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Sharp phase transition for Cox percolation
Christian Hirsch, Benedikt Jahnel, Stephen Muirhead

Abstract

We prove the sharpness of the percolation phase transition for a class of Cox percolation
models, i.e., models of continuum percolation in a random environment. The key requirements
are that the environment has a finite range of dependence and satisfies a local boundedness
condition, however the FKG inequality need not hold. The proof combines the OSSS inequality
with a coarse-graining construction.

1 Introduction

The field of continuum percolation deals with the existence and properties of giant connected com-
ponents of a geometric graph on a stochastic system of points scattered at random in Euclidean
space [11]. Since its early days, continuum percolation has attracted attention from researchers in
wireless communication [5]. This appeal is based on the prospect of using the asymptotic theory to
predict the behavior of large systems of devices that interact in a peer-to-peer fashion.

FIGURE 1: Devices (blue) scattered at random on the
edges of a Poisson–Delaunay triangulation.

So far, the majority of results assume that the devices are
scattered entirely at random in the infinite Euclidean plane,
in the sense that they form a homogeneous Poisson point
process. However, this assumption is in stark contrast with
the topology of modern wireless networks, where devices
are located predominantly on the streets of large cities,
see Figure 1. This discrepancy has motivated research in
the direction of Cox percolation, which can be thought of
as a model of continuum percolation where the node distri-
bution is governed by a random environment [7]. Another
option is to allow the connection radii to be governed by
the random environment [1].

Motivated by the need to extend the basic findings from
percolation theory to random environments, [7, Theorems
2.4, 2.6] developed general conditions on the random envi-
ronment ensuring a non-trivial phase transition. However,
any progress beyond these basic findings was limited by
the fact that the vast majority of environments relevant for applications do not satisfy the FKG inequal-
ity, which is a basic building block in percolation theory.

Recently, it has been discovered [3] that the OSSS-inequality (O’Donnell, Saks, Schramm & Servedio)
is a powerful tool for analyzing percolation systems with complex spatial correlations [8, 14]. Since
the OSSS inequality does not rely on the FKG inequality, it is particularly attractive for analyzing Cox
percolation.
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C. Hirsch, B. Jahnel, S. Muirhead 2

Our main result shows how to apply the OSSS inequality to establish the sharpness of the phase
transition in a Cox percolation model built on a random environment subject to a set of general condi-
tions. The main features that we require from the environment are a ‘factor of iid’ representation with
finite range of dependence, and uniform local boundedness of the node intensity. We always work in
the annealed model where the percolation probabilities average both over the environment and the
particle placement. As a prototypical illustration of the general methodology, we apply our results to
models where nodes are distributed at random on the edge set of a planar Delaunay triangulation.

As announced, the key tool to establish the main result is the OSSS inequality. However, in the context
of Cox percolation, the standard approaches from the literature do not apply immediately since there
are two sources of randomness: (i) the random configuration of nodes, and (ii) the random environ-
ment. Applying the OSSS inequality leads to a variance bound involving influences with respect to
both sources of randomness. In contrast, when applying Russo’s formula for the derivative of the per-
colation probability, only influences with respect to random node locations appear. In order to convert
one type of influence to another, we will adapt a coarse-graining strategy from [16].

The rest of the manuscript is organized as follows. In Section 2, we define a general framework for ‘fac-
tor of iid’ representations of Cox processes, and provide Delaunay-based examples that are covered
by this framework. Next, in Section 3, we state the main results, namely Proposition 5 and Theorem
6 on the non-triviality and the sharpness of the phase transition. Finally, these results are proven in
Section 4 and 5 respectively.

2 Factor of iid representations of Cox processes

Recall that a Cox point process is a Poisson point process whose intensity measure (‘environment’)
is a random Borel measure on Rd. In this section, we define a general class of Cox point processes
in which both, the environment and the Poisson points, may be ‘locally’ constructed from (indepen-
dent) iid processes in the background. This representation will be crucial in the proof of our main
results, where we will also assume stronger properties such as finite-range dependence and uniform
boundedness.

The framework is broad enough to cover environments that are absolutely continuous with respect
to the Lebesgue measure, e.g., supported on a random closed set of full dimension (see Remark 2),
and also singular environments, e.g., supported on lower-dimensional structures such as hyperplanes
or line-segments. In Section 2.2 below, we give examples of the both types motivated by wireless
communications.

2.1 Definition

First we introduce a class F of environments which possess a ‘factor of iid’ representation. We fix a
large scale M ≥ 1 and a fine scale b such that b−1 is an integer exceeding 2dM ; the scale M will
later encode the dependency range of the environment, whereas the environment will be constructed
on the scale Mb. Then, a random Borel measure E on Rd is in class F if it is of the form

E(·) :=
∑
x∈bZd

Ex(·;Y ), Ex(·;Y ) := Ux(Y )Qx(·;Y ),

where
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Sharp phase transition for Cox percolation 3

(i) Y := {Yz}z∈Zd is an iid family of random elements taking values in some measurable space,

(ii) Ux := Ux(Y ) is a random variable with values in [0,∞),

(iii) Qx(·) := Qx(·;Y ) is a random probability measure in the cube Q(x; b,M) := Mx +
[0,Mb]d, and

(iv) Qx(·, Y ) and Ux(Y ) are translation covariant, i.e.,Qx+z0({Yz+z0}z∈Zd) = Qx({Yz}z∈Zd) for
any z0 ∈ Zd and x ∈ bZd, and similarly for Ux.

The intuition behind this construction is that Qx and Ux encode respectively the distribution of the
locations and the mean number of particles in the cube Q(x; b,M).

For an environment E ∈ F and intensity parameter λ > 0, we next construct a Cox point process Xs

with intensity λE . To this end we fix a bimeasurable bijection Γ: [0,Mb]d → [0, 1], and note that the
push-forward Γ∗(Qx(·;Y )) is a random probability measure on [0, 1] whose cumulative distribution
function will henceforth be denoted by Φx(t) := Φx(t;Y ). Next, we let

V := {Vx}x∈bZd := {(Vx,i, Ux,i)i≥1}x∈bZd (1)

be a family of iid homogeneous Poisson point processes on [0, 1]× [0,∞) with intensity λ. Then, we
define the point process

Xs := Ψ(V, Y ) :=
⋃
x∈bZd

Ψx(Vx;Y ), (2)

where the configuration of Xs inside Q(x; b,M) is given as

Ψx(Vx;Y ) :=
{
Mx+ Γ−1(Φ−1

x (Vx,i;Y )) : Ux,i ≤ Ux(Y )
}
. (3)

That is, Xs∩Q(x; b,M) consists of all shifted and transformed points Γ−1(Φ−1
x (Vx,i;Y )) with mark

Ux,i at most Ux(Y ). Here, Φ−1
x (v) := infy≥0{Φx(y) ≥ v} denotes the inverse distribution function.

One observes that, conditionally on Y , Xs ∩ Q(x; b,M) is a Poisson point process with intensity
λUxQx, and hence Xs is a Cox process with intensity λE .

Remark 1 (Stationarity). By construction, the Cox process Xs defined above is invariant under trans-
lations of the lattice MZd. In certain examples (see Section 2.2) it may also be invariant under trans-
lations of Rd.

Remark 2 (Full-dimensional environments). Encoding the Cox point process via the bimeasurable
bijection Γ is a bit cumbersome from a technical perspective but it allows us to cover both non-singular
and singular environments simultaneously. In the former case, it may be more natural to rely on simpler
alternative constructions. For instance, for environments that are uniformly distributed on a random
closed subset of full dimension (as in the example in Section 2.2.3 below), one could define Ex(Y )
to be the intersection of this random set with Q(x; b,M), and then let Xs ∩Q(x; b,M) be given by
Xx∩Ex(Y ), whereXx is a homogeneous Poisson point process inQ(x; b,M) with intensity λ > 0.

2.2 Examples

We next present examples motivated by wireless communications networks; in these examples Xs

encodes the location of devices placed on a street system embedded in R2.
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2.2.1 Delaunay network

In our first example, devices are placed uniformly on the edges of a Delaunay triangulation formed from
an underlying independent Poisson point process. More precisely, let P be a homogeneous Poisson
point process on R2 with intensity λDel > 0, and let Del(P) denote the Delaunay triangulation with
vertices given by P . Then, for an intensity parameter λ > 0, we consider a Cox point processXs with
intensity λE := λLeb(Del(P)), where Leb(Del(P)) denotes the 1D-Lebesgue measure on Del(P).

It is easy to see that E ∈ F, and so one can construct Xs using the general framework introduced
above. More precisely, fix M ≥ 1 and b ≤ 1/4 such that b−1 is an integer, and for z ∈ Z2 define
Yz := [0,Mb]2 ∩ (P −Mbz), so that Y := {Yz}z∈Z2 is an iid family of Poisson point processes
and P =

⋃
z∈Z2 Yz. Then, Qx(·;Y ) and Ux(Y ) are respectively defined as the uniform distribution

on Del(P) ∩ Q(x; b,M) and the total length of Del(P) ∩ Q(x; b,M). Further, Xs may be defined
as in (2).

While this is a natural model for a wireless network, for our purposes it has two major drawbacks:

(a) The network has infinite range of dependence.

(b) Since we view the streets as having width 0, the environment is singular, and there is no deter-
ministic upper bound for the total intensity of Xs in a finite sampling window.

This motivates us to introduce the following variants of the Delaunay network.

2.2.2 Delaunay network superimposed with sparse grid

To obtain a network with finite-range dependence, we superimpose the underlying Poisson point pro-
cess with a sparse grid. More precisely, defining a large parameter L ≥ 1, and setting M = M ′L for
a positive integer M ′, we let P and Y be as before, but replace Del(P) in the definition of Q and U
with DelL(P) := Del(P ∪ LZ2). With this change, we then construct Xs in an identical manner.

Since every triangle in the Delaunay tessellation DelL(P) has diameter at most cL for a suitable
c ≥ 1, by choosing M ′ sufficiently large we ensure that the construction of the environment is 1-
dependent (on the scale M = M ′L), i.e., setting I+(z) := z + {−1, 0, 1}2 we have for all x ∈ bZ2

thatQx({Yz′}z′∈Z2) = Qx({Y ′z′}z′∈Z2) if Yz′′ = Y ′z′′ for every z′′ ∈ I+(x/b).

2.2.3 Delaunay network of edges with positive width

To obtain a model with bounded intensity, one option is to consider the streets as having a non-
zero ‘thickness’ w0 > 0. Precisely, let P , Y and L be as before, and define the random closed set
Delw0

L (P) :=
{
x ∈ R2 : dist(x,DelL(P)) ≤ w0

}
. Then replace Del(P) in the definition of Q and

U with Delw0
L (P). By construction, the intensity of Xs is bounded by λ.

2.2.4 Delaunay network of edges with capped density

A second option to obtain a model with bounded intensity, but which retains the singular street struc-
ture, is to enforce a cap on the total intensity in any cube Q(x; b,M). More precisely, let P , Y and
L be as before, and let ρ > 0 be a parameter. Then, define Qx to be the uniform distribution on
DelL(P) ∩ Q(x; b,M), and define Ux := ρ ∧ |DelL(P) ∩ Q(x; b,M)|, i.e., we first measure the
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Sharp phase transition for Cox percolation 5

edge length of DelL(P) in Q(x; b,M) and then manually cap the resulting length at ρ > 0. By
construction, the total intensity of Xs in the cube Q(x; b,M) is bounded by λρ.

Remark 3. The Delaunay network in Section 2.2.1 is stationary with respect to translations in R2,
whereas after the introduction of the sparse grid LZ2 the model is only stationarity with respect to
shifts in LZ2. One option to enforce the R2-stationarity could be to replace LZ2 with L(V + Z2),
where V is uniformly distributed on [0, 1]2. It could also be interesting to work with a finite-range
model that is intrinsically R2-stationary.

3 Main result

In this section, we state our main result (Theorem 6) on the sharpness of the phase transition for Cox
percolation models, i.e., the continuum percolation model built from a Cox point process Xs.

First, let us be precise about the definition of the Cox percolation model. There are two equivalent
ways to proceed: we can view the model as the subset of Rd formed by the union of balls of radius
1/2 centred at the pointsXs; equivalently, we can consider the random geometric graph whose vertex
set is Xs and whose edge-set contains all pairs of points in Xs at mutual distance less than 1. For
concreteness we will work with the former definition. We say that the model percolates if it has an
infinite connected component.

3.1 Conditions on the environment

In order to state our result, we introduce a set of conditions on the environment.

We assume that Xs is defined as in Section 2 for an intensity parameter λ > 0 and an environ-
ment E = E(Y ) ∈ F. This implies in particular that E (and corresponingly Xs) is invariant under
translations by MZd. Moreover, we assume the dependence of E on Y is finite-range, and that E
has uniformly bounded local intensity. Precisely, define Ib(z) := bZd ∩ (z + [0, 1)d) and recall that
I+(z) = z + {−1, 0, 1}d, we assume

(i) 1-dependence, i.e., for all z ∈ Zd and x ∈ Ib(z) we have that Ex({Yz′}z′∈Zd) = Ex({Y ′z′}z′∈Zd)
if Yz′′ = Y ′z′′ for every z′′ ∈ I+(z), and

(ii) uniformly bounded local intensity, i.e., there exists a ρ > 0 such that Ux ≤ ρ for every
x ∈ bZd.

Next, we impose some natural connectivity conditions on the environment E . Observe that, if the 1-
neighborhood of the support of E does not percolate, then, there is also no chance of percolation
in the Cox model. To make this precise, we say that a site x ∈ bZd is non-empty if Ux(Y ) > 0.
Analogously, we say that z ∈ Zd is non-empty if x is non-empty for some x ∈ Ib(z); this defines
a finitely dependent site percolation model on Zd. We recall from [10, Theorem 0.0] that there exists
q0(d) ∈ [0, 1] such that any 6-dependent site percolation model on Zd with marginal probability at
least q0(d) percolates, where the 6-dependence is chosen for convenience of the proofs. Hence we
assume in the following

(iii) coverage, i.e., it holds that P
(
o ∈ Zd is non-empty

)
> q0(d).
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C. Hirsch, B. Jahnel, S. Muirhead 6

Finally, we also need a more delicate connectivity condition that is described by the notion of essential
connectedness [2]. To make this precise, two sites x, x′ ∈ bZd are adjacent if they are at d∞-
distance b. For η > 0, we say that x ∈ bZd is η-supported if Ux ≥ η. Introduce the enlarged cubes
I+
b (z) := bZd ∩ (z + [−1, 2)d) and I++

b (z) := bZd ∩ (z + [−2, 3)d). Then we assume

(iv) essential connectedness, i.e., that there exists η > 0 such that with probability 1, for all
z ∈ Zd, any non-empty x, x′ ∈ I+

b (z) are connected by a chain of adjacent η-supported sites
in I++

b (z).

Remark 4 (Examples). All the above conditions are satisfied for the Delaunay-based examples in
Section 2.2.3 and 2.2.4 by choosing M of the form M = M ′L, for M ′ sufficiently large. On the other
hand, Conditions (i) and (ii) both fail for the example in Section 2.2.1, and Condition (ii) fails for the
example in Section 2.2.2.

3.2 Statement of the main result

Write Pλ for the law of Xs with parameter λ. For A,B ⊂ Rd we write {A ! B in Xs} for the
event that A and B are connected in the corresponding Cox percolation model, i.e., there exists a
path between A and B in the set

⋃
x∈Xs{x + B(1/2)}, where B(r) is the Euclidean ball of radius

r. Then, defining ΛM = [−M,M ]d, we let λc := inf{λ > 0: θ(λ) > 0} be the critical intensity for
percolation, where for ∂Λn := Λn−M \ Λn−2M we let

θ(λ) := Pλ
(
Λ3M !∞ in Xs

)
:= lim

n→∞
Pλ
(
Λ3M ! ∂Λn in Xs

)
denote the probability of the percolation event.

Note that in classical continuum percolation, θ(λ) is defined as Pλ(0 ! ∞ in Xs). In the M -
discretized setting the addition of a point at the origin is no longer natural, and hence we rely on a
definition of θ(λ) that is better adapted to the M -discretized model.

As a preliminary step, we verify that Cox percolation exhibits a non-trivial phase transition:

Proposition 5 (Non-triviality). It holds that 0 < λc <∞.

The main result of the paper states that this phase transition is sharp, i.e., there is exponential decay
of connectivity in the subcritical phase, and the percolation probability grows at least linearly in the
supercritical phase.

Theorem 6 (Sharpness). The phase transition for Cox percolation is sharp:

(i) lim supn↑∞ n
−1 logPλ

(
Λ3M ! ∂Λn in Xs

)
< 0 holds for every λ < λc, and

(ii) lim infλ↓λc θ(λ)/(λ− λc) > 0.

This generalizes a known result for the standard continuum percolation model [12, 13, 17], i.e., the
homogeneous case in which Xs is a Poisson point process.
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3.3 Possible extensions

3.3.1 The Delaunay network

As mentioned, the Delaunay network model in Section 2.2.1 does not satisfy the finite-range and
uniform boundedness conditions, and so our result does not apply. It would be interesting to weaken
these conditions so as to cover this model, but it would require new ideas.

3.3.2 Random connectivity radii

A natural generalization of the Cox percolation model would be to equip each point in Xs with a ball
whose radius is drawn independently from a certain radius distribution, rather than a ball of radius
1/2. If the radius distribution is bounded, the proof of Theorem 6 works unchanged, but it does not
if the distribution is unbounded. In the homogeneous case where Xs is a Poisson point process, an
extension to unbounded radii was achieved in [4], and it would be interesting to generalize this to Cox
percolation.

3.3.3 Varying connectivity radius

For applications it may also be important to vary the radius of the connectivity instead of the intensity
parameter (i.e., we fix λ but connect all points in Xs within distance µ, for varying µ > 0). Unlike in
the homogeneous case, these are not equivalent up to global rescaling. The proof from Theorem 6
breaks down in this case because of a lack of a Russo formula expressing the derivative of percolation
probabilities as integrals over pivotal intensities (see (6)). However it may be possible to define an
alternate notion of pivotal intensity wrt increasing the connectivity radius, and compare this to other
relevant notations of influence.

4 Non-triviality: Proof of Proposition 5

To establish the non-triviality of the percolation phase transition, we build on classical techniques
to deal with finite-range dependent percolation processes, most notably the stochastic domination
criterion [10, Theorem 0.0]. Nevertheless, to make the manuscript more self-contained, we include
some details.

Proof of Proposition 5, λc > 0. Recall the family {Xx}x∈bZd of iid Poisson point processes on [0, 1]×
[0,∞) with intensity λ from (1). Recall also the uniformly bounded intensity condition, which implies
that we can and will restrict each processXx to [0, 1]× [0, ρ] without change to the Cox point process
Xs.

Call a site z ∈ Zd is bad if Xx 6= ∅ for some x ∈ Ib(z), and observe that the probability that a site
is bad tends to 0 as λ → 0. Moreover, Cox percolation of Xs implies the percolation of the Bernoulli
site percolation process of bad sites in Zd. Then the claim follows since Bernoulli site percolation has
a subcritical regime [6, Theorem 1.10].

Proof of Proposition 5, λc <∞. Call a site x ∈ bZd populated if Xs ∩Q(x; b,M) 6= ∅. Moreover,
say that z ∈ Zd is good if (i) some x ∈ Ib(z) is populated and (ii) any populated x, x′ ∈ I+

b (z) are
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connected by a chain of adjacent populated sites in I++
b (z). First, note that percolation of good sites

on Zd implies Cox percolation ofXs. Moreover, the good sites are 6-dependent, and the coverage and
essential-connectedness conditions imply that the marginal probability exceeds q0(d) as λ → ∞.
Hence, an application of [10, Theorem 0.0] shows that for sufficiently large λ > 0, the good sites
percolate.

5 Sharpness: Proof of Theorem 6

To prove the sharpness of the phase transition, our general strategy is to proceed in the vein of
[3, 4] and rely on Russo’s formula and the OSSS technique to derive a key differential inequality (see
Proposition 7). The particular challenges of Cox percolation are that (i) the model depends on an
underlying environment, and that (ii) the FKG inequality does not necessarily hold.

5.1 The differential inequality

To reflect that the model inherently depends on the scale M , we define

θn(λ) := P
(
Λ3M ! ∂ΛMn in Xs

)
,

setting θi := 1 for i ≤ 4 to avoid ambiguities. We will deduce the sharpness of the phase transition
as a consequence of the following differential inequality, see [4, Lemma 1.7].

Proposition 7 (Differential inequality). Let λ′ > λc. Then, there exists cDiff > 0 such that for every
n ≥ 1 and λ′ > λ > λc,

d

dλ
θn(λ) ≥ cDiff

n∑
s≤n θs(λ)

θn(λ)(1− θn(λ)).

Proof of Theorem 6. Once Proposition 7 is established, we argue as in [3] to show that there exists
λ1 ∈ [λc, λ

′] such that lim supn↑∞ n
−1 log(θn(λ)) < 0 for every λ < λ1, and lim infλ↓λ1 θ(λ)/(λ−

λ1) > 0. Therefore, λc = λ1.

It remains to deduce Proposition 7. The key idea is to apply the OSSS inequality from [15] to the
indicator of the event {Λ3M ! ∂ΛMn in Xs}. The fact that the Cox point process Xs has a ‘factor
of iid’ representation is crucial in implementing this strategy.

Recall the family {Vx}x∈bZd of iid Poisson point processes from (1), and define the collection X =
{Xz}z∈Zd with Xz := {Vx}x∈Ib(z). Then, we observe that θn(λ) may be considered as the expec-
tation of a function fn(X, Y ) on the discrete product measure Z := {Zz}z∈Zd :=

{
(Xz, Yz)

}
z∈Zd .

Applying the OSSS inequality to an algorithm T determining fn gives that

θn(λ)(1− θn(λ)) = Var(fn(Z)) ≤ 1

2

∑
z∈Zd

δz(T )Infz(fn), (4)

where

(i) δz(T ) := P(T reveals Zz) is the probability that the algorithm T reveals the value of Zz, and
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(ii) Infz(fn) := P
(
fn(Z) 6= fn(Z ′(z)

)
denotes the (resampling) influence of Zz, where Z ′(z) is

formed from Z by replacing Zz with an independent copy.

By the Efron–Stein inequality,

Infz(fn) ≤ InfXz (fn) + InfYz (fn),

where InfXz (fn) := P
(
fn(X, Y ) 6= fn(X ′(z), Y )

)
and InfYz (fn) := P

(
fn(X, Y ) 6= fn(X, Y ′(z))

)
denote the analogous (resampling) influences of Xz and Yz respectively. Hence we also have

θn(λ)(1− θn(λ)) ≤ 1

2

∑
z∈Zd

δz(T )
(
InfXz (fn) + InfYz (fn)

)
. (5)

Our task is to relate the right-hand side of (5) to the derivative of θn(λ). For this we rely on Lemmas 8–
10 below, whose proofs will be given at the end of the section.

Recall that the uniformly bounded intensity condition implies that we may restrict each Poisson point
process Vx in (1) to [0, 1]× [0, ρ] without change to the Cox point process Xs. Then, since the event
{Λ3M ! ∂ΛMn in Xs} is increasing, the infinitesimal Russo–Margulis formula gives

d

dλ
θn(λ) = λ

∑
x∈bZd

∫
[0,1]×[0,ρ]

Pivx(r, u)d(r, u), (6)

with
Pivx(r, u) := P

(
fn(Vx,r,u, Y ) 6= fn(X, Y )

)
,

where Vx,r,u is the collection {V ′x′}x′ determined by V ′x′ = Vx′ if x′ 6= x and V ′x = Vx ∪ {(r, u)}. In
words, Pivx(r, u) is the probability that the event {Λ3M ! ∂ΛMn in Xs} does not occur, but does
occur after adding (r, u) to Vx.

Our first lemma states that one can control the integrated infinitesimal pivotal probabilities in (6) in
terms of the corresponding discrete influences InfXz :

Lemma 8 (Pivotality and influence). Let λ′ > 0. Then, there exists cPiv = cPiv(λ
′) > 0 such that for

every n ≥ 1, λ ≤ λ′ and z ∈ Zd,

InfXz ≤ cPivλ
∑

x∈Ib(z)

∫
[0,1]×[0,ρ]

Pivx(r, u)d(r, u).

Our second lemma states that we can bound InfYz in terms of InfXz′ for z′ ∈ I++(z) := z +
{0,±1,±2}d.

Lemma 9 (Poisson- and environment influences). There exists cInf > 1 such that for every n ≥ 1,
λ > 0 and z ∈ Zd,

InfYz ≤ cInf

∑
z′∈I++(z)

InfXz′ .

Our final lemma bounds the revealment probabilities of a suitable randomized exploration algorithm:

Lemma 10 (Revealment probabilities). For every n ≥ 16 there exists a randomized exploration algo-
rithm T determining fn such that for every λ > 0 and z ∈ Zd,

δz(T ) ≤ 8

n

∑
s≤n

θs(λ).
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Let us use Lemmas 8–10 to conclude the proof of Proposition 7:

Proof of Proposition 7. First, Lemmas 9 and 10 show that

n∑
s≤n θs(λ)

∑
z : Λn∩Zd

δz(T )(InfXz +InfYz ) ≤ 8
∑

z∈Λn∩Zd

(InfXz +InfYz ) ≤ 8(5d+1)cInf

∑
z∈Λn+2∩Zd

InfXz .

Hence, invoking Lemma 8 together with the Russo–Margulis formula (6) concludes the proof.

5.2 Proof of the auxiliary lemmas

First, we establish Lemma 9, i.e., the domination of InfYz by a multiple of InfXz , for which we adapt a
coarse-graining strategy from [16].

Proof of Lemma 9. We present a detailed proof in the case where 3 ≤ |z|∞ ≤ n− 3, noting that the
arguments in the remaining cases are very similar. Let Y ′(z) = {Y ′w}w∈Zd be the z-resampling of
Y = {Yw}w∈Zd , i.e., the component of {Yw}w∈Zd with index z is replaced by an independent copy.
Note that, by the assumption of 1-dependence, the resampling does not modify the environment E(Y )
outside I+(z). We introduce a ‘coarse grained’ version of the event

{
fn(X, Y ) 6= fn(X, Y ′(z))

}
,

which depends on X only through the configuration of Vx for x 6∈ I++
b (z). First, we let Ecoarse,−

denote the event that Λ3M 6! ∂ΛMn holds if Vx ∩
(
[0, 1] × [0, ρ]

)
= ∅ for all x ∈ I++

b (z).
In particular, Ecoarse,− occurs under the event

{
fn(X, Y ) 6= fn(X, Y ′(z))

}
. Next, we let Ecoarse,+

denote the event that if Vx∩
(
[0, 1]× [0, η]

)
6= ∅ for every x ∈ I++

b (z), then Λ3M ! ∂ΛMn. Now,
setting Q′ := (Mz + [−M, 2M)d), we note that, under the event

{
fn(X, Y ) 6= fn(X, Y ′(z))

}
,

there are particles Xi, Xj ∈ Xs \ Q′ such that (i) Xi connects to Λ3M outside Q′, and (ii) Xj

connects to ∂ΛMn outside Q′. Hence, we conclude from the essential-connectedness condition that
also the event Ecoarse,+ occurs under the event

{
fn(X, Y ) 6= fn(X, Y ′(z))

}
.

Defining Ecoarse := Ecoarse,−∩Ecoarse,+, we have shown that InfYz ≤ P(Ecoarse), and so it suffices to
show that P(Ecoarse) ≤ cInf

∑
z′∈I++(z) Inf

X
z′ . To that end, we let Efine,− := {Vx∩ ([0, 1]× [0, ρ]) =

∅ for all x ∈ I++
b (z)}. Similarly, we let Efine,+ denote the event that Vx ∩ ([0, 1] × [0, η]) 6= ∅

for every x ∈ I++
b (z). Finally, we write X∗ for the Poisson point process obtained by resampling

{Vx}x∈I++
b (z). Then, by the independence property of Poisson point processes,

P
(
fn(X, Y ) 6= fn(X∗, Y )

)
≥ P

(
({Vx}x 6∈I++

b (z), Y ) ∈ Ecoarse, {Vx}x∈I++
b (z) ∈ Efine,−, {V ∗x }x∈I++

b (z) ∈ Efine,+

)
= P

(
({Vx}x 6∈I++

b (z), Y ) ∈ Ecoarse

)
P
(
{Vx}x∈I++

b (z) ∈ Efine,−
)
P
(
{V ∗x }x∈I++

b (z) ∈ Efine,+

)
,

where the second and third factor in this product are bounded away from 0. Finally, by the Efron–
Stein inequality, we see that P

(
fn(X, Y ) 6= fn(X∗, Y )

)
≤
∑

z′∈I++(z) Inf
X
z′ , thereby concluding

the proof.

Next, we prove Lemma 8 through a short computation using tail estimates for Poisson random vari-
ables:

Proof of Lemma 8. We condition on Y and note that by the superposition theorem ([9, Theorem 3.3])
we may think of the collectionXz = {Vx}x∈Ib(z) as a homogeneous Poisson point process on [0, 1]×
[0, ρ] × Ib(z) with intensity λ. Hence, Xz = {Pi}i≤N where N is a Poisson random variable with
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parameter λ∗ := λρb−d and the {Pi}i≥1 are iid uniform on [0, 1]× [0, ρ]× Ib(z). Moreover, writing
X ′ := {Xz′}z′ 6=z, we let

K := sup
{
k ≥ 0: Λ3M 6! ∂ΛMn in Ψ(({Pi}i≤k ∪X ′))

}
denote the maximum number of Poisson points that can be added to Ib(z) such that the percolation
event does not happen. Note that K may also take the values −∞ or ∞. The introduction of the
quantity K has the advantage that the pivotal probabilities can be concisely represented via P(K =
N) = bd

∑
x∈Ib(z)

∫
[0,1]2

Pivx(r, u)d(r, u). Similarly, we can bound the influences through InfXz ≤
2P(N > K ≥ 0). Using the tail probabilities of a Poisson random variable shows that for every
k ≥ 0,

P(N > k)

λP(N = k)
=
∑
`≥k+1

k!

`!
λ`−k−1
∗ .

Noting that the right-hand side is bounded by exp(λ∗) concludes the proof.

Remark 11. Another approach to proving Lemma 8 which may be less sensitive to the Poisson as-
sumption would be to first discretize space and then to invoke the Efron–Stein inequality to aggregate
the coordinates.

To finish we prove Lemma 10, i.e., we describe the randomized algorithm leading to the asserted
bound on the revealment probabilities. In essence, the proof can be adapted from previous results in
the literature, e.g., [4, Lemma 3.3]. Nevertheless, to make the presentation self-contained, we provide
a brief overview.

Proof of Lemma 10. For every 6 ≤ m ≤ n−3 we construct an algorithm Tm determining {Λ3M !
∂ΛMn} as follows. During the algorithm, a site z ∈ Zd is called active if it is revealed but the neigh-
borhood I++(z) is not yet entirely revealed.

(i) First, reveal Zz for all z with
∣∣|z|∞ −m∣∣ ≤ 3. This determines the point configuration for all z

with
∣∣|z|∞−m∣∣ ≤ 2. Let S denote the union of all connected components intersecting ∂ΛMm.

(ii) Pick an active z with S ∩ Q(x; b,M) 6= ∅ for some x ∈ Q(z, b), reveal I++(z), and grow
the components from S with the particles from Xs ∩Q(x′; b,M) for x′ ∈ I+

b (z).

(iii) Continue this exploration until there is no more active z with S ∩ (Mz + [0,M)d) 6= ∅, or a
connection from Λ3M to ∂ΛMn is found.

Next, we note that the revealment probabilities δz(Tm) are bounded above by the percolation proba-
bilities in the sense that

P(Tm reveals z) ≤ P
(
(Mz + Λ3M) ! ∂ΛMm

)
≤ θ|m−|z|∞|.

Thus, picking m ∈ {6, . . . , n − 3} at random shows the asserted δz(T ) ≤ 2
n−8

∑
m≤n θm ≤

4
n

∑
m≤n θm.
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