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ABSTRACT. New method of adaptive estimation of a regression function is pro-
posed. The resulting estimator achieves near optimal rate of estimation in the
classical sense of mean integrated squared error. At the same time, the estimator
is shown to be very sensitive to discontinuities or change-points of the underlying
function f or its derivatives. For instance, in the case of a jump of a regression
function, beyond the interval of length (in order) n~!logn around change-points
the quality of estimation is essentially the same as if the location of this jump were
known. The method is fully adaptive and no assumptions are imposed on the de-
sign, number and size of jumps. The results are formulated in a non-asymptotic
way and can be therefore applied for an arbitrary sample size.

1. Introduction

The change-point analysis which includes sudden, localized changes typically occur-
ring in economics, medicine and the physical sciences has recently found increasing
interest, see Miiller (1992) for some examples and discussion of the problem. There
are several aspects of change-point problems addressed in the literature which rely
on

e type of the model (regression models, distribution or spectral density models
etc.),
e type of observations (discrete or continuous),
e assumptions about discontinuities incorporated in the model:
- type of discontinuities (jumps, change-points, cusps)
- one or more change-points;
- the number and sizes (magnitude) of change-points are known or not;
e assumption on the model function (parametric or nonparametric).

We restrict ourselves to change-points in the regression model with nonparametri-
cally described regression function. A comparison of parametric and nonparametric
approaches lies beyond the scope of this paper. We note only that the nonpara-
metric approach provides with much more flexibility without strong influence of the
quality of estimation, for more discussion see Miiller (1992).

The choice of regression model is motivated by statistical practice, especially
in econometrics. A discussion of related problems for other models (for instance,
distribution density model) allowing change-points is a subject of another paper.

In the regression nonparametric analysis of function with change-points, one may
highlight two different directions . The first approach deals with a generally smooth
curve allowing a finite number of change-points. Further one may focus either on es-
timation of locations and magnitudes of jumps, as in Korostelev (1987), Yin (1988),
Wang (1995), or on estimating the function itself. In the last case, some pilot near
optimal estimates of locations of change-points are still required as a technical step
in the estimation procedure. When all the locations of change-points have been
estimated, one may estimate the function separately on each interval between every
neighbor points, see Miiller (1992), Wu and Chu (1993), Oudshoorn (1995). The
most remarkable fact here, due to Korostelev (1987), is that the location of a single
jump of a given magnitude can be estimated with the rate n=! where n is the num-
ber of observations. This result can be generalized on the case with unknown jump
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size and the case of jump of some derivative of the function f, Miiller (1992), and
even on the case with a finite unknown number of change-points of different order,
Yin (1988), Oudshoorn (1995). As a price for such kind of adaptation, the rate of
estimating the locations of jumps is worse by some logarithmic factor. The loca-
tion of a jump of kth derivatives can be estimated with the rate about n=!/(k+1)
multiplied again by some log-factor. However, this rate is still much better than
in estimating the corresponding derivative of the regression function and such sort
of procedures allows to perform asymptotically optimal estimation of a regression
function with change-points, Oudshoorn (1995).

Another approach to this problem is connected with the concept of spatial adap-
tive estimation. The problem of adaptive and spatially adaptive nonparametric
estimation is now well developed, see e.g. Nemirovski (1985), Donoho et al (1994),
Lepski, Mammen and Spokoiny (1994), Delyon and Juditski (1994), Goldenshluger
and Nemirovski (1994), Lepski and Spokoiny (1995) among others. A variety of
different adaptive methods can be now applied to estimation of a function with
inhomogeneous smoothness characteristics: non-linear wavelet procedure, kernel es-
timation with a variable bandwidth, local polynomials with a variable window etc.
For all such methods it is shown near optimality in the minimax sense for mean
integrated squared errors.

In the context of spatially adaptive nonparametric estimation, change-points or,
more generally, cusps in the curve can be viewed as a sort of inhomogeneous be-
havior of the estimated function. One may therefore apply the same procedure (for
instance nonlinear wavelet estimation) and the analysis is focusing on the quality
of estimation when change-points are incorporated in the model. Under this ap-
proach, the main intention is to estimate the regression function (not locations of
change-points). It is shown in Hall and Patil (1995), Hall, Kerkyacharian and Picard
(1996) that the wavelet-based estimators provide the same rate of estimation even
if a growing number of jumps is allowed.

The important advantage of this approach is that the estimating procedure is
universal and it is not specified to change-point analysis. On the other side, this
approach delivers very poor qualitative information about presence, number and
locations of change-points. Moreover, the criteria based on mean integrated errors
are not very sensitive to local quality of estimation: having obtained the optimal
rate in global estimation, one gets relatively poor quality of estimation in small
vicinities of change-points. The reason for that can be explained on the example of
kernel estimation with a variable bandwidth. It was shown in Lepski, Mammen and
Spokoiny (1994) that there is a procedure of such kind which provides the optimal
rate of estimation over a wide range of Besov classes containing particularly functions
with change-points. However, this procedure applies everywhere a symmetric kernel
and the resulting estimator has a “boundary (or Gibbs) effect” in a vicinity of radius
h around each change-point, i being the applied bandwidth. At the same time,
imagine that the locations of change-points were known. Then it would be obviously
much better to apply one-side kernels near change-points.

The aim of the present paper is to propose a method which simultaneously adapts
to inhomogeneous smoothness of the estimated curve and which is sensitive to dis-
continuities of the curve or its derivatives. We develop the pointwise adaptive ap-
proach by selecting not only the applied bandwidth but also the geometry of the
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window: we search for a maximal window containing the point of estimation in
which the function f is “smooth”. (This can be understood in the sense that it is
well approximated by polynomials.) Such a procedure selects automatically between
windows without change-points.

We consider the regression model

K:f(XZ)—I-&, izl,... , 1, (11)
where X; € R', i = 1,...,n, are given design points and & are individual in-
dependent random errors. Below we will suppose that &, ¢+ = 1,... ,n, are i.i.d.

N(0,0?%) with a given noise level o. This assumption can be easily relaxed in a
usual way.

The idea of the proposed method is quite simple and natural. We assume that the
function f is well approximated by a polynomial Py(-—x¢) in some neighborhood U
of the point of interest xq, where # is the vector of coefficients of this polynomial.
Basing on this assumption, for each feasible interval U containing =z, one can
construct an estimator § of 6 by the observations {Y;, X; : X; € U} and then
calculate the residuals &; = Y; — P;(X; — 20). Next we test the hypothesis that the
residuals ¢; = ¢,(X;) can be treated on the interval U as a pure noise. Finally the
procedure selects the maximal (in length) interval for which this hypothesis is not
rejected. We show that this method provides both spatial adaptive estimation in
the sense of mean integrated squared losses and high sensitivity to change-points of
f.

The benefit of this approach is that it is very general in nature and it is not
specified to estimation of a regular function with change-points. One may therefore
expect that this method can be extended on the case of multi-dimensional regression
or applied to image denoising where the quality of estimation near the boundary
of images is of special importance, see Korostelev and Tsybakov (1994). One more
important feature of the proposed pointwise approach is that it allows to proceed
with an arbitrary design. We do not need to assume random or regular (for instance
equidistant) design. With it, the resulting quality of estimation depends on the local
design properties near the point xg.

The paper is organized as follows. In the next section we present the procedure,
Section 3 contains the results describing the quality of this procedure. In Section 4
we specify the general results to the case of the equidistant design. We show in
particular that the locations of jumps can be estimated with the rate n=!logn and
that this rate cannot be improved if more than one jump is allowed.

2. Estimation Procedure

Let data Y;, X;, ¢ =1,... ,n obeys the model (1.1). We will estimate f(xzq) for a
given g .

First we describe the family U of intervals containing zo. This family can be
introduced in different ways. One possible choice is to consider all intervals with the
edges at design points,

U= {[XZ,XZ/] : XZ S s S XZ/} (21)
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This choice is theoretically possible and it allows to make very precise estimation
but it leads to a serious computational effort. One may decrease the cardinality of
U and hence the computational difficulties by selecting two sets of points A; = {q; :
a; < xo} and A, ={a, : a, > 20} and by setting

U={U =aa):a € A, a, € A, Ny > m}. (2.2)

The sets A; and A, should be “dense” enough near xg to provide the desirable
quality of estimation. For instance, for the case of a regular or random design
with a positive density, one may take A; and A, in the form of geometrical grids,
A; = {zo —ab™*,0 < k <logn} and similarly for A,. Here ¢ >0 and > 1. In
this case, the set ¢ has cardinality log?n. For an arbitrary design, one can define
the sets A; and A, in a similar way providing that each U from U contains at
least m design points X;.
Given U € U, set Ny for the number of the points X, falling in U,

NU:#{XiiXZ' - U}

We will suppose that Ny > m for each U € U.

Now we construct by data {Y;, X; : X; € U} a polynomial P of degree m — 1
which approximates the underlying function f on U . For this we apply the standard
least squared method. We consider first the general case with an arbitrary integer
m and then specify the procedure for m = 2 which seems to be reasonable for
practical applications.

Let m > 1 be given. By # we will denote a column-vector in R™, 6 =
(0o, ... ,0,_1) and by Ps(z) the polynomial with the coefficients 0, Ps(z) =
Og+ 0,2+ ...40,,_,2"". Define éU by the least squared method

0pr := arginf Y, — Py(X; — 20))%
U g EU:( o ( 0))

For an explicit representation of éU, it is useful to introduce matrix notation. Let
Y be the m x Npy-matrix with elements s;; = (X; — 20)*, k=0,1,... ,m—1,
and let Yy be the Ny -column vector with elements Y; where only indices ¢ with
X, € U are considered. Then the vector éU satisfies the equation

SuXhy = oYy (2.3)

If the matrix Dy = N[}lZUZg is non-singular that is det Dy # 0, then éU can be
defined by

0y = (SuSh) 'Sy Yy, (2.4)

Otherwise one can use the same representation, understanding (Y%7 )~ as pseudo-
inverse matrix.

The vector O provides with the non-parametric estimators of the function f
and its derivatives at xo. Namely, one can use for estimation of f the value of
the approximating polynomial F; = and its derivatives at xo. Thus, k!éuk is the

estimator of f(k)(:zjo) . Particularly, fU(:L'O) = éUp is the estimator of f(xo).
The residuals ey; at points X; € U are defined by Y; — P (Xi — xg), that is

cui =Y — éU,O — éU,l(Xi — o) —...— éU,m—l(Xi — o)™
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Using matrix notation, one gets

ev =Yy — SE0y = Yy — SH(SuSh) T S0 Ye = Yo — 1Yy, (2.5)
Note that Iy = SH(XySf )™ Sy is projector from the space RNV on the linear
subspace generated by polynomials of degree m — 1 with knots X; € U.

Our adaptation method is based on the analysis of the residuals ey;. We intro-
duce another family V(U) of intervals V', each of them is a subinterval of U. As
above for the family U , we require that Ny := #{X; € V} > m forall V € Y(U).
Also we require that V =UNU" € Y(U) for each U € U .

A reasonable way to define this family is as follows

VU)={V=U\Uor V=UNU:U €U, Ny >m}.
If the set U is of the form (2.2), then one has obviously
VU)=AV =la_,aq] a—,ay € AUA,, V CU Ny > m}. (2.6)
Below we need in some upper estimate of the cardinality of V(U) in the form

#V(U) < N (2.7)

with some o« > 0. In the case of “maximal” ¢ from (2.1), and with V(U) from
(2.6), one can easily check (2.7) for a =4.
For each V € V(U) and for every k=0,1,... ,m — 1, set

1

Tovey = —F—= g Xi — xo)*ev,,
UvE =~ T & ( xo) ey,
where
1
dvjp = 7 Y (Xi—zo)f,  k=0,1,....2m (2.8)
v
v

and ), means summation over the index set {¢: X; € V}.
Define now

ovyv =1 ( max_ |Tv v > t\/log NU>

0<k<m—

where

t=(2+vm)y2(a+p).

The parameter p has meaning of the norm in which we measure loss of estimation.
Typically one sets p = 2.

We say that U is rejected if ppy =1 at least for one V € V(U) i.e. if oy =1
where

ov= sup opy =1| sup max [|Tyvg >ty/log Ny |.
Vev(U) Vey(U)osksm—1

The adaptive procedure selects among all non-rejected U from U such one which
maximizes Np,

U = argmax{Ny : pyy =0 for all V € V(U)} (2.9)

Ueld
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and

A

flzo) = ]EU*(J/'O) = éU*,O- (2.10)

For technical reason, we need to bound the considered class of functions. Namely we
suppose that the function f is bounded in absolute value by some known constant
fo. Accordingly we truncate the estimate f(:z;o) from (2.10), i.e. we apply the
estimate — fo V f(:z;o) A fo.

2.1. The case with m =2

Below we specify the above procedure for the case of locally linear approximation
when m = 2.

For a fixed U € U , one has
dU70 — 1,

1
dyp, = N—U%:(Xi—l'o)a

1 2
dU,z = N—UZ(Xi—J?O)a

U
and also
1
B = — Y;,
1
By, = N—U %:(XZ - SI?O)YZ
Now
p _ dyaBuo—duiBua
U,O - dU72 _ d%Ll 2
p _ Bui—duiBug
U — 9
! dua — d3r,
cvi = Yi— éU,O — éU,l(Xi — Zg).
Next, for every V € V(U), we have
1
1 = Eiy
1
Tovy, = —F—— (X; — xo)ey,

oy/dvaNy zv:

ov = 1| sup max|Tyyi > 3.5\/2(a +p)log Ny | .
vev(U) k=01

The adaptive estimator f(:z;o) is defined now by (2.9) and (2.10).
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3. Main results

In this section we describe some properties of the proposed estimation procedure.
We distinguish between two extreme cases: the function f isregular in a usual sense
near the point of interest xg or this function has a jump in the nearest vicinity of
this point.

To formulate the results, we introduce an important characteristic of the function
f which describes the accuracy of approximation of f by polynomials. Given

U elU, define Ay(f) by
Au(f) = jnf sup|f(z)— Pz — xo)|

where P, is the set of all polynomials of degree m—1. Obviously Ap/(f) < Ap(f)
it U'cU.

The first results claims that if f is “smooth” on U in the sense that Ay(f) is
small enough then the procedure rejects U with very small probability.

Proposition 3.1. Let U € U be such that

Au(f) < Cy(a* Nt log Npy)Y/? (3.1)

where

C1 = v2(a+p)
Then
Pslov = 1) < mNy".

Basing on this result, we denote by U™ the subset of ¢ whose elements U obey

(3.1),
Ut ={U el : AL(f) < 20%(a + p)N; " log Ny} (3.2)

Proof. Using the model equation (1.1), rewrite the vector of residuals ey in the
form

ev = fuv—lvfu+ & —véy = fu —Hufv + & — (o,

see (2.5). Here fy means the vector with elements f(X;), X; € U, and (y =
& . The “test” statistic Ty vy, can be represented now in the form

Tove = ——— S (X — o) (F(X0) — o f(X) +

o+/dva Ny 5

1 1
—  N(X =) — ———— ST (X — 20) (X
oy/dy 2k Nv XV:( 0) o/ dvar Ny XV:( o) Cu(Xs)

We analyze each sum in this expression separately starting from the first one.

By definition of Ay(f), there exists for each v > 0 a polynomial P € P,, such
that Y . [f(X:) — P(X; — 20)* < NuAZL(f) + v. To simplify the exposition, we
will suppose that this inequality holds with v = 0. Since Il is the projector on
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the space generated by polynomials of degree m — 1, then one has IlyP = P and
hence

1f =Tufll = I1f = P =Tu(f = P)lle < If = Pllo < NuAu(f)

where ||f||Z = > f2(Xi). Now we get using Cauchy-Schwarz inequality and the
condition (3.1)

1
S, = Xi — 20)*(f( X)) = Ty f(X;
U\/m EV:( ) (f( ) Uf( ))
1/2 1/2
1 5 )
= o?2dy 2 Ny zv:(XZ — o) k] lz‘/:(f(XZ) — Iy f(X5))
< o Hf —Tuflly <o Mf —Tufllu < o'/ NulAu(f)
< /2(a+p)log No. (3.4)

Next, since the random errors ¢; are Gaussian zero mean, the same is true for the
sum Sz in (3.3). Moreover, using independence of ¢;’s,

1

ES2= ———— ) (X; —20)*E¢ = 3.5
2 UQdV,ZkNV EV:( xO) fz ( )

and hence S, is standard Gaussian.
It remains to estimate S;. The vector (¢ = llyéy is Gaussian as the linear

transform of the Gaussian vector & . Obviously E(y = 0. Moreover,
Ew(: = Sp(SvS) ' SrEé Sn (SuS) T
= YH(SuS) T S (EE) T Sy =
= oL EpEh) 'y,
Here we have used that E&;¢; = 026, ;. This implies
Y EG(X) = B
U
= StrXH(SeSh) Sy
= o’ tr(zUzT)—lezg
< o*trl, =o*m

where tr A is set for the trace of matrix A and [,, means the unit m x m-matrix.
Now, using again the Cauchy-Schwarz inequality, we obtain

D (Xi = o) (u (X))

1 2k 2
< [m Z/:(Xi—%) ] Z/:ECU(Xi)]

< o) EG(X;) <m. (3.6)

2
1
ES? = —— __E
? o2dy o Ny
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The sum of two Gaussian variables S; and S5 1s also Gaussian with zero mean

and along with (3.5), (3.6)
E(S; + S3)

ES? + ES2 4 2ES,S;
< ES? +ESZ+2ESIESH?
< (1+vm)™
Summing up (3.4) through (3.6), we get
Py (IToval > (2 + Vi) v/2(a + p)log No )
<P <|52 4 85| > (14 Vm)y/2(a + p) log NU>

<2 <1 -0 <\/2(a + p)log NU>>
< exp{—(a+p)log Ny} = N+,

Here ® means the Laplace distribution and we have used that 1—®(2) < exp(—2z?/2)
for z > 0. This estimate and the condition (2.7) allow to bound the probability of
rejecting U in the following way

Pilor=1) < 3 3Py ([Thwul > 2+ Viy/2(a + plog Nr

VEV(U) k=0
< m#V(U) NGO < mN?
as required. O

An interesting feature of the above result is that no assumptions were made about
the design on U . For the next statement, as usual for the local polynomial estima-
tion, we introduce some condition on the design. Given U € U , denote by Gy the

m X m-matrix with elements gy = dvgr /v/dvokdvop , kK =0,1,... ,m—1,

see (2.8). It is convenient to use the following matrix notation. Let Ay be the

. . . . _1 2
diagonal matrix with diagonal elements dU,z/k )
AU = dlag(l, d[_]}2/27 LI 7d[;712/7r2L—2)
Then
GU = AUDUAU- (37)

Set also |det Giyy| for the absolute value of the determinant of Gy . It is easy to see
that |det Gy | <|det Gy| for V C U.

Our condition on the design means that |det G| is bounded away from zero.
For this is typically enough to have m design points in general position inside the
interval U .

Proposition 3.2. Let U e U, V € V(U) and let oy =0. If |detGy| >0, then
AT (0 — Oy)|| < Cy|det Gy |~ (02 N;  log Nyy)'/?
where ||0||* =02+ ...+ 0> | and

Cy = (m + 2%) V2(a + p).
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Particularly,
fulwe) — fr(20)] < Gl det G| (0> Ny log Nep) 1/
and
|éU,k — éV,k)| S 02 V12/k2| det Gv| 1( QN‘;l 10g ]\/YU)l/z7 k = 0, 1, e M — 1

Proof. Let 1y be m-vector with coordinates

1

Ny /dvap zv:

(X; — xo)Fers,

NV\/dV2kZ ZeUk ) ] 7

k=0,1,... ,m—1. Using matrix notation, we can rewrite this equality in the form

~1/2
ovke = oNy Tluyy =

UV = N‘;IAV <ZVYV — szgéU> .
The definition of the least square estimate Oy implies the equality
Sy = Sy sty
see (2.3). Hence
UV = N;lAvaZ‘T/ <év — éU> = Ava(éV — éU)

When denoting

iy = Ay (Ov — 0p), (3.8)
we get
wv = Gyvnuy. (3.9)
The fact that gy = 0 means
[Tove] <7
where
r—N1/2 (2+\/_\/2a+p )log Ny.
Particularly
m—1
lrovl® = vy < mr’. (3.10)
k=0

It remains to understand what follows from this inequality for the vector nyy =
G‘_/lTUJ/ see (3.9).
Using Cauchy-Schwarz inequality, one gets by (2.8),

Y
ViR

2
vk — 5 1
dv ok dv ok

Hence the matrix Gy is symmetric with elements at most 1 in absolute value.
Therefore all eigenvalues of this matrix are also at most 1 in absolute value. This
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implies easily that all eigenvalues of G' are at most |det Gy|~'. Therefore, using

(3.10)
oyl = |GV oy || < rv/m| det Gy |7

In view of (3.8), the assertion follows. O

The next statement is nothing else as the standard decomposition of the local
polynomial estimator into deterministic and stochastic terms, compare Cleveland

(1979), Katkovnik(1985), Korostelev and Tsybakov (1993), Goldenshluger and Ne-
mirovski (1994). Particularly it shows that if the function f is regular on U and

the matrix Gy is well defined, then the estimator 0y provides a good accuracy of
estimation of the function f and its derivatives at xg.

Proposition 3.3. Let U € U and let Gy be non-singular, see (3.7). Let also

NGUY A = Po(X — wo)* < 62 (3.11)
U

with some &y > 0 and 6 = (0o,... ,0,,_1). Here Py(2) =0+ 6124+...+0,_12"".
Then one has for the vector Oy from (2.4)

AG By — 0) = 8uGtwy + o NG Py (3.12)
where wy = (Wyo, ... ,WUm—1) is a non-random vector in R™ such that
lwp k] <1, k=0,....,m—1, (3.13)
o ~ N(0,1,), (3.14)
and for every k=0,1,... ;m—1
Oug — Oy = dyy 'y | det G|~ (2100 + 220 NG P (3.15)

where [21] <1, |zo| <1 and 5, ~ N(0,1).

Proof. Denote ny = A[_Jl(éU — ). Then, using (2.4), (1.1) and (3.7), we obtain
o= AF(SeE)) T Su(Yo - Bi0)
= N;'GF' [AvEu(fo — S50) + AvSuéo] =
= SuGitwy + o NG PGE
Here frr means the vector in RNV with elements f(X;), X; € U. Also we denoted
by wy a non-random vector in R™ defined by wy = §;'AuXy(fu — Xk50) and by

~u a random vector in R™ with ~p = U_IG[_JI/QAUZUfU.
For (3.12), it remains to check (3.13) and (3.14). Note that

m—

(fu —Xub); 0p(X; — x0)"

k=0

,_.

and in view of (3.11)
NG N (fo = Sob)l < 6

U
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Next, using the Cauchy-Schwarz inequality

sl = 5 dy [ (X = o) (fir — Sub)s
U
1/2 1/2
< [NUdl_Jsz i — o) ] [NEIZ(JCU—EUQ)?] <1
U

Finally we observe that i is a Gaussian vector with the covariance matrix
Evovd = o NG G P A Su e el ST A Gy = 1.

The statement (3.15) is a consequence of (3.12). In fact, let us fix some k €

{0,1,... ,m —1}. Then d;{;k(ew — 0;) is kth component of A;'(6y — ). Next,

arguing as at the end of the proof of Proposition 3.2 we obtain that |(Gy'wr)i| <

|det G|™". In the similar way, the kth component Yy, of the Gaussian vector

G[_Jl/2’yU is a Gaussian random variable with zero mean and E(7;,)* < |det Gy|™! <
| det G7|7*. This implies (3.15). O

The next result can be viewed as a complement to Proposition 3.1. In contrast,
we consider the case when there is a change-point inside the considered interval U .
We shall show that if the size of jump in the function itself or in any of its derivatives
up to the order m — 1 is large enough, then the interval U will be rejected with
probability close to 1.

Proposition 3.4. Let U € U and let there be Vi, Vo € V(U) such that

VZ|f — Py (Xi—2o)” <67, j=1,2 (3.16)

where Oy, , 0y, are vectors of coefficients and dy,,dy, are some positive constants.

If, for some k=0,... , m—1

Y

|0v, & — Ovy k| > by, & + by i (3.17)
with
by = dy | det Gy | {cgazv;” 2, /log Ny + 54 (3.18)

where V' equals Vi or V5 and
Cy = Cy+v/2p = /2p + (m + 2v/m)\/2(a + p), (3.19)
then
Ps(ov =0) < N;”. (3.20)

Proof. The event oy = 0 implies oyy, =0, 5 =1,2. Let V be Vi or V5. By
Proposition 3.2

(04 — v < Col det Gy |71y Y2 (0 Nyt log Ny )2,
Next, by application of Proposition 3.3 one gets
éVJg — GV,k = d‘_/712/k2| det Gv|_1[Zl(SV —|— ZQUN‘;I/27V7k]
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with §y from (3.16), |z1], |22] <1 and 4y ~ N(0,1). Along with these inequalities
and (3.18) we obtain

Pf <|éU,k — 0V,k| > bV,k) < P <|7V,k| > \/2p10g NU> < N[;p, V=V or V.
This and (3.17) obviously imply (3.20). O

Now we are ready to formulate the main results. We distinguish between two
different situations. First we assume that the function f has no change-points in
the vicinity of the point xq. In this case, the “ideal” window is to be “symmetric”.
Then we explore the case with presence of change-points near the point of estimation
xg. For such a situation, the “ideal” window is to be one-side oriented.

To begin by, we introduce the class of “symmetric” windows. Let us fix some
positive dy. We say that some window U = [zg — ay, 29 + a2] from U belongs to
the class Us(dy) if, for Vi = [ — a1, x0], Va2 = [w0, 20 + a2], one has

1/2 < Ny, [Ny, <2,
| det Gy, | > do,
| det Gy, | > do.

The first condition here justifies the using of the termin “symmetric window” for

each U € U (dy) .

Theorem 3.1. Suppose that |f(xo)| < fo. Let, for some dy > 0, there be a window
U =lzg— a1, o + az] from Us(dy) satisfying also (3.1), U € Ut NU(dy) .
Then

Ef|f(x0) — f(w0)|? < (Cao? Nitlogn)P/? + m(2fo)? Ny"'?

where
Cy = 3d32[2C, + Cy + C(p)] = 3d52 | (m + 24 2v/m)/2(a + p) + C(p)} : :
(3.21)
and C(p) <2.

Discussion 3.1. The above result prompts the following definition of the “ideal sym-
metric” window Uy,

Uy = argmax{ Ny : U € Ut NU(do)}.
The statement of Theorem 3.1 shows that the adaptive procedure provides with the

accuracy of estimation of the same order as if the “optimal” window U; were known

and if we just apply the corresponding estimator fo .

Proof. Let U* be selected by the adaptive procedure, see (2.9). We distinguish
between two cases: Nyx < Ny and Nys > Ny . (Recall that due to Proposition 3.1,
one has oy = 0 with probability close to 1 and hence typically Ny« > Ny .)

Note first that, by construction, |fx0| < fo and by theorem’s condition |f(x0)| <
fo. Hence |f(xo) — f(x0)] < 2fo and

Ey|f(wo) = [(20)P1(Nue < Nu) < (2fo)"Py(Nue < Nu).
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Obviously Ps(Nyx < Ny) < Ps(oy = 1) and by Proposition 3.1 we obtain
E;|f(20) — f(z0)PL(Nu= < Nut) < (2fo)PmN;". (3.22)

Next we consider the case with Np» > Niy. Obviously U* contains either [z¢ —
ay, o] or [xo,xo + az]. By making use of the definition of the class U(dp), we
get for V. = UNU* that Ny > min{Ny,, Ny, } > Ny /3 and |det Gy | > dy. The
fact that gy« = 0 implies in particular that gy«y = 0. Using now the result of
Proposition 3.2 we conclude that

| fue(20) = fv (o) < Cs(0” Ny log Nuw) '/, (3.23)

Next, since V C U, then Ay (f) < Ap(f) and the application of Proposition 3.3
to fv(xo) gives

fv(l‘o) — 0V,0 = O'N‘;l/2| det Gv|_1 {ZVJCl\/ 10g NU + ZV,2’YV,O} (324)

where |zv], |2v2| <1 and yyvo ~ N (0,1). From the definition of Ay (f) it follows
that |f(zo) — Ovol < Av(f) < Ap(f). Along with (3.23) and (3.24) and applying
|det Gy |7* < dj', we conclude

E/|(f(20) = f(xo)PL(Nu» > N)
< Ej |fur(20) = fv(w0) + fv(w0) = Ovio + Ovo — f(x0)
< " N2dSTE|(2C) + C)\/logn + vl
< [2C) + Cy 4 C(p)|PoPdy? (3N log n)P/2.

Here we have used the inequality E|s + £P < (52 + C(p))? for a standard normal
¢ and some positive constant C'(p) < 2. This and (3.22) prove the assertion. O

p

Now we are in a position to state the result about the quality of estimation near
a change-point. For this we have to be more definitive with our procedure. We will
assume that the set U is defined as above in Section 2 by two sets of endpoints A,

and A, ,
U=A{U=a,a]:a € A a, € A., Ny > m}.
Let also A= A U A, and let, for each U € U, the set V(U) be due to (2.6),
V) = {V = lasay) saray € AV CU, Ny > m}.

Our change-point analysis will be based on Proposition 3.4. Let z., be the
location of a change-point. We suppose that the function f is regular in some local
left and right neighborhoods of z.,. Let a; and a; be the closest from the left
and from the right to ., points of the grid A. We suppose in what follows that
there are two intervals Vi from the left of x., with the right end-point at a; and
similarly V2 from the right of ., with the left end-point at a2 and such that (3.17)
holds. We denote also by V' the interval [aj,a3] between Vi and Vz. The result
stated below describes the quality of estimation at a point xg which lies beyond
Vi, V, V5. We are therefore interested to take Vi and V, as small as possible but
the size should be enough to provide (3.17), for more discussion see the next section.

To be more definitive, let us assume that the point z¢ is from the right of V5.
Our assumption that the function f is regular from the right of z, can be formally
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described in a way that there is some U € U with the left end-point at ay such
that Apy(f) is small enough, particularly (3.1) is fulfilled.

Theorem 3.2. Let the function [ be bounded by fo. Let Vi, Vo and V' be intro-
duced above and let vectors Oy, ,0v, be such that

NXZIZU(Xi)—PeVJ(Xi—xO)P§5‘2/J, j=1,2.
Vi

and also, for some dg >0,

| det Gy, | > do, j=1,2.
Nezt, let for some k=0,1,... . m—1,

0vi i — Ovy k| > bvy gk + by i
where, for V equal to Vi or Vi,

by = dyZ| det Gy |~ {CSUN;” 2\ /log 1 + 54

Cs being from (3.19).
Let also U be some interval from UT | see (3.2), with the left end-point ay and
such that Vo C U, xg € U\Vy and

Ny, + Ny + Ny, < BNy (3.25)
with some < 1. Then
B/ (20) = f(wo)|” < [(1 = 3)7'Cao® N log Nir ™ + (m + 1)(2fo) N
where Cy s as in Theorem 3.1.
Proof. By Proposition 3.1,
Ploy = 1) <mN,"
and by Proposition 3.4, if some U’ contains Vi and V, and if Ny > Ny, then
P(oy = 0) < N;”.

Using the arguments from the proof of Theorem 3.1 we can reduce our consideration
to the case when oy =0 and oy =1 for every U’ with ViUV, C U’.

Let U* be selected by the adaptive procedure. Since gy = 0, the definition of
U* implies Ny» > Ny . Next, U* does not contain Vi . (Otherwise, U* contains
also V3 because xg € U* and V; is between Vi and xq, hence gy =1 does hold.)
Denote U; = U NU*. Condition (3.25) implies that

Ny, > (1 = B)Ny. (3.26)
In fact, if U C U*, then Ny, = Ny . If U € U*,since also V; € U*, then obviously
Ny« < Ny, + Ny + Ny,

and (3.26) follows from (3.25). By similar reason, U; contains V3 and |det Gy, | >
Now, by Proposition 3.2,

|fU*($o) - fUl(x0)| < C12| det GUl |_1(0-2N[;11 10g n)_1/2
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and by Proposition 3.3,

fun (20) — f(0) = UN511/2| det G, |7 [z1C1/log Nu, + 227]

where |z], |29] <1 and v ~ N(0,1).
These inequality allow to complete the proof in the same way as for Theorem 3.1.

O

4. The case of an equidistant design

Below we specify the above general results to the case of an equidistant design with
the aim to compare our results with the existing in the literature.
We consider the regression model (1.1) with n the design points X; = i/n in the
interval [0,1]. We will examine our procedure with the “maximal” ¢ from (2.1).
First we notice that for every interval U with Ny > m, one has

| det G| > do

where dy > 0 depends only on m.

We begin by reformulating the statement of Theorem 3.1 for windows U of the
form U = [zg — hyao + h] with h = k/n, & = m,m + 1,... ;n. Obviously
Ny >nh+1 and Ny =2nh+1 if U €]0,1].

Theorem 4.1. Let |f(xo)| <1 and let h be such that for U = [xg — h, 20 + h] N
[0,1],
Ap(f) < Cia(h™'n"ogn)'/?, (4.1)

where Cy = \/2(a + p), see Theorem 3.1. Then
E;|f(x0) = f(xo)l” < 2(Caoh™"n™" log n)"?
where Cy is due to (3.21).

Discussion 4.1. Now we can also reformulate the definition of the “ideal symmetric
window” Uj (see the discussion after Theorem 3.1) in terms of “ideal bandwidth”

hfi
hy = argmax{h : Apo_pzo+n)([) < Cio(h™'n""log n)l/z}. (4.2)

The statement of Theorem 4.1 shows that the adaptive procedure provides with the
accuracy of estimation corresponding to the choice of the “ideal bandwidth” Ay .

It was proved in Lepski, Mammen and Spokoiny (1994) that each estimation
procedure with such properties is automatically rate-optimal for a wide range of
Sobolev or Besov classes.

Note that more standard way to define the “ideal bandwidth” is based on the
assumption that the function f is m times differentiable and the mth derivative
f) is uniformly bounded (at least in some neighborhood of the point ),

£ ()] < M.

In this case one has easily A, _pz04n < MA™ and the balance equation MA™ &
oh™'n"'logn leads to the bandwidth h; ~ (0?M~2n""logn)'/?m+1)  However,
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our smoothness condition (4.1) is weaker than the usual one and hence the balance
rule (4.2) seems to be more flexibile than the last one.

Now we turn to the case when change-points are incorporated in the model. Let
Z¢p be a change-point. Without loss of generality we may assume that z., coincides
with a grid point «; = ¢/n. Asabove in Theorem 3.2 we assume that the function f
is regular from the left and from the right of x., and it has a jump of kth derivative
at xp, with & from 0 to m — 1. This is understood in the following way. Let some

small hg > 0 be fixed and let
‘/1 - [xcp - h07 xcp)a
Vo = (2epy Tep + ho)-

Let also 0y, and 6y, be the coefficients of the approximating polynomials for V}
and V5. A jump of kth derivative of f means that 0y, ; and 6y, ; are equal or
very close to each other for j =0,... & — 1 and the difference Oy,  — 0y, 5, differs
significantly from zero.

We are mostly interested to describe the minimal distance hy between the change-
point z., and the point of estimation xy which is enough for rate-consistent esti-
mation of f(x0). Particularly, it is of interest to understand how this distance hg
depends on what derivative f**) has a jump and on the jump size.

Theorem 4.2. Let the function f be bounded by 1. Let ho, Vi, Vo, Oy, and Oy,

be introduced above and let, for some k from 0 to m — 1, one has
0v, 1. — Ov, | > 2b.

Let also there be some h > 2hg such that

Awoworn () < Cro(h™'n™ logn)'2, (4.3)

Aoty (f) < Cro(h™'n™ logn)'/?
with Cy from Proposition 3.1. If

R > Csb™ 20 n " logn
with
Cs = (Cat C1Pdg*(2k 4 1) = (2K + 1) [2p 4 (m + 1+ 2vm)y/2a 1 p)] d;?
then for each xg € [tcp + ho, Tep + h] or xg € [Xep — by xep — ho], one has
E;|f(z0) — f(zo)’ < 2(2Cs0°h™"'n" log )"/

where Cy s from Theorem 3.2.

Proof. We derive this result from the general result of Theorem 3.2. First we assume
without loss of generality that

NV1 = NV2 = nho
and similarly for U = (2o, o + h]
NU = nh.
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Now condition (4.3) means that U/ € U™, see (3.2), and condition (3.25) of Theorem
3.2 is fulfilled with 8 = 1/2. Next, one has easily for V. =V, or V = V4 and
Lo 2 xcp —I' hO

dvar = (nho) ™ Y (Xi = 20)™ > h2F /(2K +1).
X, eV
Therefore, all the conditions of Theorem 3.2 are satisfied and the application of this
theorem leads to the desirable assertion. O

Discussion 4.2. We see from the above result that the presence of a change-point
leads to poor quality of estimation only in some neighborhood of this change-point.
The radius hg of this neighborhood depends on the type of change (jump of a
function itself or its kth derivative) and on the size b of jump,

ho < (b_zn_1 log n)l/(%H) .
Therefore, the proposed estimation procedure is able to detect about b*n/logn (in
order) jumps of a size b > 0. Similarly, for jumps of kth derivatives, the detectable

number of change-points is about (b%n/logn)"/ k1)

At the conclusion, we discuss shortly the question of optimal change-point esti-

mation. It is well known that a single jump can be estimated with the rate n™!, see,

for example, Hinkley (1970), Ibragimov and Khasminski (1981), Korostelev (1987).
Our procedure provides with the rate n~'logn. The following result shows that
this extra log-factor is not only the price for adaptation. Even in the case when
at most two jumps are allowed, their locations can be estimated only with the rate
n~1logn. Similarly one can show that the optimal rate for estimation of a jump of
kth derivative is (n~'logn )"+ "if more than one jump is considered.

Introduce the class Fj, of functions with two values 0,1 and having two jumps
at points x; and x inside the interval [0, 1] separated with the distance A,

|$1 — $2| 2 h.
Theorem 4.3. There exists C' > 0 such that for h(n) = Cn~'logn and for arbi-
trary estimates 1,4, the following asymptotic bound holds

sup max{Py(|&1 —z1| > h(n)), P
F€Fn(n)

Tg — a2 > h(n))} — 1, n — oo.

Proof. As usual for such kind of results, we change the minimax problem by a specific
Bayes one. Let some positive ' < 2 be fixed. Set h(n) = Cn~'logn. Without
loss of generality we assume that nh(n) = C'logn is an integer number and that
M =1/h(n) =n/(Clogn) is also integer.

Let us split the whole interval [0,1] into M subintervals of length A(n) and
denote this partition by Z. Fach interval [ from Z contains N = nh(n)+1 =
C'logn 4+ 1 design points.

Now we assume that our function f is random and with probability M~! it
coincides with the function f; which is one on [ and zero outside. Now our original

problem can be clearly reduced to the problem of estimating [ by observed data.
Denote by Z;, the log-likelihood

ZI,n = 10g(deI/dP0)
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where Py corresponds to the function f = 0. One obtains easily from (1.1) that

ZI:%Z[YZ?—(YZ»—UQ} :Z)@—N/z.

1

Now the Bayes estimate I of I for the indicator loss function l(f # 1) is of obvious
structure:

A 1
I = arginf — exp{ /Zn} = aremax Z7.
g M%;z p{Zr} gn I

Let us fix an arbitrary [y € Z and consider the probability P[O(j # ly) where the
measure P corresponds to the function fr,. First we note that one has under
P;, with probability 1

Z Y= \/NCIO + N7

Iy

Y YVi=VNG, I+

i
where (; = N~1/2 > &, and obviously all (; are standard normal. Now

P,([#£1)="P <rlr;3x G—VIN2> (G, + \/ﬁ/2> =P <r?€azx (> \/ﬁ> .
It is well known, see e.g. Petrov (1975), that for each o < 2
P(r?agi§1>\/ozlogM>—>1, M — oc.
€

Therefore, the desirable assertion follows if alog M > N or equivalently

Clogn +1 < alog(n/(Clogn)).

It remains to observe that the latter property holds true for €' < a < 2 and n
large enough. O
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