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Weak-strong uniqueness and energy-variational solutions for a
class of viscoelastoplastic fluid models

Thomas Eiter, Katharina Hopf, Robert Lasarzik

Abstract

We study a model for a fluid showing viscoelastic and viscoplastic behavior, which describes
the flow in terms of the fluid velocity and an internal stress. This stress tensor is transported
via the Zaremba–Jaumann rate, and it is subject to two dissipation processes: one induced by a
nonsmooth convex potential and one by stress diffusion. We show short-time existence of strong
solutions as well as their uniqueness in a class of Leray–Hopf type weak solutions satisfying
the tensorial component in the sense of an evolutionary variational inequality. The global-in-time
existence of such generalized solutions has been established in a previous work. We further study
the limit when stress diffusion vanishes. In this case, the above notion of generalized solutions is
no longer suitable, and we introduce the concept of energy-variational solutions, which is based on
an inequality for the relative energy. We derive general properties of energy-variational solutions
and show their existence by passing to the non-diffusive limit in the relative energy inequality
satisfied by generalized solutions for non-zero stress diffusion.

1 Introduction

In a three-dimensional bounded domain Ω ⊂ R3, we consider the flow of an incompressible vis-
coelastoplastic fluid governed by the equations

∂tvvv + (vvv · ∇)vvv −∇· (ηS + 2µ(∇vvv)sym) +∇p = fff, ∇·vvv = 0 in Ω× (0, T ), (1a)

∂t S+(vvv · ∇)S+S(∇vvv)skw − (∇vvv)skw S+∂P(S)− γ∆S 3 η(∇vvv)sym in Ω× (0, T ), (1b)

vvv = 0, γ nnn · ∇S = 0 on ∂Ω× (0, T ), (1c)

vvv(·, 0) = vvv0, S(·, 0) = S0 in Ω, (1d)

where (0, T ) is a time interval with T ∈ (0,∞]. Equation (1a) describes the evolution of the fluid
flow (with constant density ρ = 1) in terms of the Eulerian velocity vvv : Ω × (0, T ) → R3 and
pressure p : Ω × (0, T ) → R, subject to an external forcing fff : Ω × (0, T ) → R3. The fluid stress
T = ηS+ 2µ(∇vvv)sym− pI decomposes into the classical term 2µ(∇vvv)sym− pI for Newtonian fluids
and an additional stress S : Ω× (0, T )→ R3×3. Here (∇vvv)sym = 1

2
(∇vvv+∇vvv>) is the rate-of-strain

tensor, and µ > 0, η ≥ 0 denote fixed constants. Since p shall describe the physical pressure, that
is, the (negative of the) spherical part of the fluid stress, we assume S to be a symmetric deviatoric
tensor field, that is, S = S> and Tr S = 0. By equation (1b), the extra stress S is transported via the
Zaremba–Jaumann rate

O
S := ∂t S+(vvv · ∇)S+S(∇vvv)skw − (∇vvv)skw S, (2)

where (∇vvv)skw = 1
2
(∇vvv − ∇vvv>). Moreover, S is subject to a diffusion process induced by the

term γ∆S with γ ≥ 0 and an additional nonlinear dissipation due to the subdifferential ∂P(S) of the
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T. Eiter, K. Hopf, R. Lasarzik 2

nonsmooth convex potentialP . The system is completed by no-slip conditions for vvv and homogeneous
Neumann conditions for S (in the case γ > 0) on the boundary as well as initial conditions.

The Zaremba–Jaumann derivative (2) describes only one possible choice for the objective stress rate,
and there exist other objective tensor derivatives used for the description of stress evolution. However,
as we explain below, the model (1) is motivated from geodynamics, where the Zaremba–Jaumann
derivative is a common choice (see [21, 12, 13, 22]). Moreover, it is crucial in the mathematical analysis
of (1) since it (formally) guarantees the identity

d

dt

∫
Ω

1

2
|S|2 dx =

∫
Ω

∂tS : S dx =

∫
Ω

O
S : S dx.

This property can be used to reveal information on the evolution of the total quadratic energy

E(t) :=

∫
Ω

(
1

2
|vvv(x, t)|2 +

1

2
|S(x, t)|2

)
dx,

which consists of the kinetic energy associated with vvv and the stored elastic energy associated with
S. More precisely, smooth solutions (vvv,S) to (1) formally satisfy the energy-dissipation balance

E(t) +

∫ t

0

∫
Ω

(
µ|(∇vvv)sym|2 + ∂P(S) : S + γ|∇S|2

)
dx dτ = E(0) +

∫ t

0

〈fff,vvv〉 dτ (3)

for all t ∈ [0, T ). This shows that the total energy is dissipated by three processes: the direct fluid
viscosity with parameter µ > 0, the nonsmooth stress-dissipation potential, and the stress diffusion
with parameter γ ≥ 0.

The main non-standard feature of the system (1) is the occurrence of the set-valued subdifferential
∂P(S) in (1b), the meaning of which will be specified in the following. Observe that the energy-
dissipation balance (3) suggests to examine (1) in an L2 framework and we thus seek stress tensors
S = S(t) taking values in the space L2

δ(Ω) = {S ∈ L2(Ω)3×3 : S = S>, Tr S = 0}. The dis-
sipation potential P is now defined to be a convex and lower semicontinuous function P : L2

δ(Ω) →
[0,∞] that satisfies P(O) = 0, where O denotes the zero tensor. By definition, the convex subdiffer-
ential ∂P of P is then given by

S 7→ ∂P(S) :=

{
G ∈ L2

δ(Ω) : P(S̃) ≥ P(S) +

∫
Ω

G : (S̃− S) dx for all S̃ ∈ L2
δ(Ω)

}
.

Such nonsmooth dissipation potentials allow to include plastic effects in the model, and related vis-
coelastoplastic fluid models are used in geodynamics to describe rock deformation in the lithosphere;
see [21, 12], where

P(S) =

∫
Ω

P(S(x)) dx, P(S) =

{
a
2
|S|2 if |S| ≤ σyield,

∞ if |S| > σyield.
(4)

Here a > 0 is a constant, and the yield stress σyield > 0 determines the transition to plastic behavior.
One readily verifies that P defined in this way has the above properties. Further examples for possible
choices of P can be found in [10].

The beginning of the mathematical analysis of viscoelastic fluid models, also using objective deriva-
tives different from the Zaremba–Jaumann rate (2), can be dated back to the middle 1980s; see
[14, 25, 24, 8, 23] for example. Since all objective derivatives come along with strong nonlinearities,
the first result on global existence of weak solutions was only established several years later by Lions
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and Masmoudi [20], who studied the system (1) for γ = 0 and a quadratic dissipation potential such
that ∂P(S) = aS for some a ≥ 0. In this case, (1b) becomes a transport equation, and existence
can be deduced from the propagation of compactness in L2. This tool is no longer available when
P is nonlinear and nonsmooth. For such potentials, large-data global existence can be achieved for
diffusive regularizations of the tensorial transport equation, as recently demonstrated in [6, 2, 10]. The
article [10] considers problem (1) with γ > 0 and proves global existence of generalized solutions
compsed of a weak formulation for (1a) and a variational inequality for (1b) (cf. Definition 3.1 below).
In the present article, we continue this analysis in two directions.

In a first part, we investigate the case γ > 0, complementing and refining the existence analysis of
generalized solutions in [10]. Here, our main results are the short-time existence of strong solutions
(see Theorem 3.4) as well their uniqueness among generalized solutions (see Theorem 3.5). The
presence of the nonsmooth dissipation potential P renders the construction of (local) strong solutions
a non-trivial and interesting question. Indeed, some care has to be taken to derive a priori estimates
compatible with the nonsmoothness of P , and our construction strongly relies on the fact that γ > 0.
Concerning our uniqueness result, we note that the generalized solutions as considered here comprise
the family of Leray–Hopf weak solutions of the Navier–Stokes equations (for η = 0), and hence the
uniqueness of generalized solutions seems to be out of reach. The main step in the proof of the weak-
strong uniqueness principle mentioned above is the derivation of an evolutionary inequality for the
relative energy

R(vvv,S |ṽvv, S̃) =
1

2
‖vvv − ṽvv‖2

L2(Ω) +
1

2
‖S− S̃ ‖2

L2(Ω)

of the form

R(vvv(t),S(t)|ṽvv(t), S̃(t)) +

∫ t

0

(
W(K)(vvv,S |ṽvv, S̃) + F(vvv,S; ṽvv, S̃)

)
e
∫ t
s K(ṽvv,S̃) dτ ds

≤ R(vvv0,S0 |ṽvv(0), S̃(0))e
∫ t
0 K(ṽvv,S̃) ds

(5)

for t ∈ (0, T ), see (38) below, which allows to compare generalized solutions (vvv,S) with (more
regular) test functions (ṽvv, S̃). Here F contains more or less the (nonlinear) differential operator as-
sociated with problem (1) applied to the test function (ṽvv, S̃), andW(K) consists of terms describing
the relative dissipation as well as terms arising from the nonlinearities in (1). It further depends on the
non-negative functionK, which we call the regularity weight since it determines the class of admissible
test functions (ṽvv, S̃) such that (5) is meaningful.

In the second part we study the problem without stress diffusion, that is, when γ = 0. Our interest in
this case stems, among other things, from the original models used in geodynamics [21, 12], where
stress diffusion does not appear. If γ = 0, problem (1) reduces to the system

∂tvvv + (vvv · ∇)vvv −∇· (ηS + 2µ(∇vvv)sym) +∇p = fff, ∇·vvv = 0 in Ω× (0, T ), (6a)

∂t S+(vvv · ∇)S+S(∇vvv)skw − (∇vvv)skw S+∂P(S) 3 η(∇vvv)sym in Ω× (0, T ), (6b)

vvv = 0 on ∂Ω× (0, T ), (6c)

vvv(·, 0) = vvv0, S(·, 0) = S0 in Ω. (6d)

As mentioned above, stress diffusion serves as a regularization making existence results accessible
by means of parabolic theory. When γ = 0, the energy estimate (3) no longer controls the gradient
of S in L2

loc(Ω× [0, T )), and it becomes unclear how to pass to the limit along approximate solutions
in the term

(
S(∇vvv)skw−(∇vvv)skw S

)
in (6b) associated with the Zaremba–Jaumann derivative. In this

article, we provide a framework allowing us to treat the case γ = 0. It relies on the rather weak notion
of energy-variational solutions to (6) (cf. Def. 4.1 below), which is based on an inequality for the relative

DOI 10.20347/WIAS.PREPRINT.2904 Berlin 2021



T. Eiter, K. Hopf, R. Lasarzik 4

energyR(vvv,S |ṽvv, S̃), adapting the aforementioned relative energy inequality (5) for generalized solu-
tions when γ > 0. Under a convexity assumption, we may pass to the limit γ → 0 in this inequality
using weak lower semicontinuity arguments. This allows us to construct an energy-variational solution
to (6) as the limit of a sequence of generalized solutions (vvvγ,Sγ) to (1) for γ > 0, see Theorem 4.2
below.

The idea to base a solution concept on a relative energy estimate goes back to Lions [19, Def. 4.1],
who introduced the notion of dissipative solutions for the incompressible Euler equations. A dissipa-
tive solution does not fulfill the differential equation in a distributional sense, but rather satisfies a
relative energy inequality with respect to any sufficiently smooth test function. After the seminal work
by Lions, this concept has been adopted in other contexts as well, e.g., in the context of viscous
electro-magneto-hydrodynamics [1], liquid crystals [16], and nematic electrolytes [3].

Another generalized solution concept, which is often used in the context of fluid dynamics, is the notion
of so-called measure-valued solutions [9]. Measure-valued solutions carry more information than dis-
sipative solutions, but this is achieved by increasing the degrees of freedom: In every point in time and
space the solution carries an infinite dimensional measure. The expectation of every measure-valued
solution fulfills the dissipative formulation [5], which is identified as a desirable quantity in the case of
liquid crystals [15]. Moreover, the concept of dissipative solution is amenable from a numerical point
of view. In the case of anisotropic fluids, a structure-preserving finite element scheme was proven to
converge to a dissipative solution, but the convergence to a measure-valued solution seems to be
out of reach [3, Rem. 3.7]. Especially the high-order regularizations used to prove convergence to a
measure-valued solution [16] are not amenable from a numerical standpoint. Moreover, in contrast
to the set of weak solutions, the set of dissipative solutions is convex and weakly-∗ closed in case
of convex energy and dissipation potential. This can be used to define selection criteria choosing a
certain dissipative solution in order to achieve uniqueness [17], see also Remark 4.4 below.

The article at hand extends previous concepts of dissipative solutions in two directions. Firstly, we do
not fix the regularity weight K in the relative energy estimate (5) defining energy-variational solutions.
This allows to consider different classes of test functions and lets us derive different results for different
choices of the regularity weight K. For one class, we preserve the weak formulation of the Navier–
Stokes-like part in the generalized formulation (see Prop. 4.3), and for another choice, we can deduce
the convexity of the solution set (see Rem. 4.4). As mentioned above, this convexity property may be
used to select a unique physically relevant solution [18, 17]. Secondly, we refrain from dropping the
term W(K) in (5), which for suitable K is non-negative and usually estimated by 0. By choosing K
such that the relevant terms inW(K) are convex and lower semicontinuous, they can be kept when
passing to the limit γ → 0, thus making the solution concept more selective (see Remark 4.2).

The structure of this article is as follows. We first introduce the general notation and prepare some
auxiliary results in Section 2. In Section 3 we recall the existence theorem for generalized solutions to
(1) in the case γ > 0 and show the local-in-time existence of strong solutions. Subsequently, we prove
that strong solutions are unique in the class of generalized solutions. For this purpose, we derive a
suitable relative energy inequality. In Section 4 we introduce the notion of energy-variational solutions
to (1) in the case γ = 0, which is based on a similar relative energy inequality, and we show their
existence by an approximation with generalized solutions for γ > 0. Subsequently, we derive general
properties of energy-variational solutions. In the appendix we explain how to infer the present notion
of generalized solutions from the slightly different notion introduced in [10].
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2 Preliminaries

In this section we prepare the notation used throughout this article as well as some helpful inequalities.
We further introduce the basic regularity hypotheses on the data assumed throughout this manuscript.

2.1 Notations

General notations. If aaa = (aaaj), bbb = (bbbj) ∈ R3 are two vectors, their inner product and their tensor
product are denoted by aaa · bbb = aaajbbbj and aaa⊗ bbb with (aaa⊗ bbb)jk = aaajbbbk, respectively. Here and in what
follows, we tacitly use Einstein’s summation convention. For the inner product of two second-order
tensors A = (Ajk), B = (Bjk) ∈ R3×3, we write A : B = AjkBjk, and the inner product of
two third-order tensors C = (Cjk`), D = (Djk`) ∈ R3×3×3 is denoted by C ··· D = Cjk`Djk`. The
third-order tensor A⊗aaa is defined by (A⊗aaa)jk` = Ajkaaa`. By A> and TrA we denote the transpose
and the trace of A, and R3×3

δ := {A ∈ R3×3 : A> = A,TrA = 0} denotes the class of symmetric
deviatoric matrices. Moreover, 000 ∈ R3 and O ∈ R3×3 denote the zero vector and the zero tensor,
respectively.

The symbol Ω always denotes a bounded Lipschitz domain in R3, and points in (x, t) ∈ Ω× (0, T ),
T > 0, consist of a spatial variable x ∈ Ω and a time variable t ∈ (0, T ). By ∂tu and ∂ju := ∂xju,
j = 1, 2, 3, we denote time and spatial partial derivatives of a (sufficiently regular) function u. We
further write ∇ and ∆ for the gradient and the Laplace operator. For a vector field vvv = (vvv1, vvv2, vvv3),
the symmetric and skew-symmetric parts of∇vvv are denoted by

(∇vvv)sym :=
1

2
(∇vvv +∇vvv>), (∇vvv)skw :=

1

2
(∇vvv −∇vvv>).

Moreover,∇·vvv = ∂jvvvj denotes the divergence of vvv, and we set vvv · ∇u := (vvv · ∇)u := vvvj∂ju. The
divergence∇·S of a tensor field S = (Sjk) is defined by (∇·S)j = ∂kSjk.

We let ‖·‖X denote the norm of a Banach space X . When the dimension is clear from the context,
we do not distinguish between X and its n-fold Cartesian product Xn. We further write X∗ for the
dual space of X , and 〈ϕ, x〉 denotes the duality pairing of ϕ ∈ X∗ and x ∈ X . When X is a Hilbert
space, we sometimes write (x, y) for the inner product of two elements x, y ∈ X .

Function spaces. By C∞(Ω) we denote the class of smooth functions in Ω, and C∞0 (Ω) consists
of all elements in C∞(Ω) with compact support in Ω. Lebesgue and Sobolev spaces are denoted by
Lq(Ω) and W k,q(Ω) for q ∈ [1,∞] and k ∈ N, and we set Hk(Ω) := W k,2(Ω). Moreover, H1

0 (Ω)
consists of all functions in H1(Ω) with vanishing boundary trace, and H−1(Ω) := (H1

0 (Ω))∗ is the
associated dual space with respect to the distributional duality pairing.

For an interval I ⊂ R, the class of continuous X-valued functions is denoted by C0(I;X). For the
associated Bochner–Lebesgue spaces we write Lq(I;X), and we define W 1,q(I;X) := {u ∈
Lq(I;X) : ∂tu ∈ Lq(I;X)}. As above, we set H1(I;X) := W 1,2(I;X), and the classes
Lqloc(I;X) and H1

loc(I;X) contain all functions that, when restricted to any compact subinterval
J ⊂ I , belong to Lq(J ;X) orH1(J ;X), respectively. If I = (0, T ), we simply writeC0(0, T ;X) =
C0(I;X) and Lq(0, T ;X) = Lq(I;X). Moreover, for functions u on Ω × I , we sometimes abbre-
viate u(t) := u( · , t) for t ∈ I .

We let C∞0,σ(Ω) :=
{
ϕ ∈ C∞0 (Ω)3 : ∇·ϕ = 0

}
denote the class of smooth solenoidal vector fields,
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and the associated Lebesgue and Sobolev spaces are given by

L2
σ(Ω) :=

{
vvv ∈ L2(Ω)3 : ∇·vvv = 0, vvv|∂Ω · nnn = 0

}
= C∞0,σ(Ω)

‖·‖L2
,

H1
0,σ(Ω) :=

{
vvv ∈ H1

0 (Ω)3 : ∇·vvv = 0
}

= C∞0,σ(Ω)
‖·‖H1

,

where the conditions ∇·vvv = 0 and vvv|∂Ω · nnn = 0 have to be understood in a weak sense; see
[11, Theorem III.2.3] for example. If I ⊂ R is an interval, we further set C∞0,σ(Ω × I) :=

{
Φ ∈

C∞0 (Ω× I)3 : ∇·Φ = 0
}

. Moreover, we introduce the spaces of symmetric deviatoric fields

L2
δ(Ω) :=

{
S ∈ L2(Ω)3×3 : S = S>, Tr S = 0

}
,

H1
δ (Ω) :=

{
S ∈ H1(Ω)3×3 : S = S>, Tr S = 0

}
.

In view of the (formal) energy dissipation law (3), for γ > 0 we seek solutions (vvv,S) of (1) in the
natural energy space LHT ×XT where

LHT := L∞loc([0, T );L2
σ(Ω)) ∩ L2

loc([0, T );H1
0 (Ω)3),

XT := L∞loc([0, T );L2
δ(Ω)) ∩ L2

loc([0, T );H1
δ (Ω)3×3),

Usually, the time T ∈ (0,∞] will be fixed and we simply write

X := LHT ×XT (7)

for the solution space. We further need function spaces obeying additionally a Serrin-type regularity
criterion, which are defined by

Y s
T := H1

loc([0, T ); (H1
0,σ(Ω))∗) ∩ L2

loc([0, T );H1
0,σ(Ω)) ∩ Lsloc([0, T );Lr(Ω)3),

Zq
T := H1

loc([0, T ); (H1
δ (Ω))∗) ∩ L2

loc([0, T );H1
δ (Ω)) ∩ Lqloc([0, T );Lp(Ω)3×3)

for p, q, r, s ∈ (1,∞) satisfying

2

s
+

3

r
= 1 as well as

2

q
+

3

p
= 1 , (8)

and we introduce the space
Z :=

⋃
s,q∈(2,∞)

Y s
T × Z

q
T . (9)

Functionals. Let X be a Banach space and P : X → [0,∞] be convex and proper (that is, P 6≡
∞) . Then ∂P denotes the subdifferential of P defined by

∂P(u) :=
{
ϕ ∈ X∗ : P(v) ≥ P(u) + 〈ϕ, v − u〉 for all v ∈ X

}
for u ∈ X . When X is a Hilbert space, then we can identify X∗ with X such that ∂P(u) ⊂ X .
Moreover, the convex conjugate of P is denoted by P∗ : X∗ → [0,∞].

On the state space Q := L2
σ(Ω)× L2

δ(Ω) we define the energy functional E : Q→ [0,∞) by

E(vvv,S) :=
1

2
‖vvv‖2

L2(Ω) +
1

2
‖S ‖2

L2(Ω), (10)

and we letR : Q×Q→[0,∞) denote the associated relative energy functional

R(vvv,S |ṽvv, S̃) =
1

2
‖vvv − ṽvv‖2

L2(Ω) +
1

2
‖S− S̃ ‖2

L2(Ω) . (11)

Furthermore, given a functional K : Q→ [0,∞], we let

DK :=
{

(vvv,S) ∈ L∞loc([0, T );Q) : K(vvv,S) ∈ L1
loc([0, T ))

}
. (12)
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2.2 Technical inequalities

Lemma 2.1. Let a ∈ H1(Ω), b ∈ H1(Ω) and c ∈ Lr(Ω), r ∈ (3,∞). Then for every δ > 0, there
exists a constant Cδ > 0 such that∫

Ω

|a||∇b||c| dx ≤ δ
(
‖a‖2

H1(Ω) + ‖∇b‖2
L2(Ω)

)
+ Cδ‖c‖sLr(Ω)‖a‖2

L2(Ω)

for s ∈ (2,∞) defined by 2/s+ 3/r = 1. If a ∈ H1
0 (Ω), we even have∫

Ω

|a||∇b||c| dx ≤ δ
(
‖∇a‖2

L2(Ω) + ‖∇b‖2
L2(Ω)

)
+ Cδ‖c‖sLr(Ω)‖a‖2

L2(Ω).

Proof. First consider the case a ∈ H1
0 (Ω). Hölder’s, Gagliardo–Nirenberg’s, and Young’s inequalities

provide the estimate∫
Ω

|a| |∇b| |c| dx ≤ ‖a‖Lp(Ω)‖∇b‖L2(Ω)‖c‖L2p/(p−2)(Ω)

≤ cp‖a‖(1−α)

L2(Ω)‖∇a‖
α
L2(Ω)‖∇b‖L2(Ω)‖c‖L2p/(p−2)(Ω)

≤ δ
(
‖∇a‖2

L2(Ω) + ‖∇b‖2
L2(Ω)

)
+ Cδ‖c‖2/(1−α)

L2p/(p−2)(Ω)
‖a‖2

L2(Ω) ,

where p ∈ (2,∞) and α ∈ (0, 1) is chosen according to Gagliardo–Nirenberg’s inequality by

α = 3(p− 2)/2p for 3 < 2p/(p− 2) .

Letting r = 2p/(p−2) concludes the proof for a ∈ H1
0 (Ω). If we only have a ∈ H1(Ω), then we can

merely apply the Gagliardo–Nirenberg inequality with ‖a‖H1(Ω) instead of ‖∇a‖L2(Ω), which yields
the asserted inequality in this case.

Lemma 2.2. Let g0 ∈ R. Let f ∈ L1(0, T ) and g ∈ L∞(0, T ) with g ≥ 0 a.e. in (0, T ). Then the
following two inequalities are equivalent:

−
∫ T

0

φ′(t)g(t) dt+

∫ T

0

φ(t)f(t) dt ≤ g0 ∀φ ∈ C̃([0, T ]), (13)

where C̃([0, T ]) := {φ ∈ C1([0, T ]) : φ ≥ 0, φ′ ≤ 0, φ(0) = 1, φ(T ) = 0}, and

g(t) +

∫ t

0

f(s) ds ≤ g0 for a.e. t ∈ (0, T ) . (14)

This equivalence remains valid if we replace C̃([0, T ]) by W̃ ((0, T )) := {φ ∈ W 1,1((0, T )) : φ ≥
0, φ′ ≤ 0 a.e., φ(0) = 1, φ(T ) = 0}.

Proof. See [17, Lemma 2.4].

2.3 General hypotheses

Throughout this manuscript, we investigate (1) under the following assumptions.

Hypothesis 2.3. We let Ω ⊂ R3 be a bounded Lipschitz domain and T ∈ (0,∞]. Moreover,
P : L2

δ(Ω) → [0,∞] denotes a convex, lower semicontinuous functional that satisfies P(O) = 0.
In particular, P is weakly lower semicontinuous in L2

δ(Ω). For the remaining data we assume the
regularity

vvv0 ∈ L2
σ(Ω), S0 ∈ L2

δ(Ω), fff ∈ L2
loc([0, T );H−1(Ω)3). (15)
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3 Generalized and strong solutions in the case of stress diffu-
sion

In this section, we investigate system (1) for γ > 0, that is, when stress diffusion is present. We begin
by introducing the notions of strong and generalized solutions, and show that for sufficiently regular
data with P(S0) < ∞ a strong solution exists at least locally in time. The global-in-time existence of
generalized solutions has been established in [10]. The second main result of this section concerns
a weak-strong stability estimate for the relative energy between a generalized and a strong solution.
An important implication of this estimate is that any generalized solution coincides with the strong
solution starting from the same initial data as long as the latter exists (see Theorem 3.5). The basis of
the stability estimate is an inequality involving the relative energy between a generalized solution and
an arbitrary sufficiently regular competitor taking the role of a test function, see Proposition 3.6. We
will take up this energy-variational inequality in Section 4, where it provides a framework for passing
to the limit γ → 0.

3.1 Definition of generalized and strong solutions

For the definition of generalized solutions, recall the definition of the energy space X from (7).

Definition 3.1 (Generalized solution). We call a couple (vvv,S) a generalized solution of system (1) if
(vvv,S) ∈ X = LHT ×XT and the following holds true:

1 The velocity field satisfies the weak formulation∫ T

0

∫
Ω

[
− vvv · ∂tΦ + (vvv · ∇)vvv · Φ + ηS : ∇Φ + µ∇vvv : ∇Φ

]
dx dt

=

∫ T

0

〈fff,Φ〉 dt+

∫
Ω

vvv0 · Φ(·, 0) dx

(16)

for all Φ ∈ C∞0,σ(Ω× [0, T )), and the partial energy inequality

1

2
‖vvv(t)‖2

L2(Ω) + µ

∫ t

0

‖∇vvv‖2
L2(Ω) ds ≤ 1

2
‖vvv0‖2

L2(Ω) +

∫ t

0

〈fff,vvv〉 ds−
∫ t

0

∫
Ω

ηS : ∇vvv dx ds

(17)
is satisfied for almost all t ∈ (0, T ).

2 The extra stress tensor S satisfies the evolutionary variational inequality

1
2
‖S(t)−S̃(t)‖2

L2(Ω) +

∫ t

0

〈∂tS̃; S−S̃〉+P(S)−P(S̃) ds+

∫ t

0

∫
Ω

γ∇S : ∇(S−S̃) dx ds

−
∫ t

0

∫
Ω

(
vvv · ∇S + S(∇vvv)skw − (∇vvv)skwS

)
: S̃− η(∇vvv)sym : (S− S̃) dx ds

≤ 1
2
‖S0 − S̃(0)‖2

L2(Ω),
(18)

for all S̃ ∈ Zq
T , q ∈ (2,∞), and a.a. t ∈ (0, T ).

In the article [10], existence for (1) was shown based on a slightly weaker form of the notion of gener-
alized solutions than introduced above. The main difference lies in the fact that the first term in (18),
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that is, the partial relative energy at time t, does not appear in the notion used in [10]. The above
version including this term is essentially equivalent (cf. Lemma A.1) but better suited for the relative
energy methods used in the present paper.

Theorem 3.2 (Existence of generalized solutions [10]). Assume that Hypothesis 2.3 is satisfied. Then
there exists a generalized solution (vvv,S) ∈ X in the sense of Definition 3.1.

For the most part, Theorem 3.2 was established in [10]. Details on how to infer the version above, which
is formulated with the current, upgraded version of generalized solutions, are provided in Appendix A.

Remark 3.1. Setting S̃ = 0 in (18) yields the partial energy inequality

1

2
‖S(t)‖2

L2(Ω) +

∫ t

0

(
γ‖∇S‖2

L2(Ω) +P(S)
)

ds ≤ 1

2
‖S0‖2

L2(Ω) +

∫ t

0

∫
Ω

η(∇vvv)sym : S dx ds. (19)

Since we have (∇vvv)sym : S = ∇vvv : S by the symmetry of S, summation of (17) and (19) further
yields the total energy-dissipation inequality

E(vvv(t),S(t)) +

∫ t

0

(
µ‖∇vvv‖2

L2(Ω) + γ‖∇S‖2
L2(Ω) + P(S)

)
ds ≤ E(vvv0,S0) +

∫ t

0

〈fff,vvv〉 ds, (20)

where the energy functional E was introduced in (10).

Definition 3.3 (Strong solution). We call (vvv,S) ∈ X = LHT ×XT a strong solution of problem (1)
with initial data (vvv0,S0) if the following holds:

� vvv ∈ Lsloc([0, T ), Lr(Ω)3) for some r, s ∈ (1,∞) with 2/s + 3/r = 1, and equation (1a)
for the velocity component is satisfied in the weak sense, i.e., equation (16) holds true for all
Φ ∈ C∞0,σ(Ω× [0, T )).

� S ∈ Zq
T for some q ∈ (1,∞), S(0) = S0, and for all T ∈ H1

δ (Ω) and a.a. t ∈ (0, T ) it holds

〈∂t S(t),S(t)− T〉+ γ

∫
Ω

∇S(t) ···
(
∇(S(t)− T)

)
dx+ P(S(t))− P(T)

+

∫
Ω

(
(vvv · ∇)S+S(∇vvv)skw − (∇vvv)skw S−η(∇vvv)sym

)∣∣∣
t

:
(
S(t)− T

)
dx ≤ 0.

(21)

Lemma 2.1 ensures that the first and the second term in the first line and the term in the second line
of inequality (21) are in L1

loc([0, T )) and thus, in particular, finite a.e. in (0, T ). Choosing T = O
further shows that P(S) ∈ L1

loc([0, T )) whenever (vvv,S) is a strong solution, so that, in particular,
P(S(t)) <∞ for a.a. t ∈ (0, T ).

Moreover, the velocity field vvv of a strong solution (vvv,S) in the sense of Definition 3.3 is a weak
solution to (1a) that satisfies a Serrin condition. This is in accordance with the well-known notion of
strong solutions to the classical Navier–Stokes equations as used in [27] for example. In particular,
due to this regularity condition, it is not necessary to additionally assume that vvv satisfies the partial
energy inequality (17) since the corresponding energy equality is satisfied automatically, that is,

1

2
‖vvv(t)‖2

L2(Ω) + µ

∫ t

0

‖∇vvv‖2
L2(Ω) ds =

1

2
‖vvv0‖2

L2(Ω) +

∫ t

0

〈fff,vvv〉 ds−
∫ t

0

∫
Ω

ηS : (∇vvv)sym dx ds.

(22)
As a consequence of these observations, we infer the following consistency property.
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Remark 3.2 (Strong solutions are generalized solutions). Any strong solution (vvv,S) in the sense of
Definition 3.3 is a generalized solution in the sense of Definition 3.1. For the velocity component, this
follows from the fact that strong solutions satisfy the energy equality (22). Inequality (18) for given
S̃ ∈ Zq

T is obtained upon integrating inequality (21) at time s and with the choice T := S̃(s) in time
from s = 0 to s = t, where one uses the identity∫ t

0

〈∂t S,S− S̃〉ds =
1

2
‖S(t)−S̃(t)‖2

L2(Ω) −
1

2
‖S0−S̃(0)‖2

L2(Ω) +

∫ t

0

〈∂t S̃, S− S̃〉ds.

Let us finally point out the relation between the variational inequality (21) and the differential inclu-
sion (1b). For this purpose let P̂ : H1

δ (Ω) → [0,∞] be the restriction of P to H1
δ (Ω). By definition,

its convex subdifferential ∂P̂ maps elements of H1
δ (Ω) to subsets of H1

δ (Ω)∗, and for almost all
t ∈ (0, T ), inequality (21) can be written as a differential inclusion in H1

δ (Ω)∗, namely

−
(
∂t S+(vvv · ∇)S+S(∇vvv)skw − (∇vvv)skw S−γ∆S−η(∇vvv)sym

)
∈ ∂P̂(S) (23)

with the understanding that 〈−γ∆S,T〉 := γ
∫

Ω
∇ S ··· ∇T dx.

In Section 3.2 we will construct local-in-time strong solutions enjoying the extra regularity ∆S(t),
∂t S(t) ∈ L2

δ(Ω), which satisfy the inclusion (23) in the L2
δ(Ω) sense as well (cf. Remark 3.4).

Remark 3.3 (Energy equality). We note that for a strong solution (vvv,S), we may recover the energy
equality (3). Indeed, the inclusion (23) implies that there exists G with G(t) ∈ ∂P̂(S(t)) for a.a. t ∈
(0, T ) such that the equality

∂t S+(vvv · ∇)S+S(∇vvv)skw − (∇vvv)skw S−γ∆S+G = η(∇vvv)sym

holds in (H1
δ (Ω))∗ a.e. in (0, T ). Thanks to the extra regularity, we may test this identity with S.

Integrating the resulting equality in time leads to the partial energy equality

1

2
‖S(t)‖2

L2(Ω) +

∫ t

0

γ‖∇ S ‖2
L2(Ω) + P̂(S) + P̂∗(G) ds

=
1

2
‖S0 ‖2

L2(Ω) +

∫ t

0

∫
Ω

η S : (∇vvv)sym dx ds

for a.e. t ∈ (0, T ), where we used the Fenchel identity 〈G,S〉 = P̂(S) + P̂∗(G) for G ∈ ∂P̂(S).
Furthermore, we may use vvv as a test function in (16), which leads to the partial energy equality (22)
for a.a. t ∈ (0, T ). Summing up the two partial energy equalities, we arrive at the energy equality (3).

3.2 Local existence of strong solutions

In the following, we show that under an additional regularity hypothesis on the data, problem (1) has
a strong solution on a time interval (0, T ) provided T > 0 is small enough. For simplicity, we only
consider the case fff ≡ 0 here, but the result equally holds for forcings fff ∈ L2

loc([0,∞);L2(Ω)3).

Theorem 3.4 (Local existence of strong solutions). Let γ > 0, µ > 0 and η ≥ 0. Suppose that Ω ⊂
R3 is a bounded domain with C2 boundary, and let fff ≡ 0. In addition to the basic hypotheses (15)
assume that

vvv0 ∈ H1(Ω)3, S0 ∈ H1(Ω)3×3 and P(S0) <∞. (24)
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Then there exists T ∈ (0,∞) such that problem (1) has at least one strong solution (vvv,S) with initial
data (vvv0,S0). This solution enjoys the following additional regularity properties:

vvv ∈ H1(0, T ;L2(Ω)3) ∩ L∞(0, T ;H1(Ω)3) ∩ L2(0, T ;H2(Ω)3),

S ∈ H1(0, T ;L2(Ω)3×3) ∩ L∞(0, T ;H1(Ω)3×3), P(S) ∈ L∞(0, T ).
(25)

Proof. The main point in the proof is to derive sufficiently strong a priori bounds (cf. (27) below)
for suitably regular solutions of (1) on some short time interval [0, T ] in the case that P is Fréchet
differentiable with globally Lipschitz continuous derivative. For the actual construction of a strong so-
lution on (0, T ) × Ω, one may then follow the roadmap in [10]: One first regularizes the potential
P : L2

δ(Ω)→ [0,∞] by its Moreau envelope and then performs a Galerkin approximation for the reg-
ularized potentials similar to [10, Section 4]. Along the approximate sequence, the a priori estimates
can be derived rigorously. Moreover, they allow us to pass to the limit along the approximate solutions
(up to a subsequence), not only in the weak formulation for (vvv,S) but also in the strong formula-
tion (21) for the internal stress tensor, and imply the asserted regularity (25). Let us note that for the
velocity component, in the Galerkin approximation one should here use a Galerkin basis composed
of eigenfunctions of the Stokes operator −P∆ on L2

σ(Ω) with P denoting the Helmholtz projector
P : L2(Ω)3 → L2

σ(Ω) (rather than the smooth basis functions introduced in [10] for constructing
weak solutions). The eigenfunctions of the Stokes operator only belong to H1

0,σ(Ω) ∩ H2(Ω)3 in
general, but this regularity suffices for our purpose.

In the rest of the proof, we will show that, in addition to the fundamental energy estimate

sup
t∈[0,T ]

(
1

2
‖vvv(t)‖2

L2(Ω) +
1

2
‖S(t)‖2

L2(Ω)

)
+ µ‖∇vvv‖2

L2(0,T ;L2(Ω)) + γ‖∇S‖2
L2(0,T ;L2(Ω)) +

∫ T

0

P(S(t)) dt ≤ C26

(26)

with C26 := 1
2
‖vvv0‖2

L2(Ω) + 1
2
‖S0‖2

L2(Ω), regular solutions of (1) enjoy the following bound:

sup
t∈[0,T ]

(
‖∇vvv(t)‖2

L2(Ω) + γ‖∇S(t)‖2
L2(Ω) + P(S(t))

)
+ µ

∫ T

0

(
‖∇2vvv(t)‖2

L2(Ω) + ‖∂tS(t)‖2
L2(Ω)

)
dt ≤ C27,

(27)

for T = T (‖vvv0‖H1(Ω), ‖S0‖L2(Ω),
√
γ‖∇S0‖L2(Ω),P(S0), γ−1, µ−1, η) > 0 small enough and a

finite constant

C27 = C(‖vvv0‖H1(Ω), ‖S0‖L2(Ω),
√
γ‖∇S0‖L2(Ω),P(S0), γ−1, µ−1, η). (28)

Here, the quantity C27 can be chosen to be non-decreasing in each of its arguments, while the time
T (·) > 0 is non-increasing in each of its arguments.

In virtue of the embedding L2(0, T ;H2(Ω)3) ↪→ L2(0, T ;L∞(Ω)3), estimate (27) further yields
vvv · ∇vvv ∈ L2(0, T ;L2(Ω)3), which implies that ∂tvvv ∈ L2(0, T ;L2(Ω)3) (for details see e.g. [26,
Lemma 6.2]). Hence, the regularity asserted in (25) indeed follows from (27).

For the derivation of (27), we first test the Navier–Stokes equations (1a) with −P∆vvv(t) ∈ L2
σ(Ω) to

infer

1

2

d

dt
‖∇vvv‖2

L2(Ω) + µ‖P∆vvv‖2
L2(Ω) =

∫
Ω

(vvv · ∇)vvv · P∆vvv dx− η
∫

Ω

(∇ · S) · P∆vvv dx =: I1 + I2.
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Using Agmon’s inequality as well as the Poincaré and Young inequalities and the elliptic estimate
‖vvv‖H2(Ω) ≤ C‖P∆vvv‖L2(Ω) (see e.g. [7, Proposition 4.7]), the integral terms can be estimated as
follows:

|I1| ≤ ‖vvv‖L∞(Ω)‖∇vvv‖L2(Ω)‖P∆vvv‖L2(Ω) ≤ C‖∇vvv‖
3
2

L2(Ω)‖P∆vvv‖
3
2

L2(Ω)

≤ Cµ−3‖∇vvv‖6
L2(Ω) +

µ

4
‖P∆vvv‖2

L2(Ω),

|I2| ≤ Cµ−1η2‖∇S‖2
L2(Ω) +

µ

4
‖P∆vvv‖2

L2(Ω).

Hence,

d

dt
‖∇vvv‖2

L2(Ω) + µ‖P∆vvv‖2
L2(Ω) ≤ Cµ−3‖∇vvv‖6

L2(Ω) + Cµ−1η2‖∇S‖2
L2(Ω). (29)

To proceed, let us recall that we may assume without loss of generality that ∂P(S) is globally Lipschitz
continuous. As mentioned above, the rigorous version of this step is to be carried out with the Moreau
envelope of the nonsmooth dissipation potential, cf. [10]. We may then test the evolution law (1b) for
the tensorial component with ∂tS to find

γ

2

d

dt
‖∇S‖2

L2 + ‖∂tS‖2
L2 +

∫
Ω

∂P(S) : ∂tS dx

=

∫
Ω

(vvv · ∇)S : ∂tS dx+

∫
Ω

(
S(∇vvv)skw − (∇vvv)skw S

)
: ∂tS dx+

∫
Ω

η(∇vvv)sym : ∂tS dx

=: I3 + I4 + I5.

The integral I3 involving the convective term is estimated, using Agmon’s inequality and the bound
‖vvv‖H2(Ω) ≤ C‖P∆vvv‖L2(Ω), as

|I3| ≤ ‖vvv‖L∞(Ω)‖∇S‖L2(Ω)‖∂tS‖L2(Ω) ≤ C‖∇vvv‖
1
2

L2(Ω)‖P∆vvv‖
1
2

L2(Ω)‖∇S‖L2(Ω)‖∂tS‖L2(Ω)

≤ C‖∇vvv‖2
L2(Ω)‖∇S‖4

L2(Ω) +
µ

4
‖P∆vvv‖2

L2(Ω) +
1

6
‖∂tS‖2

L2(Ω).

For I4 we estimate, using the Gagliardo–Nirenberg–Sobolev inequality,

|I4| ≤ 2‖∇vvv‖L3(Ω)‖S‖L6(Ω)‖∂tS‖L2(Ω) ≤ C‖∇vvv‖
1
2

L2(Ω)‖P∆vvv‖
1
2

L2(Ω)‖S‖H1(Ω)‖∂tS‖L2(Ω)

≤ C‖∇vvv‖2
L2(Ω)‖S‖4

H1(Ω) +
µ

4
‖P∆vvv‖2

L2(Ω) +
1

6
‖∂tS‖2

L2(Ω).

The estimate for I5 is immediate

|I5| ≤ Cη2‖∇vvv‖2
L2(Ω) +

1

6
‖∂tS‖2

L2(Ω).

In combination, we deduce

γ

2

d

dt
‖∇S‖2

L2(Ω) +
1

2
‖∂tS‖2

L2(Ω) +
d

dt
P(S)

≤ C‖∇vvv‖2
L2(Ω)‖S‖4

H1(Ω) +
µ

2
‖P∆vvv‖2

L2(Ω) + Cη2‖∇vvv‖2
L2(Ω),

(30)

where we used the regularity ofP and S and the chain rule to rewrite the term involving the dissipation
potential.
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Adding up inequalities (29) and (30) gives

d

dt

(
‖∇vvv‖2

L2(Ω) +
γ

2
‖∇S‖2

L2(Ω) + P(S)

)
+
µ

2
‖P∆vvv‖2

L2(Ω) +
1

2
‖∂tS‖2

L2(Ω)

≤ Cµ−3‖∇vvv‖6
L2(Ω) + Cµ−1η2‖∇S‖2

L2(Ω) + Cµ−1‖∇vvv‖2
L2(Ω)‖S‖4

H1(Ω) + Cη2‖∇vvv‖2
L2(Ω).

Expanding ‖S‖2
H1(Ω) = ‖∇S‖2

L2(Ω) + ‖S‖2
L2(Ω), we find that the function

ψ(t) := ‖∇vvv(t)‖2
L2(Ω) +

γ

2
‖∇S(t)‖2

L2(Ω) + P(S(t)) + 1

satisfies the differential inequality
d

dt
ψ(t) ≤ Aψ(t)3,

where
A := Cµ−3 + Cµ−1η2γ−1 + Cµ−1γ−2 + Cµ−1C2

26 + Cη2.

Since, by hypothesis, ψ(0) is finite, we may use a classical ODE comparison argument to deduce the
existence of a time

T = T (‖vvv0‖H1(Ω), ‖S0‖L2(Ω),
√
γ‖∇S0‖L2(Ω),P(S0), γ−1, µ−1, η) > 0

and a finite constant C27 as in (28) such that ψ(t) ≤ C27 for all t ∈ [0, T ]. Combined with the above
estimates for µ‖P∆vvv‖2

L2(Ω) and ‖∂tS‖2
L2(Ω), this implies the bound (27).

When P ≡ 0, the evolution law for the tensorial component implies that any strong solution (vvv,S)
with the regularity (25) further satisfies S ∈ L2(0, T ;H2(Ω)3×3). The following remark shows that
this conclusion continues to hold true for nonsmooth potentials P given by an integral functional.

Remark 3.4 (H2 regularity for S). Suppose that the dissipation potential P takes the form of an
integral P(S) =

∫
Ω
P(S(x)) dx for a lower semicontinuous, convex function P : R3×3

δ → [0,∞]
with P(O) = 0. Then, under the hypotheses of Theorem 3.4, strong solutions (vvv,S) satisfying (25)
enjoy the additional regularity

S ∈ L2(0, T ;H2(Ω)3×3) (31)

and fulfill the differential inclusion (1b) in the L2
δ(Ω) sense:

G := −
(
∂t S+(vvv · ∇)S+S(∇vvv)skw − (∇vvv)skw S−γ∆S−η(∇vvv)sym

)
∈ L2(0, T ;L2

δ(Ω))

with G(x, t) ∈ ∂P(S(x, t)) for a.a. (x, t) ∈ Ω× (0, T ).

Let us first provide the formal argument demonstrating this assertion. The estimate

‖η(∇vvv)sym − (vvv · ∇)S−(S(∇vvv)skw − (∇vvv)skwS)‖L2(Ω×(0,T ))

≤ η‖∇vvv‖L2(Ω×(0,T ))+‖vvv‖L2(0,T ;L∞(Ω))‖S ‖L∞(0,T ;H1(Ω)) + 2c‖S ‖L∞(0,T ;L6(Ω))‖vvv‖L2(0,T ;H2(Ω))

combined with (26) and (27) shows that the term

F := η(∇vvv)sym − ∂t S−(vvv · ∇)S−(S(∇vvv)skw − (∇vvv)skwS)

is controlled in L2(0, T ;L2(Ω)3×3), whence

−γ∆S+G = F ∈ L2(0, T ;L2
δ(Ω)). (32)
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Assuming for the moment that P ∈ C2 and testing (32) with DP(S) (= G) yields∫ T

0

∫
Ω

γ∇ S ··· D2P(S) ··· ∇ S+|DP(S)|2 dx dt =

∫ T

0

∫
Ω

F : DP(S) dx dt

≤ 1

2
‖DP(S)‖2

L2(0,T ;L2(Ω)) +
1

2
‖F‖2

L2(0,T ;L2(Ω)) ,

where the first term on the left-hand side is non-negative thanks to the positive semidefiniteness of the
Hesse form of the convex function P. We thus deduce the a priori bound

‖DP(S)‖L2(0,T ;L2(Ω)) ≤ ‖F‖L2(0,T ;L2(Ω)), (33)

which further yields ‖γ∆S ‖L2(0,T ;L2(Ω)) ≤ C‖F‖L2(0,T ;L2(Ω)).

To make the above reasoning rigorous, we may argue as follows. Following the proof of Theorem 3.4,
we first construct local-in-time strong solutions using the regularized functions Pε,λ := ρλ ∗Pε with
λ, ε ∈ (0, 1]. Here, Pε denotes the Moreau envelope of the nonsmooth function P, that is,

Pε(T) := inf
T′∈R3×3

δ

(
P(T′) +

1

2ε
|T− T′|2

)
,

which by construction satisfies the pointwise bound Pε(T) ≤ 1
2ε
|T|2, while ρλ denotes a standard

(non-negative) mollifier. The functions Pε,λ are C2 and convex and satisfy the λ-uniform bound

0 ≤ Pε,λ(T) ≤ C

ε

(
|T|2 + 1

)
for all T ∈ R3×3

δ , (34)

whenever λ ∈ (0, 1]. (The fact that possibly Pε,λ(0) 6= 0 does not affect the construction of solu-
tions.) At the level of the strong solutions associated with Pε,λ, estimate (33) and the L2 bound for
γ∆S can be derived rigorously. The control (34) and the a priori bounds allow to pass to the limit λ→
0 in the strong formulation (21) for all T ∈ L2

δ(Ω), where the term γ
∫

Ω
∇S(t) ···

(
∇(S(t) − T)

)
dx

is to be replaced by −γ
∫

Ω
∆S(t) :

(
S(t) − T

)
dx. Finally, in the limit ε → 0, we obtain a strong

solution on (0, T ) with the additional regularity (31) satisfying the differential inclusion (1b) in the L2
δ

sense. Since our weak-strong uniqueness principle (Theorem 3.5 below) implies that strong solutions
are unique, this shows that already the strong solutions obtained in Theorem 3.4 must have these
regularity properties if the dissipation potential is in integral form.

3.3 Relative energy inequality and weak-strong stability

The aim of this subsection is to show the following weak-strong stability result, which compares gen-
eralized solutions (vvv,S) with strong solutions (ṽvv, S̃) to (1) in terms of the relative energyR(vvv,S|ṽvv, S̃)
defined in (11). It implies the uniqueness of strong solutions in the class of generalized solutions.

Theorem 3.5 (Weak-strong stability). Let (ṽvv, S̃) be a strong solution according to Def. 3.3 with initial
data (ṽvv0, S̃0). Choose p, q, r, s ∈ (2,∞) satisfying (8) such that ṽvv ∈ Lsloc([0, T );Lr(Ω)), S̃ ∈
Lqloc([0, T );Lp(Ω)). Then every generalized solution (vvv,S) ∈ X emanating from initial data (vvv0,S0)
obeys the estimate

R(vvv(t),S(t)|ṽvv(t), S̃(t)) +

∫ t

0

(
µ

2
‖∇vvv −∇ṽvv‖2

L2(Ω) +
γ

2
‖∇S−∇ S̃ ‖2

L2(Ω)

)
e
∫ t
s K(ṽvv,S̃) dτ ds

≤ R(vvv0,S0 |ṽvv0, S̃0)e
∫ t
0 K(ṽvv,S̃) ds

(35)
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for a.e. t ∈ (0, T ), where

K(ṽvv, S̃) = C
(
‖ṽvv‖sLr(Ω) + ‖ S̃ ‖qLp(Ω) + ‖ S̃ ‖2

Lp(Ω)

)
(36)

for a constant C = C(Ω, p, q, r, s, µ, γ) > 0. In particular, if the initial data (vvv0,S0) and (ṽvv0, S̃0)
coincide, then ṽvv ≡ vvv and S̃ = S.

In the above formulation, we call the function K the regularity weight since it measures the minimal
regularity of the function (ṽvv, S̃) such that both sides of the relative energy inequality (35) remain finite.

We will deduce Theorem 3.5 from a suitable relative energy inequality that compares a generalized so-
lution with any sufficiently smooth function. For its formulation, let us (formally) introduce the operator
A =

(
A(1),A(2)

)
by

〈A(1)(ṽvv, S̃),Φ〉 := 〈∂tṽvv,Φ〉+

∫
Ω

(ṽvv · ∇ṽvv) · Φ dx+
(
η S̃+2µ(∇ṽvv)sym

)
: ∇Φ dx− 〈fff,Φ〉,

(37a)

〈A(2)(ṽvv, S̃),T〉 := 〈∂t S̃,T〉+

∫
Ω

(
ṽvv · ∇ S̃+ S̃(∇ṽvv)skw − (∇ṽvv)skw S̃

)
: T

+ γ∇ S̃ ··· ∇T− η(∇ṽvv)sym : T dx.
(37b)

Note that the interpolation inequality of Lemma 2.1 shows that

∀(vvv,S) ∈ X, (ṽvv, S̃) ∈ Z :

〈
A(ṽvv, S̃),

(
vvv
S

)〉
∈ L1

loc([0, T )),

where X and Z were introduced in (7) and (9).

Now we can state the above-mentioned relative energy inequality. Actually, we derive a family of rela-
tive energy inequalities where the regularity weightK is not fixed in advance. Observe that the choice
of K influences the class of admissible test functions, which must belong to the set DK defined in
(12).

Proposition 3.6. Let (vvv,S) ∈ X be a generalized solution according to Definition 3.1, and let K :
Q→ [0,∞] be a given functional. Then (vvv,S) fulfills the relative energy inequality

R(vvv(t),S(t)|ṽvv(t), S̃(t))

+

∫ t

0

(
W(K)(vvv,S |ṽvv, S̃) + P(S)− P(S̃) +

〈
A(ṽvv, S̃),

(
vvv − ṽvv
S− S̃

)〉)
e
∫ t
s K(ṽvv,S̃) dτ ds

≤ R(vvv0,S0 |ṽvv(0), S̃(0))e
∫ t
0 K(ṽvv,S̃) ds (38)

for a.e. t ∈ (0, T ) and all (ṽvv, S̃) ∈ DK ∩ Z, whereW :=W(K) denotes the relative dissipation-like
quantity

W(K)(vvv,S |ṽvv, S̃) := µ‖∇vvv −∇ṽvv‖2
L2(Ω) + γ‖∇ S−∇ S̃ ‖2

L2(Ω)

−
∫

Ω

((vvv − ṽvv) · ∇(vvv − ṽvv)) · ṽvv + ((vvv − ṽvv) · ∇(S− S̃)) : S̃ dx

−
∫

Ω

(
(S− S̃)(∇vvv −∇ṽvv)skw − (∇vvv −∇ṽvv)skw(S− S̃)

)
: S̃ dx

+K(ṽvv, S̃)R(vvv,S |ṽvv, S̃),

(39)

which depends on the regularity weight K.
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Observe that by Lemma 2.1 the quantity W(K) satisfies W(K)(vvv,S |ṽvv, S̃) ∈ L1
loc([0, T )) for all

(vvv,S), (ṽvv, S̃) as above.

Proof of Proposition 3.6. Let (ṽvv, S̃) ∈ DK ∩ Z and t ∈ (0, T ). The reasoning below is valid for a.e.
t ∈ (0, T ).

If
∫ t

0
P(S̃) dτ = +∞, the asserted inequality is trivially satisfied. Thus, we may henceforth assume

that P(S̃) ∈ L1(0, t). Since (vvv,S) is a generalized solution, it fulfills (17) and (18). Given φ ∈
C̃([0, t]), we transform these two inequalities according to Lemma 2.2 into their weak formulation in
time and add the weak form (16) of the Navier–Stokes equations with the test function Φ = −φṽvv
(which is admissible as a test function due to a classical approximation argument using Lemma 2.1)
to obtain

−
∫ t

0

φ′
(

1

2
‖S− S̃ ‖2

L2(Ω) +
1

2
‖vvv‖2

L2(Ω) −
∫

Ω

vvv · ṽvv dx

)
dτ

+

∫ t

0

φ

(∫
Ω

µ∇vvv : (∇vvv −∇ṽvv) + γ∇S ···
(
∇S−∇ S̃

)
dx+ P(S)− P(S̃)

)
dτ

+

∫ t

0

φ

∫
Ω

−(vvv ·∇)vvv · ṽvv+ η S : (∇vvv −∇ṽvv)− (vvv ·∇)S : S̃− (S(∇vvv)skw − (∇vvv)skw S) : S̃ dx dτ

+

∫ t

0

φ

(
〈∂tṽvv,vvv〉 −

∫
Ω

η(∇vvv)sym : (S− S̃) dx+ 〈fff,vvv − ṽvv〉
)

dτ

−
(

1

2
‖S0− S̃(0)‖2

L2(Ω) +
1

2
‖vvv0‖2

L2(Ω) −
∫

Ω

vvv0 · ṽvv(0) dx

)
≤ 0 . (40)

Observing that〈
A(ṽvv, S̃),

(
vvv − ṽvv
S− S̃

)〉
= 〈∂tṽvv,vvv〉+

∫
Ω

−1

2
∂t|ṽvv|2 + (ṽvv · ∇)ṽvv · vvv +

(
η S̃+2µ(∇ṽvv)sym

)
: (∇vvv −∇ṽvv) dx− 〈fff,vvv − ṽvv〉

+

∫
Ω

∂t S̃ : (S− S̃) + (ṽvv · ∇) S̃ : (S− S̃) +
(
S̃(∇ṽvv)skw − (∇ṽvv)skw S̃

)
: (S− S̃) dx

+

∫
Ω

γ∇ S̃ ···
(
∇ S−∇ S̃

)
− η(∇ṽvv)sym :

(
S− S̃

)
dx ,

(41)

we can rewrite inequality (40), upon integration by parts in time, as

−
∫ t

0

φ′R(vvv,S |ṽvv, S̃) dτ +

∫ t

0

φ
(
µ‖∇vvv −∇ṽvv‖2

L2(Ω) + γ‖∇ S−∇ S̃ ‖2
L2(Ω)

)
dτ

−
∫ t

0

φ

∫
Ω

((vvv − ṽvv) · ∇)(vvv − ṽvv) · ṽvv + ((vvv − ṽvv) · ∇)(S− S̃) : S̃ dxdτ

−
∫ t

0

φ

∫
Ω

(
(S− S̃)(∇vvv −∇ṽvv)skw − (∇vvv −∇ṽvv)skw(S− S̃)

)
: S̃ dx dτ

+

∫ t

0

φ

(
P(S)− P(S̃) +

〈
Aγ(ṽvv, S̃),

(
vvv − ṽvv
S− S̃

)〉)
dτ

≤ R(vvv0,S0 |ṽvv(0), S̃(0)) ,
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where we used the canceling of several terms (notably of the coupling term
∫

Ω
η(∇vvv)sym : S dx =∫

Ω
η∇vvv : S dx), the fact that vvv and ṽvv are solenoidal vector fields, and the antisymmetry of (∇ṽvv)skw.

Choosing φ(τ) = ϕ(τ)e−
∫ τ
0 K(ṽvv,S̃) dτ̂ and invoking Lemma 2.2 yields the asserted inequality (38).

Proof of Theorem 3.5. First, we show that the velocity field ṽvv possesses the additional regularity ṽvv ∈
H1

loc([0, T ); (H1
0,σ(Ω))∗). In the same way as in the proof of Lemma 2.1, we infer

∣∣∣∫ t

0

∫
Ω

ṽvv · ∇ṽvv · Φ dx ds
∣∣∣ =

∣∣∣∫ t

0

∫
Ω

ṽvv · ∇Φ · ṽvv dx ds
∣∣∣

≤ C
(
‖∇ṽvv‖2

L2(0,t;L2(Ω)) + ‖ṽvv‖2
L∞(0,t;L2(Ω)) + ‖ṽvv‖2

Ls(0,t;Lr(Ω))

)
‖∇Φ‖L2(0,t;L2(Ω))

for all Φ ∈ C∞0,σ(Ω× (0, t)) and all t ∈ (0, T ). Invoking the weak formulation (16), we deduce

∣∣∣∫ t

0

∫
Ω

ṽvv · ∂tΦ dx ds
∣∣∣ =

∣∣∣∫ t

0

∫
Ω

(
(ṽvv · ∇)ṽvv · Φ + ηS̃ : ∇Φ + µ∇ṽvv : ∇Φ

)
dx ds−

∫ t

0

〈fff,Φ〉 ds
∣∣∣

≤ C
(
‖∇ṽvv‖2

L2(0,t;L2(Ω)) + ‖ṽvv‖2
L∞(0,t;L2(Ω)) + ‖ṽvv‖2

Ls(0,t;Lr(Ω))

+ ‖S̃‖L2(0,t;L2(Ω)) + ‖ṽvv‖L2(0,t;H1(Ω)) + ‖fff‖L2(0,t;H−1(Ω))

)
‖Φ‖L2(0,t;H1(Ω)).

This shows ṽvv ∈ H1
loc([0, T ); (H1

0,σ(Ω))∗). Hence we have (ṽvv, S̃) ∈ Z, so that (vvv,S), (ṽvv, S̃) satisfy
the relative energy inequality (38) by Proposition 3.6.

For the derivation of (35) from (38) it suffices to show that for a.e. t ∈ (0, T ) we have

W(K)(vvv,S |ṽvv, S̃) + P(S)− P(S̃) +

〈
A(ṽvv, S̃),

(
vvv − ṽvv
S− S̃

)〉
≥ µ

2
‖∇vvv −∇ṽvv‖2

L2(Ω) +
γ

2
‖∇ S−∇ S̃ ‖2

L2(Ω)

(42)

for K given by (36). To verify inequality (42), we first show, for a.e. t ∈ (0, T ), the two relations〈
A(1)(ṽvv, S̃), vvv − ṽvv

〉
= 0, (43)

P(S)− P(S̃) +
〈
A(2)(ṽvv, S̃),S− S̃

〉
≥ 0. (44)

Note that, as a consequence of the weak solution property of (ṽvv, S̃) and the extra regularity of ṽvv, for
a.e. t ∈ (0, T ) we have the equality

A(1)(ṽvv, S̃) = ∂tṽvv +∇ · (ṽvv ⊗ ṽvv)−∇ ·
(
S̃+2µ(∇ṽvv)sym

)
− fff = 0 in (H1

0,σ(Ω))∗,

which immediately gives (43). Inequality (44) follows upon choosing T = S(t) ∈ H1
δ (Ω) as a test

function in the strong variational inequality (21) satisfied by (ṽvv, S̃). We are thus left to prove that
W(K) ≥ µ

2
‖∇vvv − ∇ṽvv‖2

L2(Ω) + γ
2
‖∇ S−∇ S̃ ‖2

L2(Ω) if K is given by (36) for some sufficiently large
constant C <∞. Using Lemma 2.1, we may estimate∣∣∣∣∫

Ω

((vvv − ṽvv) · ∇)(vvv − ṽvv) · ṽvv + ((vvv − ṽvv) · ∇)(S− S̃) : S̃ dx

∣∣∣∣
≤ µ

4
‖∇vvv −∇ṽvv‖2

L2(Ω) +
γ

4
‖∇S−∇ S̃ ‖2

L2(Ω) + C1

(
‖ṽvv‖sLr(Ω) + ‖ S̃ ‖qLp(Ω)

)
R(vvv,S |ṽvv, S̃) ,

(45)
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where (r, s) and (p, q) fulfill (8). Similarly, we estimate the terms stemming from the Zaremba–
Jaumann rate by Hölder’s, Gagliardo–Nirenberg’s, and Young’s inequality as

∣∣∣ ∫
Ω

(
(S− S̃)(∇vvv −∇ṽvv)skw − (∇vvv −∇ṽvv)skw(S− S̃)

)
: S̃ dx

∣∣∣
≤ C‖∇vvv −∇ṽvv‖L2(Ω)‖S− S̃ ‖L2p/(p−2)(Ω)‖ S̃ ‖Lp(Ω)

≤ C‖∇vvv −∇ṽvv‖L2(Ω)

(
‖S− S̃ ‖1−α

L2(Ω)‖∇ S−∇ S̃ ‖αL2(Ω)‖ S̃ ‖Lp(Ω) + ‖ S− S̃ ‖L2(Ω)‖ S̃ ‖Lp(Ω)

)
≤ µ

4
‖∇vvv −∇ṽvv‖2

L2(Ω) +
γ

4
‖∇ S−∇ S̃ ‖2

L2(Ω) + C2

(
‖ S̃ ‖qLp(Ω) + ‖ S̃ ‖2

Lp(Ω)

)
‖S− S̃ ‖2

L2(Ω) ,

where α = 3/p. Hence, (42) holds for K as in (36) with C = max{C1, 2C2}.

4 Energy-variational solutions for vanishing stress diffusion

In this section, we investigate problem (6), that is, (1) for γ = 0, where stress diffusion is not present.
In this case, the basic energy estimates no longer provide weak sequential compactness in L1

loc(Ω×
[0, T )) for the nonlinear term S(∇vvv)skw − (∇vvv)skw S coming from the Zaremba–Jaumann derivative.
Thus, we have to further extend the concept of generalized solutions introduced in Def. 3.1. Here,
we use a concept in the spirit of [15, 17], which is reminiscent of the dissipative solutions introduced
by P.-L. Lions in [19]. In the literature, the term dissipative is, however, employed for various kinds of
paradigms, and here we prefer the term energy-variational since the basis of our solution concept is
a relative energy inequality (similar to (38)), which can be interpreted as a variation of the energy-
dissipation mechanism with respect to functions in the domain DK of the regularity weight K. We
show existence of energy-variational solutions and derive some important properties inherent in this
solution concept.

4.1 The concept of energy-variational solutions

We introduce the notation

X0 := LHT × L∞loc([0, T );L2
δ(Ω)), Z0 :=

⋃
s∈(2,∞)

Y s
T × ZT,0,

where

ZT,0 := W 1,1
loc ([0, T );L2

δ(Ω)) ∩ L2
loc([0, T );W 1,3(Ω)3×3 ∩ L∞(Ω)3×3).

As explained above, the notion of energy-variational solutions to (6) is based on an adaptation of the
relative energy inequality (38) to the case γ = 0. To emphasize the γ-dependence in the quantities
appearing in (38), we set A(2)

γ = A(2), Aγ = A =
(
A(1),A(2)

γ

)
for γ ≥ 0, andWγ = W(K)

γ =

W(K) for γ > 0, where A(2) and W(K) are given in (37b) and (39), respectively. Observe that in
the limiting case γ = 0 the quantity W(K) is not well defined by (39) for general (vvv,S) ∈ X0 and
(ṽvv, S̃) ∈ Z0 since ∇S appears in the advective term. Therefore, we formally integrate by parts and
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defineW0 =W(K)
0 by

W(K)
0 (vvv,S |ṽvv, S̃) := µ‖∇vvv −∇ṽvv‖2

L2(Ω)

−
∫

Ω

((vvv − ṽvv) · ∇(vvv − ṽvv)) · ṽvv − (S− S̃)⊗ (vvv − ṽvv) ··· ∇ S̃ dx

−
∫

Ω

(
(S− S̃)(∇vvv −∇ṽvv)skw − (∇vvv −∇ṽvv)skw(S− S̃)

)
: S̃ dx

+K(ṽvv, S̃)R(vvv,S |ṽvv, S̃).

(46)

We now define energy-variational solutions by imposing a relative energy inequality analogous to (38).
Recall that the regularity weight K was not fixed in (38), which is reflected in the following solution
concept. We emphasize though that the definition to follow is only meaningful for sufficiently “nice”
weights K.

Definition 4.1. Let K : Q → [0,∞] with K(000,O) = 0. A tuple (vvv,S) ∈ X0 is called an energy-
variational solution to (6) of type K if the relative energy inequality

R(vvv(t), S(t)|ṽvv(t), S̃(t))

+

∫ t

0

(
W(K)

0 (vvv,S |ṽvv, S̃) + P(S)− P(S̃) +

〈
A0(ṽvv, S̃),

(
vvv − ṽvv
S− S̃

)〉)
e
∫ t
s K(ṽvv,S̃) dτ ds

≤ R(vvv0,S0 |ṽvv(0), S̃(0))e
∫ t
0 K(ṽvv,S̃) ds (47)

is fulfilled for a.e. t ∈ (0, T ) and all (ṽvv, S̃) ∈ DK∩Z0. As before, we call the functionK the regularity
weight.

Remark 4.1 (Choice of the regularity weight). While the assumption K(000,O) = 0 is not needed to
define such a solution concept, it is a natural hypothesis which ensures the classical energy inequality,
i.e., inequality (20) with γ = 0. Note that this inequality directly follows by letting (ṽvv, S̃) ≡ (000,O)
in (47), which is admissible when K(000,O) = 0. This in turn guarantees that P(S) ∈ L1

loc([0, T ))
and hence, that the terms in (47) are well defined for all (ṽvv, S̃) ∈ DK ∩ Z0. Observe that standard
interpolation estimates show that

W(K)
0 (vvv,S |ṽvv, S̃),

〈
A0(ṽvv, S̃),

(
vvv − ṽvv
S− S̃

)〉
∈ L1

loc([0, T ))

for (vvv,S) ∈ X0 and (ṽvv, S̃) ∈ Z0 ∩DK, see also the estimates in the proof of Theorem 4.2 below.

Notice that the classical energy inequality encodes some basic information concerning the long-time
behavior of solutions, cf. [15, Thm. 6.2].

Remark 4.2 (Comparison to previous formulations). The above formulation differs from previous no-
tions of dissipative solutions (cf. [19]), which were based on similar relative energy inequalities. In
those definitions, the regularity weight K was fixed and chosen such that the last three lines of (46)
are non-negative. Additionally, these terms are usually just estimated from below by zero. By keeping
the mentioned terms in the inequality (47), the present solution concept is more selective than previous
versions.

4.2 Global existence of energy-variational solutions

In Proposition 3.6 we have seen that the generalized solutions for γ > 0 satisfy the relative energy
inequality (38). For suitable regularity weights K we may perform the limit γ → 0 in this inequality to
obtain the following existence result.
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Theorem 4.2 (Existence of energy-variational solutions). Under the assumptions stated in Hypothesis
2.3, there exists an energy-variational solution to the initial-boundary value problem (6) of typeK given
by

K(S̃) := C
(
‖ S̃ ‖2

L∞(Ω) + ‖∇ S̃ ‖2
L3(Ω)

)
(48)

for a suitable constant C = C(Ω, µ) > 0.

Moreover, any such energy-variational solution satisfies the Navier–Stokes component (6a) in the
weak sense, that is, (16) is satisfied for all Φ ∈ C∞0,σ(Ω× [0, T )).

Proof. In order to prove the existence of energy-variational solutions, for each γ > 0 we consider
a generalized solution (vvvγ,Sγ) ∈ X to (1), which exists due to Theorem 3.2. By Remark 3.1 the
generalized solution (vvvγ,Sγ) fulfills the energy inequality

1

2
‖vvvγ(t)‖2

L2(Ω) +
1

2
‖Sγ(t)‖2

L2(Ω) +µ

∫ t

0

‖∇vvvγ‖2
L2(Ω) ds+ γ

∫ t

0

‖∇ Sγ‖2
L2(Ω) ds+

∫ t

0

P(Sγ) ds

≤ 1

2
‖vvv0‖2

L2(Ω) +
1

2
‖S0‖2

L2(Ω) +

∫ t

0

〈fff,vvvγ〉 ds (49)

for a.e. t ∈ (0, T ). Additionally, we may find a γ-independent bound on the time derivative of the
velocity field. Indeed, since (vvvγ,Sγ) satisfies the weak formulation (16), for every Φ ∈ C∞0,σ(Ω ×
(0, T )) we can estimate∣∣∣∣∫ t

0

(vvvγ, ∂tΦ) ds

∣∣∣∣ =

∣∣∣∣∫ t

0

〈fff,Φ〉+ (vvvγ ⊗ vvvγ,∇Φ)− µ (∇vvvγ,∇Φ)− η (∇Sγ,∇Φ) ds

∣∣∣∣
≤ C

∫ t

0

(
‖fff‖(H1

0,σ)∗ + ‖vvvγ‖2
L4(Ω) + µ‖∇vvvγ‖L2(Ω) + η‖∇ Sγ ‖L2(Ω)

)
‖∇Φ‖L2(Ω) ds.

Using the Ladyzhenskaya inequality ‖vvvγ‖L4(Ω) ≤ C‖vvvγ‖1/4

L2(Ω)‖∇vvvγ‖
3/4

L2(Ω), we find that

‖∂tvvvγ‖4/3

L4/3(0,t;(H1
0,σ)∗)

=

∫ t

0

‖∂tvvvγ‖4/3

(H1
0,σ)∗

ds

≤ C

∫ t

0

‖fff‖4/3

(H1
0,σ)∗

+ (‖vvvγ‖1/2

L2(Ω)‖∇vvvγ‖
3/2

L2(Ω))
4/3 + µ‖∇vvvγ‖4/3

L2(Ω) + η‖Sγ ‖4/3

L2(Ω) ds

≤ C
(
‖fff‖4/3

L2(0,t;(H1
0,σ)∗)

+ ‖vvvγ‖2/3

L∞(0,t;L2(Ω))‖vvvγ‖
2
L2(0,t;H1

0,σ)

+ ‖vvvγ‖4/3

L2(0,t;H1
0,σ)

+ ‖Sγ ‖4/3

L2(0,t;L2(Ω))

)
.

By the aforementioned bounds and a classical diagonalization argument (see [27, Proof of Theorem
3.1.1] for example), we infer the existence of a limit function (vvv,S) such that for each t ∈ (0, T ) we
have

vvvγ ⇀ vvv in L2(0, t;H1(Ω)3), (50a)

vvvγ
∗
⇀ vvv in L∞(0, t;L2

σ(Ω)), (50b)

vvvγ → vvv in L2(0, t;L2(Ω)3), (50c)

Sγ
∗
⇀ S in L∞(0, t;L2

δ(Ω)) (50d)

for an appropriately chosen subsequence γ→ 0. Next we conclude that via these convergences, we
may pass to the limit in the relative energy inequality (38).
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Proposition 3.6 guarantees that (38) holds for all non-negative functionals K : Q → [0,∞], all
(ṽvv, S̃) ∈ DK ∩ Z and a.e. t ∈ (0, T ). We may reformulate this inequality using Lemma 2.2 and
observing thatWγ ≥ W0. This leads to

−
∫ t

0

φ′R(vvvγ, Sγ |ṽvv, S̃) ds+

∫ t

0

φW0(vvvγ, Sγ |ṽvv, S̃)e
∫ t
s K(ṽvv,S̃) dτ ds

+

∫ t

0

φ
(
P(Sγ)− P(S̃)

)
e
∫ t
s K(ṽvv,S̃) dτ ds+

∫ t

0

φ

〈
Aγ(ṽvv, S̃),

(
vvvγ − ṽvv
Sγ − S̃

)〉
e
∫ t
s K(ṽvv,S̃) dτ ds

≤ R(vvv0,S0 |ṽvv(0), S̃(0))e
∫ t
0 K(ṽvv,S̃) ds

(51)

for all φ ∈ C̃([0, T ]). We now show that, when choosingK as in (48), we may pass to the limit γ → 0
in each of the terms on the left-hand side of (51) via the convergence properties from (50).

Since φ′ ≤ 0, the first term in (51) is convex and continuous on L2(Ω × (0, t)) as a function of
(vvvγ,Sγ). Hence, it is weakly lower semicontinuous, and its convergence follows from (50c) and (50d).

In order to pass to the limit in the second integral term in (51), we split

W0(vvvγ,Sγ |ṽvv, S̃) = C(vvvγ, ṽvv) +Q(vvvγ,Sγ |ṽvv, S̃),

where C(vvv, ṽvv) := −
∫

Ω
((vvv − ṽvv) · ∇(vvv − ṽvv)) · ṽvv dx and

Q(vvv,S |ṽvv, S̃) := µ‖∇vvv −∇ṽvv‖2
L2(Ω) +K(S̃)R(vvv,S |ṽvv, S̃) +

∫
Ω

(S− S̃)⊗ (vvv − ṽvv) ··· ∇ S̃ dx

−
∫

Ω

(
(S− S̃)(∇vvv−∇ṽvv)skw − (∇vvv−∇ṽvv)skw(S− S̃)

)
: S̃ dx.

The convergence of the part of the integral involving the term C(vvvγ, ṽvv) follows as usual since the strong
convergence (50c) combined with (50a) implies the weak convergence of vvvγ · ∇vvvγ . Concerning the
remaining part involving Q(vvvγ,Sγ |ṽvv, S̃), we assert that (for fixed ṽvv ∈ H1

0,σ(Ω) and S̃ ∈ W 1,3(Ω) ∩
L∞(Ω)) the continuous functional Q : H1

0,σ(Ω)× L2
δ(Ω)→ R, Q(vvv,S) := Q(vvv,S |ṽvv, S̃) is convex

provided the constant C = C(µ,Ω) in the definition of K(S̃) is chosen large enough. Since Q is
the sum of a quadratic form Q1 and an affine part, it suffices to show that Q ≥ 0, as this implies
the non-negativity of Q1 and hence its convexity (cf. [4, Prop. 3.71]). To show the non-negativity of Q
(and its continuity) we use the Sobolev–Poincaré inequality ‖ṽvv‖L6(Ω) ≤ C‖∇ṽvv‖L2(Ω) and estimate,
choosing C sufficiently large,∣∣∣∣∫

Ω

(S− S̃)⊗ (vvv − ṽvv) ··· ∇ S̃ dx

∣∣∣∣ ≤ µ

2
‖∇vvv −∇ṽvv‖2

L2(Ω) + C‖∇ S̃ ‖2
L3(Ω)R(vvv,S |ṽvv, S̃).

Combined with the bound∣∣∣∣∫
Ω

(
(S− S̃)(∇vvv−∇ṽvv)skw − (∇vvv−∇ṽvv)skw(S− S̃)

)
: S̃ dx

∣∣∣∣
≤ µ

2
‖∇vvv −∇ṽvv‖2

L2(Ω) + C‖ S̃ ‖2
L∞(Ω)

1

2
‖S− S̃ ‖2

L2(Ω),

this shows that Q is non-negative and continuous. Hence, we may use weak lower semicontinuity to
take the limit γ → 0 in the integral term

∫ t
0
φQ(vvvγ,Sγ |ṽvv, S̃)e

∫ t
s K(ṽvv,S̃) dτ ds.
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For the third term in (51), note that the induced functional T 7→
∫ t

0
φP(T)e

∫ t
s K(ṽvv,S̃) dτ ds is convex

and, by Fatou’s lemma, lower semicontinuous on L2(0, t;L2(Ω)). This implies its weak lower semi-
continuity, whence

lim inf
γ→0

∫ t

0

φP(Sγ)e
∫ t
s K(ṽvv,S̃) dτ ds ≥

∫ t

0

φP(S)e
∫ t
s K(ṽvv,S̃) dτ ds.

For the term involving the operatorAγ , we first estimate the γ-dependent term as∫ t

0

γ
(
∇ S̃ ,∇(Sγ − S̃)

)
ds

≤ √γ
(∫ t

0

‖∇ S̃ ‖L2(Ω) ds

)1/2(∫ t

0

γ‖∇Sγ ‖2
L2(Ω) ds

)1/2

+ γ‖ S̃ ‖2
L2(0,t;H1(Ω))

for all t ∈ (0, T ). Due to the bound (49) on
∫ t

0
γ‖∇ Sγ ‖2

L2(Ω) ds and the regularity of S̃, the right-
hand side of the last inequality tends to zero as γ→ 0. Since the remaining terms do not explicitly
depend on γ and (vvvγ,Sγ) occurs at most linearly, we conclude convergence of the last term on the
left-hand side of (51).

In total, we can pass to the limit inferior with γ→ 0 in (51), which implies inequality (47) by invoking
Lemma 2.2. Therefore, (vvv,S) is an energy-variational solution to (6).

Since K(ṽvv,O) = 0 for all ṽvv ∈ C∞0,σ(Ω), we further conclude from Proposition 4.3 below that (6a) is
satisfied in the weak sense.

Remark 4.3. An argument similar to the proof of Theorem 4.2 shows that the set of energy-variational
solutions of type K given by (48) is weakly-∗ sequentially compact in X0 in the following sense: For
every sequence of energy-variational solutions (vvvj,Sj) there exists an energy-variational solution
(vvv,S) ∈ X0 and a subsequence (also denoted by (vvvj,Sj)) with

vvvj ⇀ vvv in L2(0, t;H1(Ω)3), vvvj
∗
⇀ vvv in L∞(0, t;L2

σ(Ω)), Sj
∗
⇀ S in L∞(0, t;L2

δ(Ω))

for all t ∈ (0, T ). Indeed, a sequence (vvvj,Sj) of energy-variational solutions of type K satisfies the
relative energy inequality (47) with (ṽvv, S̃) = (000,O), that is, the energy inequality

1

2
‖vvvj(t)‖2

L2(Ω) +
1

2
‖Sj(t)‖2

L2(Ω) +

∫ t

0

µ‖∇vvvj‖2
L2(Ω) + P(Sj) ds

≤ 1

2
‖vvv0‖2

L2(Ω) +
1

2
‖S0‖2

L2(Ω) +

∫ t

0

〈fff,vvvj〉 ds

for a.a. t ∈ (0, T ). Moreover, Proposition 4.3 below ensures that the Navier–Stokes component
holds in the weak sense. In the same way as above, we further deduce that (∂tvvvj) is bounded in
L4/3(0, t; (H1

0,σ)∗) for all t ∈ (0, T ), and we conclude the asserted convergence properties as well
as vvvj → vvv in L2(0, t;L2(Ω)) for all t ∈ (0, T ). In nearly the same way as for the limit γ → 0 above,
we can now perform the limit j →∞ to infer that (vvv,S) is an energy-variational solution of type K.

4.3 Further properties

Here we collect general properties of energy-variational solutions. Most importantly, we show that
energy-variational solutions are subject to the weak formulation of the Navier–Stokes equations (6a)
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if the regularity weight K vanishes on C∞0,σ(Ω) × {O}, where O ∈ L2
δ(Ω) denotes the zero tensor.

Thus, this is in particular the case for the solutions obtained in Theorem 4.2. Notice that this property
is to be expected for problem (6) since the lack of weak sequential compactness in L1

loc(Ω × [0, T ))
only occurs in the tensor component (6b) but not in (6a).

Proposition 4.3. Suppose that the regularity weight K : Q → [0,∞] satisfies K(ṽvv,O) = 0 for all
ṽvv ∈ C∞0,σ(Ω). Then every energy-variational solution of typeK is a weak solution of the Navier–Stokes
component in the sense of (16).

Proof. The hypothesis onK implies the identity e
∫ t
0 K(ṽvv,O) ds ≡ 1 for all ṽvv ∈ C∞0,σ(Ω× [0, T )). Hence,

choosing S̃ ≡ O in (47) yields the inequality

R(vvv(t),S(t)|ṽvv(t),O) +

∫ t

0

(
W0(vvv,S |ṽvv,O) + P(S) +

〈
A0(ṽvv,O),

(
vvv − ṽvv
S

)〉)
ds

≤ R(vvv0,S0 |ṽvv(0),O)

for all ṽvv ∈ C∞0,σ(Ω× [0, T )) and for a.e. t ∈ (0, T ). Applying Lemma 2.2 and observing that

〈A(1)(ṽvv,O), (vvv−ṽvv)〉 =

∫
Ω

∂tṽvv ·vvv−
1

2
∂t|ṽvv|2+(ṽvv ·∇)ṽvv ·vvv+2µ(∇ṽvv)sym : (∇vvv−∇ṽvv) dx−〈fff,vvv−ṽvv〉

and 〈A(2)
0 (ṽvv,O), S〉 = −

∫
Ω
η(∇ṽvv)sym : S dx, we find

−
∫ T

0

φ′
(

1

2
‖vvv−ṽvv‖2

L2(Ω) +
1

2
‖S ‖2

L2(Ω)

)
dt−

(
1

2
‖vvv0−ṽvv(0)‖2

L2(Ω) +
1

2
‖S0 ‖2

L2(Ω)

)
+

∫ T

0

φ

(
µ‖∇vvv−∇ṽvv‖2

L2(Ω) + P(S) +

∫
Ω

(vvv−ṽvv)⊗ (vvv−ṽvv) : ∇ṽvv − η(∇ṽvv)sym : S dx

)
dt

+

∫ T

0

φ

(∫
Ω

∂tṽvv · vvv −
1

2
∂t|ṽvv|2 + (ṽvv · ∇)ṽvv · vvv + µ∇ṽvv : (∇vvv−∇ṽvv) dx− 〈fff,vvv−ṽvv〉

)
dt ≤ 0 .

(52)
We now integrate by parts in time the second term in the last line of (52), regroup terms, let ṽvv = αũuu
for given ũuu ∈ C∞0,σ(Ω× [0, T )) and α > 0, and multiply the inequality by 1/α to infer∫ T

0

φ′ (vvv, ũuu) dt+
1

α

(
−1

2

∫ T

0

φ′
(
‖vvv‖2

L2(Ω)+‖S ‖2
L2(Ω)

)
dt− 1

2

(
‖vvv0‖2

L2(Ω)+‖S0 ‖2
L2(Ω)

))
+

1

α

∫ T

0

φ
(
µ‖∇vvv‖2

L2(Ω) + P(S)− 〈fff,vvv〉
)

dt

+

∫ T

0

φ

(∫
Ω

∂tũuuvvv−µ∇vvv : ∇ũuu+(vvv⊗vvv) : ∇ũuu−η(∇ũuu)sym : S dx+〈fff, ũuu〉
)

dt+(vvv0, ũuu(0)) ≤ 0 .

In the limit α→∞ the two terms with the prefactor 1
α

disappear. Thus, appealing to Lemma 2.2 we
deduce∫ T

0

(∫
Ω

∂tũuuvvv − µ∇vvv : ∇ũuu+ (vvv ⊗ vvv) : ∇ũuu− η(∇ũuu)sym : S dx+ 〈fff, ũuu〉
)

dt+ (vvv0, ũuu(0)) ≤ 0 ,

where we used the fact that ũuu(·, T ) = 0. Since the left-hand side of the last inequality is a linear
functional of ũuu with the latter being allowed to vary in the linear space C∞0,σ(Ω× [0, T )), we infer the
asserted equation (16).
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Another quite natural property is that energy-variational solutions are monotonic in the type in the
following manner.

Proposition 4.4 (Monotonicity). If (vvv,S) is an energy-variational solution of typeK, and ifK(ṽvv, S̃) ≤
L(ṽvv, S̃) for all (ṽvv, S̃) ∈ DL ⊂ DK and a.a. t ∈ (0, T ), then (vvv,S) is an energy-variational solution
of type L.

Proof. This can readily be seen by expressing (47) in a weak form with Lemma 2.2, using the test
function φ(s) = ϕ(s)e−

∫ s
0 (L(ṽvv,S̃)−K(ṽvv,S̃)) dτ for ϕ ∈ W̃ ((0, T )), and using Lemma 2.2 again to return

to a pointwise version of (47) with K replaced with L.

Remark 4.4 (Convex solution set). By Proposition 4.4, the energy-variational solution established in
Theorem 4.2 is also an energy-variational solution of type Ks given by

Ks(ṽvv, S̃) := C
(
‖ṽvv‖sLr(Ω) + ‖ S̃ ‖2

L∞(Ω) + ‖∇ S̃ ‖2
L3(Ω)

)
(53)

for s ∈ (2,∞) and r ∈ (3,∞) such that 2/s + 3/r = 1. Similarly to (45), we observe that
W0(vvv,S |ṽvv, S̃) ≥ 0 for all (vvv,S) ∈ X0 and all (ṽvv, S̃) ∈ Z0 ∩DKs if C > 0 is sufficiently large. Since

W(Ks)
0 is quadratic in (vvv,S) and non-negative, it is convex in (vvv,S). This implies that the solution set

of energy-variational solutions of type Ks is convex. Additionally, the solution set is weakly-∗ closed
(cf. Remark 4.3) and bounded and therewith compact in the weak-∗ topology of X0. This convexity
and compactness properties may be used to select an energy-variational solution with maximal dis-
sipation [18]. Such a selected maximally dissipative solution can not only be argued to be physically
more reasonable since they minimize the energy along all energy-variational solutions, but they also
turn out to be analytically favorable since the solution concept is well posed (see [17, 18]).

4.4 Energy-variational solutions versus strong solutions

In this subsection, we prove two results attempting to further justify the concept of energy-variational
solutions. First, in Proposition 4.6 we show that any hypothetical strong solution is unique in the class of
energy-variational solutions. Second, in Proposition 4.8 we prove that any energy-variational solution
enjoying some additional regularity is a (unique) strong solution. Observe that both results only hold for
strong solutions that belong to DK. In this sense, the regularity weightK also determines the minimal
regularity of a strong solution for comparison with an energy-variational solution.

Definition 4.5 (Strong solution). We call (vvv,S) a strong solution of problem (6) with initial data (vvv0,S0)
if (vvv,S) ∈ Z0, (vvv(0),S(0)) = (vvv0,S0) and

� equation (6a) is satisfied in the weak sense, i.e., equation (16) holds true for all Φ ∈ C∞0,σ(Ω×
[0, T )).

� inclusion (6b) is satisfied pointwise a.e. in time, i.e., it holds

−
(
∂t S+(vvv · ∇)S+ (S(∇vvv)skw − (∇vvv)skw S)− η(∇vvv)sym

)
(t) ∈ ∂P(S(t)) (54)

for a.a. t ∈ (0, T ).

We show next that if there exists an energy-variational solution of type K and a strong solution in the
class DK, both emanating from the same initial data, then these solutions coincide. This statement
and its proof are parallel to the one given in Theorem 3.5 for γ > 0. In particular, we also derive a
corresponding weak-strong stability estimate.
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Proposition 4.6 (Weak-strong uniqueness). Assume that K is a regularity weight such that W0 =
W(K)

0 defined in (46) is non-negative, i.e.,W0(vvv,S |ṽvv, S̃) ≥ 0 for all (vvv,S) ∈ X0 and (ṽvv, S̃) ∈ Z0.
Let (vvv,S) ∈ X0 be an energy-variational solution of type K with initial data (vvv0,S0), and let (ṽvv, S̃) ∈
Z0 ∩DK be a strong solution in the sense of Def. 4.5 with initial data (ṽvv0, S̃0). Then the inequality

R(vvv(t),S(t)|ṽvv(t), S̃(t)) ≤ R(vvv0, S0 |ṽvv0, S̃0)e
∫ t
0 K(ṽvv,S̃) ds (55)

holds. In particular, if the initial conditions coincide, i.e., (vvv0,S0) = (ṽvv0, S̃0), then every energy-
variational solution of type K coincides with the (hypothetical) strong solution (ṽvv, S̃).

Proof. From the assumption thatW0 is non-negative, the inequality (47) also holds without this term.
Similarly to the proof of Theorem 3.5, we observe that〈

A(1)(ṽvv, S̃), vvv − ṽvv
〉

= 0,

P(S)− P(S̃) +
〈
A(2)

0 (ṽvv, S̃),S− S̃
〉
≥ 0

for a.e. t ∈ (0, T ). Hence, all terms in the second line of (47) may be estimated from below by zero,
which implies (55).

Corollary 4.7. The energy-variational solution from Theorem 4.2 also fulfills the weak-strong unique-
ness property, that is, if there exists a strong solution in the sense of Def. 4.5 it coincides with the
energy-variational solution from Theorem 4.2.

Proof. According to Proposition 4.4, an energy-variational solution of type K given in (48) is also
an energy-variational solution solution of type Ks given in (53), which fulfills the assumptions of
Proposition 4.6. This ensures that the weak-strong uniqueness also holds for the smaller set of
energy-variational solutions of Theorem 4.2, as long as the strong solution belongs to DKs for some
s ∈ (2,∞). Clearly, this is the case for all strong solutions in the sense of Def. 4.5.

To infer that sufficiently regular energy-variational solutions are already strong solutions, we assume
that P is given in integral form P(S) =

∫
Ω
P(S) dx. This leads to approximation properties that are

sufficient to show that energy-variational solutions with more regularity, that is, belonging to DK ∩ Z0,
are already strong solutions. For simplicity, we confine ourselves to energy-variational solutions of type
Ks given in (53). Note that, by the monotonicity property in Proposition 4.4, this includes the (smaller)
set of solutions of type K(S̃) = C

(
‖ S̃ ‖2

L∞(Ω) + ‖∇ S̃ ‖2
L3(Ω)

)
≤ Ks(ṽvv, S̃), whose existence follows

from Theorem 4.2.

Proposition 4.8 (Regular energy-variational solutions). Let (vvv,S) ∈ X0 be an energy-variational
solution of type K according to Definition 4.1 with K = Ks given in (53), which satisfies (vvv,S) ∈
DK ∩ Z0. Further suppose that the associated initial data (vvv0,S0) satisfy P(S0) < ∞, and that
P is in integral form, that is, P(S) =

∫
Ω
P(S) dx for a lower semicontinuous, convex function P :

R3×3
δ → [0,∞] with P(O) = 0. Then (vvv,S) is a strong solution in the sense of Definition 4.5 taking

the same initial data (vvv0,S0).

Proof. First, we show that the initial data are attained. To this end, we choose a sequence of regular
functions {(vvv0,ε,S0,ε)} ⊂ C∞0,σ(Ω) × C∞(Ω;R3×3

δ ) converging to (vvv0,S0) in L2
σ(Ω) × L2

δ(Ω) in
such a way that P(S0,ε) → P(S0). A sequence {S0,ε} with these properties can be obtained by
mollification of the function S0 (extended by zero on R3\Ω). Indeed, note that for a standard mollifying
kernel (ρε)ε∈(0,1) ⊂ C∞0 (R3) with ρε ≥ 0 and

∫
R3 ρε = 1, Jensen’s inequality ensures that the
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function S0,ε defined by S0,ε(x) := ρε ∗ S0(x) :=
∫
R3 ρε(y)S0(x − y) dy satisfies the pointwise

inequality

P(ρε ∗ S0) ≤ ρε ∗P(S0) in Ω,

and hence

lim sup
ε→0

P(S0,ε) ≤ lim sup
ε→0

∫
Ω

ρε ∗P(S0) dx =

∫
Ω

P(S0) dx = P(S0).

Since S0,ε → S0 in L2
δ(Ω) and P is lower semicontinuous, this even implies that P(S0,ε) → P(S0)

as ε→ 0. Choosing (ṽvv, S̃) constant in time and equal to (vvv0,ε,S0,ε) yields test functions admissible in
the relative energy inequality (47). It now suffices to pass to the limit t→ 0 in this inequality along an
admissible sequence of times, which gives (thanks to Z0 ⊂ C([0, T );L2

σ(Ω)×L2
δ(Ω))) the estimate

R(vvv(0),S(0)|vvv0,ε,S0,ε) ≤ R(vvv0,S0|vvv0,ε,S0,ε). (56)

Taking the limit ε→ 0, we infer thatR(vvv(0),S(0)|vvv0,S0) = 0, whence vvv(0) = vvv0 and S(0) = S0.

In the next step we show the weak formulation (16). Due to vvv(0) = vvv0, this is equivalent to showing
the identity

∫ T

0

[
〈∂tvvv,Φ〉+

∫
Ω

(vvv · ∇)vvv · Φ + (η S+µ∇vvv) : ∇Φ dx

]
dt =

∫ T

0

〈fff,Φ〉 dt (57)

for all Φ ∈ C∞0,σ(Ω× [0, T )). Since (vvv,S) ∈ DK ∩ Z0, we can use (ṽvv, S̃) = (vvv + αuuu,S+αT) with
α ∈ (0, 1) and (uuu,T) ∈ DK ∩ Z0 as a test function in (47). Due to the convexity of P , for α ∈ (0, 1)
we may estimate

P(S)− P(S+αT) = P(S)− P ((1− α)S+α(S+T))

≥ P(S)− (1− α)P(S)− αP(S+T)

= α (P(S)− P(S+T)) .

(58)

Inserting this into (47), multiplying the resulting relation by 1/α, and sorting the different terms accord-
ing to the appearing exponent of α, we end up with

αR(vvv,S,uuu,T, α) +

∫ t

0

[
P(S)− P(S+T)−

〈
A0(vvv,S),

(
uuu
T

)〉]
e
∫ t
s K(vvv+αuuu,S+αT) dτ ds ≤ 0 .

(59)

The remainder term R contains all terms with prefactor α and is given by

R(vvv,S,uuu,T, α) :=
1

2

(
‖uuu(t)‖2

L2(Ω) + ‖T(t)‖2
L2(Ω)

)
+

∫ t

0

R2(vvv,S,uuu,T, α)e
∫ t
s K(vvv+αuuu,S+αT) dτ ds

− 1

2

(
‖uuu(0)‖2

L2(Ω) + ‖T(0)‖2
L2(Ω)

)
e
∫ t
0 K(vvv+αuuu,S+αT) ds ,
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where R2 is given by

R2(vvv,S,uuu,T, α) := µ‖∇uuu‖2
L2(Ω) −

∫
Ω

(uuu · ∇)uuu · (vvv + αuuu)− T⊗ uuu ··· ∇(S+αT) dx

−
∫

Ω

(T(∇uuu)skw − (∇uuu)skwT) : (S+αT) dx

−
∫

Ω

(∂tuuu+ (uuu · ∇)(vvv + αuuu) + (vvv · ∇)uuu) · uuu+ (ηT + 2µ(∇uuu)sym) : ∇uuu dx

−
∫

Ω

(∂tT + (uuu · ∇)(S+αT) + (vvv · ∇)T + T(∇vvv)skw − (∇vvv)skwT) : T dx

−
∫

Ω

((S+αT)(∇uuu)skw − (∇uuu)skw(S+αT)− η(∇uuu)sym) : T dx

+
1

2
K(vvv + αuuu,S+αT)

(
‖uuu‖2

L2(Ω) + ‖T‖2
L2(Ω)

)
.

Passing to the limit α→ 0 in (59), we infer from the boundedness of all terms in R and the continuity
property limα→ 0K(vvv + αuuu,S+αT) = K(vvv,S), which holds for K = Ks given in (53), that∫ t

0

[
P(S)− P(S+T)−

〈
A0(vvv,S),

(
uuu
T

)〉]
e
∫ t
s K(vvv,S) dτ ds ≤ 0 . (60)

Choosing T = O and uuu = Φe−
∫ t
· K(vvv,S) dτ for Φ ∈ C∞0,σ(Ω × [0, T )), we first infer the weak

formulation (57) with an inequality. Choosing uuu = −Φe−
∫ t
· K(vvv,S) dτ implies the converse inequality. In

summary, equation (57) is fulfilled for all Φ ∈ C∞0,σ(Ω× [0, T )).

Reinserting this information into (60), we find∫ t

0

[
P(S)− P(S+T) +

∫
Ω

G : T dx

]
e
∫ t
s K(vvv,S) dτ ds ≤ 0 (61)

with
G := − (∂t S+(vvv · ∇)S+ (S(∇vvv)skw − (∇vvv)skw S)− η(∇vvv)sym) ,

where the regularity of (vvv,S) ∈ DK ∩ Z0 guarantees that G ∈ L1(0, t;L2
δ(Ω)). By choosing T =

T̃e−
∫ t
· K(vvv,S) dτ for (000, T̃) ∈ DK ∩ Z0 and employing inequality (58), we infer from (61) that∫ t

0

[
P(S+T̃)− P(S)

]
ds ≥

∫ t

0

∫
Ω

G : T̃ dx ds .

We now choose T̃(x, t) = ϕ(t)(T̂(x) − S(x, t)) with ϕ ∈ C∞0 ((0, T )), 0 ≤ ϕ ≤ 1, and T̂ ∈
C∞(Ω;R3×3

δ ). Then (000, T̃) ∈ DK ∩ Z0, and similarly to (58), we conclude∫ t

0

ϕ
[
P(T̂)− P(S)

]
ds ≥

∫ t

0

∫
Ω

ϕG : (T̂− S) dx ds.

By linearity, this inequality holds for all ϕ ∈ C∞0 ((0, T )) with ϕ ≥ 0, which implies that

P(T̂)− P(S(t)) ≥
∫

Ω

G : (T̂− S(t)) dx (62)

for a.a. t ∈ (0, T ). It is not difficult to see that the null set where (62) may not be valid can be chosen
independently of T̂ ∈ C∞(Ω;R3×3

δ ). Now fix t ∈ (0, T ) such that (62) holds. If T̂ ∈ L2
δ(Ω) with
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P(T̂) = ∞, then (62) is trivially satisfied. If T̂ ∈ L2
δ(Ω) with P(T̂) < ∞, then we can use the

same mollifier argument as above to obtain a sequence (T̂j) ⊂ C∞(Ω;R3×3
δ ) such that T̂j → T̂ in

L2
δ(Ω) and P(T̂j) → P(T̂) as j → ∞. For this sequence, (62) is satisfied, and a passage to the

limit j →∞ shows that T̂ also satisfies (62). In conclusion, (62) holds for all T̂ ∈ L2
δ(Ω), and identity

(54) follows for a.a. t ∈ (0, T ) by definition of the subdifferential ∂P .

A Appendix: Existence of generalized solutions

The purpose of this section is to show Theorem 3.2, i.e., the existence of generalized solutions in the
sense of Definition 3.1.

Proof of Theorem 3.2. In [10] existence of a solution to (1) was established using a notion of gener-
alized solution similar to Definition 3.1, but with the space of test functions

⋃
2<q<∞ Z

q
T replaced with

the smaller space

H1(0, t;L2
δ(Ω)) ∩ L2(0, t;H1(Ω)3×3) ∩ L5(0, t;L5(Ω)3×3) (63)

for any t ∈ (0, T ), and inequality (18) replaced with its weaker form∫ t

0

〈∂tS̃,S−S̃〉+ P(S)− P(S̃) ds+

∫ t

0

∫
Ω

γ∇S : ∇(S−S̃) dx ds

−
∫ t

0

∫
Ω

(
vvv · ∇S + S(∇vvv)skw − (∇vvv)skwS

)
: S̃− η(∇vvv)sym : (S− S̃) dx ds

≤ 1
2
‖S0 − S̃(0)‖2

L2(Ω).

(64)

However, going through the proof of [10, Theorem 3.4], one easily verifies that the constructed solution
satisfies (64) even for all S̃ in the larger class Zq

T , q ∈ (2,∞). Regarding inequality (18), we will show
in Lemma A.1 below that it can directly be derived from (64).

It is necessary to mention that inequality (17) for (vvv,S) has not been stated explicitly in [10], but only
for an approximating family (vvvε,Sε) that satisfies

vvvε ⇀ vvv in L2(0, t;H1(Ω)3),

vvvε
∗
⇀ vvv in L∞(0, t;L2

σ(Ω)),

vvvε → vvv in L2(0, t;L2(Ω)3),

Sε ⇀ S in L2(0, t;H1(Ω)3×3)

as ε → 0. In particular, the strong convergence statement implies ‖vvvε(t)‖L2(Ω) → ‖vvv(t)‖L2(Ω) for
almost every t ∈ (0, T ), at least for a suitable subsequence. This allows to pass to the limit ε→ 0 in
(17) (with (vvv,S) replaced with (vvvε,Sε)), where for the last term the identity∫

Ω

ηS : ∇vvv dx = −
∫

Ω

η(∇·S) · vvv dx

can be used. In the end, (vvv,S) also satisfies (17).

Finally, observe that in [10] the boundary ∂Ω was assumed to be of class C1,1, which allowed for
the construction of a suitable extension of the boundary conditions. Since we consider homogeneous
boundary conditions (1c) here, we can use the trivial extension, whence Lipschitz boundary is suffi-
cient.
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The following lemma shows that inequality (64) implies the stronger inequality (18), which also takes
into account the values of S and S̃ at time t.

Lemma A.1. Let q ∈ (2,∞). If (vvv,S) ∈ X satisfies (64) for all t ∈ (0, T ) and all S̃ ∈ Zq
T , then (18)

holds true for almost all t ∈ (0, T ) and all S̃ ∈ Zq
T .

Proof. The assertion is obtained similarly as in the proof of [10, Prop. 3.3]. We therefore only sketch
the argument. Extending S by zero for t < 0, we define for κ > 0

Sκ(s) = κ−1

∫ s

s−κ
S(τ) dτ.

Fix t ∈ (0, T ) and let S̃κ,δ := (1 − ζδ)S̃ + ζδSκ, where ζδ(s) := ζ((s − t)/δ) for some non-
decreasing function ζ ∈ C∞(R; [0, 1]) satisfying ζ(s) = 0 for s ≤ −1 and ζ(s) = 1 for s ≥ 0,
and S̃ ∈ Zq

T is arbitrary. We observe that S̃κ,δ ∈ Zq
T satisfies S̃κ,δ(0) = S̃(0), S̃κ,δ(t) = Sκ(t) and,

as κ, δ ↓ 0, the sequence {S̃κ,δ} approximates S̃ (in a suitable sense). To infer ineq. (18), we insert
S̃κ,δ as a test function in ineq. (64), take the limit δ ↓ 0 and then send κ ↓ 0. Let us only point out
how to pass to these limits in the terms involving a time derivative, since the remaining integrals can
be handled as in [10, Prop. 3.3]. We compute∫ t

0

〈∂tS̃κ,δ, S̃κ,δ〉 ds =
1

2
‖Sκ(t)‖2

L2(Ω) −
1

2
‖S̃(0)‖2

L2(Ω)

=
1

2
‖Sκ(t)‖2

L2(Ω) −
1

2
‖S̃(t)‖2

L2(Ω) +

∫ t

0

〈∂tS̃, S̃〉 ds

and ∫ t

0

〈∂tS̃κ,δ,S〉 ds =

∫ t

0

−ζ ′δ(s)
∫

Ω

S̃ : S dx ds+

∫ t

0

ζ ′δ(s)

∫
Ω

Sκ : S dx ds

+

∫ t

0

(1− ζδ(s))〈∂tS̃,S〉 ds+

∫ t

t−δ
ζδ(s)〈∂tSκ,S〉 ds,

where the last term in the second equation vanishes as δ → 0. Thus, combining these two identities
and treating the remaining terms as in the proof of [10, Prop. 3.3], we deduce for a.a. t ∈ (0, T ) and
all S̃ ∈ Zq

T that

lim
κ→0

lim
δ→0

∫ t

0

〈∂tS̃κ,δ, S̃κ,δ − S〉 ds

=
1

2
‖S(t)‖2

L2(Ω) −
1

2
‖S̃(t)‖2

L2(Ω) +

∫ t

0

〈∂tS̃, S̃〉 ds−
∫

Ω

(
S(t)−S̃(t)

)
: S(t) dx−

∫ t

0

〈∂tS̃,S〉 ds

=

∫ t

0

〈∂tS̃, S̃− S〉 ds− 1

2
‖S̃(t)− S(t)‖2

L2(Ω).

Proceeding with the remaining terms as in [10, Prop. 3.3], we arrive at (18).
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