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Abstract. New method of adaptive estimation of a regression function is pro-
posed. The resulting estimator achieves near optimal rate of estimation in the
classical sense of mean integrated squared error. At the same time, the estimator
is shown to be very sensitive to discontinuities or change-points of the underlying
function f or its derivatives. For instance, in the case of a jump of a regression
function, beyond the interval of length (in order) n�1 logn around change-points
the quality of estimation is essentially the same as if the location of this jump were
known. The method is fully adaptive and no assumptions are imposed on the de-
sign, number and size of jumps. The results are formulated in a non-asymptotic
way and can be therefore applied for an arbitrary sample size.

1. Introduction

The change-point analysis which includes sudden, localized changes typically occur-
ring in economics, medicine and the physical sciences has recently found increasing
interest, see M�uller (1992) for some examples and discussion of the problem. There
are several aspects of change-point problems addressed in the literature which rely
on

� type of the model (regression models, distribution or spectral density models
etc.),

� type of observations (discrete or continuous),
� assumptions about discontinuities incorporated in the model:

- type of discontinuities (jumps, change-points, cusps)
- one or more change-points;

- the number and sizes (magnitude) of change-points are known or not;
� assumption on the model function (parametric or nonparametric).

We restrict ourselves to change-points in the regression model with nonparametri-

cally described regression function. A comparison of parametric and nonparametric
approaches lies beyond the scope of this paper. We note only that the nonpara-
metric approach provides with much more exibility without strong inuence of the
quality of estimation, for more discussion see M�uller (1992).
The choice of regression model is motivated by statistical practice, especially

in econometrics. A discussion of related problems for other models (for instance,
distribution density model) allowing change-points is a subject of another paper.
In the regression nonparametric analysis of function with change-points, one may

highlight two di�erent directions . The �rst approach deals with a generally smooth

curve allowing a �nite number of change-points. Further one may focus either on es-
timation of locations and magnitudes of jumps, as in Korostelev (1987), Yin (1988),
Wang (1995), or on estimating the function itself. In the last case, some pilot near
optimal estimates of locations of change-points are still required as a technical step
in the estimation procedure. When all the locations of change-points have been
estimated, one may estimate the function separately on each interval between every
neighbor points, see M�uller (1992), Wu and Chu (1993), Oudshoorn (1995). The
most remarkable fact here, due to Korostelev (1987), is that the location of a single
jump of a given magnitude can be estimated with the rate n

�1 where n is the num-

ber of observations. This result can be generalized on the case with unknown jump
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size and the case of jump of some derivative of the function f , M�uller (1992), and
even on the case with a �nite unknown number of change-points of di�erent order,
Yin (1988), Oudshoorn (1995). As a price for such kind of adaptation, the rate of
estimating the locations of jumps is worse by some logarithmic factor. The loca-
tion of a jump of k th derivatives can be estimated with the rate about n

�1=(2k+1)

multiplied again by some log -factor. However, this rate is still much better than
in estimating the corresponding derivative of the regression function and such sort
of procedures allows to perform asymptotically optimal estimation of a regression
function with change-points, Oudshoorn (1995).

Another approach to this problem is connected with the concept of spatial adap-
tive estimation. The problem of adaptive and spatially adaptive nonparametric
estimation is now well developed, see e.g. Nemirovski (1985), Donoho et al (1994),
Lepski, Mammen and Spokoiny (1994), Delyon and Juditski (1994), Goldenshluger
and Nemirovski (1994), Lepski and Spokoiny (1995) among others. A variety of
di�erent adaptive methods can be now applied to estimation of a function with
inhomogeneous smoothness characteristics: non-linear wavelet procedure, kernel es-
timation with a variable bandwidth, local polynomials with a variable window etc.

For all such methods it is shown near optimality in the minimax sense for mean
integrated squared errors.
In the context of spatially adaptive nonparametric estimation, change-points or,

more generally, cusps in the curve can be viewed as a sort of inhomogeneous be-
havior of the estimated function. One may therefore apply the same procedure (for
instance nonlinear wavelet estimation) and the analysis is focusing on the quality
of estimation when change-points are incorporated in the model. Under this ap-
proach, the main intention is to estimate the regression function (not locations of
change-points). It is shown in Hall and Patil (1995), Hall, Kerkyacharian and Picard

(1996) that the wavelet-based estimators provide the same rate of estimation even
if a growing number of jumps is allowed.
The important advantage of this approach is that the estimating procedure is

universal and it is not speci�ed to change-point analysis. On the other side, this
approach delivers very poor qualitative information about presence, number and
locations of change-points. Moreover, the criteria based on mean integrated errors
are not very sensitive to local quality of estimation: having obtained the optimal
rate in global estimation, one gets relatively poor quality of estimation in small
vicinities of change-points. The reason for that can be explained on the example of

kernel estimation with a variable bandwidth. It was shown in Lepski, Mammen and
Spokoiny (1994) that there is a procedure of such kind which provides the optimal
rate of estimation over a wide range of Besov classes containing particularly functions
with change-points. However, this procedure applies everywhere a symmetric kernel
and the resulting estimator has a \boundary (or Gibbs) e�ect" in a vicinity of radius
h around each change-point, h being the applied bandwidth. At the same time,
imagine that the locations of change-points were known. Then it would be obviously
much better to apply one-side kernels near change-points.

The aim of the present paper is to propose a method which simultaneously adapts
to inhomogeneous smoothness of the estimated curve and which is sensitive to dis-
continuities of the curve or its derivatives. We develop the pointwise adaptive ap-
proach by selecting not only the applied bandwidth but also the geometry of the
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window: we search for a maximal window containing the point of estimation in
which the function f is \smooth". (This can be understood in the sense that it is
well approximated by polynomials.) Such a procedure selects automatically between
windows without change-points.
We consider the regression model

Yi = f(Xi) + �i; i = 1; : : : ; n; (1.1)

where Xi 2 R
1 , i = 1; : : : ; n , are given design points and �i are individual in-

dependent random errors. Below we will suppose that �i , i = 1; : : : ; n , are i.i.d.
N (0; �2) with a given noise level � . This assumption can be easily relaxed in a
usual way.
The idea of the proposed method is quite simple and natural. We assume that the

function f is well approximated by a polynomial P�(��x0) in some neighborhood U

of the point of interest x0 , where � is the vector of coe�cients of this polynomial.
Basing on this assumption, for each feasible interval U containing x0 , one can

construct an estimator �̂ of � by the observations fYi;Xi : Xi 2 Ug and then
calculate the residuals "i = Yi �P�̂(Xi � x0) . Next we test the hypothesis that the
residuals "i = "i(Xi) can be treated on the interval U as a pure noise. Finally the
procedure selects the maximal (in length) interval for which this hypothesis is not
rejected. We show that this method provides both spatial adaptive estimation in

the sense of mean integrated squared losses and high sensitivity to change-points of
f .
The bene�t of this approach is that it is very general in nature and it is not

speci�ed to estimation of a regular function with change-points. One may therefore
expect that this method can be extended on the case of multi-dimensional regression
or applied to image denoising where the quality of estimation near the boundary
of images is of special importance, see Korostelev and Tsybakov (1994). One more
important feature of the proposed pointwise approach is that it allows to proceed
with an arbitrary design. We do not need to assume random or regular (for instance

equidistant) design. With it, the resulting quality of estimation depends on the local
design properties near the point x0 .
The paper is organized as follows. In the next section we present the procedure,

Section 3 contains the results describing the quality of this procedure. In Section 4
we specify the general results to the case of the equidistant design. We show in
particular that the locations of jumps can be estimated with the rate n

�1 log n and
that this rate cannot be improved if more than one jump is allowed.

2. Estimation Procedure

Let data Yi;Xi , i = 1; : : : ; n obeys the model (1.1). We will estimate f(x0) for a
given x0 .

First we describe the family U of intervals containing x0 . This family can be
introduced in di�erent ways. One possible choice is to consider all intervals with the
edges at design points,

U = f[Xi;Xi0] : Xi � x0 � Xi0g: (2.1)
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This choice is theoretically possible and it allows to make very precise estimation
but it leads to a serious computational e�ort. One may decrease the cardinality of
U and hence the computational di�culties by selecting two sets of points Al = fal :
al � x0g and Ar = far : ar � x0g and by setting

U = fU = [al; ar] : al 2 Al; ar 2 Ar; NU � mg: (2.2)

The sets Al and Ar should be \dense" enough near x0 to provide the desirable
quality of estimation. For instance, for the case of a regular or random design
with a positive density, one may take Al and Ar in the form of geometrical grids,
Al = fx0 � ab

�k
; 0 � k � log ng and similarly for Ar . Here a > 0 and b > 1 . In

this case, the set U has cardinality log2 n . For an arbitrary design, one can de�ne
the sets Al and Ar in a similar way providing that each U from U contains at
least m design points Xi .
Given U 2 U , set NU for the number of the points Xi falling in U ,

NU = #fXi : Xi 2 Ug:
We will suppose that NU � m for each U 2 U .
Now we construct by data fYi;Xi : Xi 2 Ug a polynomial P of degree m � 1

which approximates the underlying function f on U . For this we apply the standard
least squared method. We consider �rst the general case with an arbitrary integer
m and then specify the procedure for m = 2 which seems to be reasonable for
practical applications.

Let m � 1 be given. By � we will denote a column-vector in R
m , � =

(�0; : : : ; �m�1)
T and by P�(z) the polynomial with the coe�cients � , P�(z) =

�0 + �1z + : : :+ �m�1z
m�1 . De�ne �̂U by the least squared method

�̂U := arginf
�

X
U

(Yi � P�(Xi � x0))
2
:

For an explicit representation of �̂U , it is useful to introduce matrix notation. Let
�U be the m �NU -matrix with elements sk;i = (Xi � x0)

k , k = 0; 1; : : : ;m� 1 ,

and let YU be the NU -column vector with elements Yi where only indices i with

Xi 2 U are considered. Then the vector �̂U satis�es the equation

�U�
T
U �̂U = �UYU : (2.3)

If the matrix DU = N
�1
U �U�

T
U is non-singular that is detDU 6= 0 , then �̂U can be

de�ned by

�̂U = (�U�
T
U )

�1�UYU ; (2.4)

Otherwise one can use the same representation, understanding (�U�
T
U )

�1 as pseudo-

inverse matrix.
The vector �̂U provides with the non-parametric estimators of the function f

and its derivatives at x0 . Namely, one can use for estimation of f the value of

the approximating polynomial P�̂U
and its derivatives at x0 . Thus, k!�̂U;k is the

estimator of f (k)(x0) . Particularly, f̂U(x0) = �̂U;0 is the estimator of f(x0) .
The residuals "U;i at points Xi 2 U are de�ned by Yi � P�̂U

(Xi � x0) , that is

"U;i = Yi � �̂U;0 � �̂U;1(Xi � x0)� : : :� �̂U;m�1(Xi � x0)
m�1

:
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Using matrix notation, one gets

"U = YU ��T
U �̂U = YU � �T

U(�U�
T
U )

�1�UYU = YU ��UYU : (2.5)

Note that �U = �T
U (�U�

T
U )

�1�U is projector from the space R
NU on the linear

subspace generated by polynomials of degree m� 1 with knots Xi 2 U .
Our adaptation method is based on the analysis of the residuals "U;i . We intro-

duce another family V(U) of intervals V , each of them is a subinterval of U . As
above for the family U , we require that NV := #fXi 2 V g � m for all V 2 V(U) .
Also we require that V = U \ U

0 2 V(U) for each U
0 2 U .

A reasonable way to de�ne this family is as follows

V(U) = fV = UnU 0 or V = U \ U
0 : U 0 2 U ; NV � mg:

If the set U is of the form (2.2), then one has obviously

V(U) = fV = [a�; a+] : a�; a+ 2 Al [ Ar; V � U; NV � mg: (2.6)

Below we need in some upper estimate of the cardinality of V(U) in the form

#V(U) � N
�
U (2.7)

with some � > 0 . In the case of \maximal" U from (2.1), and with V(U) from
(2.6), one can easily check (2.7) for � = 4 .
For each V 2 V(U) and for every k = 0; 1; : : : ;m� 1 , set

TU;V;k =
1

�
p
dV;2kNV

X
V

(Xi � x0)
k
"U;i;

where

dV;k =
1

NV

X
V

(Xi � x0)
k
; k = 0; 1; : : : ; 2m (2.8)

and
P

V means summation over the index set fi : Xi 2 V g .
De�ne now

%U;V = 1

�
max

0�k�m�1
jTU;V;kj > t

p
logNU

�

where

t = (2 +
p
m)
p
2(� + p):

The parameter p has meaning of the norm in which we measure loss of estimation.
Typically one sets p = 2 .
We say that U is rejected if %U;V = 1 at least for one V 2 V(U) i.e. if %U = 1

where

%U = sup
V 2V(U)

%U;V = 1

 
sup

V 2V(U)

max
0�k�m�1

jTU;V;kj > t

p
logNU

!
:

The adaptive procedure selects among all non-rejected U from U such one which
maximizes NU ,

U
� = argmax

U2U
fNU : %U;V = 0 for all V 2 V(U)g (2.9)
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and

f̂(x0) = f̂U�(x0) = �̂U�;0: (2.10)

For technical reason, we need to bound the considered class of functions. Namely we
suppose that the function f is bounded in absolute value by some known constant

f0 . Accordingly we truncate the estimate f̂ (x0) from (2.10), i.e. we apply the

estimate �f0 _ f̂(x0) ^ f0 .

2.1. The case with m = 2

Below we specify the above procedure for the case of locally linear approximation
when m = 2 .
For a �xed U 2 U , one has

dU;0 = 1;

dU;1 =
1

NU

X
U

(Xi � x0);

dU;2 =
1

NU

X
U

(Xi � x0)
2
;

and also

BU;0 =
1

NU

X
U

Yi;

BU;1 =
1

NU

X
U

(Xi � x0)Yi:

Now

�̂U;0 =
dU;2BU;0 � dU;1BU;1

dU;2 � d
2
U;1

;

�̂U;1 =
BU;1 � dU;1BU;0

dU;2 � d
2
U;1

;

"U;i = Yi � �̂U;0� �̂U;1(Xi � x0):

Next, for every V 2 V(U) , we have

TU;V;0 =
1

�
p
NV

X
V

"i;

TU;V;1 =
1

�
p
dV;2NV

X
V

(Xi � x0)"i;

%U = 1

 
sup

V2V(U)

max
k=0;1

jTU;V;kj > 3:5
p
2(� + p) logNU

!
:

The adaptive estimator f̂(x0) is de�ned now by (2.9) and (2.10).
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3. Main results

In this section we describe some properties of the proposed estimation procedure.
We distinguish between two extreme cases: the function f is regular in a usual sense

near the point of interest x0 or this function has a jump in the nearest vicinity of
this point.
To formulate the results, we introduce an important characteristic of the function

f which describes the accuracy of approximation of f by polynomials. Given
U 2 U , de�ne �U(f) by

�U(f) = inf
P2Pm

sup
x2U

jf(x)� P (x� x0)j

where Pm is the set of all polynomials of degree m�1 . Obviously �U 0(f) � �U(f)
if U 0 � U .
The �rst results claims that if f is \smooth" on U in the sense that �U(f) is

small enough then the procedure rejects U with very small probability.

Proposition 3.1. Let U 2 U be such that

�U(f) � C1(�
2
N

�1
U logNU)

1=2 (3.1)

where

C1 =
p
2(� + p)

Then

Pf (%U = 1) � mN
�p
U :

Basing on this result, we denote by U+ the subset of U whose elements U obey
(3.1),

U+ = fU 2 U : �2
U(f) � 2�2(�+ p)N�1

U logNUg: (3.2)

Proof. Using the model equation (1.1), rewrite the vector of residuals "U in the
form

"U = fU ��UfU + �U ��U�U = fU ��UfU + �U � �U ;

see (2.5). Here fU means the vector with elements f(Xi) , Xi 2 U , and �U =
�U�U . The \test" statistic TU;V;k can be represented now in the form

TU;V;k =
1

�
p
dV;2kNV

X
V

(Xi � x0)
k(f(Xi)��Uf(Xi)) +

1

�
p
dV;2kNV

X
V

(Xi � x0)
k
�i �

1

�
p
dV;2kNV

X
V

(Xi � x0)
k
�U(Xi)

= S1 + S2 + S3: (3.3)

We analyze each sum in this expression separately starting from the �rst one.
By de�nition of �U (f) , there exists for each  > 0 a polynomial P 2 Pm such

that
P

U jf(Xi) � P (Xi � x0)j2 � NU�
2
U(f) +  . To simplify the exposition, we

will suppose that this inequality holds with  = 0 . Since �U is the projector on
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the space generated by polynomials of degree m� 1 , then one has �UP = P and
hence

kf ��Ufk2U = kf � P ��U(f � P )k2U � kf � Pk2U � NU�
2
U(f)

where kfk2U =
P

U f
2(Xi) . Now we get using Cauchy-Schwarz inequality and the

condition (3.1)

S1 =
1

�
p
dV;2kNV

X
V

(Xi � x0)
k(f(Xi)��Uf(Xi))

�
"

1

�2dV;2kNV

X
V

(Xi � x0)
2k

#1=2 "X
V

(f(Xi)��Uf(Xi))
2

#1=2

� �
�1kf ��UfkV � �

�1kf ��UfkU � �
�1
p
NU�U(f)

�
p
2(� + p) logNU : (3.4)

Next, since the random errors �i are Gaussian zero mean, the same is true for the
sum S2 in (3.3). Moreover, using independence of �i 's,

ES2
2 =

1

�2dV;2kNV

X
V

(Xi � x0)
2kE�2i = 1 (3.5)

and hence S2 is standard Gaussian.
It remains to estimate S3 . The vector �U = �U�U is Gaussian as the linear

transform of the Gaussian vector �U . Obviously E�U = 0 . Moreover,

E�U�
T
U = �T

U (�U�
T
U)

�1�UE�U�
T
U�

T
U (�U�

T
U )

�1�U

= �
2�T

U (�U�
T
U)

�1�U�
T
U (�U�

T
U)

�1�U =

= �
2�T

U (�U�
T
U)

�1�U :

Here we have used that E�i�j = �
2
�i;j . This impliesX

U

E�2U (Xi) = trE�U�
T
U

= �
2 tr�T

U (�U�
T
U )

�1�U

= �
2 tr(�U�

T
U )

�1�U�
T
U

� �
2 tr Im = �

2
m

where trA is set for the trace of matrix A and Im means the unit m�m -matrix.
Now, using again the Cauchy-Schwarz inequality, we obtain

ES2
3 =

1

�2dV;2kNV
E

"X
V

(Xi � x0)
k
�U (Xi)

#2

�
"

1

�2dV;2kNV

X
V

(Xi � x0)
2k

#"X
V

E�2U (Xi)

#

� �
�2
X
U

E�2U (Xi) � m: (3.6)
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The sum of two Gaussian variables S2 and S3 is also Gaussian with zero mean
and along with (3.5), (3.6)

E(S2 + S3)
2 = ES2

2 +ES
2
3 + 2ES2S3

� ES2
2 +ES

2
3 + 2(ES2

2ES
2
3)

1=2

� (1 +
p
m)2:

Summing up (3.4) through (3.6), we get

Pf

�
jTU;V;kj > (2 +

p
m)
p
2(�+ p) logNU

�
� P

�
jS2 + S3j > (1 +

p
m)
p
2(� + p) logNU

�
� 2

�
1� �

�p
2(� + p) logNU

��
� expf�(�+ p) logNUg = N

�(�+p)
U :

Here � means the Laplace distribution and we have used that 1��(z) � exp(�z2=2)
for z > 0 . This estimate and the condition (2.7) allow to bound the probability of
rejecting U in the following way

Pf (%U = 1) �
X

V 2V(U)

m�1X
k=0

Pf

�
jTU;V;kj > (2 +

p
m)
p
2(�+ p) logNU

�

� m#V(U)N�(�+p)
U � mN

�p
U

as required.

An interesting feature of the above result is that no assumptions were made about
the design on U . For the next statement, as usual for the local polynomial estima-

tion, we introduce some condition on the design. Given U 2 U , denote by GU the
m�m -matrix with elements gU;k;k0 = dU;k+k0=

p
dU;2kdU;2k0 , k; k

0 = 0; 1; : : : ;m� 1 ,

see (2.8). It is convenient to use the following matrix notation. Let �U be the

diagonal matrix with diagonal elements d
�1=2
U;2k ,

�U = diag(1; d
�1=2
U;2 ; : : : ; d

�1=2
U;2m�2)

Then

GU = �UDU�U : (3.7)

Set also jdetGU j for the absolute value of the determinant of GU . It is easy to see
that jdetGV j � jdetGU j for V � U .

Our condition on the design means that jdetGU j is bounded away from zero.
For this is typically enough to have m design points in general position inside the
interval U .

Proposition 3.2. Let U 2 U , V 2 V(U) and let %U;V = 0 . If jdetGV j > 0 , then

k��1V (�̂U � �̂V )k � C2jdetGV j�1(�2
N

�1
V logNU )

1=2

where k�k2 = �
2
0 + : : :+ �

2
m�1 and

C2 =
�
m+ 2

p
m
�p

2(�+ p):
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Particularly,

jf̂U(x0)� f̂V (x0)j � C2jdetGV j�1(�2
N

�1
V logNU)

1=2

and

j�̂U;k � �̂V;k)j � C2d
�1=2
V;2k jdetGV j�1(�2

N
�1
V logNU )

1=2
; k = 0; 1; : : : ;m� 1:

Proof. Let �U;V be m -vector with coordinates

�U;V;k = �N
�1=2
V TU;V;k =

1

NV

p
dV;2k

X
V

(Xi � x0)
k
"U;i;

=
1

NV

p
dV;2k

X
V

(Xi � x0)
k

"
Yi �

m�1X
k0=0

�̂U;k(Xi � x0)
k0

#
;

k = 0; 1; : : : ;m�1 . Using matrix notation, we can rewrite this equality in the form

�U;V = N
�1
V �V

�
�V YV � �V�

T
V �̂U

�
:

The de�nition of the least square estimate �̂V implies the equality

�V YV = �V�
T
V �̂V

see (2.3). Hence

�U;V = N
�1
V �V�V�

T
V

�
�̂V � �̂U

�
= �VDV (�̂V � �̂U ):

When denoting

�U;V = ��1V (�̂V � �̂U); (3.8)

we get

�U;V = GV �U;V : (3.9)

The fact that %U;V = 0 means

j�U;V;kj � r

where

r = N
�1=2
V �(2 +

p
m)
p
2(� + p) logNU :

Particularly

k�U;V k2 :=
m�1X
k=0

�
2
U;V;k � mr

2
: (3.10)

It remains to understand what follows from this inequality for the vector �U;V =

G
�1
V �U;V see (3.9).

Using Cauchy-Schwarz inequality, one gets by (2.8),

g
2
V;k;k0 =

d
2
V;k+k0

dV;2kdV;2k0
� 1:

Hence the matrix GV is symmetric with elements at most 1 in absolute value.

Therefore all eigenvalues of this matrix are also at most 1 in absolute value. This
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implies easily that all eigenvalues of G�1
V are at most jdetGV j�1 . Therefore, using

(3.10)

k�U;V k = kG�1
V �U;V k � r

p
mjdetGV j�1:

In view of (3.8), the assertion follows.

The next statement is nothing else as the standard decomposition of the local
polynomial estimator into deterministic and stochastic terms, compare Cleveland

(1979), Katkovnik(1985), Korostelev and Tsybakov (1993), Goldenshluger and Ne-
mirovski (1994). Particularly it shows that if the function f is regular on U and

the matrix GU is well de�ned, then the estimator �̂U provides a good accuracy of
estimation of the function f and its derivatives at x0 .

Proposition 3.3. Let U 2 U and let GU be non-singular, see (3.7). Let also

N
�1
U

X
U

jf(Xi)� P�(Xi � x0)j2 � �
2
U (3.11)

with some �U > 0 and � = (�0; : : : ; �m�1) . Here P�(z) = �0+�1z+ : : :+�m�1z
m�1 .

Then one has for the vector �̂U from (2.4)

��1U (�̂U � �) = �UG
�1
U wU + �N

�1=2
U G

�1=2
U U (3.12)

where wU = (wU;0; : : : ; wU;m�1) is a non-random vector in R
m such that

jwU;kj � 1; k = 0; : : : ;m� 1; (3.13)

U � N (0; Im); (3.14)

and for every k = 0; 1; : : : ;m� 1

�̂U;k � �k = d
�1=2
U;2k jdetGU j�1(z1�U + z2�N

�1=2
U 

0

U;k) (3.15)

where jz1j � 1 , jz2j � 1 and 
0

U;k � N (0; 1) .

Proof. Denote �U = ��1U (�̂U � �) . Then, using (2.4), (1.1) and (3.7), we obtain

�U = ��1U (�U�
T
U)

�1�U (YU � �T
U�)

= N
�1
U G

�1
U

�
�U�U (fU ��T

U�) + �U�U�U

�
=

= �UG
�1
U wU + �N

�1=2
U G

�1=2
U U :

Here fU means the vector in R
NU with elements f(Xi) , Xi 2 U . Also we denoted

by wU a non-random vector in R
m de�ned by wU = �

�1
U �U�U (fU � �T

U�) and by

U a random vector in R
m with U = �

�1
G
�1=2
U �U�U�U .

For (3.12), it remains to check (3.13) and (3.14). Note that

(fU � �U�)i = f(Xi) �
m�1X
k=0

�k(Xi � x0)
k

and in view of (3.11)

N
�1
U

X
U

j(fU � �U�)ij2 � �
2
U :
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Next, using the Cauchy-Schwarz inequality

jwU;kj = �
�1
U d

�1=2
U;2k

�����
X
U

(Xi � x0)
k(fU � �U�)i

�����
� �

�1
U

"
NUd

�1
U;2k

X
U

(Xi � x0)
2k

#1=2 "
N

�1
U

X
U

(fU � �U�)
2
i

#1=2
� 1:

Finally we observe that U is a Gaussian vector with the covariance matrix

EU
T
U = �

�2
N

�1
U G

�1=2
U �U�UE�U�

T
U�

T
U�UG

�1=2
U = Im:

The statement (3.15) is a consequence of (3.12). In fact, let us �x some k 2
f0; 1; : : : ;m� 1g . Then d

1=2
U;2k(�̂U;k � �k) is k th component of ��1U (�̂U � �) . Next,

arguing as at the end of the proof of Proposition 3.2 we obtain that j(G�1
U wU)kj �

jdetGU j�1 . In the similar way, the k th component 
0

U;k of the Gaussian vector

G
�1=2
U U is a Gaussian random variable with zero mean and E(0U;k)

2 � jdetGU j�1 �
jdetGU j�2 . This implies (3.15).

The next result can be viewed as a complement to Proposition 3.1. In contrast,
we consider the case when there is a change-point inside the considered interval U .
We shall show that if the size of jump in the function itself or in any of its derivatives
up to the order m � 1 is large enough, then the interval U will be rejected with
probability close to 1.

Proposition 3.4. Let U 2 U and let there be V1; V2 2 V(U) such that

N
�1
Vj

X
Vj

jf(Xi)� P�Vj
(Xi � x0)j2 � �

2
Vj
; j = 1; 2; (3.16)

where �V1; �V2 are vectors of coe�cients and �V1; �V2 are some positive constants.
If, for some k = 0; : : : ;m� 1 ,

j�V1;k � �V2;kj � bV1;k + bV2;k (3.17)

with

bV;k = d
�1=2
V;2k jdetGV j�1

h
C3�N

�1=2
V

p
logNU + �V

i
(3.18)

where V equals V1 or V2 and

C3 = C2 +
p
2p =

p
2p + (m+ 2

p
m)
p
2(� + p); (3.19)

then

Pf (%U = 0) � N
�p
U : (3.20)

Proof. The event %U = 0 implies %U;Vj = 0 , j = 1; 2 . Let V be V1 or V2 . By
Proposition 3.2

j�̂U;k � �̂V;kj � C2jdetGV j�1d�1=2V;2k (�
2
N

�1
V logNU )

1=2
:

Next, by application of Proposition 3.3 one gets

�̂V;k � �V;k = d
�1=2
V;2k jdetGV j�1[z1�V + z2�N

�1=2
V V;k]
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with �V from (3.16), jz1j; jz2j � 1 and V;k � N (0; 1) . Along with these inequalities
and (3.18) we obtain

Pf

�
j�̂U;k � �V;kj > bV;k

�
� P

�
jV;kj >

p
2p logNU

�
� N

�p
U ; V = V1 or V2:

This and (3.17) obviously imply (3.20).

Now we are ready to formulate the main results. We distinguish between two
di�erent situations. First we assume that the function f has no change-points in
the vicinity of the point x0 . In this case, the \ideal" window is to be \symmetric".
Then we explore the case with presence of change-points near the point of estimation
x0 . For such a situation, the \ideal" window is to be one-side oriented.
To begin by, we introduce the class of \symmetric" windows. Let us �x some

positive d0 . We say that some window U = [x0 � a1; x0 + a2] from U belongs to
the class Us(d0) if, for V1 = [x0 � a1; x0] , V2 = [x0; x0 + a2] , one has

1=2 � NV1=NV2 � 2;

jdetGV1j � d0;

jdetGV2j � d0:

The �rst condition here justi�es the using of the termin \symmetric window" for
each U 2 Us(d0) .

Theorem 3.1. Suppose that jf(x0)j � f0 . Let, for some d0 > 0 , there be a window

U = [x0 � a1; x0 + a2] from Us(d0) satisfying also (3.1), U 2 U+ \ Us(d0) .
Then

Ef jf̂(x0)� f(x0)jp � (C4�
2
N

�1
U log n)p=2 +m(2f0)

p
N

�p=2
U

where

C4 = 3d�20 [2C1 + C2 + C(p)]
2
= 3d�20

h
(m+ 2 + 2

p
m)
p
2(� + p) + C(p)

i2
;

(3.21)

and C(p) � 2 .

Discussion 3.1. The above result prompts the following de�nition of the \ideal sym-
metric" window Uf ,

Uf = argmaxfNU : U 2 U+ \ Us(d0)g:

The statement of Theorem 3.1 shows that the adaptive procedure provides with the
accuracy of estimation of the same order as if the \optimal" window Uf were known

and if we just apply the corresponding estimator f̂Uf .

Proof. Let U
� be selected by the adaptive procedure, see (2.9). We distinguish

between two cases: NU� < NU and NU� � NU . (Recall that due to Proposition 3.1,
one has %U = 0 with probability close to 1 and hence typically NU� � NU .)

Note �rst that, by construction, jf̂x0j � f0 and by theorem's condition jf(x0)j �
f0 . Hence jf̂(x0)� f(x0)j � 2f0 and

Ef jf̂(x0)� f(x0)jp1(NU� < NU ) � (2f0)
pPf (NU� < NU ):
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Obviously Pf (NU� < NU) � Pf (%U = 1) and by Proposition 3.1 we obtain

Ef jf̂ (x0)� f(x0)jp1(NU� < NU ) � (2f0)
p
mN

�p
U : (3.22)

Next we consider the case with NU� � NU . Obviously U
� contains either [x0 �

a1; x0] or [x0; x0 + a2] . By making use of the de�nition of the class Us(d0) , we
get for V = U \ U

� that NV � minfNV1; NV2g � NU=3 and jdetGV j � d0 . The
fact that %U� = 0 implies in particular that %U�;V = 0 . Using now the result of
Proposition 3.2 we conclude that

jf̂U�(x0)� f̂V (x0)j � C2(�
2
N

�1
V logNU�)1=2: (3.23)

Next, since V � U , then �V (f) � �U(f) and the application of Proposition 3.3

to f̂V (x0) gives

f̂V (x0)� �V;0 = �N
�1=2
V jdetGV j�1

h
zV;1C1

p
logNU + zV;2V;0

i
(3.24)

where jzV;1j; jzV;2j � 1 and V;0 � N (0; 1) . From the de�nition of �V (f) it follows
that jf(x0) � �V;0j � �V (f) � �U(f) . Along with (3.23) and (3.24) and applying

jdetGV j�1 � d
�1
0 , we conclude

Ef j(f̂ (x0)� f(x0)jp1(NU� � N)

� Ef

���f̂U�(x0)� f̂V (x0) + f̂V (x0)� �V;0 + �V;0 � f(x0)
���p

� �
p
N

�p=2
V d

�p
0 Ej(2C1 + C2)

p
log n+ V;0jp

� [2C1 + C2 + C(p)]p�pd�p0 (3N�1
U log n)p=2:

Here we have used the inequality Ej{ + �jp � ({ + C(p))p for a standard normal
� and some positive constant C(p) � 2 . This and (3.22) prove the assertion.

Now we are in a position to state the result about the quality of estimation near
a change-point. For this we have to be more de�nitive with our procedure. We will
assume that the set U is de�ned as above in Section 2 by two sets of endpoints Al

and Ar ,

U = fU = [al; ar] : al 2 Al; ar 2 Ar; NU � mg:
Let also A = Al [ Ar and let, for each U 2 U , the set V(U) be due to (2.6),

V(U) = fV = [a�; a+] : a�; a+ 2 A; V � U; NV � mg:
Our change-point analysis will be based on Proposition 3.4. Let xcp be the

location of a change-point. We suppose that the function f is regular in some local

left and right neighborhoods of xcp . Let a1 and a2 be the closest from the left
and from the right to xcp points of the grid A . We suppose in what follows that
there are two intervals V1 from the left of xcp with the right end-point at a1 and
similarly V2 from the right of xcp with the left end-point at a2 and such that (3.17)
holds. We denote also by V the interval [a1; a2] between V1 and V2 . The result
stated below describes the quality of estimation at a point x0 which lies beyond
V1; V; V2 . We are therefore interested to take V1 and V2 as small as possible but
the size should be enough to provide (3.17), for more discussion see the next section.
To be more de�nitive, let us assume that the point x0 is from the right of V2 .

Our assumption that the function f is regular from the right of xcp can be formally
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described in a way that there is some U 2 U with the left end-point at a2 such
that �U(f) is small enough, particularly (3.1) is ful�lled.

Theorem 3.2. Let the function f be bounded by f0 . Let V1; V2 and V be intro-
duced above and let vectors �V1; �V2 be such that

N
�1
Vj

X
Vj

jf(Xi)� P�Vj
(Xi � x0)j2 � �

2
Vj
; j = 1; 2:

and also, for some d0 > 0 ,

jdetGVj j � d0; j = 1; 2:

Next, let for some k = 0; 1; : : : ;m� 1 ,

j�V1;k � �V2;kj � bV1;k + bV2;k

where, for V equal to V1 or V2 ,

bV;k = d
�1=2
V;2k jdetGV j�1

h
C3�N

�1=2
V

p
log n + �V

i
C3 being from (3.19).
Let also U be some interval from U+ , see (3.2), with the left end-point a2 and

such that V2 � U , x0 2 UnV2 and

NV1 +NV +NV2 � �NU (3.25)

with some � < 1 . Then

Ejf̂(x0) � f(x0)jp �
�
(1� �)�1C4�

2
N

�1
U logNU

�p=2
+ (m+ 1)(2f0)

p
N

�p=2
U

where C4 is as in Theorem 3.1.

Proof. By Proposition 3.1,

P(%U = 1) � mN
�p
U

and by Proposition 3.4, if some U
0 contains V1 and V2 and if NU 0 � NU , then

P(%U 0 = 0) � N
�p
U :

Using the arguments from the proof of Theorem 3.1 we can reduce our consideration
to the case when %U = 0 and %U 0 = 1 for every U

0 with V1 [ V2 � U
0 .

Let U
� be selected by the adaptive procedure. Since %U = 0 , the de�nition of

U
� implies NU� � NU . Next, U

� does not contain V1 . (Otherwise, U
� contains

also V2 because x0 2 U
� and V2 is between V1 and x0 , hence %U� = 1 does hold.)

Denote U1 = U \ U
� . Condition (3.25) implies that

NU1
� (1 � �)NU : (3.26)

In fact, if U � U
� , then NU1

= NU . If U 6� U
� , since also V1 6� U

� , then obviously

NU� � NV1 +NV +NU1

and (3.26) follows from (3.25). By similar reason, U1 contains V2 and jdetGU1
j �

jdetV2j � d0 .
Now, by Proposition 3.2,

jf̂U�(x0)� f̂U1
(x0)j � C2jdetGU1

j�1(�2
N

�1
U1

log n)�1=2
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and by Proposition 3.3,

f̂U1
(x0)� f(x0) = �N

�1=2
U1

jdetGU1
j�1[z1C1

p
logNU1

+ z2]

where jz1j; jz2j � 1 and  � N (0; 1) .
These inequality allow to complete the proof in the same way as for Theorem 3.1.

4. The case of an equidistant design

Below we specify the above general results to the case of an equidistant design with
the aim to compare our results with the existing in the literature.

We consider the regression model (1.1) with n the design points Xi = i=n in the
interval [0; 1] . We will examine our procedure with the \maximal" U from (2.1).
First we notice that for every interval U with NU � m , one has

jdetGU j � d0

where d0 > 0 depends only on m .
We begin by reformulating the statement of Theorem 3.1 for windows U of the

form U = [x0 � h; x0 + h] with h = k=n , k = m;m + 1; : : : ; n . Obviously
NU � nh+ 1 and NU = 2nh+ 1 if U 2 [0; 1] .

Theorem 4.1. Let jf(x0)j � 1 and let h be such that for U = [x0 � h; x0 + h] \
[0; 1] ,

�U (f) � C1�(h
�1
n
�1 log n)1=2; (4.1)

where C1 =
p
2(� + p) , see Theorem 3.1. Then

Ef jf̂(x0)� f(x0)jp � 2(C4�
2
h
�1
n
�1 log n)p=2

where C4 is due to (3.21).

Discussion 4.1. Now we can also reformulate the de�nition of the \ideal symmetric
window" Uf (see the discussion after Theorem 3.1) in terms of \ideal bandwidth"
hf :

hf = argmaxfh : �[x0�h;x0+h](f) � C1�(h
�1
n
�1 log n)1=2g: (4.2)

The statement of Theorem 4.1 shows that the adaptive procedure provides with the
accuracy of estimation corresponding to the choice of the \ideal bandwidth" hf .
It was proved in Lepski, Mammen and Spokoiny (1994) that each estimation

procedure with such properties is automatically rate-optimal for a wide range of
Sobolev or Besov classes.
Note that more standard way to de�ne the \ideal bandwidth" is based on the

assumption that the function f is m times di�erentiable and the m th derivative
f
(m) is uniformly bounded (at least in some neighborhood of the point x0 ),

jf (m)(x)j �Mm!:

In this case one has easily �[x0�h;x0+h] � Mh
m and the balance equation Mh

m �
�h

�1
n
�1 log n leads to the bandwidth hf � (�2

M
�2
n
�1 log n)1=(2m+1) . However,
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our smoothness condition (4.1) is weaker than the usual one and hence the balance
rule (4.2) seems to be more exibile than the last one.

Now we turn to the case when change-points are incorporated in the model. Let
xcp be a change-point. Without loss of generality we may assume that xcp coincides
with a grid point ai = i=n . As above in Theorem 3.2 we assume that the function f

is regular from the left and from the right of xcp and it has a jump of k th derivative
at xcp with k from 0 to m� 1 . This is understood in the following way. Let some

small h0 > 0 be �xed and let

V1 = [xcp� h0; xcp);

V2 = (xcp; xcp + h0]:

Let also �V1 and �V2 be the coe�cients of the approximating polynomials for V1

and V2 . A jump of k th derivative of f means that �V1;j and �V2;j are equal or
very close to each other for j = 0; : : : ; k � 1 and the di�erence �V1;k � �V2;k di�ers
signi�cantly from zero.
We are mostly interested to describe the minimal distance h0 between the change-

point xcp and the point of estimation x0 which is enough for rate-consistent esti-
mation of f(x0) . Particularly, it is of interest to understand how this distance h0

depends on what derivative f
(k) has a jump and on the jump size.

Theorem 4.2. Let the function f be bounded by 1. Let h0 , V1 , V2 , �V1 and �V2

be introduced above and let, for some k from 0 to m� 1 , one has

j�V1;k � �V2;kj � 2b:

Let also there be some h > 2h0 such that

�(x0;x0+h](f) � C1�(h
�1
n
�1 log n)1=2; (4.3)

�[x0�h;x0)(f) � C1�(h
�1
n
�1 log n)1=2

with C1 from Proposition 3.1. If

h
2k+1
0 � C5b

�2
�
2
n
�1 log n

with

C5 = (C3 + C1)
2
d
�2
0 (2k + 1) = (2k + 1)

hp
2p + (m+ 1 + 2

p
m)
p
2(� + p)

i2
d
�2
0

then for each x0 2 [xcp + h0; xcp + h] or x0 2 [xcp � h; xcp � h0] , one has

Ef jf̂(x0)� f(x0)jp � 2(2C4�
2
h
�1
n
�1 log n)p=2

where C4 is from Theorem 3.2.

Proof. We derive this result from the general result of Theorem 3.2. First we assume
without loss of generality that

NV1 = NV2 = nh0

and similarly for U = (x0; x0 + h]

NU = nh:
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Now condition (4.3) means that U 2 U+ , see (3.2), and condition (3.25) of Theorem
3.2 is ful�lled with � = 1=2 . Next, one has easily for V = V1 or V = V2 and
x0 � xcp + h0

dV;2k = (nh0)
�1
X
Xi2V

(Xi � x0)
2k � h

2k
0 =(2k + 1):

Therefore, all the conditions of Theorem 3.2 are satis�ed and the application of this
theorem leads to the desirable assertion.

Discussion 4.2. We see from the above result that the presence of a change-point
leads to poor quality of estimation only in some neighborhood of this change-point.
The radius h0 of this neighborhood depends on the type of change (jump of a
function itself or its k th derivative) and on the size b of jump,

h0 �
�
b
�2
n
�1 log n

�1=(2k+1)
:

Therefore, the proposed estimation procedure is able to detect about b
2
n= log n (in

order) jumps of a size b > 0 . Similarly, for jumps of k th derivatives, the detectable

number of change-points is about (b2n= log n)1=(2k+1) .

At the conclusion, we discuss shortly the question of optimal change-point esti-

mation. It is well known that a single jump can be estimated with the rate n
�1 , see,

for example, Hinkley (1970), Ibragimov and Khasminski (1981), Korostelev (1987).
Our procedure provides with the rate n

�1 log n . The following result shows that
this extra log-factor is not only the price for adaptation. Even in the case when
at most two jumps are allowed, their locations can be estimated only with the rate
n
�1 log n . Similarly one can show that the optimal rate for estimation of a jump of

k th derivative is (n�1 log n)1=(2k+1) , if more than one jump is considered.
Introduce the class Fh of functions with two values 0; 1 and having two jumps

at points x1 and x2 inside the interval [0; 1] separated with the distance h ,

jx1 � x2j � h:

Theorem 4.3. There exists C > 0 such that for h(n) = Cn
�1 log n and for arbi-

trary estimates x̂1; x̂2 , the following asymptotic bound holds

sup
f2Fh(n)

maxfPf (jx̂1 � x1j > h(n));Pf (jx̂2 � x2j > h(n))g ! 1; n!1:

Proof. As usual for such kind of results, we change the minimax problem by a speci�c
Bayes one. Let some positive C < 2 be �xed. Set h(n) = Cn

�1 log n . Without
loss of generality we assume that nh(n) = C log n is an integer number and that
M = 1=h(n) = n=(C log n) is also integer.
Let us split the whole interval [0; 1] into M subintervals of length h(n) and

denote this partition by I . Each interval I from I contains N = nh(n) + 1 =
C log n+ 1 design points.
Now we assume that our function f is random and with probability M

�1 it

coincides with the function fI which is one on I and zero outside. Now our original
problem can be clearly reduced to the problem of estimating I by observed data.
Denote by ZI;n the log-likelihood

ZI;n = log(dPfI=dP0)
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where P0 corresponds to the function f � 0 . One obtains easily from (1.1) that

ZI =
1

2

X
I

�
Y

2
i � (Yi � 1)2

�
=
X
i

Yi �N=2:

Now the Bayes estimate Î of I for the indicator loss function 1(Î 6= I) is of obvious
structure:

Î = arginf
I

1

M

X
I 0 6=I

expfZI 0g = argmax
I

ZI :

Let us �x an arbitrary I0 2 I and consider the probability PI0(Î 6= I0) where the
measure PI0 corresponds to the function fI0 . First we note that one has under
PI0 with probability 1 X

I0

Yi =
p
N�I0 +N;

X
I

Yi =
p
N�I ; I 6= I0

where �I = N
�1=2

P
I �i , and obviously all �I are standard normal. Now

PI0(Î 6= I0) = P

�
max
I 6=I0

�I �
p
N=2 > �I0 +

p
N=2

�
= P

�
max
I2I

�I >

p
N

�
:

It is well known, see e.g. Petrov (1975), that for each � < 2

P

�
max
I2I

�I >

p
� logM

�
! 1; M !1:

Therefore, the desirable assertion follows if � logM > N or equivalently

C log n+ 1 < � log(n=(C log n)):

It remains to observe that the latter property holds true for C < � < 2 and n

large enough.



20 SPOKOINY, V.G.

References

[1] Cleveland, W.S. (1979) Robust locally weighted regression and smoothing scatterplots. J. of
the American Stat. Spc., 74, 829{836.

[2] Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard, D. (1994). Wavelet shrinkage:
asymptopia? J. Royal Statist. Soc., Ser.B, 57, 301{369.

[3] Goldenshluger, A. and Nemirovski, A. (1994) On spatial adaptive estimation of nonparametric
regression. Technical Report 5/94, Technion, Haifa.

[4] Hall, P., Kerkyacharian, J. and Picard, D. (1996) On the minimax optimality of block thresh-
olded wavelet estimators. Unpublished manuscript.

[5] Hall, P. and Patil, P. (1995) Formulae for mean integrated squared error of nonlinear wavelet-
based density estimators. Ann. Statist. 23, 905{928.

[6] Hinkley, D. (1970) Inference about a change point in a sequence of random variables. Biomet-

rica 57, 41{58.
[7] Ibragimov, I. and Hasminski, R. (1981) Statistical Estimation: Asymptotic Theory. Springer

Verlag, New York{Heidelberg{Berlin.
[8] Katkovnik, Yu.A. (1985) Nonparametric Identi�cation and Data Smoothing: Local Approxi-

mation Approach. Nauka, Moscow (in Russian).
[9] Korostelev, A. (1987) On minimax estimation of a discontinuous signal. Theory Probab. Appl.

32, 727{730.
[10] Korostelev, A. and Tsybakov, A. (1993) Minimax Theory of Image Reconstruction. Springer

Verlag, New York{Heidelberg{Berlin.
[11] Lepski, O., Mammen, E. and Spokoiny, V. (1995) Ideal spatial adaptation to inhomogeneous

smoothness: an approach based on kernel estimates with variable bandwidth selection. Annals
of Statistics, to appear.

[12] Lepski, O. and Spokoiny, V. (1994) Optimal pointwise adaptive methods in nonparametric
estimation. Annals of Statistics, to appear.

[13] M�uller, H. (1992) Change-points in nonparametric regression analysis. Ann. Statist. 20, 737{
761.

[14] Oudshoorn, C. (1995). Minimax estimation of a regression function with jumps: attaining the
optimal constant. Technical Report 934, Department of Mathematics, University Utrecht.

[15] Petrov, V.V. (1975) Sums of Independent Random Variables. Springer, New York.
[16] Wang, Y. (1995) Jump and sharp cusp detection by wavelets. Biometrica 82, 385{397.
[17] Wu, J. and Chu, C. (1993) Kernel type estimators of jump points and values of a regression

function. Ann. Statist. 21, 1545{1566.
[18] Yin, Y. (1988) Detection of the number, locations and magnitudes of jumps. Comm. Statist.

Stochastic Models 4, 445{455.

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39,

10117 Berlin, Germany., E-mail: spokoiny@wias-berlin.de


