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Spontaneous trail formation in populations of auto-chemotactic walkers
Zahra Mokhtari, Robert I. A. Patterson, Felix Höfling

Abstract

We study the formation of trails in populations of self-propelled agents that make oriented deposits of pheromones and
also sense such deposits to which they then respond with gradual changes of their direction of motion. Based on extensive
off-lattice computer simulations aiming at the scale of insects, e.g., ants, we identify a number of emerging stationary
patterns and obtain qualitatively the non-equilibrium state diagram of the model, spanned by the strength of the agent–
pheromone interaction and the number density of the population. In particular, we demonstrate the spontaneous formation
of persistent, macroscopic trails, and highlight some behaviour that is consistent with a dynamic phase transition. This
includes a characterisation of the mass of system-spanning trails as a potential order parameter. We also propose a
dynamic model for a few macroscopic observables, including the sub-population size of trail-following agents, which
captures the early phase of trail formation.

1 Introduction

Trail formation is known in populations of insects [TR95, Jea81, RBJH09, ABDP93, JHR04, CGR15] and animal herds,
as well as in colonies of microorganisms and, to some extent, also for pedestrians. Trails in nature form spontaneously
and often in the absence of a leader; they are self-organised dynamic structures that emerge from the delayed and long-
range coupling between the individuals. The basic mechanism originates in individuals leaving markers on a surface to
facilitate the process of foraging [FG61, Ken86, BFI+00, BS47, ATB+12], mating [MF02, RLDB12, Hoi00], or defeating an
invader [LHLE+15]. Cooperating members of the same species align their motion with and reinforce these markers, often
giving rise to the formation of large-scale patterns, for example, a network of trails. Beyond this qualitative picture, the
physics of this kind of trail formation is not well understood and constitutes an intriguing problem of active matter research.

The behaviour of “active” (self-propelled) synthetic particles has been subject of intense research in soft matter and statisti-
cal physics, with focus on the motion of individual particles [MJR+13, KLF16] and their response to complex environments
[BDLL+16, CSF+17, MZ19, CP13]. Concomitantly, strong emphasis was laid on emerging collective patterns, which in-
clude flocking [TTR05], herding [TT98], vortices [WDH+12, GRBSG14, LK21], and clustering [FM12, RHB13, PSS+13,
SGMO14, SLVC+12, MAZ17], just to mention a few. Other than such compact structures, low-dimensional patterns such
as isolated trails are relatively underinvestigated. A notable exception are models for the emergence of pedestrian trail
systems connecting certain entry points and destinations [HKM97, HSKM97] and traffic phenomena along existing trails
[CSN05].

The ability to navigate in gradients of a secondary field, such as a signalling chemical, leads to the phenomenon of
chemotaxis, which receives growing interest in physics research [LL18, MSGR14, ETO+04, MBBVO03, Gri05], with only
few recent works on auto-chemotaxis (e.g., [TZS11, ATB+12, MSGR14, KGZ+16]). Continuum mathematical models of
auto-chemotaxis are traditionally based on the Patlak–Keller–Segel equations (PKS), where the local density of agents is
coupled to the gradient of the chemical field [KS70, Pai19] and which can be derived from a kinetic equation for the dis-
tribution of autochemotactic agents [PVW]. The PKS model predicts clustering and has been refined to avoid unphysical
chemotactic collapse [CG17], but a more complex model is required in order to demonstrate trail formation [Pai19, BDM13].
We note that many of the experimental studies on chemotaxis as well as the PKS model aim at suspensions of microswim-
mers or microorganisms, where the surrounding fluid leads to a significant diffusion of the released chemical. This is in
contrast to the scale of insects, where pheromone diffusion is comparably small. Pioneering work on spontaneous trail
formation was inspired by the behaviour of ants and relied on cellular automata [EK94, EKWE95], whereas ant models
based on agents which adjust their own direction of motion in response to a pheromone have been proposed more re-
cently [BDM13, AGP19]. From the few available agent-based studies of trail formation, there is no consensus on important
questions such as: What are the essential or minimal requirements for trails to emerge? Which parameters decide whether
an area-covering network or a focused trunk trail or no trail at all forms? Does spontaneous trail formation constitute a
non-equilibrium phase transition, or is it merely a crossover phenomenon?

In this work, we study trail formation by spontaneous symmetry breaking of a statistically homogeneous state. To this
end, we consider an agent-based model that mimics the behaviour of ants, treating the agents as persistent walkers (self-
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Figure 1: Persistent walkers or “agents” (green discs) secrete pheromones as they move and experience a torque that
aligns their orientation to that of a nearby pheromone trace. The pheromones degrade over time (orange dots turn purple
as they age).

propelled particles) and the chemicals as pheromone droplets. Based on extensive computer simulations and a macro-
scopic dynamic model, we collect evidences for a putative dynamic phase transition: An initially disordered distribution
of individuals self-organise into a collective state consisting of long-lived trails in the ordered phase (see Supplementary
Material for a movie). The study of dynamical phase transitions in systems of self-propelled particles has been a subject
of interest since around the turn of the millennium [VCBJ+95, TT95]. A variety of phenomena including coherent sponta-
neous large-scale patterns of particles can emerge in such out-of-equilibrium systems. Despite the appealing analogies
between some of such observed phase transitions to the transitions in equilibrium, differences are numerous and decisive.
In particular, unlike the critical phenomena in thermal equilibrium, for active matter systems there is no trivial knowledge
which features of a system are irrelevant details and which are dominant [BV21].

2 Model and methods

2.1 Agent–pheromone model

We consider a two-dimensional system composed of N agents that secrete chemicals as they move. The agents are
assumed to walk at constant speed v0 in the direction of random unit vectors, which themselves are subject to a rotational
diffusion that is coupled to the pheromones. The equations of motion for agent i with speed v0 and orientation ni =
(cosϕi, sinϕi) are given by

ṙi(t) = v0ni(t) + ζ−1Fi, ϕ̇i(t) = mi(t) + ηi(t), (1)

where the ηi(t) are independent Gaussian white noises of zero mean and variance 〈ηi(t)ηj(t′)〉 = 2Drδijδ(t − t′)
in terms of the rotational diffusion constant Dr , which serves as unit of time: τ0 := 1/Dr . Further, ζ is the translational

Parameter Symbol Value

disk radius of agent R0 unit of length
rotational diffusion constant Dr unit of time: τ0 := 1/Dr

propulsion speed v0 400 R0τ
−1
0

pheromone deposition interval τd 0.1 τ0
pheromone lifetime τp 2 τ0

pheromone sensing radius rp 3 R0

alignment strength µ (0.1−10) τ−10

Table 1: Parameters of the agent–pheromone model and their values used in the simulations. The absolute parameter
values estimated for the ant L. Niger in Ref. [BDM13] are recovered approximately by putting R0 = 0.25 cm and v0 =
2 cm/s.
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Spontaneous trail formation 3

friction coefficient, the force Fi on agent i results from a pair repulsion, and mi is a torque-like contribution due to the
alignment interaction with pheromones (see below). In the first equation, we have neglected translational diffusion relative
to the deterministic propulsion, which appears reasonable at the scale of, e.g., insects. Every agent occupies a disk-shaped
area of radius R0 repelling other agents, and this excluded volume effect is realised here through a shifted harmonic force
Fi =

∑′
j K(1 − 2R0/rij)rij , where rij = ri − rj and the primed sum runs over neighbouring particles j 6= i with

rij := |rij | < 2R0. In the simulations, we used ζ−1K = 5× 105τ−10 .

We are specifically interested in trail formation in ant colonies. Different species of ants are known to mark the ground
with pheromone droplets under different circumstances. Their pheromones often consist of macromolecules that spread
by diffusion much slower than the organism moves. To that end, we model the excretions as discrete particles, which are
deposited at regular intervals τd and which do not move in space, but evaporate or degrade after a fixed lifetime τp (also
see Fig. 1). A random implementation of the two latter processes, e.g., by independent Poisson processes, appears slightly
more realistic, but is unlikely to change the macroscopic behaviour noticeably.

How do the agents interact with the pheromones? The exact form of the response of insects and microorganisms to
chemical secretions is not well understood in many cases [PGG+12]. Yet, there seems to be consensus that the interaction
is mediated through a coupling between the walking direction and the trail orientation. A wide range of ant species reorient
upon approaching a trail and move along it towards the direction of freshly deposited chemicals [ABDP93, JHR04, CGR15].
For the pheromones in the present model to be able to induce such an effect we assign an intrinsic orientation to the
pheromones, which copies that of the agent at the moment of deposition [BDM13]. The agent–pheromone interaction is
implemented as an aligning torque exerted on the agent by the pheromones surrounding it within a disk of radius rp:

mi = µ
∑
j∈Ji

sin(ϑj − ϕi) , (2)

where ϑj refers to the orientation of pheromone j and Ji is the set of pheromone indices within the sensing radius rp of
agent i. A positive interaction strength µ > 0 causes alignment, whereas µ < 0 would lead to anti-alignment.

The model parameters were chosen to approximately match the values estimated for the black garden ant (Lasius Niger)
[BDM13, BDG92] and are summarised in Table 1. With these parameters, the orientation of the agents is highly persistent
relative to their translational motion, expressed by the dimensionless ratio v0/(R0Dr) = 400 � 1. The pheromone
trace of a single agent on average is constituted of τp/τd = 20 pheromones (Fig. 1), and two successively deposited
pheromones are separated by a distance v0τd = 40R0, which is much larger than the sensing radius rp = 3R0. Thus,
the average number density of pheromones in the system is %p = (τp/τd)NL

−2, which multiplied by the sensing area of
a single agent yields the mean number of pheromones Np = πr2p%p in the vicinity of an agent (ignoring any interactions).
This is an important control parameter, and for Np varied between 1 and 100 we observe a variety of collective behavior.

2.2 Simulation details

For the demanding simulations of the agent-based model, we exploited the massively parallel hardware of high-end
graphics processing units (GPUs) [ALT08, CH11, WAV12] and relied on the particle-based simulation package HOOMD-
blue [ALT08, GNA+15]. In-house modifications were necessary to include the aligning torque and the deposition and
evaporation of pheromones. The simulation domain was a square of edge length L = 400R0 with periodic boundary con-
ditions applied along both Cartesian directions. All simulations start from a homogeneous state, i.e., a random distribution
of agent positions, independently and uniformly sampled from the domain, and without pheromone droplets. The equations
of motion, (1)&(2), were solved with the Brownian integrator of the package, which resembles the Euler–Maruyama scheme
[LM15], with integration time step δt = 10−5 τ0; the smallness of this number is due to the large ratio v0τ0/R0 = 400
(see Table 1). We discarded an initial relaxation phase of ∆t = 25τ0 before sampling at intervals of 5τ0 for the stationary
averages. For larger systems of size L = 1200R0, we discarded a 9 times longer relaxation phase of ∆t = 225 τ0.
For each set of parameters shown in Fig. 3, more than 200 simulations with independent initial configurations were run,
consuming more than 1400 hours of GPU time in total. Depending on the agent density, the number of agents was varied
between N = 160 and 16 000 with the number of pheromone particles ranging between 3200 and 320 000.

2.3 Identification of trails

We understand “trails” as long, thin connected domains filled with pheromone droplets and therefore trail edges will exhibit
large gradients in the pheromone concentration (perpendicular to the trail direction). We developed the following simple
image processing procedure to automatically identify trails in simulation outputs for the positions of pheromone particles.
The implementation used the multi-dimensional image processing package for Python [VdWSNI+14].
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(i) (ii) (iii)

(iv) (v) (vi)

Figure 2: Identification of trails by mapping discrete pheromones to a bitmapped field and applying image processing
techniques: Gaussian filter, edge detection, thresholding, and segmentation. The trails, defined as the percolating object(s),
are coloured in black in the post-processed image (panel (vi)). Each step, indicated by a number on the top of the panel,
is explained in §2.3.

1 Map the positions of discrete pheromone particles to a discrete pixel field (“bitmap”).

2 Apply a Gaussian kernel. Pixels are squares of size (L/R0)2, and the blur parameter of the Gaussian filter was
taken as 3 pixels.

3 Edge detection using Sobel filters: Two 3× 3 kernels Sx and Sy are convoluted with the original image A to yield
approximationsGx andGy to the intensity gradient along the horizontal and vertical directions respectively. Periodic
boundaries are taken into account by expanding the bitmap and repeating the central bitmap to all 8 neighbouring
images.

4 Convert to a black-and-white image by thresholding of the gradient magnitude G =
√
G2
x +G2

y ; a pixel is set to

‘black’ if G > 0.25 max(G).

5 Segmentation of the thresholded bitmap into “trails”. Using a watershed algorithm, objects of connected black pixels
are identified and labelled.

6 Calculate properties of the objects such as their linear extensions, their mass (number of pixels), etc. Identify the
trails as the system-spanning or “percolating” objects, which we define as those wrapping around the periodic
domain, i.e., with an extension along the x- or y-direction larger than L/R0.

Each step of the procedure is illustrated in Fig. 2. We do not claim any special status for the details of our image analysis;
on the contrary we claim that any reasonable method for identifying trails as 1-dimensional areas of high pheromone
concentration surrounded by areas of low concentration would give similar results except possibly in some pathological
situations. In support of this claim we checked that the image processing yields qualitatively similar results if the blur
parameter in (ii) and the threshold in (iii) are changed moderately. The details of the numerical results presented in the
remainder of this article certainly will depend on the details of the image processing and we therefore emphasise that our
results are qualitative in nature.
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Spontaneous trail formation 5

Figure 3: Representative configurations of agent positions for different values of Np and the relative alignment strengths
s = µ/Dr , where Np is the average number of pheromones interacting simultaneously with an agent (see text); colours
indicate the alignment ni · P of the walking direction to the global one, ∝ P (black arrows), where 1 refers to perfect
alignment. Thick panel borders separate homogeneous, disordered states (bottom left panels) from states with several
weak or few trunk trails (top and right panels). The trails are relatively straight for a large range of parameters, but tortuous
in few cases. Light grey stripes represent system-spanning trails that were identified from the distribution of pheromones.

3 Spontaneous trail formation

We have carried out extensive simulations to obtain a qualitative description of the stationary states that emerge within
the investigated model, laying particular emphasis on a putative transition showing spontaneous trail formation. Relevant
parameters are the strength µ of alignment with the pheromones, the orientational diffusion Dr , and the average number
Np of pheromone droplets within the detection range of an agent. The first two parameters have antagonistic effects on trail
formation and form the dimensionless ratio s = µ/Dr . With increasing Np, agents are expected to align more effectively
to each other, favouring trail formation. We explored this parameter space for s ∈ [0.2, 5] and Np ∈ [2, 20] by changing
the interaction strength µ and the number of agents N , while keeping all other parameters fixed to their values given in
Table 1.

A chart of typical configurations observed in the stationary regime is shown in Fig. 3. In the dilute case and if interactions
are weak (e.g., s = 0.2, Np = 2), the spatial distribution of agents remains homogeneous and isotropic in a statistical
sense. For sufficiently large Np and s, agents accumulate along straight lines that wrap around the periodic simulation
domain: persistent and spanning trails develop. Depending on the control parameters, most of the agents follow these
macroscopic trails and thereby reinforce them; on long time spans, the trails are dynamically remodelled and can slowly
change their location. This is very well exposed in Fig. 3, for example, at s = 2, Np = 10 and at s = 5, Np = 5. For a
number of situations, however, we observe that many thin trails emerge that run in parallel instead of merging to a single
(or few) trunk trails, even over long times.

In order to quantify a possible dynamic phase transition, we introduce the relative weight p∞ of (the) system-spanning
trail(s) as a tentative order parameter. We define it in analogy to the weight of the infinite cluster in percolation theory
[bAH00, KHF08] as

p∞ =
amount of pheromone in spanning trails

total amount of pheromones
; (3)
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Figure 4: The fraction of pheromones in the spanning trail, p∞, quantifies a putative transition from a homogeneous state
to a state with long-lived trails. Panel (a): The ensemble-averaged trail weight 〈p∞〉 as function of the relative alignment
strength s = µ/Dr for two different sizesL of the simulation box, as indicated in the legend. Panel (b): Probability density
of p∞ for three different alignment strengths s and a box size of L = 400R0. Lines are smooth interpolations through the
data points, represented by their error bars. Black symbols correspond to results for s = 10 obtained with a large box of
L = 1200R0. In both panels, Np = 5 and all other parameters were fixed to their values in Table 1.

within the above detection scheme, p∞ is calculated as the ratio of the number of pixels in spanning objects and the
total number of ‘black’ pixels (see step (iv) of the trail identification algorithm). Its mean value 〈p∞〉 is calculated as a
stationary ensemble and time average and it increases monotonically with s for Np = 5 fixed, with the fastest variation
for s ≈ 0.5−1 (Fig. 4a). The probability density function of p∞ exhibits a pronounced peak for small and large values
of s, with the peak and also the mean value shifting from 〈p∞〉 ≈ 0 to 〈p∞〉 ≈ 1 upon increasing s across a certain
threshold value (Fig. 4b). Comparing the results in Fig. 4 for different system sizes, both the variation of 〈p∞〉 with s and
the order parameter distribution display only relatively small changes despite the considerable changes of L by factors
of 2 and 3, respectively. This suggests that, for the present parameter set and choice of the order parameter, increasing
the system size further would not result in a sharp phase transition. Yet, we emphasise that increasing the system size to
L = 1200R0 does not stop the emergence of long-lived, spanning trails in the stationary state.

For all panels shown in Fig. 3, the agent system exhibits a well-developed polarisation P = N−1
∑N
i=1 ni in the steady

state, even at low densities and weak alignment interaction. A comparison of the dynamic evolution of polarisation and that
of the spanning trail, upon starting from a homogeneous state, suggests that at moderate values of Np and s, polarisation
develops more gradually and more slowly than trails form (Fig. 5). In particular, polar ordering is not a prerequisite for the
formation of trails. Conversely, at low density and interaction strength, in the absence of macroscopic trails, the system
is still polar, i.e., shows a coherent movement, which we attribute to the persistent motion of agents with a finite-range
alignment interaction.

From the above simulation results, it seems that both trail formation and polarity originate in the aligning interaction between
agents and pheromones. To further investigate the importance of the polarity of the pheromones for the emergence of
trails, we have run some exemplary simulations for a modification of our model using directed, but apolar pheromones;
specifically, we have changed the aligning torque from the expression in (2) tomi = (µ/2)

∑
j∈Ji sin(2(ϑj −ϕi)). The

preliminary results suggest that macroscopic trails still emerge as in the original model and that the overall behaviour is
qualitatively reproduced. We conclude that the polarity of the individual pheromones is not essential for the formation of
trails.

A further increase of the alignment strength (for example, at s = 5, Np = 20) weakens the polarisation due to the
formation of tortuous trails: While the trails tend to straighten at moderate values of s, a large alignment strength s allows
the agents to follow kinked and curved trails, to the point where they can follow circular trails. In this case, agents can be
trapped in rotating clusters, which grow in size as the agent density is increased (Fig. 6). These rotating clusters share
some similarities with ant mills, a phenomenon in which a group of army ants begin to follow one another, forming a
stable and continuously rotating cluster [Bee21]. Fig. 6 exhibits such a large rotating cluster of more than 2000 agents, in
coexistence with a long-lived spanning trail, which is eventually swallowed up by the mill (see Supplementary Material for
a movie). We conclude that for sufficiently large values of s, the trails cease to exist.

DOI 10.20347/WIAS.PREPRINT.2900 Berlin 2021



Spontaneous trail formation 7

0 11 22 33 44 55

t/τ0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

〈p
∞

(t
)〉

0.0

0.2

0.4

0.6

0.8

〈P
(t

)〉

Figure 5: Time evolution of the ensemble average of the fraction of pheromones in the spanning trail p∞ (green disks, left
axis) and magnitude of the polarisation P = N−1

∑N
i=1 ni (blue, solid line, right axis) for Np = 5, s = 5. The average

was taken over 100 simulations, which explains the residual statistical fluctuations in 〈p∞(t)〉.

Figure 6: In dense systems of strongly aligning agents, large rotating clusters (ant mills) develop and can coexist for a long
period of time with a spanning trail. The latter is eventually swallowed up by the rotating cluster. The figure shows a typical
configuration of the agent positions (green dots) for Np ≈ 30 and s = 10; the borders indicate the periodic simulation
domain with an edge length of L = 400R0.
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4 Macroscopic dynamic model

Aiming at an understanding of the dynamics of trail formation, we employ a dynamic model of few collective observables
that was proposed as a heuristic description of trail following [EK94, EKWE95]. Ideally, such a macroscopic model can
reproduce the evolution of the corresponding ensemble-averaged quantities of the microscopic agent–pheromone model.
To start with, we introduce the sub-population of followers as the agents that move along a spanning trail; the number
fraction of followers relative to the whole population is denoted by nf . Within the simulations, the number of followers
is calculated as the number of agents which are closer to a trail than the sensing radius rp (see §2.3). The rest of the
agents, called searchers, move in the void space between the trails until they hit a trail, join it, and change their identity
to a follower. The number of followers is subject to change due to the recruitment of searchers to existing trails as well as
the dislodging of followers from the trails. The latter contribution is proportional to the population size of followers, whereas
recruitment is proportional to the fraction 1− nf of searchers and to the probability of hitting a trail, which is proportional
to the total area fraction A covered by trails in a simplified approach ignoring spatial information. The dynamics of the
average sub-population size of followers is then described by a gain–loss equation of the form

d〈nf (t)〉
dt

= −γf 〈nf (t)〉+ α
[
1− 〈nf (t)〉

]
〈A(t)〉, (4)

where 〈·〉 denotes the time-dependent ensemble average. The coefficient γf is the rate of a follower losing a trail, and α
is the rate of recruitment of a searcher to a trail upon hitting it. The area of trails A(t) decreases as followers leave the
trails and the pheromones gradually degrade, and it increases as the followers reinforce the trails. Its dynamics is tightly
coupled to that of nf (t) as corroborated by the simulation data (Fig. 7a) and we assumed that

〈A(t)〉 = c 〈nf (t)〉 , (5)

where the constant of proportionality c = 〈A〉∗/〈nf 〉∗ is fixed by the stationary mean values of A and nf (denoted by
the subscripts ∗). We note that the data in Fig. 7a are averages over merely 50 independent simulations and therefore still
display “mesoscopic” fluctuations. The latter need to be contrasted from the more rapid changes with partially jump-like
behaviour of a single observation (inset of Fig. 7a). Substituting 〈A(t)〉 in (4) yields

d〈nf (t)〉
dt

= γ̃〈nf (t)〉 − α̃〈nf (t)〉2, (6)

where γ̃ = αc−γf and α̃ = αc. This is a closed non-linear ordinary differential equation in 〈nf (t)〉. A linear equation for
the reciprocal, 1/〈nf (t)〉, is found by dividing (6) by 〈nf (t)〉2. Its solution for t > t0 given some initial value 〈nf (t0)〉 > 0
at time t0 reads

〈nf (t)〉 =

{
e−γ̃(t−t0)

〈nf (t0)〉 +
α̃

γ̃

[
1− e−γ̃(t−t0)

]}−1
. (7)

Equations (4)&(5) constitute the macroscopic model in the variables 〈nf (t)〉 and 〈A(t)〉, which reduces to (6). To test
its applicability as an effective description of the agent–pheromone model, we compare the solution of (7) to simulation
results for Np = 5 and s = 5; all other parameters were set as in Table 1. The macroscopic coefficients γf , α and c
depend in an intricate way on the parameters of the microscopic model and their values cannot easily be inferred from
the simulation parameters; a much more detailed derivation of a kinetic equation would be required and this would exceed
the scope of the article. Instead, we estimated these coefficients as follows: calculating the mean value 〈nf 〉∗ from the
data for 〈nf (t)〉 in the stationary regime fixes the ratio γ̃/α̃ = limt→∞〈nf (t)〉 = 〈nf 〉∗. Then, γ̃ was found by fitting
(7) to the data over the full time range, t > t0 := 0.8τ0, which also yielded values for 〈nf (t0)〉 ≈ 10−4. The results of
the procedure are given in Table 2 for Np = 5 fixed and different alignment strengths s and show very good agreement
between the macroscopic model and the simulation data (Fig. 7b).

s 〈nf 〉∗ α̃τ0 γ̃τ0

0.5 0.03 32.12 0.96
1.0 0.27 8.76 2.37
5.0 0.67 5.49 3.68

Table 2: Estimated coefficients of the macroscopic model (4)&(5) from fitting the solution 7 to the data (Fig. 7b) for different
values of the alignment strengths s and for fixed Np = 5, L = 400R0, and all other parameters as in Table 1.
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Figure 7: Panel (a): Temporal evolution of the mean fraction of agents following a trail (〈nf (t)〉, green disks) and mean area
fraction of trails (〈A(t)〉, grey squares), starting from statistically homogeneous and isotropic configurations for parameter
values s = 5 and Np = 5. Both quantities have been normalised by their stationary mean values, 〈nf 〉∗ and 〈A〉∗,
respectively, where c = 〈A〉∗/〈nf 〉∗ ≈ 0.18. The non-equilibrium ensemble averages were taken over≈ 50 simulations.
The inset shows nf (t) as observed in a single simulation. Panel (b): Evolution of the mean fraction of followers for three
different relative alignment strengths s = µ/Dr as indicated, Np = 5 and all other parameters as in Table 1. In both
panels, solid lines depict the solution to the macroscopic dynamic model (6) using the coefficients given in Table 2.

The stationary solutions, or fixed points, of (6) are readily obtained as 〈nf 〉∗ = 〈A〉∗ = 0, which means no formation of
trails, and

〈nf 〉∗ =
γ̃

α̃
= 1− γf

cα
, 〈A〉∗ = c〈nf 〉∗ if γf < cα. (8)

The last condition results from the fact that nf cannot be negative and provides an approximate criterion for the formation
of macroscopic trails. If one succeeds in connecting the macroscopic model to the microscopic parameters, one would have
obtained a rough estimate of the regime where trail formation sets in. To this end, we ignore a possible renormalisation
of the coefficients in the macroscopic limit and, up to constant prefactors, identify the recruitment and losing rates in (4)
with the alignment strength and the rotational diffusion coefficient of the agent model, α ∝ µ and γf ∝ Dr , respectively.
Similarly, the decay and reinforcement of the trails is connected to the rates of pheromone degradation and deposition,
τ−1p and nfτ

−1
d , respectively, which suggests that their ratio determines the area fraction of trails in the stationary state,

up to a prefactor: 〈A〉∗ ∝ 〈nf 〉∗τ−1d /τ−1p . Under this correspondence, the condition in (8) reads Dr < Cµτp/τd for
some constant C > 0. It suggests that the transition or crossover to the trail-forming regime occurs along a line in the
state diagram of the microscopic model that is given by

sNp ≈ const , (9)

using s = µ/Dr and Np ∝ τp/τd (see §2.1). Indeed, such a reciprocal relationship between Np and s along the
transition line is compatible with the qualitative state diagram in Fig. 3. We emphasise that the above derivation is heuristic
and far from rigorous. Nevertheless, it facilitates us with first insight into the conditions under which macroscopic trails can
form spontaneously in the agent–pheromone system.

5 Summary and conclusions

We have studied the spontaneous formation of macroscopic trails in populations of persistent walkers that interact via
chemical secretions. Aiming at insight into the generic physical mechanism of this phenomenon, we introduced an agent-
based model consisting of walkers that move with constant velocity in a certain direction and deposit pheromone droplets.
The trace of an individual is then marked by several pheromones, each characterized by an orientation along the tangent
to the trace. The walking direction of the agents changes by rotational diffusion and by sensing nearby pheromones due
to an alignment interaction with the pheromone orientation. We stress that the model does not contain any attractive
pair potential, neither between pairs of agents nor between agents and pheromones, and the only coupling is to their
orientations. The choice of model parameters was guided by available data on the ant species L. Niger [BDG92, BDM13],
yet we note that trail formation in the absence of preferred destinations such as food sources or the nest is somewhat
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artificial for this species. Army ants, on the other hand, are known to spontaneously relocate their nest, which involves the
formation of a focused trunk trail.

Based on extensive simulations of this model, we have qualitatively characterised the stationary state diagram (Fig. 3) that
is spanned by the average numberNp of pheromones interacting with an agent and the alignment strength s relative to the
rotational diffusion constant. For all agent densities ∝ Np investigated, we observed clearly that long-lived, macroscopic
trails emerge from an initially homogeneous state above a certain, Np-dependent value of the alignment strength s; at
lower values of s, trails do not persist. In most cases, the trails are almost straight lines, sometimes present as few, strong
trunk trails and often as many thin lines running in parallel. The trails can become tortuous for strong alignment, and at
high densities we also observed the occurrence of ant mills, i.e., rotating clusters (Fig. 6).

Inspired by the phenomenon of critical percolation, we examined a large number of agent–pheromone configurations for
the existence of a system-spanning trail and considered its weight p∞ as order parameter of a putative dynamic phase
transition from homogeneous to trail-forming phases. Our data for the ensemble-averaged value 〈p∞〉 as well as the
distribution of p∞ are compatible with such a transition (Fig. 4), yet the signatures of a sharp phase transition are not well
developed.

Finally, we considered the early phase of trail formation and studied the growth of the sub-population nf of trail-following
walkers (Fig. 7). We employed a simple macroscopic dynamic model for ensemble-averaged observables (4)&(5) and
demonstrated that it can reproduce the evolution of the corresponding quantities of the microscopic model. From the
analysis of the macroscopic model, we inferred an approximate criterion for trail formation (9) regarding the effects of
agent density and alignment strength, which is in qualitative agreement with the non-equilibrium state diagram (Fig. 3).

Summarising, we presented an agent-based model with indirect communication through pheromones that exhibits a rich
phenomenology including spontaneous trail formation. We collected first evidence for a dynamic phase transition and
gained insight into the conditions under which macroscopic trails emerge. The model is not necessarily a minimal one
for trail formation as preliminary results for a modification with apolar pheromones (i.e., they have a direction, but no
orientation) show qualitatively similar behaviour. Although a number of open questions remain, it is our hope that this pilot
study will stimulate future research to clarify the intriguing physics of this type of active matter.

References

[ABDP93] Serge Aron, Ralph Beckers, Jean-Louis Deneubourg, and JM Pasteels. Memory and chemical communi-
cation in the orientation of two mass-recruiting ant species. Insectes Soc., 40(4):369–380, 1993.

[AGP19] Paulo Amorim, Thierry Goudon, and Fernando Peruani. An ant navigation model based on weber’s law. J.
Math. Biol., 78(4):943–984, 2019.

[ALT08] Joshua A Anderson, Chris D Lorenz, and Alex Travesset. General purpose molecular dynamics simulations
fully implemented on graphics processing units. J. Comput. Phys., 227(10):5342–5359, 2008.

[ATB+12] Gabriel Amselem, Matthias Theves, Albert Bae, Eberhard Bodenschatz, and Carsten Beta. A stochastic
description of dictyostelium chemotaxis. PloS one, 7(5):e37213, 2012.

[bAH00] Daniel ben Avraham and Shlomo Havlin. Diffusion and Reactions in Fractals and Disordered Systems.
Cambridge University Press, Cambridge, 2000.

[BDG92] Ralph Beckers, Jean-Louis Deneubourg, and Simon Goss. Trail laying behaviour during food recruitment
in the ant lasius niger (l.). Insectes Soc., 39(1):59–72, 1992.

[BDLL+16] Clemens Bechinger, Roberto Di Leonardo, Hartmut Löwen, Charles Reichhardt, Giorgio Volpe, and Gio-
vanni Volpe. Active particles in complex and crowded environments. Rev. Mod. Phys., 88(4):045006, 2016.

[BDM13] Emmanuel Boissard, Pierre Degond, and Sebastien Motsch. Trail formation based on directed pheromone
deposition. J. Math. Biol., 66(6):1267–1301, 2013.

[Bee21] William Beebe. Edge of the Jungle. H. Holt, 1921.

[BFI+00] Richard L Blanton, Danny Fuller, Negin Iranfar, Mark J Grimson, and William F Loomis. The cellulose
synthase gene of dictyostelium. PNAS, 97(5):2391–2396, 2000.

DOI 10.20347/WIAS.PREPRINT.2900 Berlin 2021



Spontaneous trail formation 11

[BS47] John Tyler Bonner and LJ Savage. Evidence for the formation of cell aggregates by chemotaxis in the
development of the slime mold dictyostelium discoideum. J. Exp. Zool., 106(1):1–26, 1947.

[BV21] Kurt Binder and Peter Virnau. Phase transitions and phase coexistence: equilibrium systems versus exter-
nally driven or active systems-some perspectives. Soft Mater., pages 1–19, 2021.

[CG17] Ana Cañizares García. On a stochastic particle model of the Keller–Segel equation and its macroscopic
limit. PhD thesis, Ludwig-Maximilians-Universität München, 2017.

[CGR15] Tomer J Czaczkes, Christoph Grüter, and Francis LW Ratnieks. Trail pheromones: an integrative view of
their role in social insect colony organization. Annual Review of Entomology, 60:581–599, 2015.

[CH11] Peter H. Colberg and Felix Höfling. Highly accelerated simulations of glassy dynamics using GPUs:
Caveats on limited floating-point precision. Comput. Phys. Commun., 182(5):1120–1129, May 2011.

[CP13] Oleksandr Chepizhko and Fernando Peruani. Diffusion, subdiffusion, and trapping of active particles in
heterogeneous media. Phys. Rev. Lett., 111(16):160604, 2013.

[CSF+17] Udit Choudhury, Arthur V Straube, Peer Fischer, John G Gibbs, and Felix Höfling. Active colloidal propul-
sion over a crystalline surface. New J. Physics, 19(12):125010, 2017.

[CSN05] Debashish Chowdhury, Andreas Schadschneider, and Katsuhiro Nishinari. Physics of transport and traffic
phenomena in biology: from molecular motors and cells to organisms. Phys. Life Rev., 2(4):318–352, 2005.

[EK94] L. Edelstein-Keshet. Simple models for trail-following behaviour: Trunk trails versus individual foragers. J.
Math. Biol., 32:303–328, 1994.

[EKWE95] Leah Edelstein-Keshet, James Watmough, and G Bard Ermentrout. Trail following in ants: individual prop-
erties determine population behaviour. Behav. Ecol. Sociobiol., 36(2):119–133, 1995.

[ETO+04] Michael Eisenbach, A Tamada, GM Omann, JE Segall, RA Firtel, R Meili, David Gutnick, Mazal Varon,
Joseph W Lengeler, and Fujio Murakami. Chemotaxis. World Scientific Publishing Company, 2004.

[FG61] Gottfried S Fraenkel and Donald L Gunn. The orientation of animals: kineses, taxes and compass reactions.
1961.

[FM12] Yaouen Fily and M Cristina Marchetti. Athermal phase separation of self-propelled particles with no align-
ment. Phys. Rev. Lett., 108(23):235702, 2012.

[GNA+15] Jens Glaser, Trung Dac Nguyen, Joshua A Anderson, Pak Lui, Filippo Spiga, Jaime A Millan, David C
Morse, and Sharon C Glotzer. Strong scaling of general-purpose molecular dynamics simulations on gpus.
Comput. Phys. Commun., 192:97–107, 2015.

[GRBSG14] Robert Großmann, Pawel Romanczuk, Markus Bär, and Lutz Schimansky-Geier. Vortex arrays and
mesoscale turbulence of self-propelled particles. Phys. Rev. Lett., 113(25):258104, 2014.

[Gri05] Ramon Grima. Strong-coupling dynamics of a multicellular chemotactic system. Phys. Rev. Lett.,
95(12):128103, 2005.

[HKM97] Dirk Helbing, Joachim Keltsch, and Peter Molnar. Modelling the evolution of human trail systems. Nature,
388(6637):47–50, 1997.

[Hoi00] E Hoiczyk. Gliding motility in cyanobacteria: observations and possible explanations. Arch. Microbiol.,
174(1):11–17, 2000.

[HSKM97] Dirk Helbing, Frank Schweitzer, Joachim Keltsch, and Peter Molnar. Active walker model for the formation
of human and animal trail systems. Phys. Rev. E, 56(3):2527, 1997.

[Jea81] Robert L Jeanne. Chemical communication during swarm emigration in the social wasp polybia sericea
(olivier). Anim. Behav., 29(1):102–113, 1981.

[JHR04] Duncan E Jackson, Mike Holcombe, and Francis LW Ratnieks. Trail geometry gives polarity to ant foraging
networks. Nature, 432(7019):907–909, 2004.

[Ken86] JS Kennedy. Some current issues in orientation to odour sources. Mechanisms in insect olfaction/edited
by TL Payne, MC Birch, and CEJ Kennedy, 1986.

DOI 10.20347/WIAS.PREPRINT.2900 Berlin 2021



Z. Mokhtari, R.I.A. Patterson, F. Höfling 12

[KGZ+16] W Till Kranz, Anatolij Gelimson, Kun Zhao, Gerard CL Wong, and Ramin Golestanian. Effective dynamics
of microorganisms that interact with their own trail. Phys. Rev. Lett., 117(3):038101, 2016.

[KHF08] Axel Kammerer, Felix Höfling, and Thomas Franosch. Cluster-resolved dynamic scaling theory and univer-
sal corrections for transport on percolating systems. EPL (Europhys. Lett.), 84:66002, dez 2008.

[KLF16] Christina Kurzthaler, Sebastian Leitmann, and Thomas Franosch. Intermediate scattering function of an
anisotropic active Brownian particle. Sci. Rep., 6:36702, October 2016.

[KS70] Evelyn F Keller and Lee A Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor.
Biol.., 26(3):399–415, 1970.

[LHLE+15] Kihong Lim, Young-Min Hyun, Kris Lambert-Emo, Tara Capece, Seyeon Bae, Richard Miller, David J
Topham, and Minsoo Kim. Neutrophil trails guide influenza-specific cd8+ t cells in the airways. Science,
349(6252), 2015.

[LK21] Guo-Jun Liao and Sabine HL Klapp. Emergent vortices and phase separation in systems of chiral active
particles with dipolar interactions. Soft Matter, 2021.

[LL18] Benno Liebchen and Hartmut Löwen. Synthetic chemotaxis and collective behavior in active matter. Acc.
Chem. Res., 51(12):2982–2990, oct 2018.

[LM15] Ben Leimkuhler and Charles Matthews. Molecular Dynamics. Springer, Cham, 2015.

[MAZ17] Zahra Mokhtari, Timo Aspelmeier, and Annette Zippelius. Collective rotations of active particles interacting
with obstacles. EPL, 120(1):14001, 2017.

[MBBVO03] Nikhil Mittal, Elena O Budrene, Michael P Brenner, and Alexander Van Oudenaarden. Motility of escherichia
coli cells in clusters formed by chemotactic aggregation. PNAS, 100(23):13259–13263, 2003.

[MF02] Alexey J Merz and Katrina T Forest. Bacterial surface motility: slime trails, grappling hooks and nozzles.
Curr. Biol., 12(8):R297–R303, 2002.

[MJR+13] M Cristina Marchetti, Jean-François Joanny, Sriram Ramaswamy, Tanniemola B Liverpool, Jacques Prost,
Madan Rao, and R Aditi Simha. Hydrodynamics of soft active matter. Rev. Mod. Phys., 85(3):1143, 2013.

[MSGR14] Marcel Meyer, Lutz Schimansky-Geier, and Pawel Romanczuk. Active Brownian agents with concentration-
dependent chemotactic sensitivity. Phys. Rev. E, 89(2):022711, feb 2014.

[MZ19] Zahra Mokhtari and Annette Zippelius. Dynamics of active filaments in porous media. Phys. Rev. Lett.,
123(2):028001, 2019.

[Pai19] Kevin J. Painter. Mathematical models for chemotaxis and their applications in self-organisation phenom-
ena. J. Theor. Biol., 481:162–182, nov 2019.

[PGG+12] Andrea Perna, Boris Granovskiy, Simon Garnier, Stamatios C Nicolis, Marjorie Labédan, Guy Theraulaz,
Vincent Fourcassié, and David JT Sumpter. Individual rules for trail pattern formation in argentine ants
(linepithema humile). PLos Comput. Biol., 8(7):e1002592, 2012.

[PSS+13] Jeremie Palacci, Stefano Sacanna, Asher Preska Steinberg, David J Pine, and Paul M Chaikin. Living
crystals of light-activated colloidal surfers. Science, 339(6122):936–940, 2013.

[PVW] Benoît Perthame, Nicolas Vauchelet, and Zhian Wang. The flux limited Keller–Segel system: properties
and derivation from kinetic equations.

[RBJH09] F Roces, M Bollazzi, S Jarau, and M Hrncir. Food exploitation by social insects. ecological, behavioral and
theoretical approaches. 2009.

[RHB13] Gabriel S Redner, Michael F Hagan, and Aparna Baskaran. Structure and dynamics of a phase-separating
active colloidal fluid. Phys. Rev. Lett., 110(5):055701, 2013.

[RLDB12] Chris R Reid, Tanya Latty, Audrey Dussutour, and Madeleine Beekman. Slime mold uses an externalized
spatial “memory” to navigate in complex environments. PNAS, 109(43):17490–17494, 2012.

[SGMO14] Antonio Suma, Giuseppe Gonnella, Davide Marenduzzo, and E Orlandini. Motility-induced phase separa-
tion in an active dumbbell fluid. EPL, 108(5):56004, 2014.

DOI 10.20347/WIAS.PREPRINT.2900 Berlin 2021



Spontaneous trail formation 13

[SLVC+12] J Schwarz-Linek, C Valeriani, A Cacciuto, ME Cates, D Marenduzzo, AN Morozov, and WCK Poon. Phase
separation and rotor self-assembly in active particle suspensions. PNAS, 109(11):4052–4057, 2012.

[TR95] James FA Traniello and Simon K Robson. Trail and territorial communication in social insects. In Chemical
ecology of insects 2, pages 241–286. Springer, 1995.

[TT95] John Toner and Yuhai Tu. Long-range order in a two-dimensional dynamical xy model: how birds fly to-
gether. Phys. Rev. Lett., 75(23):4326, 1995.

[TT98] John Toner and Yuhai Tu. Flocks, herds, and schools: A quantitative theory of flocking. Phys. Rev. E,
58(4):4828, 1998.

[TTR05] John Toner, Yuhai Tu, and Sriram Ramaswamy. Hydrodynamics and phases of flocks. Ann. Phys.,
318(1):170–244, 2005.

[TZS11] Johannes Taktikos, Vasily Zaburdaev, and Holger Stark. Modeling a self-propelled autochemotactic walker.
Phys. Rev. E, 84(4):041924, 2011.

[VCBJ+95] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet. Novel type of phase
transition in a system of self-driven particles. Phys. Rev. Lett., 75(6):1226, 1995.

[VdWSNI+14] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D Warner,
Neil Yager, Emmanuelle Gouillart, and Tony Yu. scikit-image: image processing in python. PeerJ, 2:e453,
2014.

[WAV12] M. Weigel, A. Arnold, and P. Virnau. Editorial: Computer simulations on graphics processing units. Eur.
Phys. J. Spec. Top., 210:1–4, 2012.

[WDH+12] Henricus H Wensink, Jörn Dunkel, Sebastian Heidenreich, Knut Drescher, Raymond E Goldstein, Hartmut
Löwen, and Julia M Yeomans. Meso-scale turbulence in living fluids. PNAS, 109(36):14308–14313, 2012.

DOI 10.20347/WIAS.PREPRINT.2900 Berlin 2021


	Introduction
	Model and methods
	Agent–pheromone model
	Simulation details
	Identification of trails

	Spontaneous trail formation
	Macroscopic dynamic model
	Summary and conclusions

