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Hydrodynamics at the moving contact line

Amal K. Giri, Paolo Malgaretti, Dirk Peschka, Marcello Sega

Abstract

By removing the smearing effect of capillary waves in molecular dynamics simulations we are able to provide
a microscopic picture of the region around the moving contact line (MCL) at an unprecedented resolution.
On this basis, we show that the continuum character of the velocity field is unaffected by molecular layering
down to below the molecular scale. The solution of the continuum Stokes problem with MCL and Navier-slip
matches very well the molecular dynamics data and is consistent with a slip-length of 42 Å and small contact
line dissipation. This is consistent with observations of the local force balance near the liquid-solid interface.

Introduction

Contact line motion is key to several applications including printable photovoltaics [1], ink-jet printing [2], liquid
coating and paint drying processes [3]. One of the main difficulties in modeling the MCL properties is that
despite being a mesoscopic quantity, a continuum description fails at describing the region close to it accurately.
A naive approach based on the no-slip boundary conditions encounters necessarily a non-integrable stress
singularity, raising what is known as the Huh and Scriven paradox [4]. Several mechanisms have been proposed
to remove the singularity at the MCL, as discussed in several reviews [5–7], among which, for example, there
are the Cox-Voinov law [8, 9], the molecular-kinetic theory [10, 11] and the interface formation theory [12, 13].
Notably, all these approaches rely on the introduction of a microscopic length scale below which the classical
hydrodynamics of a homogeneous, incompressible, Newtonian fluid fails. In order to extend the applicability of
hydrodyanamics, additional dissipation mechanisms have been suggested, including Navier slip [14] and MCL
dissipation [15, 16]. However, the situation is further complicated by the number of physical mechanisms that can
contribute to the origin of dissipation at the liquid/solid interface [17, 18], including phonons [19, 20], electronic
excitations [21], or charge build-up [22].

Accordingly, a detailed picture is needed to understand what is happening in the MCL region at the molecular
scale. Particle-based simulation methods have a long and successful history of contributions to our present
understanding of hydrodynamic phenomena. Direct Monte Carlo simulations [23] have provided insightful in-
formation for rarified gases, where the simple integration of Newton’s law is computationally too expensive,
allowing, for example, to investigate deviations from Navier-Stokes equations within the Knudsen layer [24].
MD simulations can deliver a microscopically detailed picture of the MCL [25] and have been successful on
many fronts, for example, in evidencing the breakdown of local hydrodynamics [26], providing support for the
molecular-kinetic theory both with simple [27] and hydrogen-bonding substrates [28] or investigating the time
scale for the liquid/solid tension relaxation [29].

Despite the potential for providing information at the molecular scale, the presence of thermal capillary waves [30]
is setting a limit to the resolution one can achieve close to the liquid/vapor interface. Capillary wave theory [31]
predicts that spontaneous surface excitations broaden the width of fluid interfaces with a logarithmic divergence
that depends on the simulation cell size. For small molecular liquids and typical simulation cells, the fluctuations
are larger than the molecular size [30, 32]. Also in this case, a microscopic length scale needs to be introduced,
this time to separate long wavelength, hydrodynamic surface oscillations from the intrinsic surface modes. Sev-
eral computational strategies have been devised to recover the intrinsic structure of fluid interfaces [32–38]. In
some of these, including the approach reported here, one first identifies molecules at the phase interface (see
Fig. 1), which are then used to build a local coordinate system. In turn, one can use this coordinate system to
compute the profiles of chosen observables as a function of the local distance from the interface.
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Figure 1: MD simulation snapshot of a cylindrical droplet with 7,332 water molecules in a rectangular cuboid domain of size Lx×Ly ×
Lz = 198.9×46.8×170 Å and external acceleration of g = 5×10−3Å/ps2 along the horizontal (x) direction. Red: oxygen atoms;
Blue: oxygen atoms at the liquid/vapor interface ; Orange: oxygen atoms at the MCL.

Figure 2: MD density ρ (shading) and its isolevel at ρ = 0.66× ρ̄ compared to traveling wave solution shape (mesh) of Stokes problem
with Bo = 0.2414, β = 0.8, δ = 0, ϑe = 97.2◦.

To obtain further insight into the dynamics of the molecules at the MCL, one has to cope with its fluctuations.
In this case, however, two interfaces are involved (liquid/vapor and liquid/solid), and one-dimensional intrinsic
profiles are not enough to describe the system. Here, we extend the approach of intrinsic profiles to the region
around the three-phase contact line by introducing two-dimensional density maps that are functions of the
relative position with respect to the liquid/vapor and liquid/solid interfaces, respectively. This procedure allows
us to resolve the structure and the flow close to the MCL at an unprecedented resolution.

Compatibility of MD and continuum approach

As detailed in the Appendix, we performed MD simulations of a cylindrical water droplet moving on a rigid
substrate under the influence of a constant acceleration parallel to the solid surface.

We modeled the substrate as a rigid, graphite-like structure with defects [39], obtained by removing 10% of
randomly selected surface atoms. The presence of defects serves rather well the purpose of providing a fric-
tion coefficient thanks to the lateral modulation of the water-surface interaction potential surface. Without the
presence of these defects, the droplet would have an almost perfect slip.

The necessary first step to compute intrinsic maps of the droplet’s hydrodynamic fields is to identify the surface
molecules at the liquid/vapor interface. Here, we use the GITIM algorithm [38] as detailed in the Appendix. In
Fig. 3 we show the distribution of these molecules, as well as the associated velocity field (atomic centers of
the solid surface are at z = 0). The inset shows the neighborhood of the advancing contact line, underlining
the structure of the three-phase contact line, which can be identified as the first density peak at z < 5 Å. As
expected, the vanishing velocity (in the co-moving reference frame) at the contact line shows that it moves with
the center of mass speed.

Once the surface molecules are identified, we compute the intrinsic map of a generic local observable A as
A(ξ) = 〈

∑
iAi

∏
α δ (ξα − |ri − ζα(ri)|)〉 /N(ξ). Here, ξ = (ξV , ξS) are the distances of a point in

space from the liquid/vapor and solid surfaces, respectively. The angular brackets indicate a statistical aver-
age, the index i labels particles and α = {V, S} the instantaneous liquid/vapor and solid surfaces located at
ζV (x, z) and ζS(x, z), respectively. One can compute the normalization factor N(ξ) by calculating the intrin-
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Figure 3: Density and velocity field of the liquid/vapor interfacial layer in the global reference frame. The density and velocity fields are
sampled with a resolution of 0.78×0.66 and 1.55×1.33 Å

2
, respectively. The velocity field is scaled such that an arrow of length 1 Å

corresponds to a velocity of 0.01 Å/ps. The inset shows a detail of the advancing contact line region. The atomic centers of the first layer
of the substrate are located at z = 0.

Figure 4: Intrinsic map of the density (normalized to the bulk value, color map) and velocity field in the co-moving reference frame
(arrows). The molecules belonging to the liquid/vapor interface, whose distribution is shown in Fig. 3, have zero inherent distance ξV
and are represented here using the result of an elliptic fit through their average position (small open circles). The density field has
resolution 0.22× 0.2 Å

2
and is normalized with respect to the bulk density. The velocity field has resolution 1.7× 1.6 Å

2
, is computed

in the droplet co-moving frame, and is scaled such that an arrow of length 1 Å on the plot corresponds to a velocity of 0.01 Å/ps. (Left)
shows full droplet and (right) details near MCL.

sic density map of uniformly distributed random points within the liquid phase. The two-dimensional correlation
function A(ξ) is best interpreted if remapped back from the generalized coordinates (ξV , ξS) to the Cartesian
ones using the average location of the interfaces as the origin of the local frame. We report all intrinsic maps
using this representation. This approach has the advantage of providing precise information close to the liq-
uid/vapor interface, but it loses accuracy far away from the interface. However, this region is not of concern for
the current investigation, which focuses on the neighborhood of the MCL.

The density field reported in Fig. 4 allows us to appreciate the presence of several molecular layers at both
the liquid/solid and liquid/vapor interfaces. Moreover, next to the liquid/vapor and solid interfaces, there is a gap
region generated by the hard-core repulsion of the interaction potential. As shown in the right panel of Fig. 4, the
resolution of the velocity field matches the molecular scale, with bins of size 1.7×1.6 Å2

), while the density bins
are of size 0.22×0.2 Å2

. We do not observe any trace of an influence of positional correlations on the velocity
field, which is a much smoother function of the position than the density.

It is often remarked that linearized hydrodynamics breaks down in simple liquids below scales of few molec-
ular diameters [40, 41]. However, this is true for processes like sound propagation that, at that scale, happen
during extremely short times (of the order of a picosecond). In contrast, we obtain the stationary values of the
hydrodynamic fields by measuring over time intervals so large that no memory effect can survive.

In Fig. 5 we report the horizontal velocity profile for molecules in the slab z < 6Å, computed in the droplet
co-moving frame using both the global and intrinsic coordinate systems. The velocity sampled in the global
coordinate system extends further than the intrinsic one because of the fluctuations. Both profiles coincide in
the region |x| < 50Å, showing a steep increase when departing from the droplet center. However, close to
the MCL, the velocity profile computed in the global coordinate system flattens out. In contrast, the intrinsic
one is compatible over its entire extension with a vx ∼ 1/x power-law slip profile. The profile in the global
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Figure 5: (Left panel) Horizontal velocity profiles (squares: global coordinate system, circles: intrinsic profiles) sampled along x at
z = 3 ± 3 Å. The dot-dashed curve is a fit to a power law c + a(x − x1)−1 + a(x − x2)−1. The dashed line is the convolution of
the best-fit power-law with a Gaussian as described in the text. The green curve is the FEM solution evaluated at the interface z = 0.
(Right panel) double logarithmic scale, same data as in the left panel but symmetrized along the vertical axis and shifted so that the
fitting constants c and x1 are zero.

Figure 6: Profile of the friction surface density computed from the MD data in the global (squares) and intrinsic (circles) coordinate
systems. The green curve is the FEM solution evaluated at the interface z = 0.

coordinate system can be very well described in the spirit of the capillary wave theory by using quantities
Ã(x) =

∫∞
−∞G(y)ρ(x − y)dy convoluted with the Gaussian distribution G(x) ∼ exp[−x2/(2σ2)] of the

interface fluctuations, so that vx = p̃x/ρ̃.

In the left panel of Fig. 5 we report as a dashed-line the velocity profile obtained by applying this convolution
procedure to the best fit intrinsic velocity profile vx ∼ 1/x and a step-like density profile, using the interfacial
layer width σ = 2.5Å. The resulting profile reproduces very well the flattening of the profile in the region close
to the MCL. The 1/x profile in the intrinsic coordinate system and the departure from it in the global one are
more evident in the double logarithmic scale, reported in the right panel of Fig. 5, where we have symmetrized
the profile around its minimum and shifted it vertically and horizontally by the fitting constants x1 and c.
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Figure 7: (Left) Averaged MD velocity profile v = (vx, vz) (shown for ρ > 0.66ρ̄) compared to (right) optimal Stokes velocity profile
u0 = (u0x, u0z) for β = 1.3 (slip-length b = 42Å) and γ = 0, Bo = 0.2414 and ϑe = 97.2◦ in a comoving frame (vectors) and
absolute horizontal velocity (shading).
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Direct comparison of MD and FE Stokes problem

In the past, gravity-driven sliding droplets have been modeled in the continuum approximation using full hydrody-
namic models with diffuse or sharp interfaces [42, 43] and by reduced thin-film models [44, 45]. In experiments,
cornered droplets have been observed and explained by the structure of the local flow near the rear tip [46]. In
particular the dynamic law for the MCL proposed in [47] has been adopted in full hydrodynamic descriptions and
reduced variational models [43, 48, 49].

We compare our MD simulations with a full hydrodynamic continuum model for the MCL, where we solve a
Stokes problem for an incompressible viscous Newtonian fluid (Re=0) featuring a free interface with capillary
forces, which is driven by a constant acceleration g, and contains dissipative processes due to viscous friction,
Navier-slip βux = µ∂zux and with a dynamic contact line that has the normal velocity νx ·ux = γ/δ(cos θe−
cos θ), cf. [47]. For this purpose, we discretize the corresponding system of partial differential equations using
the isoparametric P2 − P1 finite elements method (FEM) with ALE mesh motion strategy as in [43, 49]. We
report details on the model, nondimensionalization, and general behavior of the solutions in the Appendix.

In general, notice that increasing the friction coefficient β in the Navier-slip condition enhances the asymmetry
of the droplet, and the flow profile becomes more inhomogeneous, that is, ∂zux increases while the average
velocity of the droplet decreases. In contrast, the influence of the friction parameter δ on the solution is mainly
visible in the average velocity and the asymmetry of the drop shape (see Fig. 10).

We compare the velocity of 2d traveling-wave solutions u(t, r) = u0(x − v0t, z) with the averaged velocity
from the MD simulation v = (vx, vz). For given acceleration g, droplet size L, viscosity µ, and equilibrium
contact angle ϑe, we solve the Stokes problem for different β and δ and then compare this solution to MD data
by computing the root mean square deviation (rmsd) ∆ as

∆2 =

∫
Ω0

ρ(r)|u0(r)− v(r)|2 dr
/∫

Ω
ρ(r) dr (1)

in a comoving frame Ω0 = Ω − (v0, 0)t. In the Appendix we report (Fig. 11) the rmsd curves, from which
one can clearly see that there are locally optimal solutions in the range 0 < β < βmax ∼ 1.3 for each
δ = {0, 0.1, 0.2, 0.4}. While the lowest rmsd is the one for δ = 0, due to the fluctuations in the MD flow field,
see left panel of Fig. 7, and due to the relatively slight deviation of the droplet from its equilibrium shape, (see
Fig. 12 in the Appendix), the precise determination of δ is prone to errors. The possible optimal β decreases
from β = βmax for δ = 0 for increasing δ until it hits β = 0 for a finite upper value of δ = δmax. Nevertheless,
based on the symmetry of the solution, the value should be confined within 0 < δ < 0.1. This prediction
is compatible with the rmsd-based fit of the velocity fields and the low asymmetry of the MD droplet shape.
Exemplary sliding Stokes droplets in the Appendix in Fig. 10 show which amount of contact line friction would
be required to generate a certain asymmetry (or advancing and receding angle).

The water molecules are subjected to a friction force that, at steady state, balances g and is defined as the
horizontal component of the force density fΓ,x(x, z) acting from the substrate on water molecules. Even though
long-range corrections for van der Waals interactions are in place, the friction becomes negligible at elevations
larger than z ' 10Å and is acting in practice on the first layer of water molecules at the substrate. Therefore,
we can define a friction force per unit area as

FΓ(x) =

∫ ∞
0

fΓ,x(x, z)dz. (2)

This force is the counterpart of the surface friction that in sharp interface models like the present FEM can be
calculated from the stress t · σν ≡ −µΓt · u at the solid boundary.

Fig. 6 shows the friction surface density FΓ obtained from the MD trajectories and compared to the FEM results.
Far from the droplet edges, both methods are in excellent agreement. However, close to the advancing and
receding MCL, the friction force behaves qualitatively differently. This mismatch is in contrast to the overall good
match of the slip velocity profile Fig. 5. Therefore, even though the Navier boundary condition is a good effective
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model in reproducing the slip velocity, the same is not true concerning the friction force. Remarkably, even in the
present case where the substrate is particularly smooth, and the optimal FEM solution is compatible with zero
contact line dissipation, we observe a significant deviation of the friction force from the one emerging from the
Navier condition. Therefore, we expect larger defects or soft substrates to enhance this deviation substantially.

Conclusion

We introduced improved averages of MD simulations that remove the smearing effect due to capillary waves
near the interfaces. This procedure allows us to compute averages with higher accuracy than the standard ap-
proaches and thereby, in particular, improve averages near the interface. From this, we can conclude that the
typical hydrodynamic behavior of the velocity field is valid down to the molecular scale. From a direct compar-
ison of averages with FEM solutions of an incompressible Stokes problem with MCL and Navier-slip condition,
we determine the slip-length to be 42 Å and find little contact line dissipation. Future studies will extend this
approach to larger droplets and stronger contact line dissipation.

A Appendix

A.1 Molecular dynamics simulation and intrinsic analysis details

We produced the trajectories using the GROMACS simulation package, release 2019.4 [50] employing the
SPC/E interaction potential [51] and the geometrical and interaction parameters reported in Ref. [39] for the
substrate (six layers). We integrated the equations of motion in the canonical ensemble for 0.5µs using the
leapfrog algorithm (2 fs integration timestep ∆t) and a Nosé-Hoover [52, 53] thermostat with 1 ps time constant,
modified to couple only to the direction orthogonal to both the surface normal and the external force direction
[26], keeping in mind that this introduces a bias in the surface energies [54]. We constrain the geometry of water
molecules [55] and keep the substrate atoms fixed. We compute the long-range part of Coulomb and dispersion
interactions using the smooth version of the particle-mesh Ewald method [56] with a grid spacing of 1.2 Å,
fourth-order polynomial interpolation scheme, short-range cutoff of 12 Å, metallic boundary conditions, and a
relative interaction strength at the cutoff of 10−5 and 10−3 for the Coulomb and dispersion terms, respectively.
We simulate 7332 water molecules in a rectangular simulation box of size 198.9×46.8×170 Å3

in a cylindrical
droplet configuration. Periodic boundary conditions apply so that there is an approximate translational invariance
along the y axis. The external acceleration of 5 × 10−3Å/ps

2
acts along the x axis, while the surface normal

points along z. We store positions, velocities, and forces to disk every ps for postprocessing with the MDAnalysis
[57] and Pytim [58] analysis packages. Even though the vapor pressure is practically zero, we exclude rare
gas molecules from the interfacial analysis by defining the droplet as the largest cluster of molecules having a
neighbor within 3.5 Å, the first minimum of the oxygen pair correlation function in the bulk. Surface molecules are
identified using the GITIM algorithm [38, 58] with a probe sphere radius of 2 Å. We compute all hydrodynamic
fields on a molecular basis, with the velocity one calculated as the ratio of the local momentum to the local mass.
Since the data reported are always correlations with positions (the center of mass of the droplet in the standard
case, the surface atoms in the intrinsic case), it is critical to evaluate physical quantities simultaneously. Notably,
GROMACS is storing velocities at the previous half-step, and obtaining the full step value, we add to each atom
the correction ∆tfi/2, where fi/mi is the acceleration of the particle of mass mi at full step. Failure to do
so introduces severe unphysical effects, particularly evident at rigid boundaries. To compute the normalization
factor N(ξ) we generate about 7 × 104 random points for each analyzed frame. To remap the intrinsic maps
to the Cartesian coordinates, we use as a reference for the two surfaces the location of the uppermost layer of
the solid substrate (located at z = 0 and the locus of the ellipse that fits best the average positions (obtained
by binning at constant angular intervals with respect to the center of droplet base) of the liquid/vapor surface
molecules.
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Hydrodynamics at the moving contact line 7

A.2 Dimensionless numbers

The dimensionless numbers characterizing the problem are the

Reynolds number Re =
2Rvcm
µ

' 0.2,

Mach number Ma =
vcm
cs
' 0.01,

capillary number Ca =
µvcm
γ
' 0.2,

Bond number Bo =
ρR2g

γ
= 0.2414,

where µ=0.72 mPa s is the dynamic viscosity, cs=1460 m/s [59] the speed of sound, γ=61.8 mN/m [60] the
surface tension, ρ=996.8 kg m/s2 [60] the mass density, vcm=1.47Å/ps the velocity of the center of mass and
g = 5× 10−3Å/ps2 the acceleration imposed on the fluid molecules. The best fit of an arc of a circle through
the surface atoms yields the droplet equilibrium contact angle ϑe = 97.2◦ and an effective radius R = 54.8Å.
For details about the nondimensionalization of the corresponding continuum problem, see Appendix A.4.

A.3 Weak formulation for Stokes free boundary problem.

In the paper we consider, as a mesoscopic problem, the evolution of an incompressible liquid drop following the
Stokes free boundary problem

−∇ · σ = f and ∇ · u = 0 conservation of momentum and mass in Ω(t) , (3a)

t · σν = −µΓt · u Navier-slip on Γs`(t) , (3b)

σν = γκν capillary forces on Γ`(t) , (3c)

µΛẋ = fΛ dynamic contact angle on Λ(t) , (3d)

where the domains are time-dependent: Ω is the fluid domain, Γs` is the fluid-substrate interface, Γ` is the
fluid-air interface, Λ = ∂Γs` is the contact line, and t and ν are corresponding tangential and normal vectors.
In this problem f = ρg is a given bulk force, fΛ is the x-component of the uncompensated Young force
fΛ = γνΓ`

+ γs`νΓs`
= (fΛ, fΛz), the Cauchy stress of the Newtonian fluid is σ = −pI + µ(∇u+∇ut)

with bulk viscosity µ, µΓ encodes the Navier-slip condition, µΛ encodes the dynamic contact angle, γi are the
surface tensions and κ the mean curvature of the fluid-air interface. The Stokes free boundary problem is based
a Lagrangian formulation with displacements, which is converted into a Eulerian formulation for r = (x, z) ∈
Ω(t) ⊂ Rd with the free energy

F
(
q(t)

)
=

∫
Ω(t)

ρg · r dx dz + γ

∫
Γ`(t)

ds+ γs`

∫
Γs`(t)

ds,

where the state q basically contains the deformed domain shapes. In the transient problem we use bilinear
forms

a(u,v) =

∫
Ω(t)

2µD(u) :D(v) dx dz +

∫
Γs`(t)

µΓu · v dx+

∫
Λ(t)

µΛ u · v d`, (4a)

b(u, p) =

∫
Ω(t)

p∇ · udx dz, (4b)

and which the tangential derivative∇‖, the shape/Fréchet derivative of the energy can be written

〈DF (q),v〉 =

∫
Ω(t)

ρg · v dx dz + γ

∫
Γ`(t)
∇‖id · ∇‖v ds+ γs`

∫
Γs`(t)

∇‖id · ∇‖v ds. (4c)
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Based on these bilinear forms, in the emerging saddle-point problem for the Stokes problem we seek the velocity
field u(t) = (u, uz) : Ω(t)→ Rd and the pressure p(t) : Ω(t)→ R such that

b(u(t), q) = 0 , (4d)

b(v, p(t)) + a(u(t),v) = −〈DF
(
q(t)

)
,v〉 , (4e)

for all test functions v = (v, vz) and q. With the resulting velocity fields u(t), the domain (mesh) is deformed
by mapping (the vertices) r 7→ r+ τw using the kinematic condition (u−w) ·ν = 0 on ∂Ω(t), which allows
to choose a suitable extension w : Ω → Rd, i.e., harmonic extension, that maintains the mesh quality. This
weak formulation (4) is implemented using isoparametric Taylor-Hood P2/P1 finite elements, i.e.,

u(t,χ(r̄)) =

dimV 2
h∑

n=1

unh(t)ϕ̄n(r̄), p(t,χ(r̄)) =

dimV 1
h∑

n=1

pnh(t)ψ̄n(r̄), χ(t, r̄) =

dimV 2
h∑

n=1

χnh(t)ϕ̄n(r̄),

where the functions u(t) : Ω → Rd and p(t) : Ω → R on a domain Ω with curved boundaries are approxi-
mated using basis functions ϕ̄n ∈ V 2

h and ψ̄n ∈ V 1
h defined on a domain Ω̄ with polygonal boundaries using

a P2 map χ̄ : Ω̄→ Ω(t) and a corresponding triangulation {Th}h>0 with

V k
h = {v ∈ C1(Ω̄,Rd) : v|T ∈ Pk(T,Rd), T ∈ Th}, V k

h = {v ∈ C1(Ω̄) : v|T ∈ Pk(T,R), T ∈ Th}.

Pk(T, V ) being V -valued polynomials on T . Then the domain motion is facilitated by the ALE evolution of
χnh(t), i.e., χnh(t+ τ) = χnh(t) + τwn

h , wherew ∈ V k
h solves the ALE problem

(w, λ) = argmin
(ŵ,λ̂)

∫
Ω(t)

1
2 |∇ŵ|

2 dx dz +

∫
∂Ω
λ̂(v̂ − u) · ν ds, (5)

and the kinematic condition is enforced using a Lagrange multiplier λ : ∂Ω→ R on the boundary.

A.4 Nondimensionalization of the Stokes problem and initial data.

We rescale (4) by introducing dimensional scales for length, velocity and time

r = (x, z) = (R x̃,R z̃), u = U ũ, t =
R

U
t̃,

so that the bilinear form can be nondimensionalized

ã(ũ, ṽ) =
a(u,v)

µRd−2U2
=

∫
Ω̃

2D(ũ) :D(ṽ) dx̃ dz̃ +

∫
Γ̃s`

µΓR

µ
ũ · ṽ ds̃+

∫
Λ̃

µΛ

µ
ũ · ṽ d˜̀ (6)

where we introduce the new nondimensional parameters

β =
µΓR

µ
, δ =

µΛ

µ
, (7)

where we have the relation to the slip-length b = R/β and δ encodes the ratio of friction at the contact line
relative to bulk viscosity. By balancing viscous and capillary forces via U = γ/µ, we rescale the driving force
to become

〈DF̃ (q̃), ṽ〉 =
1

µRd−2U2
〈DF (q),v〉

=

∫
Ω̃

ρ|g|R2

µU

g

|g|
· ṽ dx̃ dz̃ +

∫
Γ̃`

∇‖id · ∇‖ṽ ds̃+
γs`

γ

∫
Γ̃s`

∇‖id · ∇‖ṽ ds̃. (8)
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Figure 8: Exemplary traveling wave solution with β = 0.2, δ = 0, Bo = 0.2414, R = 54.799 Å, U = 0.8477 Å/ps and ϑe =
180◦ − 82.8◦ showing (left) solution with triangular mesh (black) and velocity field u0 (red arrows) and (right) pressure p0 (shading)
and comoving velocity fields u0 − v0 (red arrows). Solution is translated to origin using the center of mass x̃0 = V −1

∫
x̃dx̃dz̃.

where we usually set g/|g| = ex and introduce the two additional nondimensional parameters

Bo =
ρ|g|R2

µU
≡ ρ|g|R2

γ
, cosϑe = −γs`

γ
, (9)

the first being the Bond number and the latter encoding the equilibrium contact angle ϑe. Note that only within the
interval −1 < γs`

γ < 1 equilibrium droplets are possible. This results in the nondimensional weak formulation

b̃(ũ, r̃) = 0 ,

b̃(ṽ, p̃) + ã(ũ, ṽ) = −〈DF̃
(
q̃
)
, ṽ〉 ,

where b̃ remains basically unchanged since arbitrary constants can be absorbed into the Lagrange multiplier.

In the numerical simulation we seek traveling wave solutions, i.e., solutions which for t→∞ behave as

Ω̃(t) = Ω0 + v0t, u(t, r) = u0(r − v0t), p(t, r) = p0(r − v0t), (10)

for some constant droplet speed v0 = (v0, 0) ∈ Rd with flow field u0 : Ω0 → Rd and pressure p0 : Ω0 → R.
For the initial domain shape at t = 0 we use a unit semidisc

Ω̃(t = 0) = B1(0) ∩ R+ = {r̃ = (x̃, z̃) ∈ R× R+ : x̃2 + z̃2 < 1}, (11)

and adjust the scaling R to match the initial mass/volume of the MD simulations, see Fig. 8. We chose Ω0 so
that the center of mass alignes with zero, i.e.,

∫
Ω0
x dx dz = 0.

A.5 Determination of initial state and equilibrium contact angle.

In order to obtain the initial scale of the droplet for the Stokes simulation, we have two equivalent options: Adjust
the volume of the initial mesh to the total volume based on the molecular volume VH2O = 30 Å3 or using the
molecular mass MH2O = 18 g mol−1. Since the MD simulation domain has a depth of D = 46.8 Å and
the simulation uses 7332 molecules, this gives a cross sectional area of A = 7332 × VH2O/D = 4700 Å2.
Alternatively, the MD droplet has a mass of M = 7332 × MH2O/NA = 2.192 × 10−22 kg, which at an
equilibrium density of ρ = 996.8 kg m−3 gives the consistent sectional area A = MD−1ρ−1. This cross
sectional area is contained in a cylindrical cap of the same volume, if we define the interface at the density level
ρ = 0.66× ρ̄ of the bulk value ρ̄ and fit the part for z > 7Å to a cap, as shown in Fig. 9.
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Figure 9: MD density ρ and isolevel at ρ = 0.66× ρ̄ compared to mesh of the Stokes solver at equilibrium with ϑe = 97.2◦.

From this fit to a spherical cap we deduce the nondimensional parameters R = 54.8Å, ϑe = 97.2◦, Bo =
0.2414, as input data for the Stokes free boundary problem. Note that the contact angle is the outer angle.

A.6 Discussion of Stokes solution with different β and δ.

In the nondimensionalized problem (6) the viscosity is scaled to unity and includes only the nondimensional
parameters relating to friction at the liquid-solid interface β = R/b, where b is the corresponding slip length, and
friction at the contact line δ. Here we discuss the qualitative impact that different choices of β ∈ {10−1, 1, 4}
and δ ∈ {0, 1, 10} have on the droplets flow field u0(r) for Bo = 1/2 and ϑe = 90◦. Note that δ = β = 0
is excluded, since without inertial the flow field does not become stationary. For simplicity, we exclude this case
from our considerations but choose either β or δ positive.
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Figure 10: Traveling wave solutions of the Stokes problem for different parameters β ∈ {0.1, 1, 4} and δ ∈ {0, 1, 10}. The comoving
flow field u0 − v0 is shown in red vectors, the x-component u0 of u0 = (u0, uz0) is shown using the colored shading and the
advancing and receding contact angle are shown using red and blue lines. While in all cases u0 − v0 shows a rolling motion, the main
impact of β is to introduce gradients in the absolute velocity, observable in the different shadings of u0. The main impact of δ is to steer
the magnitude of the dynamic contact angle, where for δ = 0 except for small numerical dissipation ϑe = 90◦. In each case the velocity
v0 decreases when additional dissipation is introduced, i.e., if either β or δ increase. For δ = 10 the velocity depends only weakly on
β and is almost entirely controlled by the contact line dissipation.
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