0, T )

W(u,w|ũ, w̃) =

∫
Ω

(β − αw̃)(u− ũ− ũ(lnu− ln ũ)) dx +
2κ2

µν

∫
Ω

(δũ− γ)ũ|w − w̃|2 dx

+
ν

2

∫
Ω

ũ|∇ lnu−∇ ln ũ|2 dx +
κ2

2ν

∫
Ω

ũ|∇w −∇w̃|2 dx, (45)
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the regularity weight K : Y → L∞(0, T )

K(ũ, w̃) = ‖∂t ln ũ‖L∞(Ω) + µ ‖∇ ln ũ‖2
L∞(Ω)

+ max

{
1

‖w‖L∞(Ω) + ‖w̃‖L∞(Ω) + 1
, ‖w‖L∞(Ω) + ‖w̃‖L∞(Ω) + 1

}
(
αµν

κ2
+ α + 2δ ‖ũ‖L∞(Ω) ‖w‖L∞(Ω)

(
κ2

µν
+ 1

)
+
κ2δ

2µν
‖ũ‖L∞(Ω)

)
+ max{α ‖w̃‖L∞(Ω) , 2γ}, (46)

and the system operatorA : Y → (L∞((0, T )× Ω))2

A(ũ, w̃) =

(
∂tũ− ν∆ũ+ κ∇ · (ũ∇w̃) + (β − αw̃)ũ

∂tw̃ − µ∆w̃ + δũw̃ − γw̃

)
. (47)

Note, that the regularity weight K can be considered as independent of w for fixed and bounded initial
data, since the L∞((0, T ) × Ω)-bound of w only depends on the initial value w0 and the finial time T ,
cf. Lemma 4.3.

Lemma 5.4 (Relative energy inequality). Let (u,w) ∈ X be a generalized solution to system (1) ac-
cording to Definition 2.1 and (ũ, w̃) ∈ Y be a smooth test function. Then, the following relative energy
inequality holds,

R(u,w|ũ, w̃)(t) +

∫ t

0

(
W(u,w|ũ, w̃) + max{α ‖w̃‖L∞(Ω) , 2γ}R(u,w|ũ, w̃)

)
e
∫ t
s K(ũ,w̃) dτ ds

≤ R(u,w|ũ, w̃)(0)e
∫ t
0 K(ũ,w̃) ds −

∫ t

0

∫
Ω

A(ũ, w̃) ·
(

lnu− ln ũ
2κ
µν
ũ(w − w̃)

)
e
∫ t
s K(ũ,w̃) dτ dx ds (48)

for almost all t ∈ [0, T ], whereR,W ,A and K are defined in Definition 5.3.

Proof. Adding the population inequality (2) for u and the logarithmic inequality (3) for u tested with ũ and
adding and subtracting the system operatorA(ũ, w̃) tested with (lnu− ln ũ, 0)T yields∫

Ω

u− ũ− ũ(lnu− ln ũ)

∣∣∣∣t
0

dx + β

∫ t

0

∫
Ω

u− ũ− ũ(lnu− ln ũ) dx ds

+ ν

∫ t

0

∫
Ω

ũ|∇ lnu|2 −∇ lnu · ∇ũ−∇ũ · ∇(lnu− ln ũ) dx ds

+ κ

∫ t

0

∫
Ω

∇w · ∇ũ− ũ∇w · ∇ lnu+∇w̃ · ∇(lnu− ln ũ) dx ds

≤ α

∫ t

0

∫
Ω

uw − ũw̃ − ũ(w − w̃)− w̃ũ (lnu− ln ũ) dx ds

−
∫ t

0

∫
Ω

A(ũ, w̃) ·
(

lnu− ln ũ
0

)
dx ds, (49)

where we used

−∂tũ (lnu− ln ũ) + (∂tũ) lnu = (∂tũ) ln ũ = ∂t(ũ ln ũ)− ũ ∂t ln ũ = ∂t(ũ ln ũ)− ∂tũ.
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We observe

ν

∫
Ω

ũ|∇ lnu|2 −∇ lnu · ∇ũ−∇ũ · ∇(lnu− ln ũ) dx =

∫
Ω

νũ|∇ lnu−∇ ln ũ|2 dx,

which is a reformulation of the terms in the second line of (49). Using similar transformations for terms of
the third line of (49), yields

κ

∫
Ω

∇w · ∇ũ− ũ∇w · ∇ lnu+∇w̃ · ∇(lnu− ln ũ) dx

=

∫
Ω

−κ ũ(∇ lnu−∇ ln ũ) · (∇w −∇w̃) dx.

Now, inequality (49) may be rewritten as∫
Ω

u− ũ− ũ(lnu− ln ũ)

∣∣∣∣t
0

dx + β

∫ t

0

∫
Ω

u− ũ− ũ(lnu− ln ũ) dx ds

+

∫ t

0

∫
Ω

νũ|∇ lnu−∇ ln ũ|2 +A(ũ, w̃) ·
(

lnu− ln ũ
0

)
dx ds

≤ α

∫ t

0

∫
Ω

uw − ũw̃ − ũ(w − w̃)− w̃ũ (lnu− ln ũ) dx ds

+

∫ t

0

∫
Ω

κ ũ(∇w −∇w̃) · (∇ lnu−∇ ln ũ) dx ds

≤ ν

2

∫ t

0

∫
Ω

ũ|∇ lnu−∇ ln ũ|2 dx ds+
κ2

2ν

∫ t

0

∫
Ω

ũ|∇w −∇w̃|2 dx ds

+ α

∫ t

0

∫
Ω

w̃(u− ũ− ũ(lnu− ln ũ)) + (w − w̃)(u− ũ) dx ds, (50)

where we have used Young’s inequality. Note, that the first term on the right-hand side can be absorbed
into the left. Now we test the weak formulation for the prey (4) with ũ(w − w̃). We are allowed to do so,
since the weak formulation holds in particular for all ϑ ∈ C1([0, T ];L∞(Ω) ∩W 1,2(Ω)) and this space
is dense in the solution space of the prey w, cf. Lemma 7.5. Passing to the limit, we find that the weak
formulation (4) remains true with equality. Setting w̄ = (w − w̃) and adding and subtracting the system
operator tested with (0, ũw̄)T , we obtain∫ t

0

〈∂tw̄, ũw̄〉 ds+

∫ t

0

∫
Ω

µ∇w · ∇(ũw̄) + δuwũw̄ + µ∆w̃ũw̄ − δũw̃ũw̄ dx ds

=

∫ t

0

∫
Ω

γwũw̄ − γw̃ũw̄ −A(ũ, w̃) ·
(

0
ũw̄

)
dx ds. (51)

Using the integration by parts rule from Lemma 7.3 in the Appendix, we get∫ t

0

〈∂tw̄, ũw̄〉 ds = −
∫ t

0

〈∂t(ũw̄), w̄〉 ds+

∫
Ω

ũ|w̄|2 dx

∣∣∣∣t
0

= −
∫ t

0

∫
Ω

∂tũ|w̄|2 dx ds−
∫ t

0

〈∂tw̄, ũw̄〉 ds+

∫
Ω

ũ|w̄|2 dx

∣∣∣∣t
0

,

where we also used the product rule from Lemma 7.6 in the Appendix. Pulling the second term on the
right-hand side into the left-hand side and dividing by 2, we obtain∫ t

0

〈∂tw̄, ũw̄〉 ds =
1

2

∫
Ω

ũ|w̄|2 dx

∣∣∣∣t
0

− 1

2

∫ t

0

∫
Ω

∂tũ|w̄|2 dx ds.
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Plugging this into (51), gives

1

2

∫
Ω

ũ|w̄|2 dx

∣∣∣∣t
0

+

∫ t

0

∫
Ω

µw̄∇w̄ · ∇ũ+ µũ|∇w̄|2 + δũ(uw − ũw̃)w̄ dx ds

=

∫ t

0

∫
Ω

γũ|w̄|2 +
1

2
∂tũ|w̄|2 −A(ũ, w̃) ·

(
0
ũw̄

)
dx ds.

Adding δũ2|w̄|2 on both sides in the integral and using the equality,

δũ2|w̄|2 − δũ(uw − ũw̃)w̄ = −δũw(u− ũ)w̄,

some reordering of the terms yields

1

2

∫
Ω

ũ|w̄|2 dx

∣∣∣∣t
0

+

∫ t

0

∫
Ω

µũ|∇w̄|2 + (δũ− γ)ũ|w̄|2 +A(ũ, w̃) ·
(

0
ũw̄

)
dx ds

=

∫ t

0

∫
Ω

−δũw(u− ũ)w̄ +
1

2
∂tũ|w̄|2 − µw̄∇w̄ · ∇ũ dx ds.

Further estimating the right-hand side of this equality by an application of Young’s inequality, we arrive at

1

2

∫
Ω

ũ|w̄|2 dx

∣∣∣∣t
0

+

∫ t

0

∫
Ω

µũ|∇w̄|2 + (δũ− γ)ũ|w̄|2 +A(ũ, w̃) ·
(

0
ũw̄

)
dx ds

≤
∫ t

0

(
1

2
‖∂t ln ũ‖L∞(Ω) +

µ

2
‖∇ ln ũ‖2

L∞(Ω)

)∫
Ω

ũ|w̄|2 dx ds

+

∫ t

0

∫
Ω

µ

2
ũ|∇w̄|2 − δũw(u− ũ)w̄ dx ds.

Absorbing the second to last term from the right into the left-hand side, multiplying by 2κ2

µν
and adding (50)

leaves us with∫
Ω

u− ũ− ũ(lnu− ln ũ)

∣∣∣∣t
0

dx +
κ2

µν

∫
Ω

ũ|w − w̃|2 dx

∣∣∣∣t
0

+

∫ t

0

∫
Ω

(β − αw̃)(u− ũ− ũ(lnu− ln ũ)) dx ds+

∫ t

0

∫
Ω

κ2

2ν
ũ|∇w −∇w̃|2

+
2κ2

µν
(δũ− γ)ũ|w − w̃|2 +

ν

2
ũ|∇ lnu−∇ ln ũ|2 dx ds

+

∫ t

0

∫
Ω

A(ũ, w̃) ·
(

lnu− ln ũ
2κ2

µν
ũ(w − w̃)

)
dx ds

≤
∫ t

0

∫
Ω

α(w − w̃)(u− ũ) +
2κ2

µν
δũw(w̃ − w)(u− ũ) dx ds

+

∫ t

0

(
κ2

µν
‖∂t ln ũ‖L∞(Ω) +

κ2

ν
‖∇ ln ũ‖2

L∞(Ω)

)∫
Ω

ũ|w − w̃|2 dx ds. (52)

Sincew and w̃ are non-negative and bounded byK := ‖w‖L∞(Ω)+‖w̃‖L∞(Ω)+1 and ũ, u > 0 almost
everywhere, we can apply Lemma 7.7 from the Appendix, which is an application of the Fenchel–Young
inequality, to get the pointwise almost everywhere estimate,

(w − w̃)(u− ũ) ≤ max

{
1

4K
, 4K

}(
ũ|w − w̃|2 + u− ũ− ũ(lnu− ln ũ)

)
.
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Note that this estimate also holds for exchanged roles of w and w̃ and that we know that ũ, w ≥ 0 holds,
so that the inequality remains true when multiplied with the product ũw. Inserting this estimate into (52)
and introducing the operators defined in Definition 5.3, yields

R(u,w|ũ, w̃)

∣∣∣∣t
0

+

∫ t

0

W(u,w|ũ, w̃) +

∫
Ω

A(ũ, w̃) ·
(

lnu− ln ũ
2κ2

µν
ũ(w − w̃)

)
dx ds

≤
∫ t

0

∫
Ω

(
α +

2κ2

µν
δũw

)
max

{
1

4K
, 4K

}(
ũ|w − w̃|2 + u− ũ− ũ(lnu− ln ũ)

)
dx ds

+

∫ t

0

(
κ2

µν
‖∂t ln ũ‖L∞(Ω) +

κ2

ν
‖∇ ln ũ‖2

L∞(Ω)

)∫
Ω

ũ|w − w̃|2 dx ds

≤
∫ t

0

(
‖∂t ln ũ‖L∞(Ω) + µ ‖∇ ln ũ‖2

L∞(Ω) + max

{
1

4K
, 4K

}
(
αµν

κ2
+ α + 2δ ‖ũ‖L∞(Ω) ‖w‖L∞(Ω) +

2κ2δ

µν
‖ũ‖L∞(Ω) ‖w‖L∞(Ω)

))
∫

Ω

u− ũ− ũ(lnu− ln ũ) +
κ2

µν
ũ|w − w̃|2 dx ds.

Adding max{α ‖w̃‖L∞(Ω) , 2γ}R(u,w|ũ, w̃) on both sides of the inequality we find, with the definition
of the regularity potential K, cf. Definition 5.3,

R(u,w|ũ, w̃)

∣∣∣∣t
0

+

∫ t

0

W(u,w|ũ, w̃) + max{α ‖w̃‖L∞(Ω) , 2γ}R(u,w|ũ, w̃)

+

∫
Ω

A(ũ, w̃) ·
(

lnu− ln ũ
2κ2

µν
ũ(w − w̃)

)
dx ds ≤

∫ t

0

K(ũ, w̃)R(u,w|ũ, w̃) ds. (53)

Applying Gronwall’s inequality, see for example Lemma 7.3.1 in [15, p. 180], (48) follows and our proof of
the lemma is finished.

Using the relative energy inequality from the previous lemma, makes the proof of the weak-strong unique-
ness, cf. Theorem 2.6, quite simple.

Proof (of Theorem 2.6). The relative energy inequality (48) from Lemma 5.4 holds for the generalized
solution (u,w) ∈ X and the strong solution (ũ, w̃). We indeed have ũ, w̃ ∈ Y , since the initial value
u0 is bounded away from zero and thus also ũ is bounded away from zero, by Lemma 5.1. Since (ũ, w̃)
is a strong solution to (1) the term including the system operator A vanishes. By the non-negativity of
W + max{α ‖w̃‖L∞(Ω) , 2γ}R, we estimate

R(u,w|ũ, w̃)(t) ≤ R(u,w|ũ, w̃)(0)e
∫ t
0 K(ũ,w̃) ds = 0

for almost all t ∈ [0, T ]. Thus we have w(t) = w̃(t) and u(t) = ũ(t) almost everywhere in Ω by the
definition of the relative energy R, see (44), where we used that x − y − y(lnx − ln y) = 0 implies
x = y for all x, y > 0.

6 Local existence of strong solution

We only show the a priori estimates needed for the local-in-time existence of strong solutions for system
(1) in a formal way, working directly with the equations from (1). To make this rigorous one would need to
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choose an appropriate Galerkin basis of eigenfunctions, which fulfill∇(∆ϕ) · n = 0 on ∂Ω and perform
these estimates on the discrete level. The structure of the proof follows the proof of Theorem 2.5 in [26].

For all functions ϕ ∈ W 2,2(Ω) fulfilling zero Neumann boundary conditions we can consider the norm

‖ϕ‖2

W
2,2

(Ω)
:= ‖ϕ‖2

L2(Ω) + ‖∆ϕ‖2
L2(Ω) ,

which defines an equivalent norm to the standard W 2,2-norm.

Proof (of Theorem 2.7). We show this by deriving appropriate a priori estimates and using an ODE com-
parison principle for

ξ(t) :=
1

2

(
2 + ‖w(t)‖2

W
2,2 + ‖u(t)‖2

W 1,2

)
,

where we write L2 instead of L2(Ω) etc. throughout the proof. Note that for d ≤ 3 we have W 1,2 ↪→ L6

andW 2,2 ↪→ L∞ by the Sobolev embedding theorem. Testing the prey equation (1b) with w itself we get

d

dt

1

2
‖w‖2

L2 + µ‖∇w‖2
L2 ≤

(
γ +

1

2

)
‖w‖2

L2 +
δ2

2
‖u‖2

L2 ≤ C
(
‖u‖2

W 1,2 + ‖w‖2

W
2,2

)
(54)

and testing (1b) with the bi-Laplacian ∆2w and applying Young’s inequality yields

d

dt

1

2
‖∆w‖2

L2 + µ ‖∇(∆w)‖2
L2 =

∫
Ω

γ|∆w|2 + δu∇w · ∇(∆w) + δw∇u · ∇(∆w) dx

≤ γ ‖∆w‖2
L2 + δ ‖u‖L4 ‖∇w‖L4 ‖∇(∆w)‖L2 + δ ‖w‖L∞ ‖∇u‖L2 ‖∇(∆w)‖L2

≤ γ ‖∆w‖2
L2 +

µ

2
‖∇(∆w)‖2

L2 +
δ2

2µ

(
‖u‖4

L4 + ‖∇w‖4
L4 + ‖w‖4

L∞ + ‖∇u‖4
L2

)
,

where the boundary terms vanished since∇(∆w) · n = 0 on ∂Ω holds by our choice of Galerkin basis.
Absorbing the term including the third partial derivatives of w from the right into the left-hand side and
using the above mentioned Sobolev embeddings, we obtain

d

dt

1

2
‖∆w‖2

L2 +
µ

2
‖∇(∆w)‖2

L2 ≤ C
(
1 + ‖u‖4

W 1,2 + ‖w‖4

W
2,2

)
. (55)

Testing the predator equation (1a) with u and applying Young’s inequality gives

d

dt

1

2
‖u‖2

L2 + ν ‖∇u‖2
L2 + β ‖u‖2

L2 =

∫
Ω

αwu2 + κu∇w · ∇u dx

≤ α

2
‖w‖2

L∞ +
α

2
‖u‖4

L2 +
κ2

2ν
‖∇w‖2

L4 ‖u‖2
L4 +

ν

2
‖∇u‖2

L2 .

Absorbing the last term on the right-hand side into the left-hand side and again using the above mentioned
Sobolev embeddings, yields

d

dt

1

2
‖u‖2

L2 ≤ C
(
1 + ‖u‖4

W 1,2 + ‖w‖4

W
2,2

)
. (56)

Finally testing (1a) with −∆u and integrating by parts we obtain

d

dt

1

2
‖∇u‖2

L2 + ν ‖∆u‖2
L2 =

∫
Ω

κu∆w∆u+ κ∆u∇u · ∇w + (β − αw)u∆u dx

≤ −
∫

Ω

κ∆w|∇u|2 + κu∇(∆w) · ∇u dx−
∫

Ω

β|∇u|2 dx

+ κ ‖∇u‖L3 ‖∇w‖L6 ‖∆u‖L2 + α ‖w‖L∞ ‖u‖L2 ‖∆u‖L2

≤ κ ‖∆w‖L2 ‖∇u‖2
L4 + κ ‖u‖L6 ‖∇u‖L3 ‖∇(∆w)‖L2

+ κ ‖∇u‖L3 ‖∇w‖L6 ‖∆u‖L2 + α ‖w‖L∞ ‖u‖L2 ‖∆u‖L2 . (57)
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For u ∈ W 2,2(Ω) fulfilling zero Neumann boundary conditions we can estimate ‖∇u‖L6 ≤ C ‖∆u‖L2

and we can deduce the following interpolation inequalities

‖∇u‖L3 ≤ C ‖∇u‖
1
2

L2 ‖∆u‖
1
2

L2 ,

‖∇u‖L4 ≤ C ‖∇u‖
1
4

L2 ‖∆u‖
3
4

L2 .

Using these inequalities and Young’s inequality, we can further estimate (57) by

d

dt

1

2
‖∇u‖2

L2 + ν ‖∆u‖2
L2

≤ C ‖∆w‖L2 ‖∆u‖
3
2

L2 ‖∇u‖
1
2

L2 + C ‖u‖L6 ‖∇u‖
1
2

L2 ‖∆u‖
1
2

L2 ‖∇(∆w)‖L2

+ C ‖∇u‖
1
2

L2 ‖∇w‖L6 ‖∆u‖
3
2

L2 + α ‖w‖L∞ ‖u‖L2 ‖∆u‖L2

≤ ν

2
‖∆u‖2

L2 + C
(
‖∆w‖6

L2 + ‖∇u‖6
L2

)
+
µ

2
‖∇(∆w)‖2

L2 + C
(
‖∇u‖6

L2 + ‖u‖6
L6

)
+
ν

2
‖∆u‖2

L2 + C
(
‖∇w‖6

L6 + ‖∇u‖6
L2

)
+
α2

2ν

(
‖w‖4

L∞ + ‖u‖4
L2

)
.

Absorbing the ∆u terms from the right into the left-hand side, we can deduce

d

dt

1

2
‖∇u‖2

L2 ≤ C
(
1 + ‖u‖6

W 1,2 + ‖w‖6

W
2,2

)
+
µ

2
‖∇(∆w)‖2

L2 . (58)

Adding equations (54), (55), (56) and (58) we get

d

dt
ξ(t) ≤ Cξ(t)3. (59)

For the initial values given in Theorem 2.7 the initial value ξ(0) is bounded and thus we find a T ∗ > 0
and some C∗ > 0 such that (59) has a solution on [0, T ∗) and

‖ξ‖L∞(0,T ∗) ≤ C∗

holds. This shows u ∈ L∞(0, T ∗;W 1,2) andw ∈ L∞(0, T ∗;W 2,2). By the maximalLp-regularity of the
heat equation, see [9, Thm. 8.2] we obtain the required regularity in time, where we proceeded as follows.
First we find w ∈ W 1,6(L6) ∩ L6(W 2,6) ↪→ C1([0, T ∗] × Ω), by the embedding from [22, Lem. 3.3]
and maximal Lp-regularity for (1b). With this additional regularity for w and maximal Lp-regularity for (1a)
we find u ∈ W 1,2(L2) ∩ L2(W 2,2).

Finally, we infer the additional regularity of strong solutions asserted in Proposition 2.8.

Proof (of Proposition 2.8). The proof is performed via a bootstrap argument. We apply the maximal Lp-
regularity of the heat equation, see [9, Thm. 8.2], multiple times and use the following embeddings for
parabolic Sobolev spaces

W 1,q(0, T ∗;Lq(Ω)) ∩ Lq(0, T ∗;W 2,q(Ω)) ↪→ Lp(0, T ∗;W k,p(Ω)) (60)

for k = 0, 1 with p ≥ q and 2− k − (1/q − 1/p)(n+ 2) ≥ 0 and

W 1,q(0, T ∗;Lq(Ω)) ∩ Lq(0, T ∗;W 2,q(Ω)) ↪→ C(k+α)/2,k+α([0, T ∗]× Ω) (61)
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for q > (n + 2)/(2 − k), k = 0, 1 and 0 ≤ α < 2 − k − (n + 2)/q, see [22, Lem. 3.3]. The space
Cα/2,α([0, T ∗]× Ω) is the parabolic Hölder space, see [30, p. 177] for a definition. We make use of the
Hölder continuity of the right-hand side to deduce the regularity up to t = 0. Roughly speaking, we can
say that when the right-hand side and initial condition of the heat equation are Hölder continuous, this
continuity transfers to the time derivative and the Laplace of the solution and can be extended to t = 0,
see Section 5.1.2 in [30]. This will be done more precisely later in the proof. We begin by noting that by
the embedding (61) we find

w ∈ W 1,6(0, T ∗;L6(Ω)) ∩ L6(0, T ∗;W 2,6(Ω)) ↪→ C(1+α)/2,1+α([0, T ∗]× Ω) (62)

for all α ∈ (0, 1
6
). Using the embedding from (60) we find

u ∈ W 1,2(0, T ∗;L2(Ω)) ∩ L2(0, T ∗;W 2,2(Ω)) ↪→ L10(0, T ∗;L10(Ω)),

u ∈ W 1,2(0, T ∗;L2(Ω)) ∩ L2(0, T ∗;W 2,2(Ω)) ↪→ L
10
3 (0, T ∗;W 1, 10

3 (Ω)).

Using this additional regularity and considering equation (1a)

∂tu− ν∆u = −κu∆w − κ∇u · ∇w + (αw − β)u, (63)

we notice that the right-hand side of (63) is in L
10
3 (0, T ∗;L

10
3 (Ω)) and thus by the maximal Lp-regularity

of the heat equation and again using embedding (60), we find

u ∈ W 1, 10
3 (0, T ∗;L

10
3 (Ω)) ∩ L

10
3 (0, T ∗;W 2, 10

3 (Ω)) ↪→ L10(0, T ∗;W 1,10(Ω)).

An application of (61) yields

u ∈ W 1, 10
3 (0, T ∗;L

10
3 (Ω)) ∩ L

10
3 (0, T ∗;W 2, 10

3 (Ω)) ↪→ C α̃/2,α̃([0, T ∗]× Ω),

for all α̃ ∈ (0, 1
2
). Now, we can deduce that the right-hand side of (63) is in L6(0, T ∗;L6(Ω)) and again

applying maximal Lp-regularity we obtain

u ∈ W 1,6(0, T ∗;L6(Ω)) ∩ L6(0, T ∗;W 2,6(Ω)) ↪→ C(1+α)/2,1+α([0, T ∗]× Ω) (64)

for all α ∈ (0, 1
6
) by embedding (61). Now we have that the right-hand side of (1b)

∂tw − µ∆w = (γ − δu)w

is in the parabolic Hölder space C(1+α)/2,1+α([0, T ∗] × Ω) for all α ∈ (0, 1
6
), since the product of two

Hölder continuous functions with Hölder exponents λ1 > 0 and λ2 > 0 is again Hölder continuous with
Hölder exponent λ = min{λ1, λ2}, see [16, Ch. 4.1]. Additionally, we have that the initial data fulfills
w0 ∈ C3(Ω) ↪→ C2+2α(Ω), the embedding holds by the Sobolev embedding theorem since Ω has a
smooth enough boundary, see for example [1, Thm. 5.4], and w0 fulfills the boundary conditions. Thus,
by [30, Thm 5.1.18iii)], we find

wt ∈ Cα,2α([0, T ∗]× Ω) and ∆w ∈ Cα,0([0, T ∗]× Ω).

For the regularity of u we find that the right-hand side of (63) is in Cα,0([0, T ∗] × Ω) and with the
properties of u0, namely that u0 ∈ C3(Ω) ↪→ C2+2α(Ω) and that it fulfills the zero Neumann boundary
conditions, we find, again applying [30, Thm 5.1.18iii)], that

ut ∈ Cα,2α([0, T ∗]× Ω) and ∆u ∈ Cα,0([0, T ∗]× Ω).

Combining these continuity results of the time derivatives and the Laplacians with the continuity of the
first derivatives in space, cf. (62) and (64), we obtain

u,w ∈ C1([0, T ∗]× Ω) and ∆u,∆w ∈ C([0, T ∗]× Ω).

The non-negativity of the initial values u0 and w0 can be transferred to the solutions u and w by first
applying the comparison principle for strong solutions of the predator equation, cf. Proposition 5.2 and
then the comparison principle for the prey w, cf. Lemma 4.3. This completes our proof.
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7 Appendix

7.1 A generalized integration by parts and product rule

By the definition of the solution space X , cf. Section 2, we have w ∈ L2(0, T ;W 1,2(Ω) ∩ L∞(Ω)) with
∂tw ∈ L2(0, T ;L1(Ω) +W 1,2(Ω)∗). In this section we prove that the standard integration by parts and
product rules are valid in this space.

We define V1 = W 1,2(Ω) ∩ L∞(Ω) and V2 = L1(Ω) + W 1,2(Ω)∗. Both L1(Ω) and W 1,2(Ω)∗ are
continuous embedded inW 1,p(Ω)∗ for p > d and thus the sum of these spaces is well-defined. Equipped
with the norms

‖v1‖V1
:= max

{
‖v1‖W 1,2(Ω) + ‖v1‖L∞(Ω)

}
‖v2‖V2

:= inf
{∥∥v1

2

∥∥
L1(Ω)

+
∥∥v2

2

∥∥
W 1,2(Ω)∗

: v1
2 ∈ L1(Ω), v2

2 ∈ W 1,2(Ω)∗ s.t. v1
2 + v2

2 = v2

}
for v1 ∈ V1 and v2 ∈ V2 these spaces are Banach, see [7, Thm. 1.3]. We will continue to denote the
L1(Ω) part of v ∈ V2 by an upper index 1 and theW 1,2(Ω)∗ by an upper index 2 throughout this section.
Next we define the following space.

Definition 7.1. We define Y := {w ∈ L2(V1) | ∂tw ∈ L2(V2)} , where the distributional time derivative
is given as usual via

−
∫ T

0

∫
Ω

w(t,x)v(x) dxφ′(t) dt =

∫ T

0

φ(t)〈∂tw(t), v〉 dt (65)

for all φ ∈ C∞0 (0, T ) and all v ∈ L∞(Ω) ∩W 1,2(Ω).

Remark 7.2. The space Y equipped with the norm ‖w‖Y := ‖w‖L2(V1) + ‖∂tw‖L2(V2) is a Banach
space.

We now state the generalized integration by parts rule for the space Y.

Lemma 7.3. The space Y, cf. Definition 7.1, is continuously embedded into C([0, T ];L2(Ω)) and for
arbitrary w, v ∈ Y, we have

(w(t), v(t))L2(Ω) − (w(s), v(s))L2(Ω) =

∫ t

s

〈∂tw(τ), v(τ)〉+ 〈∂tv(τ), w(τ)〉 dτ (66)

for all 0 ≤ s ≤ t ≤ T .

Before we turn to the proof, we note the following easy consequence of this lemma.

Corollary 7.4. For w ∈ Y we have w+ := max{0, w} ∈ L2(V1) and

d

dt

1

2

∥∥w+(t)
∥∥2

L2(Ω)
= 〈∂tw(t), w+(t)〉 (67)

holds for almost all t ∈ [0, T ].

Proof. This can be shown by first taking w ∈ C1([0, T ];V1). We then have w+ ∈ Y and we can apply
the integration by parts rule from Lemma 7.3 to obtain (67). For arbitraryw ∈ Y we find an approximating
sequence in C1([0, T ];V1) by Lemma 7.5, see below, and deduce that (67) remains true in the limit.
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In order to proof Lemma 7.3 we follow the standard procedure by moving to a dense subset of smooth
functions.

Lemma 7.5. The space C1([0, T ];V1) is dense in Y.

Proof. This can be shown by the use of mollifiers as it is done in [36, Lem. 7.2].

The following proof is conducted along the lines of [36, Lem. 7.3]. One cannot apply this Lemma directly,
since V1 ↪→ L2(Ω) ↪→ V2 does not define an evolution triple, since V ∗1 6= V2.

Proof (of Lemma 7.3). We start by proving the embedding into C([0, T ];L2(Ω)), using the density from
Lemma 7.5 to show that the embedding via the identity i : C1([0, T ];V1) ⊆ Y → C([0, T ];L2(Ω)),
can be extended to the whole space Y. First, we note that for arbitrary w, v ∈ C1([0, T ];V1) we have

d

dt
(w(t), v(t))L2(Ω) = 〈∂tw(t), v(t)〉+ 〈∂tv(t), w(t)〉 (68)

for all t ∈ (0, T ). Using the mean value theorem, we find t1 ∈ [0, T ] such that w(t1) = 1
T

∫ T
0
w(s) ds

holds. Using this identity and Young’s inequality we get

‖w(t)‖2
L2(Ω) = ‖w(t1)‖2

L2(Ω) +
(
‖w(t)‖2

L2(Ω) − ‖w(t1)‖2
L2(Ω)

)
≤ 1

T

∫ T

0

‖w(s)‖2
L2(Ω) ds+ 2

∫ t

t1

〈∂tw(s), w(s)〉 ds

=
1

T

∫ T

0

‖w(s)‖2
L2(Ω) ds+ 2

∫ t

t1

〈∂tw(s)1, w(s)〉+ 〈∂tw(s)2, w(s)〉 ds

≤ C

(
‖w‖L2(V1) +

∥∥∥∥∥∂tw1
∥∥
L1(Ω)

+
∥∥∂tw2

∥∥
W 1,2(Ω)∗

∥∥∥
L2(0,T )

)2

for some C > 0 and all t ∈ [0, T ]. Since this inequality holds for all decompositions of ∂tw(s) into its
L1(Ω) part ∂tw(s)1 and its W 1,2(Ω)∗ part ∂tw(s)2, the inequality also holds for the infimum over all
these decompositions and we obtain

‖w‖C([0,T ];L2(Ω)) ≤ C ‖w‖Y .

We can extend this densely defined linear operator i to the whole space Y by the extension principle, see
[43, Prop.18.29].

The integration by parts formula for arbitrary w, v ∈ Y follows by a density argument. We take approxi-
mating sequences (vn)n, (wn)n ⊆ C1([0, T ];V1) such that vn → v and wn → w in Y holds. We then
have that the identity (68) holds for w and v replaced by wn and vn respectively. Integrating this identity
over (s, t) we find that (66) holds, again with w and v replaced by wn and vn. Finally we can conclude
that the equality remains true in the limit.

Next we show a generalized product rule.

Lemma 7.6 (Product rule). Forw ∈ Y and v ∈ W 1,2(0, T ;V1) the product rule ∂t(wv) = v∂tw+w∂tv
holds, where

W 1,2(0, T ;V1) :=
{
v ∈ L2(0, T ;V1) | ∂tv ∈ L2(0, T ;V1)

}
.
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Proof. The proof is analogous to the proof of the product rule for weak derivatives. First we show that
it holds for w ∈ C1([0, T ];V1) and v ∈ C∞0 ([0, T ]) ⊗ V1. In this case v has enough regularity and
can be split up to join the test functions ϕ and φ from the definition of the generalized time derivative,
cf. Definition 7.1. By Lemma 5.12 in [38, p. 70], we have the density ofC∞0 ([0, T ])⊗V1 inW 1,2(0, T ;V1).
With this density we can deduce the product rule for all u ∈ C1([0, T ];V1) and v ∈ W 1,2(0, T ;V1),
where we use the continuous embedding of W 1,2(0, T ;V1) into C([0, T ];V1) to pass to the limit. With
the density of C1([0, T ];V ) in Y, cf. Lemma 7.5, we finally get the product rule as stated in the lemma.

7.2 Auxiliary results

We reprove a nice pointwise inequality resulting from the Fenchel–Young inequality. The proof is taken
from Lemma 26 in [19].

Lemma 7.7 (An application of the Fenchel–Young inequality). Let u, ũ, w, w̃ ∈ R be non-negative, r > 0
such that w, w̃ ∈ Br(0) and ũ, u > 0 holds. We then have

(w − w̃)(u− ũ) ≤ max

{
1

4r
, 4r

}(
ũ |w − w̃|2 + u− ũ− ũ(lnu− ln ũ)

)
. (69)

Proof. First, we define the proper convex function g : R→ R via

g(x) :=

{
x− ln(x+ 1) for x ∈ (−1,∞),

+∞ otherwise.

The convex conjugate, see Section 2.1.4 in [3, p. 75], is easily computed and given by g∗ : R→ R with

g∗(y) =

{
− ln(1− y)− y for y ∈ (−∞, 1),

+∞ otherwise.

Choosing y = w−w̃
4r

such that |y| < 1
2

and x = (u
ũ
− 1), we find that

g(x) =
u

ũ
− 1− ln

(u
ũ

)
=
u

ũ
− 1− (lnu− ln ũ).

We estimate g∗(y) by writing it via the Taylor expansion using the integral form of the remainder term,

g∗(y) = g∗(0) + (g∗)′(0)y +

∫ 1

0

(1− s)(g∗)′′(sy) ds y2 =

∫ 1

0

1− s
(1− sy)2

ds y2

≤
∫ 1

0

1− s(
1− s

2

)2 ds y2 ≤ 2

∫ 1

0

(1− s) ds y2 = y2,

since |y| ≤ 1
2

by our choice of y. An application of the Fenchel–Young inequality, again see Section 2.1.4
in [3], yields

(w − w̃)(u− ũ) = (4rũ)
w − w̃

4r

(u
ũ
− 1
)

= (4rũ)xy ≤ 4rũ (g∗(y) + g(x))

≤ 4rũ

(
|w − w̃|2

16r2
+
u

ũ
− 1− (lnu− ln ũ)

)
≤ max

{
1

4r
, 4r

}(
ũ|w − w̃|2 + u− ũ− ũ (lnu− ln ũ)

)
.

This concludes our proof of the inequality (69).
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