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Variational approach to fluid-structure interaction via GENERIC
Dirk Peschka, Andrea Zafferi, Luca Heltai, Marita Thomas

Abstract

We present a framework to systematically derive variational formulations for fluid-structure
interaction problems based on thermodynamical driving functionals and geometric structures in
different coordinate systems by suitable transformations within this formulation. Our approach
provides a promising basis to construct structure-preserving discretization strategies.

1 Introduction

Fluid structure interaction (FSI) problems are solved with a large variety of methods, and offer
countless possibilities to devise a zoo of discretization strategies, both in space and in time, allowing
one to pick from any combination of finite volumes, finite elements, finite differences, and staggered,
segregated, or monolithic approaches. The strong formulation of FSI problems is well understood,
and results in a fully coupled nonlinear problem, where generally nonlinear equations of motion are
formulated on time dependent domains, whose geometrical configuration depends on the solution
itself. Such intricate structure makes the practical numerical implementation of FSI problems the
subject of countless attempts to improve one aspect or the other of the numerical methods. The aim
of this contribution is to shed some light on the GENERIC (General Equation for Non-Equilibrium
Reversible-Irreversible Coupling) structure of FSI problems in variational formulation. The GENERIC
framework ∂tq(t) = J(q)DE (q) +K(q)DS (q) with total energy E and entropy S has been used in
the strong formulation in various applications for thermodynamically closed systems [7, 9, 16, 18, 19].
Here we systematically derive variational formulations of FSI problems in different coordinate systems,
which could be used to construct structure-preserving discretization strategies.

In this work we consider the evolution of states q : [0,T]→ Q in a subset Q of a Banach space, Q
representing a manifold. Its damped Hamiltonian evolution is driven by the free energy functional
F : Q → R. The evolution equation is generated by a linear, skew-symmetric Poisson operator
J(q) : V∗ → V for reversible dynamics (J(q) = −J(q)∗) and by a positively semi-definite, symmetric
Onsager operator K(q) : V∗ → V for dissipative dynamics (K(q) = K(q)∗ ≥ 0). Here, V is assumed
to be a Banach space with dual V∗, and dual pairing 〈·, ·〉V . For fixed q the space V = TqQ can
be seen as the (linear) tangent space of Q at q. With these ingredients, the damped Hamiltonian
evolution then reads

∂tq(t) = [J(q)−K(q)] DF (q) (1)

for ∂tq(t) ∈ V and DF (q) ∈ V∗. In [10] it is demonstrated for models describing fracture processes in
dissipative solids that the GENERIC framework for systems bulk-interface interaction naturally leads
to a weak formulation that encodes the bulk equations and the coupling conditions along the interface.
While GENERIC is a 2-generator formalism where the operators J and K satisfy degeneracy conditions,
here we outline the general approach of transforming weak formulations between coordinate frames
for the 1-generator damped-Hamiltonian system, but this strategy also applies to GENERIC.

In this work we consider FSI problems for compressible fluids and solids. In particular, we are interested
in deriving a weak formulation of (1) that is convenient for numerics and that maintains the damped
Hamiltonian structure under changes of variables or coordinates. In an abstract setting, this can be done
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by introducing an auxiliary space W (space of generalized forces) and a corresponding transformation
operator M∗ :W → V∗, at this point assumed to be invertible. Then, with M∗η = DF (q) and its
adjoint operator M : V → W∗, we can rewrite (1) into the saddle-point structure(

M [J(q)−K(q)]M∗ −M
M∗ 0

)(
η
∂tq

)
=
(

0
DF (q)

)
in W∗ × V∗ . (2)

This provides a weak formulation of (1), where we seek η ∈ W and ∂tq ∈ V . With the operators from
(1), we can introduce also suitable q-dependent bilinear forms a :W ×W → R and b : V ×W →
R, where a(w,η) := j(w,η) − k(w,η) is the difference of a skew-symmetric part j(w,η) =
〈M∗w, J(q)M∗η〉V and a positive semi-definite, symmetric part k(w,η) = 〈M∗w,K(q)M∗η〉V , and
with the bilinear form b given by b(v,η) = 〈M∗η,v〉V . Accordingly, the weak formulation (2) can be
equivalently reformulated as: For t ∈ [0,T] fixed, find η ∈ W and ∂tq ∈ V, such that for all w ∈ W
and v ∈ V there holds

a(w,η)− b(∂tq,w) = 0 , (3a)
b(v,η) = 〈DF (q),v〉V . (3b)

The weak formulations (2) and (3) are both saddle-point structures and formally equivalent to (1).
In the GENERIC setting, the conservation of total energy is related to the skew symmetry of j and
the production of entropy is related to k being symmetric, positive semidefinite. While its geometrical
origin is not always emphasized, the benefits of skew symmetric or symmetric operators in the
discretization of turbulent flows are well-studied, e.g. cf. [23]. Similar structure-preserving approaches
based on variational principles are beneficial also for FSI, e.g. for the construction of time-discrete
schemes by minimizing movements [3] or to preserve energy conservation and entropy production for
GENERIC thermoviscoelasticity [4].

In this work, we apply this abstract framework to generate a weak formulation in saddle-point form
for FSI problems. We demonstrate that changes of variables and coordinates can be incorporated in a
particularly natural way by sufficiently smooth transformations

T : Q̄ → Q, q = T(q̄) , (4)

between state spaces that preserve the variational damped Hamiltonian structure of the problem
in each step on the way: Consider two damped Hamiltonian systems with evolution laws ∂tq̄(t) =
(J̄(q̄)− K̄(q̄))DF̄ (q̄) and ∂tq(t) = (J(q)−K(q))DF (q). Assume that both systems admit a weak
formulation (3) and that their solutions q̄(t) and q(t) satisfy the transformation relation q(t) = T(q̄(t)).
We study the relation between the corresponding weak formulations (3). The linearization of T(q̄),
i.e., its (Fréchet-) derivative L(q̄) := Dq̄T(q̄) : V̄ → V, v = L(q̄)v̄ for all v̄ ∈ V̄, then can be used to
carry out the transformation in the weak formulation (2). More precisely, if F (q) = F̄ (q̄) and given
the validity of the chain rule 〈DF (q),L(q̄)v̄〉V = 〈DF̄ (q̄), v̄〉V̄ for all v̄ ∈ V̄, the use of the map M
from (2) implies that the following transformation relation between the test functions w ∈ W and
w̄ ∈ W̄ from (3) holds true

L∗(q̄)M∗w = M̄∗w̄ , i.e., 〈M∗w,L(q̄)v̄〉V = 〈M̄∗w̄, v̄〉V̄ for all v̄ ∈ V̄ . (5)

By this transformation relation, the bilinear forms ā : W̄ × W̄ → R and b̄ : V̄ × W̄ → R transform
into corresponding bilinear forms a : W ×W → R and b : V ×W → R accordingly. It is the aim
of this work to demonstrate the versatility of the above described transformation framework and
the weak formulation in terms of a saddle point problem for FSI problems. As indicated in Fig. 1,
for the formulation of this coupled problem it will be important to switch with the aid of suitable
transformations between the Lagrangian and the Eulerian frame of coordinates. We introduce the
general notation as well as the weak formulation of the FSI problem as a saddle point problem in
Lagrangian and Eulerian coordinates in Sec. 2. In particular, in Sec. 2.2 the above described change
of coordinates is performed from the Lagrangian to the Eulerian frame under preservation of the
saddle point structure. We present some conclusions and perspectives in Section 3.
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2 Variational formulations in different coordinate systems

Lagrangian and Eulerian domains. Let Ω̄ ⊂ Rd be an open domain with sufficiently smooth
boundary ∂Ω̄, representing the configuration of the fluid and solid domains at time t = 0. Let cl Ω̄ be
the closure of Ω̄, and Γ̄ ⊂ Ω̄ a closed, sufficiently smooth (d− 1)-dimensional subset, dividing Ω̄ into
its solid and fluid domains. We call Ω̄ the Lagrangian or reference domain and the points x̄ ∈ cl Ω̄
the Lagrangian coordinates or material coordinates, and we indicate with ∇̄ the gradient w.r.t. x̄. Let
χ̄ : [0,T]× Ω̄→ Rd be a continuously differentiable map with continuously differentiable inverse and
with the property that χ(0, x̄) = x̄ for all x̄ ∈ Ω̄, describing the trajectory of each material point x̄
at time t in the observer frame of reference. We call χ̄ a motion – resp. – a flow map, and we denote
by F̄ := ∇̄χ̄ its Jacobian, by V̄ := det(F̄ ) the determinant of its Jacobian, and by α its inverse map
at time t, i.e. the map for which α(t, χ̄(t, x̄)) := x̄ for all (t, x̄) ∈ [0,T]× Ω̄.

Figure 1: Sketch of typical FSI problem with Lagrangian and Eulerian coordinates.

We indicate with x the Eulerian coordinates, i.e., the coordinates in the observer frame of reference,
and with ∇ the gradient w.r.t. x. The current or Eulerian domain is then given by Ω = Ω(t) =
χ̄(t, Ω̄) := {χ̄(t, x̄), x̄ ∈ Ω̄}, and it represents the current geometrical configuration of the domain Ω̄
in the observer frame of reference. Its boundary ∂Ω = χ̄(t, ∂Ω̄) and the Eulerian interface Γ = χ̄(t, Γ̄)
are defined accordingly. We point out that the current domain and its boundary parts may be
time-dependent subsets of Rd.

We use the bar notation ·̄ to indicate fields defined on Ω̄, say ā(t, x̄). Fields without bars indicate
an Eulerian field, or the representation of a Lagrangian field according to a(t,x) := ā(t, χ̄−1(t,x)).
We notice that the chain rule applies, and allows one to express the gradient of a Lagrangian vector
field ∇̄ā in terms of the gradient of Eulerian fields and F̄ , i.e., ∇̄ā(t, x̄) = ∇a(t, χ̄(t, x̄))F̄ (t, x̄), and
vice-versa, i.e., ∇a(t,x) = (∇̄ā)(t, χ̄−1(t,x))F−1(t,x).

Lagrangian and Eulerian states. Based on the flow map χ̄, the Lagrangian velocity is defined by
the map ū(t,x) = ∂tχ̄(t, x̄), which is the time derivative of χ̄ for all (t, x̄) ∈ [0,T]× Ω̄, while we
denote by %̄0 : Ω̄→ R the mass density of a material point in Lagrangian coordinates at time t = 0,
and with %̄(t, x̄) = %̄0(x̄)/V̄ (t, x̄) the mass density expressed in Lagrangian coordinates. Similarly, we
indicate with p̄0(t, x̄) = %̄0(x̄)ū(t, x̄) for all (t, x̄) ∈ [0,T]×Ω̄ the momentum density w.r.t. the initial
configuration, and with p̄(t, x̄) = %̄(t, x̄)ū(t, x̄) for all (t, x̄) ∈ [0,T] × Ω̄ the current momentum
density, expressed in Lagrangian coordinates. The corresponding Eulerian fields u,F , %0, %,p0, and
p are all obtained by composition with α(t,x). We note that the Eulerian counterpart of F̄ can
equivalently be expressed as F = (∇α)−1. In accordance with our choice later on for the fluid-
structure interaction problem we here introduce the Lagrangian state vector q̄ and the Eulerian state
vector q to be given by the following variables

q̄ := (χ̄, p̄0) and q := (qf , qs), where qf := (%f ,pf) for fluid and qs := (α,ps) for solid , (6)

and we refer to Sections 2.1 and 2.2 for more details about this choice. In particular, (6) also indicates
the transformation T mentioned in (4) and used for the Lagrangian-Eulerian change of coordinates
subsequently in Sec. 2.2. Function spaces defined with respect to the Lagrangian coordinate frame
are denoted by Q̄, V̄, W̄ and their Eulerian counterparts by Q,V, W, respectively.
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Functionals and geometric structures in Lagrangian and Eulerian coordinates. In the La-
grangian frame we consider integral functionals Ḡ : V̄ → R with densities Ḡ : (Ω̄\Γ̄)×Rd×Rd×Rd×d
which are functions of the state vector q̄ ∈ Rd×Rd from (6) and of the deformation gradient F̄ . With
respect to Eulerian coordinates the functional is denoted by G : V → R andG : (Ω\Γ)×Rd×Rd×Rd×d
its density, which depends on the Eulerian state vector q from (6) and on the Eulerian deformation
gradient F . Due to the independence of the quantity with respect to the choice of the coordinate
frame there holds

Ḡ (q̄) = G (q), and hence Ḡ (q̄) =
∫

Ω̄\Γ̄
Ḡ(x̄, q̄, F̄ ) dx̄ =

∫
Ω\Γ

G(x, q,F ) dx = G (q) ,

Note that these functionals explicitly exclude integration over the interface Γ̄, resp. Γ. Similarly,
geometric structures in the Lagrangian and Eulerian frame are denoted by J̄, K̄(q̄) : V̄∗ → V̄ and
J,K(q) : V∗ → V.

Derivatives of functionals in the Lagrangian frame. The first variation of Ḡ with respect to
v̄ = (v̄χ̄, v̄p̄) ∈ V̄ is defined by

〈DḠ (q̄), v̄〉V̄ = lim
ε→0

1
ε

(
Ḡ (q̄ + εv̄)− Ḡ (q̄)

)
=
∫

Ω̄\Γ̄

∂Ḡ(q̄,F̄ )
∂q̄ · v̄ + ∂Ḡ(q̄,F̄ )

∂F̄
: ∇̄v̄χ̄ dx̄ .

We assume that all quantities involved are sufficiently smooth, that v̄χ̄ satisfies homogeneous boundary
conditions along the outer boundary ∂Ω̄, and that it is continuous across Γ̄. Integration by parts gives

〈DḠ (q̄), v̄〉V̄ =
∫

Ω̄\Γ̄

(
∂Ḡ
∂χ̄ − ∇̄ ·

∂Ḡ
∂F̄

)
· v̄χ̄ + ∂Ḡ

∂p̄0
· v̄p̄ dx̄+

∫
Γ̄

(
γs
(
∂Ḡ
∂F̄

)
− γf

(
∂Ḡ
∂F̄

))
ν̄ · γs

(
v̄χ̄
)

ds̄

(7)

with Ḡ = Ḡ(q̄, F̄ ), with γs and γf trace operators from the subdomains Ω̄s, Ω̄f onto the interface Γ̄,
with ν the outer unit normal vector of Ω̄s along Γ̄, and s̄ representing a suitable surface measure.

2.1 Lagrangian fluid-structure interaction problem

In the Lagrangian setup of Fig. 1 (left) the Lagrangian domain Ω̄ = Ω̄s∪ Ω̄f ∪ Γ̄ is given by the disjoint
union of the Lagrangian solid and fluid domains, Ω̄s and Ω̄f , and their joint interface Γ̄. For simplicity,
we define here the unit normal vector ν̄ along Γ̄ to be ν̄ := ν̄s = −ν̄f given by the outer unit
normal along of Ω̄s along Γ̄. With i ∈ {s, f}, for any function ā : Ω̄→ Rm, m ∈ {1, d}, we denote
by āi = ā|Ω̄i its restriction to the subdomain Ω̄i and γi(ā) denotes the trace of āi : Ω̄i → Rm on Γ̄.
For sufficiently smooth functions ā we have for x̄ ∈ Γ̄ that γi(ā)(x̄) = āi(x̄) and if misinterpretation
is excluded we also write āi for the trace of āi on Γ̄. Above notation is applied in particular to
the Lagrangian states q̄ = (χ̄, p̄0), the deformation gradient F̄ , and the Lagrangian mass density
%̄0. We point out that %̄0 : Ω̄→ R is a piecewise constant function in Lagrangian coordinates, i.e.,
%̄0i = const. on each of the subdomains Ω̄i. Moreover, χ̄ : Ω̄→ Rd has to satisfy boundary condition
along the outer boundary ∂Ω̄. In this work we consider no-slip conditions χ̄(x̄) = x̄ for all x̄ ∈ ∂Ω̄,
which implies u(t,x) = 0 for all x ∈ ∂Ω for the Eulerian velocity. For the joint interface to be mapped
to a joint interface, it is required that the images of Γ̄ under χ̄i coincide, i.e., Γ = χ̄s(Γ̄) = χ̄f(Γ̄).
This property holds true if the Eulerian velocities satisfy (us(t,x)− uf(t,x)) · ν = 0 for any x ∈ Γ.
This condition is also called impermeability and is valid for moving interfaces Γ(t) in the absence
of mass transfer from the solid to the fluid phase. Alternatively, the joint interface can be mapped
appropriately by directly requiring a no-slip condition χ̄s(x̄) = χ̄f(x̄) for all x̄ ∈ Γ̄, which implies
us(t,x) = uf(t,x) for all x ∈ Γ(t) for the Eulerian velocities. The free energy F̄ : Q̄ → R of the
fluid-structure interaction system

F̄ (q̄) =
∫

Ω̄\Γ̄
F̄ (q̄) dx̄ =

∫
Ω̄\Γ̄

1
2%̄0
|p̄0|2 + W̄ (x̄, χ̄, F̄ ) dx̄ (8)
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consists of the kinetic energy and the internal energy with density W̄ , here mainly accounting for
mechanical effects. In particular, the main difference of W̄ for the fluid and solid phase can be encoded
in space-dependent coefficients of W̄ : Ω̄× Rd × Rd×d → R, which make sure that V̄fW̄f := W̄ |Ω̄f

only depends on F̄ f through its Jacobi determinant, whereas the stored elastic energy density of the
solid W̄s := W̄ |Ω̄s

may depend on all minors of F̄ s, see Example 1 below. Hence, we set

W̄ (x̄, χ̄, F̄ ) = V̄fW̄f
(
χ̄, %̄f/V̄f

)
for x̄ ∈ Ω̄f and W̄ (x̄, χ̄, F̄ ) = W̄s(F̄ s) for x̄ ∈ Ω̄s. (9)

Example 1. Gravity and compressibility of the fluid is taken into account by setting V̄fW̄f(χ̄, %f) =
χ̄ · g%f + κ

2 (%f − %eq)2. Moreover, stored elastic energy densities in finite strain elasticity depend on
the minors of F̄ s, hence nonlinearly on F̄ s, e.g.,

W̄s(F̄ s) =
M∑
i=1

αitr(F̄
>
s F̄ s)δi/2 +

N∑
j=1

βjtr(Cof(F̄>s F̄ s))(F̄
>
s F̄ s)δ̂j/2 + κ(detF̄ s),

for an Ogden material or W̄s(F̄ s) = α|F̄ s|2 + β|CofF̄ s|2 + κ(detF̄ s) for Mooney-Rivlin materials for
d = 3, where κ(detF̄ s)→∞ as detF̄ s → 0, see [6, p. 155]. Hence, the bilinear form ā|Ω̄s

is rather
defined on W̄∗ × W̄, with the component Wχ̄s = Πd

i=1W̄Mi(F̄ ) being a product of suitable Lp-spaces
providing coercivity for the minors Mi(F̄ ) and W∗ its dual. For p = 2 for all minors we indeed
have W∗χ̄s ≡ Wχ̄s and hence the mapping property stated in the introduction. The abovementioned
no-slip condition along ∂Ω̄ and the interfacial coupling conditions can be incorporated by the choice
of the state space Q̄. Additional jump conditions for χ̄ across Γ̄ can be incorporated by specific
interfacial energy and dissipation terms. Incompressibility V̄i ≡ det F̄ i = 1 of the fluid or solid phase is
incorporated by a further restriction of Q̄ and typically leads to a problem formulation with Lagrange
multipliers, which we do not discuss here. ?

Qualitative characterization of the ingredients to (3): The auxiliary space W̄ and the operator
M̄∗ : W̄ → V̄∗ are introduced in (3) to give a suitable representation of elements DF (q̄) ∈ V̄∗. As
discussed in Ex. 1 the space W̄ is given as the product of suitable Lp(Ω̄)-spaces, while the state
space Q̄ and the velocity space V̄ are (subsets of) suitable Sobolev spaces. In this representation in
particular the coupling conditions for the states and the stresses of the fluid-structure interaction
along Γ̄ should be captured. To this aim we define the operator M̄∗ : W̄ → V̄∗ and the bilinear form
b̄ : V̄ × W̄ → R in (3b) by

b̄(v̄, w̄) = 〈M̄∗w̄, v̄〉V̄ :=
∫

Ω̄\Γ̄
(w̄χ̄ · v̄χ̄ + w̄p̄ · v̄p̄) dx̄+

∫
Γ̄
w̄Γ̄ · v̄χ̄ ds̄ (10)

for any v̄ = (v̄χ̄, v̄p̄) ∈ V̄ and w̄ = (w̄χ̄, w̄p̄, w̄Γ) ∈ W̄, where w̄p̄f = w̄p̄s = w̄p̄ on Γ̄. Based on
this, in (3b), the representation η̄ ∈ W̄ of DF̄ (q̄) ∈ V̄∗ for F̄ from (8) is introduced as

b̄(v̄, η̄) := 〈M̄∗η̄, v̄〉V̄ = 〈DF̄ (q̄), v̄〉V̄ =
∫

Ω̄\Γ̄

(
p̄0
%̄0
· v̄p̄ + ∂χ̄W̄ · v̄χ̄ + ∂F̄ W̄ : ∇̄v̄χ̄

)
dx̄.

Assuming sufficient regularity of all quantities involved, an integration by parts, as in (7), identifies

η̄χ̄ = ∂W̄

∂χ̄
− ∇̄·∂W̄

∂F̄
and η̄p̄0

= p̄0
%̄0

in Ω̄ \ Γ̄ and η̄Γ̄ =
(∂W̄s

∂F̄ s
− ∂(V̄fW̄f)

∂F̄ f

)
· ν̄ on Γ̄ . (11)

Geometric structures and bilinear forms: Next, we characterize the Poisson and Onsager operators
J̄ and K̄ as well as the corresponding bilinear forms j̄ and k̄. Thus, in what follows, we shall consider
functionals Ḡ , H̄ : Q̄ → R sufficiently smooth and the representations w̄Ḡ, w̄H̄ ∈ W̄ of their
functional derivatives by (10), i.e., M̄∗w̄Ḡ = DḠ (q̄) and M̄∗w̄H̄ = DH̄ (q̄) in V̄∗.
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D. Peschka, A. Zafferi, L. Heltai, M. Thomas 6

Reversible contribution by J̄, resp. j̄ in (2) & (3): The Poisson operator J̄ and the corresponding
bilinear form j̄ are related by 〈DḠ , J̄DH̄ 〉V̄ = 〈M̄∗w̄Ḡ, J̄M̄∗w̄H̄〉V̄ = j̄(w̄Ḡ, w̄H̄), where

〈DḠ , J̄DH̄ 〉V̄ =
∫

Ω̄\Γ̄

(
w̄Ḡ
χ̄

w̄Ḡ
p̄

)
·
(

0 Id
−Id 0

)(
w̄H̄
χ̄

w̄H̄
p̄

)
dx̄+

∫
Γ̄

[
w̄H̄
p̄ · w̄Ḡ

Γ̄ − w̄
Ḡ
p̄ · w̄H̄

Γ̄

]
ds̄, (12)

which is adopted from [14] using the identity matrix Id ∈ Rd×d. Additionally we write j̄(w̄Ḡ, w̄H̄) :=
j̄f(w̄Ḡ

f , w̄
H̄
f ) + j̄s(w̄Ḡ

s , w̄
H̄
s ) + j̄Γ̄(w̄Ḡ, w̄H̄), where j̄i with i ∈ {s, f} is the restriction of the first term

of (12) to the subdomain Ω̄i and j̄Γ̄ stands for the interface term. We point out that the coupling
between the two phases is established by joint variables in jΓ̄ or by continuity conditions in the state
space.

Viscous dissipation generated by K̄, resp. k̄: For simplicity we use the standard Newtonian
viscosity

k̄(w̄Ḡ, w̄H̄)=
∫

Ω̄\Γ̄
µ̄(x̄) sym

(
∇w̄Ḡ

p̄

)
: sym

(
∇w̄H̄

p̄

)
V̄ dx̄ =

∫
Ω̄\Γ̄
∇̄w̄Ḡ

p̄ :M̄∇̄w̄H̄
p̄ dx̄ , (13)

with sym(A) = (A + A>)/2 and the viscosity µ̄ piecewise constant on the subdomains Ω̄i, i.e.,
µ̄i = µ̄|Ωi = µi > 0 for i ∈ {s, f}. The tensor M̄ = M̄(x̄, F̄ ) depends on F̄ since the Eulerian
gradient is ∇ui = ∇̄ūiF̄

−1.

Weak formulation (3): With the bilinear form ā(w̄, η̄) = j̄(w̄, η̄)− k̄(w̄, η̄), the Lagrangian weak
formulation of the damped Hamiltonian system for fluid-structure interaction in terms of (3) reads

ā(w̄, η̄)− b̄(∂tq̄, w̄) = ā(w̄, η̄)−
∫

Ω̄
(w̄χ̄ · ∂tχ̄+ w̄p̄ · ∂tp̄0) dx̄+

∫
Γ̄
w̄Γ̄ · ∂tχ̄ ds̄ = 0, (14a)

b̄(v̄, η̄) =
∫

Ω̄

(
η̄χ̄ · v̄χ̄ + η̄p̄ · v̄p̄

)
dx̄+

∫
Γ̄
η̄Γ̄ · v̄χ̄ ds̄ = 〈DF̄ (q), v̄〉V̄ , (14b)

with η̄ = (η̄χ̄, η̄p̄, η̄Γ̄) ∈ W̄ identified in (11). Then, for sufficiently smooth quantities, an integration
by parts in (14) reveals the strong formulation (1) and the following coupling conditions along Γ̄

∂tχ̄ = η̄p̄ = p̄0/%̄0 in Ω̄ \ Γ̄ , (15a)
∂tp̄0 = −η̄χ̄ + ∇̄ · (M̄∇̄η̄p̄) = ∇̄ · Σ̄ in Ω̄ \ Γ̄ , (15b)

0 = η̄Γ̄ + M̄s∇̄η̄p̄s
· ν̄s + M̄f∇̄η̄p̄f

· ν̄f = (Σ̄s − Σ̄f) · ν̄s on Γ̄ , (15c)

∂tχ̄ = η̄p̄ = p̄0
%̄0

on Γ̄, (15d)

with Σ̄|Ω̄i = Σ̄i the total stress given by the sum of elastic and viscous stresses Σ̄i = ∂F̄ iW̄i+M̄i∇̄η̄p̄i .
Note that (15a) is obtained by a test with w̄χ̄, (15b) by testing with w̄p̄ in Ω̄\Γ̄, (15c) by a test with
w̄p̄, and (15d) by w̄Γ̄ on Γ̄. Finally, we mention that Betsch and Schiebl [4] use ∂q̄Ḡ and ∂F̄ Ḡ to
represent derivatives and the operators J̄, K̄ to formulate GENERIC for open systems, while Marsden
et al. [14] used Dirac measures and defined 〈DF̄ ,v〉 =

∫
Ω
δE
δq̄ · v dx. In [20] extensions for boundary

dissipation and inclusion of interfacial energies are discussed in the context of moving contact lines.

2.2 Eulerian fluid-structure interaction problem

We now carry out the transformation of the weak Lagrangian FSI problem (14) to the Eulerian frame
by applying the abstract framework described in (4)–(6) to the fluid and the solid component. This
procedure is well known and was first introduced by Arnold [1]. For this, we shall use the variables
introduced in (6) and the decomposition of bilinear forms by restriction of the domain of integration
and denoted by the indices f, s, and Γ the fluid, solid, and interface terms. In particular, we have
a(w,η) = as(ws,ηs)+af(wf ,ηf)+aΓ(w,η). This notation underlines that the coupling between solid
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and fluid is communicated by the interface bilinear form aΓ. The auxiliary spaceW consists of elements
w = (w%f ,wΓ,wα,wp), while elements of the velocity space V are denoted by q = (%f ,pf ,α,ps).
To apply (4)–(6) we introduce the Eulerian state variables q ∈ Q, the transformation T : Q̄ → Q
and its Fréchet derivative L : Q̄ → Q as follows

T(q̄) := q =


%f : Ωf → R
pf : Ωf → Rd

α : Ωs ∪ Γ→ Ω̄s ∪ Γ̄ ⊂ Rd
ps : Ωs → Rd

 ∈ Q, L(q̄) :=


−∇ · (%̄f�f) 0
−∇ · (p̄f ⊗�f) �f

V̄f
−(∇α)�s 0

−∇ · (p̄s ⊗�s) �s
V̄s

 , (16)

using that %̄ = %̄0/V̄ and p̄ = p̄0/V̄ and L(q̄)v̄ = (v%f ,vpf ,vα,vps)
>. We refer to [25] for more details

on such transformations in the context of reactive fluid flows. Moreover, we define M∗ :W → V∗ as
follows

〈M∗w,v〉V =
∫

Ωf
w%fv%f +wpf · vpf dx+

∫
Ωs
wα · vα +wps · vpsdx+

∫
Γ
wΓ · vαds =: b(v,w) .

From this, we compute the weak form of the transformation via (5), i.e., 〈M∗w,L(q̄)v̄〉V =
〈M̄∗w̄, v̄〉V̄ via

〈M∗w,L(q̄)v̄〉V =
∫

Ωf
−w%f∇ · (%̄f v̄χ̄) +wpf · (

v̄p̄f
V̄f
−∇ · (p̄f ⊗ v̄χ̄)) dx

+
∫

Ωs
wα · (−(∇α)v̄χ̄) +wps · (

v̄ps
V̄s
−∇ · (p̄s ⊗ v̄χ̄)) dx

+
∫

Γ
wΓ · (−(∇α)v̄χ̄) ds

=
∫

Ω̄f
(%̄f∇w%f +(∇wpf )

>p̄f)V̄f︸ ︷︷ ︸
w̄χ̄f

·v̄χ̄f +wpf︸︷︷︸
w̄p̄f

·v̄p̄f dx̄

+
∫

Ω̄s
−((∇α)>wα + (∇wps)

>ps)V̄s︸ ︷︷ ︸
w̄χ̄s

·v̄χ̄s +wps︸︷︷︸
w̄p̄s

·v̄ps dx̄

+
∫

Γ̄

[
−∇α>wΓ+

(
(w%f %̄f+wpf·p̄f)|CofF̄ · ν̄f |−wps·p̄s|CofF̄ · ν̄s|

)
·ν̄s
]

︸ ︷︷ ︸
w̄Γ̄

·v̄χ̄ ds̄

(17)

for any w =
(
w%f ,wpf ,wα,wps

)
∈ W, and v̄ ∈ V̄. We are now ready to compute the transformed

bilinear forms (12) and (13). Firstly, we focus on terms with wf =
(
w%f ,wpf

)
and use jf(wf ,ηf) =

j̄f(w̄f , η̄f) to get

jf(wf ,ηf) =
∫

Ωf

(
%f∇w%f + (∇wpf )

>pf

)
· ηpf
−
(
%f∇η%f + (∇ηpf

)>pf

)
·wpf dx

=−
∫

Ωf

(
%f∇η%f + (∇ηpf

)>pf

)
·wpf + w%f∇ ·

(
%fηpf

)
+∇ ·

(
pf ⊗ ηpf

)
·wpf dx

+
∫

Γ

[
w%f%fηpf

+
(
wpf · pf

)
ηpf

]
· νf ds . (18a)

Note that the bulk term of the fluid agrees with the bracket for ideal fluids in the work by Morrison
[17]. Analogously by setting js(ws,ηs) = j̄s(w̄s, η̄s), one gets the reversible bilinear form for the solid
subdomain

js(ws,ηs) =
∫

Ωs

(
(−∇α)>wα + (∇wps)

>ps

)
· ηps

+
(
(∇α)>ηα − (∇ηps

)>ps

)
·wps dx

=
∫

Ωs

(
(∇α)>ηα − (∇ηps

)>ps

)
·wps − (∇α)>wα · ηps

+∇·
(
ps ⊗ ηps

)
·wps dx

+
∫

Γ

(
wps · ps

)
ηps
· νs ds . (18b)
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Finally, the skew-symmetric boundary bilinear form is

jΓ(w,η) = j̄Γ̄(w̄, η̄) =
∫

Γ

[
−∇α>wΓ +

(
w%f%f +wpf · pf −wps · ps

)
νs
]
·ηp ds

−
∫

Γ

[
−∇α>ηΓ +

(
η%f%f + ηpf

· pf − ηps
· ps

)
νs
]
·wp ds . (18c)

The transformation of the dissipative bilinear form k̄ is straight-forward, since η̄p̄ ≡ ηp and thus

k(w,η) = k̄(w̄, η̄) =
∫

Ω\Γ
µ(x)sym(∇ηp) : sym(∇wp) dx

=
∑

i∈{s,f}
−
∫

Ωi
∇ ·

[
µi sym

(
∇ηpi

)]
·wpi dx+

∫
Γ

(
µs∇η>ps

wps − µf∇η>pf
wpf

)
· νs ds.

(19)

The Eulerian free energy F = Fs + Ff is

Ff(q) =
∫

Ωf

|pf |2

2%f
+ W̄f(x, %f) dx, Fs(q) =

∫
Ωs

|ps|2

2%s
+ V −1

s W̄s(F s) dx, (20)

defining %s = %0s/Vs and Vs = detF s and F s = (∇α)−1. For the derivative of F we get

η%f = ∂%W̄f − |pf |2
2%2

f
, ηpf

= pf
%f
, ηps

= ps
%s
,

ηΓ = −∇α−>
[(
|ps|2
2%s

+ V −1
s W̄s

)
−
(
|pf |2
2%f

+ W̄f
)]
νs −

(
F>s ∂F

(
W̄s
V

)
F>s

)
νs − F>s

|ps|2

2%s
νs ,

ηα = ∇ ·
(
F>s
|ps|2

2%s

)
− |ps|2

2%2
s

F>s
Vs
∇ (%sVs) +∇ ·

(
F>s ∂F

(
W̄s
V

)
F>s

)
.

Strong formulation. From (18)–(20) we obtain the following strong formulation by testing with

w%f in Ωf : ∂t%f =−∇ · (%fηpf
) , (22a)

wpf in Ωf : ∂tpf =−
[
∇·(pf ⊗ ηpf

) + %f∇η%f + (∇ηpf
)pf

]
+∇·(µf∇ηpf

)

=−∇·(pf ⊗ uf) +∇·σf , (22b)
wα in Ωs: ∂tα =− (∇α)ηps

= −(∇α)us , (22c)

wps in Ωs: ∂tps =−
[
∇·(ps ⊗ ηps

)−∇α>ηα +∇η>ps
ps

]
+∇·(µs∇ηps

)

=−∇·(ps ⊗ us) +∇·σs, (22d)
wp on Γ: 0 =∇α>s ηΓ + (η%f%f + ηpf

·pf)νf + ηps
·psνs

−
(
µssym(∇ηps

)− µfsym(∇ηpf
)
)
·νs

= (σs − σf)νs , (22e)
wΓ on Γ: ∂tα =− (∇α)ηps

= −(∇α)us , (22f)

where σs = σvisc
s + σel

s and σf = σvisc
f − πI are the Cauchy stresses for solid and fluid. We denote

σvisc
i = µisym(∇ηpi

) with i ∈ {s, f} the viscous stresses, π = %f∂%fW̄f − W̄f the fluid pressure and
σel

s = V̄ −1
s ∂F sW̄sF

>
s the elastic solid stress, where in order to obtain ∇ ·σel

s we used Piola’s identity
∇· (V −1F>) = 0 and the fact that ∇iW = F−1

miF jl(∂FW )kl∇jF km. Testing by w%f on Γ produces
an equation that is always satisfied, in a similar way to the Lagrangian formulation when testing by
w̄χ on Γ̄.
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3 Conclusions and outlook

In this paper we introduced a variational approach to FSI based on the framework of GENERIC
in the special case of an isothermal damped Hamiltonian system for compressible materials, which
naturally leads to a weak formulation of the coupled problem and allows it to transform between
different sets of coordinates. This approach is convenient to include additional interfacial processes
by suitably extending state space, driving functionals, and geometric structures. Perhaps one of the
most elegant formulations of FSI problems is the Arbitrary Lagrangian Eulerian (ALE) formulation,
dating back to the early seventies [13], in which conservation equations are formulated in an arbitrary
frame of reference, typically chosen to be Lagrangian in the solid (i.e., identifying material particles),
and Arbitrary-Lagrangian Eulerian in the fluid, mapping the fluid equations (defined on a moving
domain) to a fixed reference (artificial) domain, not associated to material particles. Over the years,
ALE frameworks have become a standard, and are used in many current applications with FSI,
e.g., [2, 24, 26]. Related variational approaches to FSI are currently investigated using incremental
minimization schemes [3], and similar FSI problem for compressible fluids have been analysed recently
in [15, 22].

To fix the ideas, consider an invertible map Â : [0, T ]× Ω̂ 7→ Ω(t), with Jacobian F̂A, and Jacobi
determinant V̂A. Indicating with ·̂ fields in Ω̂, we can apply the framework presented in (5) to build
a GENERIC formulation of ALE FSI problems by choosing as state variable q̂ := (Â, α̂, %̂A :=
%̂V̂A, p̂A := p̂V̂A). In the spirit of ALE FSI, setting Â to be the identity we fall back to the Eulerian
state q, while setting Â ≡ χ̄, we recover q̄. The GENERIC framework guarantees a structure preserving
construction also in all intermediate choices, including the classical choice in ALE FSI, where Âs ≡ χ̄
in the solid domain, and where Â is a geometrically conforming extension operator of Âs in the
fluid domain (most commonly pseudo-elastic, harmonic, or bi-harmonic operators [21]). Alternative
formulations of FSI problems relying on non-matching techniques, like Immersed Finite Element
Methods (IFEM) [5, 8, 11, 12] can also be casted in this framework by choosing as state variables
a mixture of Lagrangian and Eulerian variables q̃ := (χ̄s,p, %), where the momentum and density
fields are treated in the Eulerian framework, and the solid displacement is kept in the Lagrangian
framework.
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