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Consistency and order 1 convergence of cell-centered finite
volume discretizations of degenerate elliptic problems in any

space dimension
Martin Heida, Alexander Sikorski, Marcus Weber

Abstract

We study consistency of cell-centered finite difference methods for elliptic equations with de-
generate coefficients in any space dimension d ≥ 2. This results in order of convergence esti-
mates in the natural weighted energy norm and in the weighted discrete L2-norm on admissible
meshes. The cells of meshes under consideration may be very irregular in size. We particularly al-
low the size of certain cells to remain bounded from below even in the asymptotic limit. For uniform
meshes we show that the order of convergence is at least 1 in the energy semi-norm, provided
the discrete and continuous solutions exist and the continuous solution has H2 regularity.

1 Introduction

In [5, 8] the state of the art of the order of convergence for cell-centered finite difference methods on a
family of admissible meshes (e.g. cell-centered Voronoi) has been established for d ≤ 3. The analysis
there is based on the fact that H2-functions in dimension up to 3 allow for pointwise evaluation and
on the boundedness of some integrals that appear there. A more recent result [7] treats higher space
dimensions and unstructured grids for nonlinear problems, but does not provide an estimate for the
order of convergence. Order of convergence is provided in [1] using corrective additional terms.

However, order of convergence estimates for finite volume approximations of elliptic PDE are impor-
tant for applied sciences, in particular for conformation dynamics [12]. In conformation dynamics the
analysis of rare transition events between different states of a molecular system are analyzed. In or-
der to avoid long-term molecular simulations, the problem has been reformulated in terms of solving
a partial differential equation and simple discretization schemes have been developed [10]. This ap-
proach makes it necessary to consider order of convergence of finite difference methods in very high
dimensions (e.g. [4] where d = 9), with degenerate weights and on meshes that have non-uniform
distributions of cell-sizes. In the followings, we show how W 2,p-regularity (p ≥ 2) of the continuous
solution can provide quantitative information on the quality of the approximation, even in high space
dimensions (see Cor. 2.7).

The argument we use relies pretty much on the original argument in [5, 8], in particular on the formulas
(3.2)–(3.3) below. As the major difference, [5, 8] use the pointwise evaluation operator to map H2-
function onto discrete functions, which is well defined in d ≤ 3. However, the integrals showing up in
this approach become unsolvable in high dimensions. This problem no longer exists when using an
averaging operator to match H2-functions with discrete functions. We will not go into further details of
[5, 8] but encourage the reader to compare the two approaches directly from the source.

Aside from the missing C(Ω)-regularity of solutions, a further problem in high dimensions is the
number of control volumes which grows exponentially with the dimension for a prescribed resolution:
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M. Heida, A. Sikorski, M. Weber 2

if for example Ω = [0,1]d and if we chose as control volumes cubes of edge length h we need h−d

cubes. Already in dimension d = 6 with h = 0.01 this implies 1012 cubes. Furthermore, every cube
has 12 neighbors and hence the matrix has 1013 entries even though the matrix is sparse.

However, there is hope in certain fields of application. For example, if we apply our results in confor-
mation dynamics, then we can assume that the solution function is almost constant in large parts of
Ω. These parts correspond to what is called “metastable conformation” in the field of conformation
dynamics. We can make use of this assumption by choosing large control volumes in this area and
by choosing small control volumes only in those regions where we expect significant changes of the
solution function. We will account for the size of cells by an outer radiusRk and an inner radius rK and
our convergence estimates will weight the local H2-norm of the limit solutions vs. a polynomial in RK

and eccentricity RK
rK

. TheH2-norm is in particular interesting in applications, because the shape of the
solution functions can be assumed to be almost linear (the 2nd derivative vanishes) in regions which
would be named “transition region” in conformation dynamics. In this special field of application there
exists a heuristic approach for choosing an adaptive cell volume (see p. 38 bottom in [14]). Large cell
volumes are possible whenever the molecular system is “rapidly mixing” within the cells (metastable
conformations), or whenever the cells are rapidly left (transition region, high energy regions). In this
article, this heuristics is justified and refined on the basis of error estimates in Theorem 2.5.

The setting and the analytical results in a nutshell

In order to show that our main theorems 2.5 (convergence in energy norm) and 2.14 (discrete weighted
Poincaré inequality) are consistent with existing results in low dimensions d ≤ 3 [5, 8] and with uniform
meshes, we provide an interpretation of our result in this particular case at the end of this introduction.

Let Ω ⊂ Rd, d ≥ 2 be a polytopal connected domain. We furthermore assume we are given κ ∈

C1(Rd) with κ > 0 almost everywhere on Ω, except on lower dimensional structures of dimension
less or equal to d − 1. On the set κ > 0 we introduce

V (x) ∶= −2 lnκ(x) such that κ = exp(−1
2V ) . (1.1)

We then study the elliptic equation

−div (κ∇u) = f on Ω (1.2)

equipped with Dirichlet, Neumann or periodic boundary conditions (the later only if Ω is rectangular),
or a combination. The existence of a solution u ∈H2

BC(Ω) to (1.2) is guaranteed for certain conditions
on κ, on the boundary behavior and on the right hand side f which are provided in literature (e.g. the
early work [3], the review [2] and references therein). In this work, we simply assume the existence
of a solution u ∈ H2

BC(Ω) to (1.2) and ask for the rate of convergence of solutions uT ∈ HT ,BC of
(1.3) to u in an appropriate sense. Here,HT ,BC is the discrete function space that reflects the discrete
version of the respective boundary conditions, see below.

On an admissible mesh T in the sense of Definition 2.1 with polytopal control volumes V = {K}K
with facets EK and discrete derivatives ∂K,σ given in (2.1) we consider the discretization

∀K ∈ V ∶ ∑
σ∈EK

mσκσ∂K,σuT =mKfK , where fK ∶=

 
K

f (1.3)

and κσ ∶= S(κK , κL) defined in (2.1) is an average of the neighbored values κL and κK given by
S ∈ C(R2) with

S(x,x) = x , S(x, y) = S(y, x) , min{x, y} ≤ S(x, y) ≤ max{x, y} .
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Consistency of high dimension elliptic finite volume discretizations 3

Let us note we assume κ > 0 a.e. and hence we choose κσ > 0 implying the existence of a unique
solution uT of (1.3) is always guarantied for discrete Dirichlet, Neumann and periodic boundary con-
ditions.

In order to quantify the quality of approximation we introduce the radii

∀K ∈ V ∶ rK ∶=
1

2
sup{r∣Br(xk) ⊂K} , RK ∶= max{R∣K ⊂ BR(xK)} . (1.4)

Definition 1.1 (Quasi uniform meshes). A family of admissible meshes Th = (Vh,Eh,Ph) (in the
sense of Definition 2.1 below) indexed by h > 0, is called quasi uniform if there exists Cuni > 0 such
that

∀h > 0, K ∈ Vh ∶ RK < h ,
RK

rK
≤ Cuni . (1.5)

Given L2(T ) the space of functions V ↦ R, with norm ∥u∥
2
L2(T ) ∶= ∑KmKu2

K , in (2.4)–(2.6) we
introduce a discretization operatorRT ,BC with adjointR∗

T i.e.,

RT ,BC ∶ L2(Ω)→ L2(T ) , R∗
T ∶ L

2(T )→ L2(Ω) ,

satisfying for every u ∈ L2(T ) the relation RTh,BCR
∗
Thu = u. Furthermore, Lemma 2.4 implies for a

family of quasi uniform meshes that

∥R∗
ThRTh,BCu − u∥L2(Ω) ≤ Ch . (1.6)

This justifies to useRTh,BC in the formulation of our convergence results.

Theorem (Simplified version of our main Theorem 2.5 ). Let u ∈H2(Ω) be a solution to (1.2) and let
Th be a family of quasi uniform meshes satisfying (1.5). There exists a family of discrete solution uTh
of (1.3) satisfying

∑
σ∈Eh

mσhσκσ [∂σ (uTh −RTh,BCu)]
2
≤ C(κ, d,Ω,BC,Cuni)h

2 ∥∇u∥
2
H1(Ω) ,

where C(κ, d,Ω,BC,Cuni) does not depend on the discretization Th.

Proof. This follows from RK
rK

≤ Cuni, RK ≤ Cunih and ∣
κ(x)√
κσ
−
√
κσ∣ ≤ RK ∥∇

√
κ∥∞ as well as

∣κσ ∣ ≤ ∥κ∥∞.

Remark. A uniform positive lower bound on κ would turn the above result into the well known standard
result for d ≤ 3 [5].

Finally, we introduce a weighted discrete Poincaré inequality. For this we introduce the concept of
piecewise pseudo-monotone coefficient fields on an underlying tessellation of the original domain Ω.
For such coefficient fields κ we are able to introduce on every admissible mesh T = (V ,E ,P) a
function κ̃T (x) constant on every K ∈ V and an average uκ̃ such that for some constant C > 0
independent from T

∑
K

κ̃T ,KmK (uK − uκ̃)
2
≤ C∑

σ∈E
mσhσκσ (∂σu)

2
.

The last estimate links convergence in the energy norm to the convergence in a weighted discrete
L2-norm. Particularly given O = κ−1(0) and a quasi uniform family of meshes Th the findings below
yield for every ε > 0 the existence of a constant Cε > 0 such that

∑
K

κ̃Th,K ∣K ∩ (Ω/Bε(O)∣ (uTh −RTh,BCu)
2
≤ C(κ, d,Ω,BC,Cuni,Cε)h

2 ∥∇u∥
2
H1(Ω) .
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It is worth mentioning that the main theorem does not make explicit use of the form of the average
S or its differentiability. While earlier [9] work was relying on the special form of derivatives of S, we
emphasize that our proof does not at all use the specific form of S and hence our result always holds.
In view of [9] this on the other hand implies the need of future research concerning the optimal choice
of S.

Overdamped Lagenvin equation and SQRA

To see how the above theory is related to conformation dynamics, recall that the Kolmogorov forward
equation for the overdamped Langevin equation

dXt = −∇V (x)dt + σdBt (1.7)

with potential V is given by the PDE

βUt = ∇ ⋅ (∇U + βU∇V ) , (1.8)

where β = 2σ−2. Together with κ∝ exp (−βV ) and U = ũ
κ this takes the form of (1.2):

κβũt = ∇ ⋅ (κ∇ũ) . (1.9)

In this context, the use of the geometric mean S(a, b) =
√
ab on the densities corresponds to the

usual (arithmetic) average in the potentials and is henceforth a very natural choice for this problem [4]:

S(κ(x), κ(y)) =
√
κ(x)κ(y) = exp(−β

V (x) + V (y)

2
) . (1.10)

This is the canonical choice of κσ in the SQRA method.

Numerical calculations and discussion

In Section 5 we construct numerical examples which will confirm the error estimate from Theorem 2.5.

Since the numerical algorithm approximates the solution u to the PDE (1.2) with prescribed right hand
side f , we start from an a priori known solution u ∈H2(R4) with support in the unit ball which allows
us to compute the corresponding right hand side f exactly by differentiation.

The spatial discretization will be achieved by a Voronoi tessellation based on 4 different families of
sampling points. Furthermore, in order to simplify the calculation of the right hand side in (1.3) we
assume κ ≡ 1. Since we developed the method and the theory based on the assumption that u ≡ 0
in those regions where κ is not degenerate and where ∣∇κ∣ is small, the right hand side in the error
estimate in Theorem 2.5 is dominated by the derivatives of u, anyway.

Within the above simplified setting, the simulations show the predicted behavior. We show this by
comparing the difference between the discrete and the continuous solution in the energy norm and
the hypothetical upper bound given by the error I2,T , see Fig. 2.

Furthermore, under the assumption that the cells are of approximate similar size as above, Fig. 3
shows that the error goes with N− 1

d , where N ∝ h−d is the number of cells for a given average
cell diameter h. Furthermore, Fig. 3 clearly shows that an adaptive sampling based on the expected
distribution of ∣∇u∣ or ∣∇2u∣ (where u is the exact solution) is superior to a normal or uniform sampling.
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Consistency of high dimension elliptic finite volume discretizations 5

2 Main analytical results

2.1 Preliminaries and notation

We recall the definition of an admissible mesh [5, 6] in order to fix notation.

Definition 2.1. An admissible mesh of Ω in the sense of [5, 6] is a triangulation T = (V ,E ,P)
consisting of

1 a family of control volumes V which are mutually disjoint, convex polytopal open sets with
⋃K∈VK = Ω. Every K has mass mK .

2 E = Eint ∪ E∂ is a finite family of disjoint subsets of Ω such that every σ ∈ E is subset of
a hyperplane and for every K ∈ V there exists EK ⊂ E with ∂K = ⋃σ∈EK σ. The d − 1
dimensional measure of σ is mσ. Furthermore, E∂ = {σi ∶ i = 1, . . . ,N∂} and σ ∈ E satisfies
σ ∈ E∂ iff σ ⊂ ∂Ω. For every K and σ ∈ EK we write νK,σ for the outer orthonormal vector
of K on σ. Furthermore, for every σ ∈ Eint the set Vσ ∶= {K ∈ V ∶ σ ∈ EK} has exactly two
elements and for σ ∈ E∂ the set Vσ has exactly one element.

3 P = Pint ∪ P∂ is a family of points with Pint = {xK ∶ K ∈ V}, P∂ = {xσ ∶ σ ∈ E∂} such that
xK ∈K , xσ ∈ σ are unique for each K ∈ V , σ ∈ Eσ. We assume for σ ∈ Eint and Vσ = {K,L}
that (xK − xL)�σ and for σ ∈ E∂ , K ∈ Vσ (xK − xσ)�σ.

Notation 2.2. Let u ∶ P → R. For K ∈ V and σ ∈ E∂ we write uK ∶= u(xK) and uσ ∶= u(xσ). For
κ ∈ C1(Rd) we denote κT ∶ P → R the pointwise evaluation of κ in P with κK ∶= κ(xK).

1 If σ ∈ Eint there exist K,L ∈ V such that {σ} = EK ∩ EL and hσ ∶= ∣(xK − xL) ⋅ νK,σ ∣.
Furthermore, we write

∂K,σu ∶=
1

hσ
(uL − uK) , κσ ∶= S(κK , κL) , ∂σu ∶= νK,σ∂K,σu , (2.1)

where κσ and ∂σu are invariant under permutation of K and L.

2 If σ ∈ E∂ there exists a unique K ∈ V such that σ ∈ EK and hσ ∶= ∣(xK − xσ) ⋅ νK,σ ∣. Further-
more, we write ∂K,σu ∶=

1
hσ

(uσ − uK), κσ ∶= S(κK , κ(xσ)) and ∂σu ∶= νK,σ∂K,σu.

Assumption 2.3. The mesh T = (V ,E ,P) is such that for and every K ∈ V it holds κK > 0.

In what follows, we writeH2
0(Ω) ∶=H2(Ω)∩H1

0(Ω) as well asH2
per(Ω) for periodicH2(Ω) functions

with mean value 0 and

H2
(0)(Ω) ∶= {u ∈H2(Ω) ∣

ˆ
Ω

u = 0, ∂νu = 0 on ∂Ω} .

These spaces clearly correspond to homogeneous Dirichlet boundary conditions (BC), periodic bound-
ary conditions and homogeneous Neumann boundary conditions. We introduce corresponding dis-
crete spaces incorporating discrete boundary conditions (DBC) as follows:

∎ Dirichlet: HT ,0 ∶= {u ∶ P → R ∣ ∀σ ∈ E∂ uσ = 0}

∎ Neumann: HT ,(0) ∶= {u ∶ P → R ∣ ∀K ∈ V , σ ∈ E∂ ∩ EK ∶ ∂K,σu = 0 , ∑KmkuK = 0}
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∎ Periodic: Ω = ⊗
d
i=1[0, ωi) is the domain and (ei)i=1,...,d the canonical basis. P∂ = ∅ and

P = Pint is extended adding P̃ ∶= ⋃z∈Zd (diag(ωi)i=1,...,dz +P) and

HT ,per ∶= {u ∶ P̃ → R ∣ ∑
K

mkuK = 0 and ∀K ∶ uK = uK+ωiei} .

In the following, we always match discrete with the corresponding continous BC. When there is no
need to distinguish between the cases, we simply write H2

BC(Ω) and HT ,BC and use the index BC
accordingly throughout this work. We study the discrete equation (1.3) i.e.,

∀K ∈ V ∶ ∑
σ∈EK

mσκσ∂K,σuT =mKfK ,

in either one of the spacesHT ,0,HT ,(0) orHT ,per and with the additional condition
´

Ω
κu = 0 in case

of Neumann or periodic boundary conditions (BC) i.e.∑KmKuT ,K = 0.

2.2 Convergence in the energy norm

Defining L2(T ) ∶= {v∣Pint → R} and

∥v∥
2
L2(T ) ∶= ∑

K∈V
mKv

2
K , ∥v∥

2
HT ,κ ∶=∑

σ∈E
mσhσκσ ∣∂σv∣

2
, (2.2)

we observe that ∥ ⋅ ∥2
L2(T ) evidently is a norm. Using κσ > 0 for all σ ∈ E and a classical discrete

Poincaré inequality [5] which we recall after Theorem 2.5 below, ∥ ⋅ ∥2
HT ,κ is indeed a norm on HT ,BC

and we refer to HT ,BC equipped with the norm ∥ ⋅ ∥
2
HT ,κ as HT ,κ,BC. Then solving (1.3) is equivalent

with minimizing the functional

uT ↦
1

2
∥uT ∥

2
HT ,κ −∑

K

mKfKuT ,K . (2.3)

In order to match discrete with continuous functions, we introduce the pair of operators

R̃T ∶ L2(Ω)→ L2(T ) , ∀i ∶ (R̃T u)K ∶=

 
BrK (xK)

u ,

R∗
T ∶ L

2(T )→ L2(Ω) , (R∗
T u) (x) ∶= uK if x ∈K

(2.4)

with R̃TR∗
T u = u. On the other hand, we find the following.

Lemma 2.4. There exists a constantC > 0 depending only on d such that for every bounded polygonal
domain Ω, every admissible grid T = (T ,E ,P) on Ω, every positive function α ∶ V → R and every
u ∈H1(Ω) it holds

∥
√
R∗
T αT (R∗

T R̃T u − u)∥
L2(Ω)

< (∑
K

αT ,KR2
K (

rK
RK

)
1−d

(1 +
rK
RK

) ∥∇u∥
2
L2(K))

1
2

.

Proof. This follows from application of Lemma A.1 to R∗
T R̃T u − u on every cell K ∈ V , where we´

BrK (xk)R
∗
T R̃T u − u = 0 and thus we obtain for some C > 0 depending only on d that

ˆ
K

∣R∗
T R̃T u − u∣

2
≤ CR2

K (
rK
RK

)
1−d

(1 +
rK
RK

) ∥∇u∥
2
L2(K) .
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Consistency of high dimension elliptic finite volume discretizations 7

We extend R̃T to account for discrete Dirichlet BC by (RT ,0u)K ∶= (R̃T u)K and

∀σ ∈ E∂ ∶ (RT ,0u)σ ∶= 0 , (2.5)

and for Neumann BC byRT ,(0)u ∶= R̃T u − (∑KmK (R̃Thu)K) and

∀σ ∈ E∂ ∶ (RT ,(0)u)σ ∶= (RT u)K , K ∈ Vσ . (2.6)

For periodic BC, we setRT ,peru ∶= R̃T u−(∑KmK (R̃Thu)K) and find the general relationRT ,BC ∶

H2
BC(Ω)→HT ,BC.

Theorem 2.5. Given a polygonal bounded domain Q ⊂ Rd and u ∈ H2(Q) a solution to (1.2) with
f ∈ L2(Q) satisfying the boundary conditions BC then for every admissible mesh T it holds: there
exists a unique solution uT to (1.3) for fT given by (1.3) satisfying the discrete boundary conditions
BC. Furthermore

∥uT −RT ,BCu∥HT ,κ ≤ (I1,T (u) + I2,T (u)) , (2.7)

I1,T (u) = (∑
σ∈E

hσmσκ
−1
σ (

 
σ

∣κ − κσ ∣ ∣∇u∣)
2

)

1
2

,

I2,T (u) = (∑
σ∈E

mσκσhσ (

 
σ

∇u ⋅ νσ,K − ∂σ,KRT u)
2

)

1
2

.

Furthermore, there exists a constant C > 0 depending only on d such that for every u ∈ H2(Q) ∩

H1
0(Q) the following holds:

∣I1,T (u)∣
2
≤ C (∑

K

R3
K

r3
K

R2
K ∥

√
κ∇u∥

2

H1(K) ∥∇κ∥
2
L∞(Kσ) ∑

σ∈EK

 
σ

1

κκσ
) , (2.8)

∣I1,T (u)∣
2
≤ C (∑

K

R3
K

r3
K

R2
K ∥∇u∥

2
H1(K) ∥∇κ∥

2
L∞(Kσ) ∑

σ∈EK

1

κσ
) , (2.9)

∣I2,T (u)∣
2
≤ C (∑

K

R2
K (

RK

rk
)

d+1

∥∇2u∥
2

L2(K) ∑
σ∈EK

κσ) . (2.10)

Remark 2.6. Theorem 2.5 shows that the error (2.7) can be split into two parts. The first part I1,T (u)
accounts for errors due to non-uniformity of κ. That said, if κ = 1 we find I1,T (u) = 0. It is less
sensitive to the excentricity than the second error term I2,T (u). To see this we have a look at (2.9),

which combined with κ(x)√
κσ

−
√
κσ ≈ ∇

√
κRK shows that for bounded

R2
K

r2K
we have ∣I1,T (u)∣

2
≤

C∑K R
2
K

R2
K

r2K
∥∇u∥

2
H1(K). Provided ∥∇u∥

2
H1(K) and ∥∇2u∥

2
L2(K) are of comparable size, the geo-

metric artefacts such as excentricity dominate the error estimate via I2,T (u) as can be seen from the
estimate (2.10).

The proof of Theorem 2.5 is given in Section 3. It partially relies on the well known uniform Poincaré
inequality (Section 10.2 of [5]) polytopal meshes of the following form: there exists a constant C
depending only on Ω such that

∀v ∈ L2(T ) ∶ ∥v∥
2
L2(T ) ≤ C∑

σ∈E
mσhσ ∣∂σv∣

2
+ 2 ∣Ω∣

−1
∣v∣

2
, v =∑

K

mkvK , (2.11)

together with a corresponding improved Poincaré inequality on HT ,0:

∀v ∈HT ,0 ∶ ∥v∥
2
L2(T ) ≤ C∑

σ∈E
mσhσ ∣∂σv∣

2
.

DOI 10.20347/WIAS.PREPRINT.2913 Berlin 2022
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The Poincaré inequality is typically used to obtain discrete L2-convergence of the solutions from the
convergence in the energy norm. However, in case κ is degenerate, the above Poincaré inequality is
no longer applicable.

We close this section by the following observation which is a direct consequence of Theorem 2.5 and
Hölder’s inequality.

Corollary 2.7. In the setting of of Theorem 2.5 let additionally u ∈W 2,p(Q), p > 2. Then

∥uT −RT ,BCu∥HT ,κ ≤ C(κ)
⎛

⎝
∑
K

mK (R2
K (

RK

rk
)

d+1

)

p
p−2⎞

⎠

p−2
2p

∥∇u∥W 1,p(Ω) .

2.3 Weighted Poincaré inequality and convergence in L2

Given x, y ∈ Rd we denote by [x, y] the closed straight line segment connecting x and y.

Definition 2.8. Let Ω be simply connected, let ω ⊂ Ω be open convex and let κ ∶ Ω→ R be a simple
piecewise constant function. Given κ0 ≥ κ1 > 0 and denoting ω(κ,κ0) ∶= {x ∈ ω∣κ(x) ≥ κ0} we say
that κ is pseudo monotone on ω w.r.t κ0, κ1 and an open ball B ⊂ ω(κ,κ0) if for every x ∈ ω/ω(κ,κ0)

and every y ∈ B there exists z ∈ ∂ω(κ,κ0) such that t↦ κ(x+ t(z −x)) is monotone increasing on
[0,1] and if κ restricted to the closed convex hull of ω(κ,κ0) is bigger or equal to κ1.

The concept of pseudo monotonicity can be defined also for piecewise continuous functions. However,
pseudo monotonicity of κ does not imply pseudo monotonicity of R∗

T κT on a given admissible mesh
T . This is a severe problem for the formulation and the proof of discrete weighted Poincaré inequalities.
We circumvent this problem by the following construction.

Assumption 2.9 (Pseudo-monotone κ). Ω is simply connected, and there exists a partition of Ω into
open convex subsets (ωi)i=1,...,N such that Ω = ⋃i ωi and ⋃ωi is connected (but not necessarily
⋃i ωi = Ω). Assume for some constants κ0 ≥ κ1 > 0 that for every i, j ∈ {1, . . . ,N} with ωi ∩ωj ≠ ∅
there exists a ball Bij ⊂ ωi(κ,κ0) ∩ ωj(κ,κ0) such that κ∣Bij ≥ κ0 and κ is pseudo monotone on ωi
and ωj w.r.t κ0 and κ1 and Bij .

Definition 2.10. A function κ ∈ C(Ω) such that Assumption 2.9 can be satisfied for some pair κ0, κ1

is called piecewise pseudo monotone.

The family of functions κ and sets Ω such that Assumption 2.9 can be satisfied is large.

Example 2.11. Consider the following situations

1 Let f ∈ C(R), f(0) = 0 and f strictly monotone increasing. Let κ(x) = f(∣x∣), Ω = [0,1]d,
κ0 = f(1

2), κ1 ∶= inf
x∈conv

⎛
⎝Ω/B1

2

(0)⎞⎠
f(∣x∣). Then κ is pseudo monotone w.r.t κ0, κ1 and

B = B0.1(0.9I), I = (1, . . . ,1).

2 Let f ∈ C(R), f(0) = 0 and f strictly monotone increasing. In this setting let κ(x) = f(∣x∣) is
piecewise pseudo monotone on Ω = [−1,1]d.

3 Let f ∈ C(R), f(0) = 0 and f strictly monotone increasing, let Ω be a bounded convex
polygonal domain and let κ(x) = f(dist(x, ∂Ω)). Then κ is pseudo monotone for some
κ0, κ1 > 0 and some ball B ⊂ Ω with the center in the x0 such that κ(x0) is maximal.
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4 Let f1, f2 ∈ C(R), f1(0) = f2(0) = 0 and f1, f2 strictly monotone increasing. In this setting let
κ(x) = f1(∣x∣) f2(dist(x, ∂Ω)). Then κ is pseudo monotone for some κ0, κ1 > 0 and some
ball B ⊂ Ω.

Proof. Point 1. is straight forward to prove. In the second statement we rely on 1. splitting Ω into 2d
pairwise disjoint domains being rotated versions of ω1 = (0,1)d and connecting them by bars as in
the following example: given ω1 and ω2 = ω1 − (2,0, . . . ,0) with the balls B1 = B0.1(0.9I) as well as
B2 = B0.1(0.9I − (2,0, . . . ,0)) and ω3 ∶= conv (B1 ∪B2). Then B1,3 = B1 and B1,2 = B2. Proceed
accordingly for the rest of the domain. Point 3. is straight forward and 4. is a combination of 2. and
3.

In the formulation of the following property, we rely on the set ET ,x,y defined by two points x, y ∈ Ω
and a mesh T = (P,V ,E):

ET ,x,y ∶= {σ ∈ E ∣ [x, y] ∩ σ ≠ ∅} .

Definition 2.12. Let Assumption 2.9 hold and let T be an admissible mesh on Ω. We define κT (x) ∶=
(R∗
T κT ) (x) and the following function for x ∈ ωi and corresponding Bij ⊂ ωi:

aκ,T (x) ∶= min{(R∗
T κT ) (x) , inf

y∈Bij
inf

σ∈ET ,x,y
κσ} ,

κ̃T (x) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

(R∗
T κT ) (x) if (R∗

T κT ) (x) ≥ κ0 and aκ,T (x) ≥ κ1

aκ,T (x) else
.

Corollary 2.13. Let O ∶= κ−1(0). For every ε > 0 there exists C > 0 such that the following holds:
For every admissible mesh T and K ∈ V :

∥R∗
T κT − κ∥C(K∩Ω/Bε(O)) + ∥R∗

T κ̃T − κ∥C(K∩Ω/Bε(O)) ≤ CRK ∥κ∥C(K) .

Proof. This follows from κ = exp(−1
2V ) and ∇κ = −1

2κ∇V .

Next, we introduce the notation κ̃T ,K ∶=m−1
K

´
K
κ̃T . Based on this we write for u ∈ L2(T ):

κV ∶=
ˆ

Ω

κ̃T (x) , uκ̃ ∶=
1

κV

ˆ
Ω

κ̃TR∗
T u .

Theorem 2.14. Under the above assumptions on Ω and κ let Assumption 2.9 hold for Ω̃ ⊂ Ω, for
κ0 > 0, (ωi)i and an admissible mesh T . Then there exists a constant C depending only on d, Ω̃,
C(T , κ0), κ0 and ∥κ∥∞ such that

∑
K

κ̃T ,KmK (uK − uκ̃)
2
≤ C ∥u∥

2
HT ,κ . (2.12)

The proof of Theorem 2.14 is given in Section 4.

Remark 2.15. To understand the formulation of Theorem 2.14 in terms of Ω̃ ⊂ Ω considerO ∶= κ−1(0)
as in Corollary 2.13. Then we observe for the discrete solution uT − RT ,BCu and the continuous
solution u thatˆ

Ω/O
κ̃T (R∗

T uT − u)
2
≤ 2∑

K

∣K ∩ (Ω/O)∣ κ̃T ,K (uT −RT ,BCu)
2
+ 2

ˆ
Ω/O

κ̃T (RT ,BCu − u)
2
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and on behalf of Lemma 2.4 and Corollary 2.13

ˆ
Ω/O

κ̃T (RT ,BCu − u)
2
≤∑

K

(2 +CRK)R2
K (

rK
RK

)
1−d

∥
√
κ∇u∥

2

L2(K) .

Hence, Theorem 2.14 combined with Theorem 2.5 yields

ˆ
Ω/O

κ̃T (R∗
T uT − u)

2
≤∑

K

(2 +CRK +C)R2
K (

rK
RK

)
1−d

∥
√
κ∇u∥

2

H1(K)

+∑
K

R2
K (

RK

rk
)

d+1

∥∇2u∥
2

L2(K) ∑
σ∈EK

κσ . (2.13)

3 Proof of Theorem 2.5

Lemma 3.1. Let K ⊂ Rd be a bounded, convex and polytopal domain with 0 < r < R < +∞ such
that Br(0) ⊂K ⊂ BR(0). Then there exists C depending only on the dimension d such that

∀u ∈H1(K) ∶ ∥u∥
2
L2(∂K) ≤ C

R2

r3
∥u∥

2
H1(K) .

Proof. The surface ∂K is piecewise Lipschitz with a Lipschitz constant bounded by R/r. Further-
more, ∂K can be covered by balls of radius r

2 with the total number of balls covering any x ∈ ∂K
bounded by d!. The norm of the local trace operator in any of these small balls B is proportional to
the Lipschitz constant R/r. The pre-factor r−1 comes from the partition of unity which is necessary to
glue together the local trace operators. Alternatively, one may first consider r = 1 and apply a scaling
argument.

Proof of Theorem 2.5. Since κσ > 0 for every σ ∈ E by construction, the discrete Poincaré inequality
(2.11) yields that the left hand side of (1.3) is invertible and there exists a unique solution uT ∈HT ,BC

of (1.3). Testing with uT and using (2.11) yields the discrete apriori estimate

∥uT ∥HT ,κ ≤ C ∥f∥L2(T ) , (3.1)

where C > 0 depends on T .

Equivalently the unique existence of uT follows from considering the equivalent variational minimiza-
tion problem (2.3).

Proof of (2.7): For arbitrary v ∈HT we observe with help of (1.2) and (1.3)

∑
σ∈E

κσmσhσ∂σv ∂σ (uT −RT ,BCu) =∑
K

vK

ˆ
K

f −∑
σ∈E

κσmσhσ∂σv ∂σRT ,BCu

=∑
K

vK

ˆ
∂K

κ∇u ⋅ νσK −∑
σ∈E

κσmσhσ∂σv ∂σRT ,BCu .

From here (2.7) follows with κ∇u = κσ∇u + (κ − κσ)∇u.

Proof of (2.8) and (2.9):We only prove (2.8) as (2.9) can be proved in a similar way. Since κ is
continuous, for every σ ∈ E there exists Kσ ∈ Vσ and xσ ∈ Kσ such that κ(xσ) = κσ. But then we
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can apply Hölders Theorem and Lemma 3.1 to find

∣I1,T (u)∣
2
≤∑

σ

hσ

 
σ

(κ − κσ)2

κκσ

ˆ
σ

κ∣∇u∣2

≤∑
σ

hσ ∥∇κ∥
2
L∞(Kσ)

 
σ

R2
Kσ

κκσ

R2
Kσ

r3
Kσ

∥κ∣∇u∣∥
2
H1(Kσ)

and from here we conclude with hσ ≤ 2RKσ .

Proof of (2.10):

We first consider some σ ∈ Eint. To simplify calculations, let σ ⊂ {0} × Rd−1 and let x− < 0 < x+
with r+, r− > 0, ∣x±∣ ≥ 2r±. The values r± correspond to the radii rK and rL for the neighboring cells
K and L of σ. Denoting Q± ∶= Br±(x±e1) and exploiting Taylor’s formula we have for every y ∈ σ,
z ∈ Br±(0)

u(x±e1 + z) = u(y) +∇u(y) ⋅ (x±e1 + z − y) + I(x±e1 + z − y, y) , (3.2)

I(x, y) =

ˆ 1

0

x⊺D2u(y + tx)x (1 − t)dt ,

where D2u is the Hessian of u and using

 
Q±

∇u(y) ⋅ (z − y) dz =

 
Br±(0)

∇u(y) ⋅ (x±e1 + z − y) dz = ∇u(y) ⋅ (x±e1 − y)

we have

 
Q+
u −

 
Q−
u =

 
σ

[∇u(y) ⋅ (x+ − x−)e1 +∑
±

(±1)

 
Br±(0)

I((x± + z)x±e1 + z − y, y)dz] dy

and from there

∣∣x+ − x−∣
ˆ
σ

∂1u −mσ (

 
Q+
u −

 
Q−
u)∣ ≤

ˆ
σ
∑
±

 
Br±(0)

∣I(x±e1 + z − y, y)∣ dz dy . (3.3)

The last one implies particularly for σ ∈ Eint

∣I2,T (u)∣
2
≤∑
σ∈E

mσh
−1
σ ∣

 
σ
∑
±

 
Br±(0)

∣I(x±e1 + z − y, y)∣ dz dy∣

2

.

Furthermore, we will need the following general observation: if f ∈ L1(Rd) is a positive function and
A1,A2 are measurable sets, it holds

ˆ
A1

ˆ
A2

f(x + y)dxdy =

ˆ
Rd
f(y)

ˆ
Rd
χA1(x)χA2(y − x)dxdy

≤

ˆ
Rd
χconv(A1+A2)(x) ∣A2∣ f(x)dx (3.4)

We introduce the “cone”C± ∶= {(1 − t)y + tx±e1 + tz ∶ t ∈ [0,1], y ∈ σ, z ∈ Br±(0)} and the “slices”
C±,z1 ∶= {(z1, y) ∈ C± ∶ y ∈ Rd−1}. For readability, we furtheron drop the ±, write f = ∣D2u∣

2 and find
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with the transformation (z1, z̃) = tz, z1 ∈ R, z̃ ∈ Rd−1 and ỹ = (1 − t)y and by Jensen’s inequality
that

mσ (

 
σ

dy

 
Br(0)

dz ∣I(xe1 + z − y, y)∣)

2

≤ (

ˆ
σ

dy

 
Br(0)

dz

ˆ 1

0

∣xe1 + z − y∣
4
∣D2u∣

2
(y + t (xe1 + z − y)) (1 − t)

2 dt)

2

≤
1

∣Sd−1∣ rd

ˆ 1

0

dt

ˆ
(1−t)σ

dỹ

ˆ tr

−tr
dz1

ˆ
Bd−1√

(tr)2−z2
1

(0)
dz̃ f(ỹ + txe1 + z̃ + z1e1)

1

td(t − 1)d−3
R4 ,

where R ≥ sup{(xe1 + z − y) ∶ y ∈ σ, z ∈ Br(0)}. Exploiting (3.4) in z̃ and ỹ we find for the case
x = x+ and r(t, z1) ∶=

√
(tr)2 − z2

1 that

ˆ
(1−t)σ

dỹ

ˆ
Bd−1√

(tr)2−z2
1

(0)
dz̃ f(ỹ + txe1 + z̃ + z1e1)

≤

ˆ
Rd−1

f(ỹ + txe1 + z1e1)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

´
Rd−1 χBd−1

r(t,z1)+(1−t)σ
(ỹ − z̃)χ(1−t)σ(z̃)dz̃ dỹ´

Rd−1 χBd−1
r(t,z1)+(1−t)σ

(ỹ − z̃)χBd−1
r(t,z1)

(z̃)dz̃ dỹ

≤

ˆ
C+,z1

f(ỹ + txe1 + z1e1)

⎧⎪⎪
⎨
⎪⎪⎩

(1 − t)d−1 ∣σ∣ t ≥ 1
2

(tr)
d−1

∣Sd−2∣ t < 1
2

.

Writing F (tx + z1) =
´
Ctx+z1

f(y + txe1 + z1e1) we find

ˆ 1

0

dt
1

t

ˆ tr

−tr
F (tx + z1) =

ˆ 1

0

dt t−1

ˆ
R

dz χ[−tr,tr](z − tx)F (z)

=

ˆ
R

dz F (z)

ˆ z
x−r

z
x+r

dt t−1 ≤
2r

x − r

ˆ
R

dz F (z) .

Due to the definition of rK andRK we have x ≥ 2r andR < RK . Furthermore, because BRK(xK) ⊃

K it holds ∣σ∣ ≤ CRd−1
K where C depends only on the dimension and also hσ > rK . From the above

we then conclude the proof in case of Neumann and periodic boundary conditions.

In case σ ∈ E∂ with K ∈ Vσ we consider some artificial xL ∶= xK + 2(xσ − xK) and proceed like
above with uL ∶= 0.

Combining the above steps leads to (2.10).

4 Proof of Theorem 2.14

We follow Section 10.2 of [5].

In this proof, it is beneficial to identify every function u ∈ L2(T ) with R∗
T u as an element of L2(Ω).

In this way we use the notation u(x) ∶= (R∗
T u) (x). We then observe that

κV =
 

Ω

κ̃T (x) , uκ,V =
1

κV

ˆ
Ω

κ̃TR∗
T u ,
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and becauseR∗
T u is piecewise constant, inequality (2.12) can be recast into the form

ˆ
Ω

κ̃T (R∗
T u − u

κ,V)
2
≤ C ∥u∥

2
HT ,κ .

Step 1: In this first step, let ω = ωi for some i ∈ {1, . . . ,N} and B = Bij ⊂ ω for some j. Writing for
any open subset A ⊂ Ω

uκ̃T ,A ∶=
1

κ̃
A

T

ˆ
A

κ̃T u , κ̃
A

T ∶=
ˆ
A

κ̃T

we show that ˆ
ω

κ̃T (u − uκ̃T ,B)
2
≤

∥κ∥
2
∞

κ0κ1

(diamω)
2
∥u∥

2
HT ,κ (4.1)

holds independently from B. It holds by Jensens inequality

ˆ
ω

κ̃T (u − uκ̃T ,B)
2
≤

ˆ
ω

κ̃T (u −
1´

B κ̃T

ˆ
B
κ̃T u)

2

≤
1

κ̃
B
T

ˆ
ω

ˆ
B
κ̃T (x)κ̃T (y) (u(x) − u(y))

2
.

For σ ∈ Eint let χσ ∶ Rd ×Rd → {0,1} be defined as

χσ(x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if x, y ∈ Ω, [x, y] ∩ σ ≠ ∅

0 else
.

As explained in the proof of Lemma 10.2 in [5] it holds for every x ∈ ω, y ∈ B

(u(x) − u(y))
2
≤ diam(ω) ∑

σ∈Eint

∣∂σu∣
2

hσcσ,x−y
χσ(x, y) ,

where cσ,x−y ∶= ∣
y−x
∣x−y∣ ⋅ νσ∣. By the definition of κ̃T it holds for x ∈ ω, y ∈ B either κ̃T (x) ≤

infσ∈ET ,x,y κσ or κ̃T (x) ≤ ∥κ∥∞ and κσ ≥ κ1 for every σ ∈ ET ,x,y. In both cases it holds κ̃T (x) ≤
∥κ∥∞
κ1

and κ̃T (y) ≤ ∥κ∥∞. Hence wWe may multiply the last inequality with κ(x)κ(y) and integrate over x
and y to find

ˆ
ω

κ̃T (u − uκ,B)
2
≤

∥κ∥
2
∞

κ0κ1

diam(ω)

ˆ
ω

ˆ
B
∑

σ∈Eint
κσ

∣∂σu∣
2

hσcσ,x−y
χσ(x, y)dxdy .

Now we observe with the transformation z = x − y that
ˆ
ω

χσ(x, z + x)dx ≤mσ ∣z ⋅ νσ ∣ ≤mσdiam(ω) cσ,z

and hence ˆ
ω

ˆ
ω

χσ(x, y)

cσ,x−y
dy dx ≤mσdiam(ω) ∣B∣ .

This yields (4.1).

Step 2: We define for every ωi the value mi(u) ∶= u
κ̃T ,ωi and for i ≠ j with the corresponding ball

Bij ⊂ ωi ∩ ωj
mT ,ij(u) ∶= uκ̃T ,Bij .
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Estimate (4.1) implies the existence of Cij,i > 0 depending only on κ0, κ1, ∥κ∥∞, Ω, the dimension d
and Bij such that

∣mT ,ij(u) −mT ,i(u)∣ ≤ Cij,i ∥u∥HT ,κ . (4.2)

From here, we conclude for ωi ∩ ωj ≠ ∅ the existence of Ci,j > 0 such that

∣mT ,i(u) −mT ,j(u)∣ ≤ Ci,j ∥u∥HT ,κ . (4.3)

Because ⋃i ωi is connected this implies by (4.2)–(4.3) and the iterated application of the triangle
inequality the existence of C > 0 such that

sup
i∈{1,...,N}

∣mT ,i(u) −mT ,1(u)∣ + sup
i,j∈{1,...,N}
ωj∩ωi≠∅

∣mT ,ij(u) −mT ,1(u)∣ ≤ C ∥u∥
2
HT ,κ . (4.4)

Step 3: Now assume the theorem was wrong, then for every n ∈ N there exists an admissible mesh
Tn = (Pn,Vn,En) and un ∈HTn,κ such that

1 = ∑
K∈Vn

mK κ̃Tn,K (un − u
κ̃Tn
n )

2
≥ n ∥un∥

2
HTn,κ

. (4.5)

Without loss of generality, we may assume that uκ,B1,2 = 1. Inequality (4.1) implies that
ˆ
ω1

κ̃Tn (un − 1)
2
→ 0 ,

which implies for every x ∈ ω1 either un → 1 or otherwise κ̃Tn(x) → 0. Furthermore, since κ is
essentially bounded we obtain from Hölders inequality

∣

ˆ
ω1

unκ̃Tn −
ˆ
ω1

κ̃Tn∣→ 0 ,

which implies mTn,1 → 1. A combination of (4.4) and (4.5) yields mTn,ij(un) → 1 for every valid pair
i, j. But then (4.1) implies for every i that

´
ωi
κ̃Tn (un − 1)

2
→ 0 and hence

∑
K∈V

mK κ̃Tn,K (un − 1)
2
→ 0 .

By Hölders inequality this implies u
κ̃Tn
n → 1, resulting in a contradiction to (4.5).

5 Numerical experiments

As discussed in the introduction, we start by defining the exact solution u ∶ R4 → R a priori to be

u(x) =

⎧⎪⎪
⎨
⎪⎪⎩

p(∥x∥) ⋅ x1 if ∥x∥ < 1

0 else
(5.1)

with

p(x) = 2(x +
1

2
) (1 − x)

2 (5.2)

being the polynomial of degree 3 with p(0) = 1, p(1) = 0 and p′(0) = p′(1) = 0. Hence u is anti-
symmetric in the first and symmetric in all other components and indeed u ∈ H2(R4) with support
Ω = {∥x∥ ≤ 1}.
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Choosing κ(x) ≡ 1 simplifies the study of equation (2.7) by computation of I2,T alone since I1,T = 0
vanishes for constant κ. Computing the right hand side f from (1.2) with the discretization fK from
(1.3) we know that u by construction is the exact solution to the arising PDE problem.

Given a tesselation T we compute the nonconstant term in the right hand side of the error bound 2.10:

B(u,T ) ∶=

¿
Á
ÁÀ(∑

K

R2
K (

RK

rk
)

d+1

∥∇2u∥
2
L2(K) ∑

σ∈EK
κσ) (5.3)

by means of Monte Carlo integration of the Hessian, computed by automatic differentiation, with 10
samples per ray and 100 rays per cell. According to Theorem 2.5, for κ ≡ 1, there should be a constant
C such that

H(u,T ) ∶= ∥uT −RT ,BCu∥HT ,κ < ∣I2,T (u)∣ ≤ C ⋅B(u,T ) . (5.4)

The last inequality together with the structure of B(u,T ) leads us to three conjectures:

1 For our given exact solution u, the left hand sideH(u,T ) and the right hand sideB(u,T ) are
functions depending solely on T and in double logarithmic diagram, the pairs
(B(u,T ),H(u,T )) should all lie above a straight line of slope 1.

2 Figure 1 indicates that the meshes generated in our approach are quasi uniform. In view of (1.6)
we expect that there exists a linear relation between the average cell diameter of order h, which
is proportional to N

1
d , and the approximation error.

3 Discretization schemes that make use of the apriori knowledge of u and adjust the size of
cells in an inverse correlation to ∣∇u∣ or ∣∇2u∣ should converge better than those discretization
schemes that are ignorant to this information.

5.1 Implementation

We generate the required admissible mesh by a Voronoi tesselation T of N random points xi, i =
1, ...,N , resulting in N cells with the xi at their respective centers. Such a tessellation in admissible
in the sense of Definition 2.1. Unlike regular grids, exhibiting the curse of dimensionality, the choice
of Voronoi tesselations is advantageous in the high dimensional setting such as in Molecular Design
where one can obtain a tesselation adapted in resolution to a target density by sampling.

However, the computation of the geometric properties of the tesselation, i.e. the cell volumes mK and
their boundary areas mσ can be challenging. For their computation we developed the Julia package
VoronoiGraph.jl [13], an open-source implementation of the raycasting Voronoi-tesselation algorithm
[11] with corresponding methods to compute the volume, areas as well as monte carlo integrators over
the cells, which we require for the evaluation of the error bound I1,T .

In order to be more close to the classical notation in numerical linear algebra, we use i, j as indices
instead of K in the following. Once the cell volumes and their boundary areas are computed, the
discretized equation (1.3) can be written as the linear system

fT = QuT where Qij =
Aij
Vihij

S(κi, κj) (5.5)

with areas, volumes and distances denoted byAij =mσ(i,j), Vi =mi and hij = ∥xi−xj∥, for all i ≠ j
such that xi ∈ Ω and Qii = −∑j≠iQij on the diagonal.
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We conduct the computation for different distributions of cell centers xi. As a baseline we sample
xi uniformly from the ball with radius 1.5 which properly contains the domain Ω, as well as from
a multivariate normal with standard deviation 1

2 . Since the normal distribution gravitates toward the
center, we expect better results from the increased resolution inside Ω. To showcase the benefits of
adaptive sampling we also sample xi from rejection sampling using densities proportional to ∥∇u∥
and ∥∇2u∥ by means of rejection sampling. Figure 1 depicts the different methods with 300 samples
on an only two dimensional domain for illustrative purposes.

Figure 1: Illustration of the different sampling schemes for 300 points in 2D, corresponding to 90.000 points in 4D: uniform
distribution (uniform), normal distribution (normal) and rejection sampling using ∣∇u∣ (grad) and ∣∇2u∣ (hess) as underlying
density. It can be seen that for our maximal density of points, the distribution of points is still sparse. Hence, there is not a
major difference between uniform, normal and adaptively sampled point clouds.

In order to enforce the boundary conditions we constrain the values of cells at the boundary to zero.
However since the boundaries of the Voronoi meshes dont coincide with the original problem bound-
ary (which is not even polygonal), we have to approximate the boundary by defining which cells we
consider as part of the boundary. Cells which are part of the boundary or lie outside are not counted
in the diagrams of Figures 2 and 3. The remaining points (those which are counted with i = 1, . . . ,N )
are called interior points.

In the case of the uniform and normal samples we have sampling points outside of the unit ball Ω,
henceforth we set all those cells to the boundary value zero whose center lie outside the unit ball.

In the case of the adaptive samplings, with their densities supported completely inside Ω, we fix all
those cells to the boundary value which are not completely supported inside Ω, i.e. who have a vertex
lying outside of the unit ball. Since u can be extended by 0 to R4 still having H2-regularity and f
correspondingly expands by 0, this will not contribute an additional error, provided both H(u,T ) and
B(u,T ) are calculated properly.

As in Theorem 2.5 we then compare the solution of this linear problem to the a priori given solution

DOI 10.20347/WIAS.PREPRINT.2913 Berlin 2022



Consistency of high dimension elliptic finite volume discretizations 17

of the PDE by means of their HT ,κ distance (2.2), ∥uT −RT ,BCu∥HT ,κ . Herein we approximate the
discretization operatorRT ,BC by the pointwise evaluation which in our setting only incurs an additional
error of order one and therefore does not alter our conclusions. To see this, observe that ∥∇2u∥∞ <∞

and thus

∣u(xK) −

 
BrK (xK)

u∣ ≤

 
BrK (xK)

r2
K

ˆ 1

0

∣∇2u(txK(1 − t)x)∣dtdx ≤ r2
K∥∇2u∥∞ .

5.2 Results and discussion

Figure 2: Log-log plot of the error bound B(u,T ) of I2 against true error H(u,T ) for the four different sampling methods
with varying numbers of interior cells (log10-color). The straight line is for reference indicating linear relations between B
and H and thus has slope 1.

In figure 2 we plot both, H(u,T ) and B(u,T ) for varying numbers of samples N = 2.000,4.000,
8.000,...,128.000 and the for sampling methods described above. The color represents the number
of sampling cells inside the domain of u (on a log10 scale) which allows to compare the sampling
methods accounting for the differing treatment of boundary values. A linear relation between theHT ,κ
norm and B would display in the log-log plot as a straight line with slope 1, which we plotted for
reference. Indeed we see that for the normal sampling the data points exhibit this linear behaviour,
indicating that in this setting the error bound is sharp.

Concerning the other three ways of sampling, we clearly observe a super-linear convergence rate of
H vs. B. However, we note that the points are distributed sparsely, with h ≈ 0.1. In such a regime, it
is not unusual to have convergence at a rate faster than expected (see e.g. [9] with simulations in 1d).
Another effect is that for a comparable amount of points, the valueB is strongly reduced for adaptively
sampled meshes compared to normal meshes. Together with the sparsety of the meshes this may
combine to an initial quadratic behavior of H vs. B for our relatively "large"values of h.
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Figure 3: Approximate cell diameter (h ∼∝ N−
1
d ) against error in the L2 norm for varying mesh resolutions and sampling

methods.

Another aspect is shown in figure 3 were we plot the approximate average cell diameter (scaling
with h

∼
∝ N− 1

d , N the number of interior points) against the L2 error ∥R∗
T uT − u∥L2(Ω) computed

by Monte Carlo integration. Note that even though the number of initial samples is the same for all
methods, the number of cells classified as interior differs, leading e.g. to the coarser resolution for the
uniform sampling. Figure 3 thus illustrates an L2 convergence of order 1 in the average cell diameter
N− 1

4 for adaptive sampling. For uniform and normal sampling we see a super-linear convergence, but
bigger error for a comparable amount of cells. In particular, we see that the adaptive methods lead
to better errors then the uniformly and normal distributed cells. This supports our second and third
conjecture of this section.

Acknowledgement. This article has been partially founded by the projects C05 and A05 in the
German collaborative research center CRC-1114 “Scaling Cascades in Complex Systems”.

A A Poincaré lemma

Lemma A.1. For every p ∈ [1,∞) there exists Cp > 0 such that the following holds: Let 0 < r < R
and x ∈ BR(0) and let Ω be a convex polygonal domain such that such that Br(x) ⊂ Ω ⊂ BR(0)
then for every u ∈W 1,p(BR(0))

∥u∥
p
Lp(Ω) ≤ Cp (R

pR
d−1

rd−1
∥∇u∥

p
Lp(Ω) +

Rd

rd
∥u∥

p
Lp(Br(x))) , (A.1)
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and for every u with
´
Br(x) u = 0 it holds

∥u∥
p
Lp(Ω) ≤ CpR

p (
r

R
)

1−d
(1 + (

r

R
)
p−1

)∥∇u∥
p
Lp(Ω) . (A.2)

Remark. In case p ≥ d we find that (A.2) holds iff u(x) = 0 for some x ∈ B1(0).

Proof. In a first step, we assume x = 0 and R = 1. The underlying idea of the proof is to compare
every u(y), y ∈ B1(0)/Br(0) with u(rx). In particular, we obtain for y ∈ B1(0)/Br(0) that

u(y) = u(ry) +

ˆ 1

0

∇u(ry + t(1 − r)y) ⋅ (1 − r)y dt

and hence by Jensen’s inequality

∣u(y)∣
p
≤ C (

ˆ 1

0

∣∇u(ry + t(1 − r)y)∣
p
(1 − r)p ∣y∣

p
dt + ∣u(ry)∣

p
) .

We integrate the last expression over B1(0)/Br(0) and find

ˆ
B1(0)/Br(0)

∣u(y)∣
p
dy ≤

ˆ
Sd−1

ˆ 1

r

C (

ˆ 1

0

∣∇u(rsν + t(1 − r)sν)∣
p
(1 − r)psp dt) sd−1dsdν

+

ˆ
B1(0)/Br(0)

∣u(ry)∣
p
dy

≤

ˆ
Sd−1

ˆ 1

r

C (

ˆ s

rs

∣∇u(tν)∣
p
(1 − r)p−1sp−1 dt) sd−1ds

+

ˆ
B1(0)/Br(0)

∣u(ry)∣
p
dy

≤ C

ˆ 1

r

ds sd−1 1

(rs)
d−1

ˆ s

rs

dt td−1

ˆ
Sd−1

∣∇u(tν)∣
p
(1 − r)p−1sp−1

+

ˆ
B1(0)/Br(0)

∣u(ry)∣
p
dy

≤ C
1

rd−1
∥∇u∥

p
Lp(B1(0)) +

1

rd
∥u∥

p
Lp(Br(0)) .

Furthermore, since there holds ∥u∥
p
Lp(B1(0)) ≤ C ∥∇u∥

p
Lp(B1(0)) for every u ∈W 1,p

(0)(B1(0)), a scaling

argument shows ∥u∥
p
Lp(Br(0)) ≤ Cr

p ∥∇u∥
p
Lp(Br(0)) for every u ∈ W 1,p

(0),r(B1(0)) and hence (A.2).
For general R > 0 use a scaling argument.
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