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Constrained exact boundary controllability of a semilinear model for pipeline
gas flow

Martin Gugat, Jens Habermann, Michael Hintermüller, Olivier Huber

Abstract

While the quasilinear isothermal Euler equations are an excellent model for gas pipeline flow, the op-
eration of the pipeline flow with high pressure and small Mach numbers allows us to obtain approximate
solutions by a simpler semilinear model. We provide a derivation of the semilinear model that shows that
the semilinear model is valid for sufficiently low Mach numbers and sufficiently high pressures. We prove
an existence result for continuous solutions of the semilinear model that takes into account lower and upper
bounds for the pressure and an upper bound for the magnitude of the Mach number of the gas flow. These
state constraints are important both in the operation of gas pipelines and to guarantee that the solution re-
mains in the set where the model is physically valid. We show the constrained exact boundary controllability
of the system with the same pressure and Mach number constraints.

Introduction

Transition to renewable energy In the energy sector, policymakers in many countries have started to prepare
a shift away from the use of nuclear or mostly fossil supplies to a portfolio with a strong emphasis on renewable
energy resources. It is commonly agreed that for the pertinent transition period the optimized use of natural gas
will be of paramount importance. This is substantiated by the currently known available gas resources as well as
technical aspects such as transportability or storage capacity. Moreover, controlled market liberalization lies at
the basis of an efficient distribution, with the latter clearly also benefiting from the currently available and planned
system of pipelines. As a consequence a sound understanding of the transportation physics along with ways of
(optimally) influencing the gas transport in pipelines is one of the main building blocks towards the optimal use
of gas.

Mathematically, the flow of gas through pipes is modelled by the compressible Euler equations. As typically
the diameter of a pipe is much smaller than the pipe’s length one resorts to the study of a one-dimensional
model, only. Moreover, the usual operating conditions of the pipeline network lead to an isothermal setting;
see [1]. The resulting isothermal Euler equations form a quasilinear system of hyperbolic partial differential
equations. Typically, in the operation of gas pipelines, the gas velocity is rather small while the gas pressure is
high. Under such conditions, often a simpler semilinear model suffices. Correspondingly, based on an acoustic
approximation of the isothermal Euler equations in this paper we derive a semilinear model which generates
reasonable approximations of the state for sufficiently small Mach numbers and sufficiently high gas pressures
without abrupt changes. Relying on assumptions on the problem data (physical characteristics of the pipe, initial
and terminal states) the existence of solutions for this model is shown.

Given this existence result, the main result of this paper is concerned with constrained exact boundary con-
trollability. In fact, we present assumptions that allow to control the gas flow from a continuous initial state to a
continuous terminal state by suitably chosen boundary controls in such a way that during the whole process,
bounds for the gas velocity and the gas pressure are satisfied. Such bounds are a standard requirement in the
operation of gas pipelines. In our context, they have the additional effect that they guarantee that the states
remain within the range where the semilinear model is valid. We illustrate the exact controllability result by
numerical examples where the boundary controls for exact controllability are approximated with a numerical
method of characteristics.
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This paper has the following structure. In Section 1 we present the isothermal Euler equations. In Section 2
we derive the semilinear model, in Section 3 we consider the stationary solutions of the semilinear model.
In Section 4 we first state the semilinear model in diagonal form. Then, we present our existence result for
continuous solutions of the semilinear model that is based upon the characteristic curves. For certain system
parameters we obtain continuous solutions for arbitrary long time intervals. In Section 5, we present our result
on the exact controllability for the semilinear model. In Section 6, two numerical examples illustrate how the gas
flow in a pipe can be transitioned between two stationary states using the approach introduced in the previous
Section 5. Finally, conclusions are presented in Section 7.

1 The isothermal Euler equations

Consider a pipe of length L > 0 that corresponds to the interval [0, L]. Let D > 0 denote the constant
diameter of the pipe, λfric ≥ 0 the friction coefficient and ϕ ∈ (−∞, ∞) the slope. Define slope := sin(ϕ)

and set θ :=
λfric
D . Let g denote the gravitational constant, ρ > 0 the gas density, p > 0 the pressure and q

the mass flow rate in kg s−1m−2. We assume that we have an ideal gas that satisfies the state equation

p = Res T
e ρ,

where Res is the gas constant and T e is the temperature. The focus of our study is on the isothermal Euler
equations (see for example [5]){

ρt + qx = 0,

qt +
(
p+ q2

ρ

)
x

= −1
2θ

q |q|
ρ − ρ g slope,

(1)

that govern the flow through a single pipe. In our analysis we also make use of the velocity v =
q

ρ
and the

sound speed c given by (
1

c

)2

=
∂ρ

∂p
=

1

Res T
e
.

Thus, we have

c =
√
Res T

e.

In what follows we concentrate on an ideal gas where the sound speed is constant. For the Mach number M
this yields

M =
v

c
= c

q

p
.

Considering a subsonic flow regime, the absolute value of the velocity of the gas is strictly less than the sound
speed in the gas. For the Mach number we thus have

|M |< 1.

This setting reflects the case that is relevant for gas transportation networks where upper bounds for the velocity
of the gas are enforced in the operation of gas pipelines. In order to state (1) in terms of the dimensionless
Mach-number M and the pressure p, we observe that

ρ =
1

c2
p, q =

1

c
M p.

Hence, if M 6= 0, then the first equation of (1) yields

ln(p)t + (cM) ln(|M | p)x = 0. (2)
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Moreover, from the second equation of (1) we infer

ln(p |M |)t +
c

M

(
1−M2

)
ln(p)x + 2 cM ln(p |M |)x = −1

2
θ c |M |−g slope

1

c

1

M
.

Note that multiplication by M yields an equation that is also well-defined for M = 0, namely

1

p
(pM)t + c

(
1−M2

) px
p

+ 2 c
M

p
(pM)x = −1

2
θ c M |M |−g slope

1

c
.

2 The semilinear model for slow subsonic flow

Note that since ln(p)t = pt
p , if the pressure p is sufficiently high and pt is bounded, ln(p)t is small. Equation

(2) implies that if ln(p)t is small (for example, close to a stationary state), (cM) ln(|M | p)x is small. For Mach
numbers with small absolute value,

(
1− (M)2

)
is close to 1. Hence, if the pressure p is sufficiently large, pt

is bounded and for Mach numbers with small absolute value we can approximate the solution of the second
equation of (1) by the solution of the equation

ln(p |M |)t +
c

M
ln(p)x = −1

2
θ c |M |−g slope

1

c

1

M
. (3)

For a solution of (1), due to (2), the error E on the left-hand side of (3) is

E = cM ln(p)x + 2 ln(p)t.

This error is small if the time derivative pt and the Mach number are sufficiently small, the pressure is sufficiently
large, and px remains uniformly bounded. In [3], for the initial data q(0, x) = 0, ρ(0, x) = exp(β x) the
solution of both the quasilinear and the semilinear models are given, which allows us to observe how the
difference between the two solutions can grow exponentially fast with time.

For M 6= 0, define the matrix

A(M) = c

(
0 M
1
M 0

)
.

In matrix notation, from (2) and (3) we obtain the model(
ln(p)

ln(|M | p)

)
t

+A(M)

(
ln(p)

ln(|M | p)

)
x

=

(
0

− θ
2 c |M |−

g slope
cM

)
. (4)

Note that the eigenvalues of the system matrix A(M) are −c and c. In particular, they are constant.

Remark 2.1. The eigenvalues of the quasilinear system (1) are v + c and v − c. This implies that the error in
the eigenvalues can only be small as long as |v| (the absolute value of the Mach number M respectively) is
sufficiently small.

Since the first equation in (1) has not been modified, also (4) guarantees the conservation of mass. In terms
of the physical variables p and q, the model (4) can be stated as the well–known semilinear model (see for
example [6], [4]): {

1
c2
pt + qx = 0,

qt + px = −1
2θ c

2 q |q|
p − g slope

p
c2
.

(5)

Note that (5) is semilinear since the system matrix is constant whereas (4) is stated in quasilinear form.
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3 The stationary states

In this section, we consider the stationary states of system (4). The stationary solutions of the quasilinear system
(1) have been studied in [2]. For the stationary states of (4), there exists a constant Ces such that

|M | p = Ces .

Moreover, we have

ln(p)x = −1

2
θM |M |−g slope

1

(c)2

= −1

2
θ (Ces )2 1

(p)2
sign(M)− g slope

1

(c)2
.

This yields

px = −1

2
θ (Ces )2 1

p
sign(M)− g slope

1

(c)2
p.

For a horizontal pipe (that is slope = 0), we get(
p2

2

)
x

= p px = −1

2
sign(M) θ (Ces )2.

Thus, for x ∈ [0, L] we obtain

p2

2
(x)− p2

2
(0) = −1

2
sign(M) θ (Ces )2 x.

This is the well-known WEYMOUTH equation. Note that for M > 0 the equation is a valid model only if x and
consequently L > 0 are sufficiently small. Also, in the original model (1) for the stationary states a blow up of
the derivative occurs after a finite length; see [2].

Now we consider the case where slope 6= 0. For a stationary state we still have M p = Ces . We obtain a
constant stationary state if M is such that

M |M |= − 2

θ c
g slope

1

c
.

This yields

M = −sign(slope)

√
2

θ c
g |slope|

1

c
=: M̂.

In terms of physical variables, the constant stationary solution corresponds to a constant flow rate q̄ and a
constant pressure p̄ > 0 with

p̄2 =
c4 θ(q̄)2

2 g |slope|
.

More generally, there exist stationary solutions with a constant flow rate q̄ that satisfies

sign(q̄) = −sign(slope) (6)

where the pressure is given by

p(x) = p̄

√
1 + Ĉ exp

(
−2 g

slope
c2

x
)
,

as long as the term under the square root is positive with Ĉ chosen such that p(0) > 0 has the appropriate
value. This can be verified by inserting the solution (q̄, p(x)) into (5). More precisely, the definition of p implies

(p(x))2 − p̄2

p̄2
= Ĉ exp

(
−2 g

slope
c2

x
)
.
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Hence, due to the definition of p̄, we have

p′(x) =
p̄2

2

1

p(x)
Ĉ exp

(
−2 g

slope
c2

x
) (
−2 g

slope
c2

)
=

p̄2

2

1

p(x)

(
(p(x))2

p̄2
− 1

) (
−2 g

slope
c2

)
= 2 g

slope
c2

p̄2

2

1

p(x)
− 1

2
2 g

slope
c2

p(x)

= sign(slope)
1

2
θ c2 q̄2

p(x)
− g slope

p(x)

c2
.

Whence, the relation (6) implies that the second equation in (5) holds.

4 The semilinear model in diagonal form

In this section we state (4) in terms of the corresponding RIEMANN invariants. For the eigenvalues ±c of the
matrix A we have the left-hand side eigenvectors

l± = (±p, M p).

Multiplication of (4) from the left-hand side with l± yields

(±p, M p)

(
ln(p)

ln(|M | p)

)
t

± c (±p, M p)

(
ln(p)

ln(|M | p)

)
x

= −1

2
θ c M |M | p− g slope

1

c
p.

We obtain the RIEMANN invariants

R± = ±p+M p = (±1 +M) p.

Hence, the physical variables can be expressed in terms of the RIEMANN invariants as

p =
R+ −R−

2
, M =

R+ +R−
R+ −R−

,

and we have the flow rate

q =
1

c
M p =

1

2 c
(R+ +R−).

Let us further define some notation. In fact, let σ(z) := z |z| and consider the function

F (x, y) := (x+ y)

∣∣∣∣x+ y

x− y

∣∣∣∣ = (x− y)σ

(
x+ y

x− y

)
. (7)

Then, in terms of the RIEMANN invariants, the system has the diagonal form

(R±)t ± c(R±)x = −1

4
θ c F (R+, R−)− g slope

1

c

R+ −R−
2

, (8)

which is well-defined as long as R+ 6= R−. In terms of the physical variables, this is equivalent to p > 0. This
requirement is often satisfied, as in applications lower bounds p > 0 for the pressure are often prescribed. In
the subsonic flow regime, pressure constraints of the form

p ≤ p ≤ p̄ (9)
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can be expressed in terms of the RIEMANN invariant as

2p ≤ R+ −R− ≤ 2p̄, (10)

Similarly, whenever 2p = R+ −R− > 0, the Mach number constraint

|M |≤ λ, 0 < λ < 1, (11)

is equivalent to

(1 + λ)R+ + (1− λ)R− ≥ 0, (12)

(1− λ)R+ + (1 + λ)R− ≤ 0. (13)

Moreover, with p > 0, it is easy to see that |M |< 1 implies that R+ > 0 and R− < 0. Note that all the
constraints for the RIEMANN invariants are linear. This is convenient for associated optimal control problems for
gas networks.

4.1 Existence of solutions of the semilinear model

The characteristic curves for the semilinear model are a priori given straight lines. Hence, the hyperbolic system
is equivalent to a coupled family of integral equations along these characteristic curves. This allows to prove the
existence of continuous solutions for continuous problem data using a fixed-point iteration with integration along
the characteristic curves. The existence of broad solutions of the semilinear system has already been shown
in [7] for the case of horizontal pipes. In [7], Proposition 4, lower and upper bounds for the pressures and for
the flow rate are considered. Indirectly, this also yields bounds for the gas velocity and the Mach number. In
this paper, in contrast to [7], we include sloped pipes in our analysis. Since the semilinear model is only valid
for sufficiently small Mach numbers, we also include constraints for the Mach number directly in the analysis.
We point out that such a constraint for the velocity of the gas is also used in practice to avoid vibrations of
the pipelines. Note that in our result, all the constants in the assumptions are given explicitly, so they can be
verified rather easily. Our result provides conditions that allow to obtain continuous solutions that satisfy the box
constraints for the pressure and the Mach number. The conditions require continuous initial and boundary data
that satisfy certain inequalities. Note that it is not sufficient to require that the initial and boundary data satisfy
the state constraints for the pressure and the Mach number. This can be seen as follows: for a stationary state
in a horizontal pipe, the pressure is decreasing along the pipe in the direction of flow. Hence, the pressure at the
inflow end must be strictly above the lower bound for the pressure in order to guarantee that the state constraint
is satisfied throughout the pipe.

In the forthcoming analysis, the inequality

θλ
√

5

2
+
g|slope|
c2

≤ 1

L
(14)

between the physical characteristics of the pipe is the key to the existence of a solution. This explicit condition
departs from the previous conditions for existence of solution, albeit with higher regularity.

Remark 4.1. This condition is easy to check for existing networks. For instance, we can use the GasLib1

dataset [12]. We focus here on pipes shorter than 1km of length. This is the case for the GasLib-4197
dataset, which is based on a subset of the German gas transport. The operational constraints on the gas
velocity are as follows: the minimum velocity shall be greater than 3 to 5 m s−1, to minimize liquid fallout, but
less than 20 to 25 m s−1 to minimize noise and prevent corrosion. Note that this may decrease to 15 ms−1 if
the presence of corrosives in the gas is known. For a temperature of 15 °C, and the specific gas constant of

1GasLib is a collection of technical gas network descriptions as well as contract-based nomination data (gas flow and pressure
specifications at entries and exits). This collection is based on real-world network data from the gas transport company Open Grid
Europe GmbH. The data can be downloaded at http://gaslib.zib.de
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Constrained exact boundary controllability for a semilinear system 7

518.3 J kg−1mol−1, we get that condition (14) is fulfilled for the minimum speed requirements for 93.6% of
the 2326 pipes less than 1km. Note that in total, this represents 61.5% of all the pipes in that dataset. This
indicates that the condition is met by a substantial sample of real-world pipes.

For the analysis it is important to find accurate bounds for the source term. For t ≥ 0 and the space variable x
in order to describe the characteristic lines we define the R2-valued function ξ±(s, x, t) as the solution of the
initial value problem {

ξ±(t, x, t) = (t, x),
∂sξ±(t, x, t) = (1, ±c).

This implies that

ξ+(s, x, t) = (s, x+ c(s− t)), ξ−(s, x, t) = (s, x− c(s− t)).

Now we state our existence result.

Theorem 4.2. Let T > 0 and L > 0 be given. Let numbers p and p > 0 be given such that 0 < p < p.
Define the sets

Γ+ = {0} × [0, L] ∪ [0, T ]× {0},

Γ− = {0} × [0, L] ∪ [0, T ]× {L}.

Define the points
P±0 (t, x) = Γ± ∩ {ξ±(s, x, t), s ∈ R} ∈ R2.

For the t-component of P±0 (t, x) we use the notation t±0 (t, x) ≥ 0.

Let a continuous state R+ on Γ+, a continuous state R− on Γ− and a number λ ∈ (0, 1) be given. Assume
that there exists a number ∆t > 0 such that the values of R+ and R− satisfy the inequalities

R+(P+
0 (t, x))−R−(P−0 (t, x)) ≤ 2 p

(
1− θ c∆t

2
λ2

)
, (15)

R+(P+
0 (t, x))−R−(P−0 (t, x)) ≥ 2 p

(
1 +

θ c∆t

2
λ2 p

p

)
. (16)

Define the constant

Û =
1

2
θ c λ2 +

g slope
c

.

Assume that slope ≤ 0 and

Û ≥ 0, (17)

(1− λ)R+(P+
0 (t, x)) + (1 + λ)R−(P−0 (t, x))

2 ∆t p
≤ −1

2
θ c λ2 −

g |slope|
c

(18)

and
(1 + λ)R+(P+

0 (t, x)) + (1− λ)R−(P−0 (t, x)) ≥ 2 ∆t p Û (19)

for all (t, x) ∈ [0, T ]× [0, L]. Moreover, assume that ∆t is sufficiently small in the sense that

∆t

[√
5

2
θ c λ+

g |slope|
c

]
< 1. (20)

Then with the given values of R+ on Γ+ and R− on Γ− that prescribe initial conditions at t = 0 and boundary
conditions at x = 0 and x = L, the hyperbolic system (8) has a unique solution on [0, min{T, ∆t}] that is
given by continuous functions R+(t, x), R−(t, x) for t ∈ [0, min{T, ∆t}] and x ∈ [0, L]. The solution is
subsonic and the absolute value of the Mach number is less than or equal to λ. The values of the pressure are
contained in the interval [p, p].

If ∆t ≥ L
c , thus in particular if (14) holds, the solution exists on the interval [0, T ].
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Remark 4.3. Note that our assumptions imply that the compatibility conditions for continuous functions are
satisfied at t = 0 and x = 0, x = L between the initial and the boundary data.

Proof. Let a continuous function R = (R+, R−) with R+, R− ∈ C([0, T ] × [0, L], R) be given that
satisfies the conditions (15), (16), (18), (19), as well as the box constraints (10)–(13). Define the operator P :=
(P+, P−) with

P±(R)(t, x) = R±(P±0 (t, x))−
∫ t

t±0 (t,x)

[
1

4
θ c F (R+, R−) +

g slope
c

R+ −R−
2

]
(ξ±(s, t, x))ds.

Our first step is to check that P (R) satisfies, in terms of physical variables, the box constraints for the pressure
and the bound for the Mach number, that is

2 p ≤ (P+ − P−)(R) ≤ 2 p, (21)

and ∣∣∣∣(P+ + P−)(R)

(P+ − P−)(R)

∣∣∣∣ ≤ λ, (22)

are satisfied. Note that since λ < 1 and (P+ − P−)(R) > 0, the relation (22) implies P+(R) > 0 and
P−(R) < 0. Due to (17) we have

P±(R)(t, x) ≥ R±(P±0 (t, x))−
(
t− t±0 (t, x)

) (1

2
θ c λ2 +

g slope
c

)
p.

Moreover, we have

P±(R)(t, x) ≤ R±(P±0 (t, x)) +
(
t− t±0 (t, x)

) (1

2
θ c λ2 +

g |slope|
c

)
p.

Hence if t− t±0 (t, x) ≤ ∆t and slope ≤ 0, inequality (15) implies

(P+ − P−)(R) ≤ R+(P+
0 (t, x))−R−(P−0 (t, x)) + p θ c∆t λ2 ≤ 2 p.

Similarly, we have the inequality

(P+ − P−)(R) ≥ R+(P+
0 (t, x))−R−(P−0 (t, x))− (t− t0(t, x)) θ c λ2 p.

Hence, (16) implies
(P+ − P−)(R) ≥ 2 p.

and P (R) satisfies (21). Furthermore, we have (P+−P−)(R) ≥ 2 p > 0. This implies that the Mach number
constraint (22) can expressed as in (12)–(13), that is:

(1− λ)P+(R) + (1 + λ)P−(R) ≤0, (23)

(1 + λ)P+(R) + (1− λ)P−(R) ≥0. (24)

For the first inequality, we obtain

(1− λ)P+(R) + (1 + λ)P−(R) ≤ (1− λ)R+(P+
0 (t, x)) + (1 + λ)R−(P−0 (t, x))

+ 2 ∆t

(
1

2
θ c λ2 +

g |slope|
c

)
p.

Due to (18), this implies
(1− λ)P+(R) + (1 + λ)P−(R) ≤ 0.

DOI 10.20347/WIAS.PREPRINT.2899 Berlin 2021
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For the second inequality, we have

(1 + λ)P+(R) + (1− λ)P−(R) ≥ (1 + λ)R+(P+
0 (t, x)) + (1− λ)R−(P−0 (t, x))

− 2 ∆t

(
1

2
θ c λ2 +

g slope
c

)
p.

Due to (19), this implies
(1 + λ)P+(R) + (1− λ)P−(R) ≥ 0.

Remember that with (P+ − P−)(R) > 0, the inequality (22) implies that P+(R) > 0, and P−(R) < 0. By
Lemma A.2 P (R) is continuous.

So we can start a fixed-point iteration with the operator P where each iterate satisfies (21)–(22). It remains to
show that the fixed-point iteration is convergent. However, this is standard. In fact for a continuous function that
satisfies (21), (23)–(24), and S+ = R+ on Γ+ and S− = R− on Γ− we have

|P+(R)− P+(S)|(t, x) ≤ θ c

4

∫ t

t±0 (t, x))
|F (R+, R−)− F (S+, S−)| (ξ+(s, t, x)) ds

+

∫ t

t±0 (t, x))

∣∣∣∣g slopec

(R+ − S+)− (R− − S−)

2

∣∣∣∣ (ξ+(s, t, x)) ds.

Note that we can invoke Lemma A.1 to get the estimate

|P+(R)− P+(S)|(t, x) ≤

[√
5

2
θcλ+

gslope

c

]
|t− t0+(t, x)|max{|R+ − S+|, |R− − S−|}.

For P− a similar estimate holds. Hence, if |t− t0(t, x)|≤ ∆t, due to (20) we have

∆t

[√
5

2
θ c λ+

g |slope|
c

]
< 1,

which implies that P is a contraction. Hence, Banach’s fixed-point Theorem yields the existence of a continuous
solution on the corresponding short time-interval contained in [0, ∆t].

Note that due to the construction, we have the upper bound |t− t0(t, x)|≤ L
c . Hence, if the assumptions hold

with ∆t ≥ L
c , we obtain a contraction on [0, T ] × [0, L] which implies that the solution exists on the interval

[0, T ] where T can be chosen arbitrarily large.

Thus, we have proved Theorem 4.2.

Remark 4.4. Analogously to Theorem 4.2, for boundary and initial data with L∞-regularity we obtain L∞-
solutions that satisfy the PDE in the sense of the integral equation along the characteristic curves. These L∞-
solutions are particularly useful in the analysis of problems of optimal boundary control. For the proof, the
fixed-point iteration has to be defined in the appropriate L∞-spaces.

5 Constrained exact controllability

In the operation of gas networks when the customer demand changes from an initially constant demand to a
new constant demand, it is necessary to steer the system from a stationary initial state to a desired terminal
state in such a way that the imposed state constraints for the pressure and velocity remain valid. While there are
numerous results about exact controllability (see for example [9]), to our knowledge the exact boundary control-
lability with state constraints has not yet been analyzed for hyperbolic systems. Exact boundary controllability
with control constraints has been studied for example in [8].
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We want to analyze the problem of state–constrained exact boundary controllability between stationary states
in the framework of continuous solutions on Ω = [0, T ] × [0, L]. To this end, we divide this domain into four
domains, as shown on Fig. 1. The stationary solutions of (5) are presented in Section 3. Note that an initial

stationary state R
(0)
± completely determines the system state on the triangle

DI := {(t, x) : t ≥ 0, x ∈ [0, L], c t ≤ x, c t ≤ L− x}.

If the state constraints hold for the initial state, they are also satisfied on DI. Similarly, for T > L/c, a desired

stationary terminal state R
(T )
± completely determines the system state on the triangle

DII := {(t, x) : t ∈ [0, T ], x ∈ [0, L], c (T − t) ≤ x, c (T − t) ≤ L− x}.

Again if the state constraints hold for the terminal state, they are also satisfied on DII.

In order to construct exact boundary controls that steer the system from R
(0)
± to R

(T )
± , we define a new state

Rmid
± on the Imid segment which joins the inner vertices of the DI and DII triangles. More precisely, this

segment is defined as:

Imid :=

[
L

2c
, T − L

2c

]
×
{
L

2

}
.

One possibility for the values of Rmid
± is to use a convex combination of the values at the aforementioned

vertices.

Now we introduce the boundaries for the following analysis: they are given by

ΓIII
+ := Imid ∪

{(
T − y

c
, y
)
| 0 ≤ y ≤ L

2

}
, ΓIII

− := Imid ∪
{(y

c
, y
)
| 0 ≤ y ≤ L

2

}
,

ΓIV
+ := Imid ∪

{(y
c
, L− y

)
| 0 ≤ y ≤ L

2

}
, ΓIV

− := Imid ∪
{(

T − y

c
, L− y

)
| 0 ≤ y ≤ L

2

}
.

Now we can exchange the roles of t and x and consider a leftwards initial boundary value problem on the set

RIII := [0, T ]× [0,
L

2
]\(DI ∪DII),

with “initial” data from the stationary states R
(0)
± , R

(T )
± on ΓIII

± ∩ DI , ΓIII
± ∩ DII respectively and Rmid

± on
Imid. The PDE for the Riemannian invariants reads

(R±)x ∓
1

c
(R±)t = −1

4
θF (R+, R−)− g slope

R+ −R−
2c2

, (25)

where F is defined in (7). The plus component of the boundary trace of these solutions at x = 0 yields a
continuous boundary control u+(t) for t ∈ (0, T ). The existence of solutions for such a problem, with the so-
lution satisfying the state constraints, is dealt with in Proposition 5.1, under appropriate smallness assumptions
for R(T ) − R(0) and on θ and |slope|. The latter is addressed in (14), and the former is made precise in the
forthcoming hypothesis (28)–(31).

Similarly, by considering a rightwards initial boundary value problem for the hyperbolic system

(R±)x ±
1

c
(R±)t = −1

4
θF (R+, R−)− g slope

R+ −R−
2c2

, (26)

on the set
RIV := [0, T ]× [x0, L]\(DI ∪DII),

we obtain a continuous boundary control u−(t) for t ∈ (0, T ) as the minus-component of the boundary trace
of these solutions at x = L.
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0 T

L

DI DII

u−

Imid

RIII

RIV

ΓIII
− ΓIII

+

ΓIII
−

ΓIII
+

ψ−ψ+

(a) Boundaries for the RIII domain.

0 T

L

DI DII

u+

RIII

RIV ΓIV
−ΓIV

+

ΓIV
−

ΓIV
+

ψ− ψ+

(b) Boundaries for the RIV domain.

Figure 1: Domain and boundaries for the exact controllability boundary analysis.

Since we have reversed the roles of time and space, the integration is performed along the characteristics curves
ψ(y, t, x), which satisfy the following ODE:{

ψ±(x, t, x) = (t, x),

∂yψ±(y, t, x) = (±c−1, 1).
(27)

These functions can be represented as

ψ±(y, t, x) = (t± c−1(y − x), y).

The following proposition contains sufficient conditions that guarantee the existence of continuous solutions of
the corresponding Goursat-problems on RIII and RIV, respectively.

Proposition 5.1. Suppose that T > L/c and (14) hold. Define

Ũ =
1

2
θλ2 +

g

c2
|slope|.

Furthermore, we suppose that the steady continuous initial state R
(0)
± , the steady terminal state R

(T )
± , and the

values on Imid are such that the following inequalities hold:

R+(P0
+(t, x))−R−(P0

−(t, x)) ≤ p̄
(

2− ŨL
)
, (28)

R+(P0
+(t, x))−R−(P0

−(t, x)) ≥ p
(

2 + ŨL
p̄

p

)
, (29)

(1 + λ)R+(P0
+(t, x)) + (1− λ)R−(P0

−(t, x)) ≥ L p̄ Ũ , (30)

(1− λ)R+(P0
+(t, x)) + (1 + λ)R−(P0

−(t, x)) ≤ −L p̄ Ũ , (31)

where the initial boundary domain P0
±(t, x) is defined as

P0
±(t, x) =

{{
ΓIII
± ∩ {ψ±(y, t, x), y ∈ R}

}
for the domain RIII,{

ΓIV
± ∩ {ψ±(y, t, x), y ∈ R}

}
for the domain RIV.

Then, there exists a unique continuous solution on the RIII (resp. RIV) domain for the hyperbolic system (25)
(resp. (26)) with initial value on ΓIII

± (resp. ΓIV
± ) that satisfies the box constraints (9) and (11).
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Proof. For |M |≤ λ we have ∣∣∣∣12θM |M |+ g

c2
slope

∣∣∣∣ ≤ Ũ .
Let us proceed with the analysis of the domain RIII, for which the initial conditions are ΓIII

± . The choice of ψ
in (27) is such that

d

dy
R± ◦ ψ±(y, t, x) =

(
(R±)x ∓ c−1(R±)t

)
◦ ψ±(y, t, x)

=

(
−1

2
θF (R+, R−)− gslope

1

c2

(
R+ −R−

2

))
◦ ψ±(y, t, x).

As in the proof of Theorem 4.2, we tackle the existence of solutions by using a fixed-point approach on P :=
(P+, P−), defined as follows:

P±(R±(t, x)) := R±(P 0
±(t, x)) +

∫ x

x0±

d

dy
R± ◦ ψ±(y, t, x)dy,

with P 0
±(t, x) := ΓIII

± ∩ {ψ±(y, x, t), y ∈ R} is the initial boundary for the domain RIII (see Fig 1) and x0
± is

the “space”-component of P 0
±(t, x), where the argument (t, x) on x0

± is dropped since there is no ambiguity.
Note that by construction of the domain RIII, we have

|x(t, x)− x0
±(t, x)| ≤ L

2
. (32)

Finally, it holds that R±(P 0
±(t, x)) = R± ◦ ψ(x0

±, t, x).

Let a continuous function R = (R+, R−) be given that satisfies the box constraints (10)–(13), and for which
the hypothesis (28)–(31) and (14) hold. Let us denote the right-hand side in (25) by f ◦ R. Then, rewriting this
function in terms of the pressure p and Mach number M , we get

f(p,M) = −1

2
θpM |M |−gslope

p

c2
,

which leads to the upper bound

|f | ≤ 1

2
θλ2p̄+ g|slope|

p̄

c2
= Ũ p̄. (33)

We continue our analysis by checking whether P (R) satisfies the following constraints

2 p ≤ (P+ − P−)(R) ≤ 2 p, (34)

and ∣∣∣∣(P+ + P−)(R)

(P+ − P−)(R)

∣∣∣∣ ≤ λ, (35)

on RIII. Note that if (P+ − P−)(R) > 0 and λ < 1, then the relation (35) implies P+(R) > 0 and
P−(R) < 0. Starting with (34), we get:

P+(R)(t, x)− P−(R)(t, x) = R+(P 0
+(t, x))−R−(P 0

−(t, x)) +

∫ x

x0+

f ◦R ◦ ψ+(y, t, x)dy

−
∫ x

x0−

f ◦R ◦ ψ−(y, t, x)dy.

Using (32) and (33), the magnitude of the difference of the integral terms can be bounded by ŨLp̄. Then,
invoking hypothesis (28) and (29), we get

2p ≤ P+(R)(t, x)− P−(R)(t, x) ≤ 2p̄.
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Now let us move to the inequalities (35):

(1 + λ)P+(R)(t, x) + (1− λ)P−(R)(t, x) = (1 + λ)R+(P 0
+(t, x)) + (1− λ)R−(P 0

−(t, x))

+(1 + λ)

∫ x

x0+

f ◦R ◦ ψ+(y, t, x)dy + (1− λ)

∫ x

x0−

f ◦R ◦ ψ−(y, t, x)dy.

Note that the sum of the integral terms is also bounded in magnitude by Ũ L p̄, for any value of λ ∈ [−1, 1].
Using hypothesis (30), we get

(1 + λ)P+(R)(t, x) + (1− λ)P−(R)(t, x) ≥ 0.

And similarly, using hypothesis (31), we have

(1− λ)P+(R)(t, x) + (1 + λ)P−(R)(t, x) ≤ 0.

Hence, along the characteristics, the constraints (34) and (35) are fulfilled as long as R satisfies the box con-
straints and the hypothesis (28)–(31) hold. Note that, by construction, P+(R) (resp. P−(R)) is absolutely
continuous on ψ+ (resp. ψ−).

We shall now show that P is a contraction. Remember that (34) and (35), with λ < 1, implies that P+(R) > 0
and P−(R) < 0. We now consider continuous functionsR± and S± fulfilling (10) and (12)–(13), and such that
S+ = R+ on ΓIII

+ and S− = R− on ΓIII
− . Following the usual approach for studying contraction properties,

we have

|P+(R)− P+(S)|(t, x) ≤θ
4

∫ x

x0+

|F (R+, R−)− F (S+, S−)|◦ψ+(y, t, x)dy

+
gslope

2c2

∫ x

x0+

|R+ − S+ −R− + S−|◦ψ+(y, t, x)dy.

Invoking Lemma A.1 yields the following estimate:

|P+(R)− P+(S)|(t, x) ≤

[
θλ

√
5

2
+
gslope

2c2

]
|x− x0

+(t, x)| max{|R+ − S+|, |R− − S−|}.

For P−, the same estimate holds. Since |x− x0
+(t, x)|≤ L

2 on RIII, using (14) we get

|P±(R)− P±(S)|(t, x) ≤ 1

2
max{|R+ − S+|, |R− − S−|}.

Hence Banach fixed-point theorem asserts the existence of a unique continuous solution, which satisfies the
box constraints.

For the domain RIV, the proof is along the same line. The hyperbolic system is (26), with initial conditions now
on ΓIV

± . The operator P := (P+, P−) on RIV reads

P±(R±(t, x)) = R±(P 0
±(t, x)) +

∫ x

x0±

f ◦ ψ±(y, t, x)dy,

with P 0
±(t, x) := ΓIV

± ∩ {ψ±(y, x, t), y ∈ R}. Note that the bound (33) is also valid for the term under
the integral. Furthermore, the initial values R±(P 0

±(t, x)) satisfy (28)–(31). Following the same steps as for
RIII, we get that P+ and P− satisfy (34)–(35). Additionally, the contraction proof for P goes through when-
ever (14) holds. Hence, on RIV, there is also existence and uniqueness of a continuous solution satisfying the
box constraints.
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The above construction implies that with the continuous boundary controls u+ at x = 0 and u− at x = L, the
initial boundary value problem with the initial state R(0) has a continuous solution R on [0, T ] × [0, L] that
satisfies the state constraint on [0, T ]× [0, L] and the terminal constraint

R(T, x) = R(T )(x).

Thus, we have shown the following theorem on local constrained exact controllability:

Theorem 5.2. Assume that T > L/c, and that the characteristics of the pipe are such that the condition (14) is
fulfilled. Assume that the steady initial state R(0), the steady terminal state R(T ), and the RIEMANN invariants
Rmid on Imid are continuous, satisfy the state constraints and the inequalities (28)–(31). Then, the system can
be steered by continuous boundary controls from the stationary state R(0) to the stationary state R(T ) in the
time T with a continuous state in such a way that the state constraints are satisfied on Ω = [0, T ]× [0, L].

Proof. The proof has been sketched at the beginning of the section. The assumptions of Proposition 5.1 are
satisfied. Hence Proposition 5.1 yields the existence of a solution on RIII and RIV. The continuous boundary
controls are then obtained from the boundary traces of the continuous state at x = 0 and x = L.

6 Numerical experiments

We present some numerical results for the exact controllability between two stationary states, and investigate
two cases: the first one is an increase in the mass flow and the second one is an inversion of the direction
of the flow. The integral form of the systems (8) and (26) is considered. The numerical scheme consists of
discretizing the right-hand side those systems of ODEs using the midpoint rule. To make this concrete, let us
derive the expressions for the system (8). First we consider three points (ti, xi), (tj , xj), and (tk, xk), such
that (tk, xk) is at the intersection of the ξ+ and ξ− characteristics starting from (ti, xi) and (tj , xj). Then,
there exists ∆+ such that ξ+(ti + ∆+, xi, ti) = (tk, xk) and ∆− such that ξ−(tj + ∆−, xj , tj) = (tk, xk).

Let Ri± := R±(ti, xi), Rj± := R±(tj , xj), and Rk± := R±(tk, xk). The integral form of (8) over the interval
[ti, ti + ∆+] for R+ is[

R+ ◦ ξ+(s, xi, ti)
]ti+∆+

ti
=

∫ ti+∆+

ti

[
θ c

4
F (R+, R−)− g slope

R+ −R−
2c

]
◦ ξ+(s, xi, ti)ds.

Using the midpoint rule for approximating the integral on the right-hand side yields

Rk+ −Ri+ =
∆+

2

[
θ c

4
(F (Ri+, R

i
−) + F (Rk+, R

k
−))− g slope

Ri+ −Ri− +Rk+ −Rk−
2c

]
. (36)

Similarly, we have the following relation for Rj− and Rk−:

Rk− −R
j
− =

∆−
2

[
θ c

4
(F (Rj+, R

j
−) + F (Rk+, R

k
−))− g slope

Rj+ −R
j
− +Rk+ −Rk−

2c

]
. (37)

Hence, the numerical scheme for computing the values of the RIEMANN invariants at (tk, xk) consists in finding
a solution to the nonlinear (implicit) system formed by the previous two equations. Newton’s method is then used
to compute a solution to this system. For this, we first need to define a set of points {(tk, xk)} at which those
quantities are evaluated. Since the right-hand side involves both R+ and R−, the set of points must allow for
the evaluation of both quantities. This is achieved by considering a “triangular” grid, constructed in the following
way: for the DI and DII domains, ND equidistant nodes are placed on the line segment corresponding to the
initial (resp. terminal) state. Then, ND equidistant line segments, parallel to the y-axis, slice the triangle DI

(resp. DII) into ND − 1 convex isosceles trapezoids. The nodes in the grid are defined as the intersection of
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the characteristic lines starting from the ND nodes located on the initial (resp. terminal) state and the afore-
mentioned vertical line segments. This also implies that both RIEMANN invariants are defined at the nodes, as
well as pressures and Mach numbers. The number of nodes on each line segment is decreasing by one when
moving away from the initial (resp. terminal) state. The distance between two consecutive nodes on a given
characteristic is ∆s = L

2c(ND−1) . Note that this quantity is an output for a given choice of grid, and not an input
parameter for the construction of the grid.

The RIII and RIV domains are also sliced into convex isosceles trapezoids by NR horizontal line segments,
between Imid and the u+ (resp. u−) boundary. It is also the number of nodes on any horizontal line segment
of length TL, and hence gives the distance ∆t = L

2c(NR−1) between nodes on Imid. To simplify the numerical
implementation, we round up the length of Imid so that it is a multiple of ∆t. Then, the number of nodes on Imid

isNmid and the number of nodes on each boundary u± isNmid +NR. The distance between two consecutive
nodes on a given characteristic is ∆y = L

2(NR−1) .

One of the property enjoyed by our numerical solution is its reversibility along the characteristics. This is easy
to see from the system (36)–(37): the right-hand side has the same expression for both Ri and Rj . Hence,
changing the integration interval from tk to tk − ∆+ yields the same relation as (36), with just both sides
negated. This implies that the boundary values computed by the forward/backward propagation of Imid can
be interpreted as control. Indeed, assuming that NR = ND, then integrating forward in time the pipe using
those boundary values would give the desired terminal state. For example, this is not the case with the explicit
or implicit Euler discretization. Another consequence is that values of R on ΓIII

± and ΓIV
± must coincide, in

particular outside of Imid. By construction, this is true for eitherR+ orR−, and this was numerically verified for
the other component of R at a very high numerical accuracy.

The setup for the numerical simulations is as follows: the pipe length L = 1000 km, D = 1 m, T = 15 °C,
Rs = 518.26 J kg−1 K, λfric = 2 · 10−6. This gives c = 386.44 ms−1 and TL = 2587.71 s. The large
pipe length is there to further highlight the effect of the nonlinear source term.

Example 6.1. With this pipe, we first compute the controls for increasing the flow rate in the pipe from q0 =
100 kg s−1m−2 to qT = 1000 kg s−1m−2, while keeping a pressure of p = 50 bar at x = 0. The associated

Figure 2: Pressure profiles in the pipe for the initial and terminal states, both being stationary.

stationary solutions yield the pressure drops displayed in Fig. 2. Since our analysis is in the regime of a rather
low friction parameter and low mass flows, the nonlinearity of the pressure drop along the pipe is present, but
hard to detect in Fig. 2.

We first study the evolution of the pressure and flow across time and space, as shown in Fig. 3. The triangular
areas that appear flat are DI on the right and DII on the left. The main differences between the two different
terminal times is the larger amplitude of the pressure, as well as a smoother transition of the mass flow from the
initial value to the terminal one for T = 10159s when compared to T = 4540s.

Now, we focus on the evolution of the RIEMANN invariants at the ends of the pipe as shown in Fig. 4. First,
remember that due to the finite propagation speed, the values of the RIEMANN invariants are fixed (or pre-
determined) by the initial and terminal states for some time. Namely, for R+ this is the case at x = 0 for
t ∈ [T −TL, T ], and at x = L for t ∈ [0, TL]. For R− this is the case at x = 0 for t ∈ [0, TL], and at x = L
for t ∈ [T −TL, T ]. There is a major difference in the control and behavior depends on whether T −TL < TL
holds. If this is the case, then on the time interval [T −TL, TL] both RIEMANN invariants are determined by the
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(a) Evolution of the pressure for T = 4540 s (b) Evolution of the mass flow for T = 4540 s

(c) Evolution of the pressure for T = 10159 s (d) Evolution of the mass flow for T = 10159 s

Figure 3: Evolution of the pressure and mass flow

initial and terminal states. Hence, there is no “choice” (in the sense of control input) of the RIEMANN invariants
on that interval. This motivates the presentation of the numerical results with two terminal times: for the shorter
time horizon T = 4540 s, T − TL < TL, whereas for the longer time horizon T = 10159 s this inequality
does not hold. Two vertical lines, one for t = TL in blue, and one for t = T − TL in red, have been added to
all the plots which depicts a time evolution.

In Fig. 4a and 4b, we see that R+ at x = 0 transitions from its initial value to the one at the start of the pre-
determined line segment in [0, T −TL], and at x = L the same appears in [TL, T ]. ForR−, we find the same
phenomenon, with the values of x reversed. In Fig. 4c and 4d, we observe that the evolution of the RIEMANN

invariants occurs at a less steep slope thanks to the longer duration T − TL of the transitions. Also, in the time
interval [TL, T − TL], the values of both RIEMANN invariants can freely be selected, in contrast to the case
T = 4540 s, where only one component of R can be selected at any time. While all plots depicted in Fig. 4
may appear to shown piecewise linear graphs only, this is just a visual effect due to the low friction and mass
flow regime. Finally, note that the regularity of the RIEMANN invariants hinges on the choice of their values on
the Imid segment. Here we use a simple linear interpolation. We expect that a smoother transition would also
smoothen the values ofR± at the endpoints. However, such an investigation is beyond the scope of this paper.

In Fig. 5, the evolution of the pressure p and the Mach number M at the endpoints of the pipe are shown. The
evolution of the pressure as shown in Fig. 5a and Fig. 5c can be divided into three phases: first a change from
the initial values to a plateau-like phase, and then a transition to the terminal state values. The duration of the
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(a) Evolution of R+ for T = 4540 s (b) Evolution of R− for T = 4540 s

(c) Evolution of R+ for T = 10159 s (d) Evolution of R− for T = 10159 s

Figure 4: Evolution of the RIEMANN invariants at the endpoints

(a) Evolution of p for T = 4540 s (b) Evolution of M for T = 4540 s

(c) Evolution of p for T = 10159 s (d) Evolution of M for T = 10159 s

Figure 5: Evolution of the pressure p and Mach number M at the endpoints
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(a) Evolution of q for T = 4540 s (b) Evolution of ∆q for T = 4540 s

(c) Evolution of q for T = 10159 s (d) Evolution of ∆q for T = 10159 s

Figure 6: Evolution of the mass flow q at the endpoints and the difference ∆q := q(·, 0)− q(·, L).

(a) Evolution of the gas velocity difference ∆v for T = 4540 s (b) Evolution of the gas velocity difference ∆v for T = 10159 s

Figure 7: Difference in gas velocities ∆v := v(·, 0)− v(·, L) between the endpoints.

first and third phase is min{TL, T − TL} for each, and the second one lasts for the remaining time. Note that
the variation in pressure is much smaller in Fig. 5c when compared to the one in Fig. 5a. For the Mach number
M , the same behavior with 3 phases is present. Now, the difference between Fig. 5b and Fig. 5d is in the rate
of change of the Mach number, with the extremal values being the same, respectively. In particular, remember
that for T = 4540 s, the control input is predetermined on [T − TL, TL]. Hence, outside this time interval, the
rate of change has to be larger in order to account not only for the reduction in terminal time, but also for this
additional constraint.

In Fig. 6a and Fig. 6c, the evolution of the mass flow at the endpoints is depicted. The behaviour is quite similar
to the one for the Mach number in Fig. 5b and Fig. 5d. The associated difference in input/output is highlighted
in Fig. 6b and Fig. 6d. The evolution also follows again a three phases regime. Note that the difference ∆q is
about three times larger in magnitude for T = 4540 s than for T = 10159 s.

Finally, in Fig. 7a and Fig. 7b, the difference ∆v in gas velocity at the end of the pipe is shown. The values
depicted in Fig. 7a drop more rapidly and remain relatively constant in the time interval [T − TL, TL], whereas
in Fig. 7b, the change is comparable in all three time intervals.

Example 6.2. Let us now move on to the second scenario: a flow inversion in the pipe, from q0 = 1000 kg s−1m−2

to qT = −1000 kg s−1m−2, while keeping a pressure of p = 50 bar at x = 0. The associated pressure pro-
files are given in Fig. 8. The evolution of the pressure and mass flow rate are depicted in Fig. 9. Given a
terminal time much larger than TL, the flow reversal is rather smooth across the pipe, as one can see in Fig. 9b.
In Fig. 9a, as expected, we observe that the pressure increases at x = L and decreases at x = 0 to induce
the switch.
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Figure 8: Pressure profile in the pipe associated with the initial and terminal state, both being stationary.

(a) Evolution of the pressure for T = 10159 s (b) Evolution of the mass flow for T = 10159 s

Figure 9: Evolution of the pressure and mass flow.

As for the previous numerical analysis, we first focus on the evolution of the RIEMANN invariants in Fig. 10. The
same three phase regime with T − TL > TL, is observed. The evolution of R± follows the same logic as
before: outside of the pre-determined values, the RIEMANN invariants evolve according to the values on Imid

propagated through the RIII and RIV domains.

This yields the pressure and Mach number as shown in Fig. 11. The main difference between the endpoints
is the pressure, which evolves in a symmetric fashion between the endpoints of the pipe: a decrease (resp.
increase) on [0, TL] followed by a plateau-like phase, and finally an increase (resp. decrease) on [T − TL] to
the values given by the stationary solutions. Note how the pressure at x = L transitions from a smaller value
to a larger one at x = 0. The amplitude of the pressure remains small in this scenario. For the Mach number,
in Fig. 11b, the difference between the endpoints remains small. The same can be stated about the evolution of
the mass flow in Fig. 12, where the difference appears even smaller; see Fig. 12a. This is better appreciated on
Fig. 12b, where the difference ∆q is shown. Again we find an evolution with three phases, featuring a plateau-
like phase in the middle which is only a few percents of the magnitude of the mass flow for the initial or terminal
state.

(a) Evolution of the pressure for T = 10159 s (b) Evolution of the mass flow for T = 10159 s

Figure 10: Evolution of the RIEMANN invariants at the endpoints.
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(a) Evolution of p for T = 10159 s (b) Evolution of M for T = 10159 s

Figure 11: Evolution of the pressure p and Mach number M at the endpoints.

(a) Evolution of q for T = 10159 s (b) Evolution of ∆q for T = 10159 s

Figure 12: Evolution of the mass flow q and the difference ∆q := q(·, 0)− q(·, L) at the endpoints.

(a) Evolution of ∆v for T = 10159 s

Figure 13: Difference in gas velocities ∆v = v(·, 0)− v(·, L) between the endpoints
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Finally, the difference ∆v in gas velocity sheds some light on the difference between endpoints. Here the
evolution is clearly nonlinear, and would be harder to to come by without observing the RIEMANN invariants first.

7 Conclusions

We have derived a semilinear model for gas pipeline flow from the quasilinear isothermal Euler equations. We
have presented the corresponding stationary states not only for the case of horizontal pipes but also for the case
of pipes with constant slopes. Moreover, also for the general case of pipes with constant slopes we have shown
that for any given finite time horizon if the continuous initial data are sufficiently small, a continuous transient
solution of the semilinear system exists that remains subsonic. In addition, the velocity of the gas remains below
given a priori bounds and the pressure of the gas remains within a prescribed interval. This is important, since
in the operation of gas pipelines, such bounds for the pressure and velocity occur regularly. We have shown that
under certain smallness assumptions, the continuous solution exists even globally in time, that is for arbitrary
large T > 0.

The constrained exact boundary controllability of the system was investigated. We have considered continuous
solutions where the system is controlled from a given stationary state to a desired stationary state in such a way
that the state constraints are satisfied everywhere throughout the process. In terms of the physical variables,
the state constraints are box constraints for the pressure and an upper bound for the absolute value of the Mach
number. These state constraints can be transformed to linear constraints in terms of the Riemann invariants.

We introduce a numerical scheme based on the midpoint rule to integrate the RIEMANN invariants on the char-
acteristics. Finally, numerical simulations supporting the theoretical analysis have been shown. From those, we
illustrate how the RIEMANN invariants on the boundaries evolve with respect to time. We highlighted the differ-
ence in behaviour whether the terminal time T is larger than 2L/c or smaller. In the latter case, the RIEMANN

invariants invariants are determined on the time interval [T − TL, TL] by the initial and boundary states. This
result in a rather different behavior of the controls.

A Technical lemmas

Lemma A.1. Consider F (x, y) := (x + y)
∣∣∣x+y
x−y

∣∣∣, and η(x, y) := x+y
x−y . If x, u > 0 and y, v < 0 and

|η(x, y)|≤ λ as well as |η(u, v)|≤ λ, then it holds that |F (x, y)−F (u, v)|≤
√

20λmax{|x−u|, |y− v|}.

Proof. Let X := {(w, z) | w > 0, z < 0}. Take (x, y) ∈ X satisfying the hypothesis, and such that
x+ y 6= 0. Then, it holds that

∇F (x, y) =
|x+ y|

(x− y)2

(
x− y − 2y
x− y + 2x

)
. (38)

Thus, the norm of the gradient can be estimated as follows

‖∇F (x, y)‖ =
|x+ y|

(x− y)2

√
2(x− y)2 + 4y2 + 4x2 + 4(x− y)2

=
|x+ y|
x− y

√
6 + 4

x2 + y2

(x− y)2

≤ |x+ y|
x− y

√
10 =

√
10|η(x, y)|, (39)

given that 1 > x2+y2

(x−y)2
on X . Now we consider (x, y) ∈ X such that x + y = 0. In this case, by passing to

the limit in (38), we infer∇F (x, y) = 0, hence the estimate (39) also holds on that line.
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L1
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(t1, x1)(t2, x2)

ba

d

c

o

Figure 14: Projection near a corner

Note that we just shown that F is C1, allowing us to invoke the mean value theorem, leading to the existence
of τ ∈ [0, 1] such that

|F (x, y)− F (u, v)|= |∇F (τ(x, y) + (1− τ)(u, v)) · (x− u, y − v)|. (40)

Note that the level sets of |η| are convex on X . Since by hypothesis it holds that |η(x, y)|≤ λ as well as
|η(u, v)|≤ λ, we get

|η(τ(x, y) + (1− τ)(u, v))|≤ λ.

Finally, using this relation in (39) gives us

‖∇F (τ(x, y) + (1− τ)(u, v))‖≤ λ
√

10.

Inserting this into (40) yields

|F (x, y)− F (u, v)| ≤ λ
√

10‖(x− u, y − v)‖
≤ λ
√

20 max{|x− y|, |y − v|}.

Lemma A.2. Suppose that P := (P+, P−) is one of the fixed-point operators defined on one of the domains
DI,DII,RIII, orRIV. Suppose that the box constraints (21) and (22) onP are fulfilled. If the initial stateR(P 0

±)
is continuous, then P (R) is continuous on the corresponding domain DI, DII, RIII, or RIV, respectively.

Proof. The operator P has a similar structure on all domains:

P±(t, x) := R(P 0
±)(t, x) +G ◦R(t, x)−G ◦R(P 0

±(t, x)), (41)

whereG is the antiderivative of a continuous function. On each domain, the operator P 0
± is an oblique projector

on the initial boundary. That is, P 0
± is an affine mapping. The term oblique projector indicates that the difference

(t, x) − P 0
±(t, x) does not lie in the orthogonal subspace to the range of P 0

±(t, x), but is rather oblique to
it. The difference (t, x) − P 0

±(t, x) is on a direction d such that 〈d, v〉 6= 0, with v the direction of any
piece of P 0

±(t, x). Indeed, the characteristic lines are not orthogonal to neither the segment {{0}, [0, L]} or

{[0, T ], {0}}. For instance the operator P 0
± for the domain DI is the matrix

(
0 0
−c 1

)
. By construction of the

operator P , the solution is absolutely continuous along the characteristics. Let us proceed by showing that each
function in the right-hand side of (41) is continuous. This is clear for G by construction. For the remaining two
terms, we show that P 0

± is a Lipschitz operator. Note that if the initial boundary is made of one line segment (like
for DI and DII), this property holds true. If the boundary consists of two line segments (like ΓIII), this requires
a further step. In this case consider two points (t1, x1) and (t2, x2). Suppose that their image by the same
projection operator is on different line segments, see Figure 14. Let b (resp. d) be the projection of (t1, x1)
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onto L1 (resp. L2), and c (resp. a) be the projection of (t2, x2) onto L2 (resp. L1). Letting ΠLi
± be the oblique

projector on Li, we have

‖P 0
±(t1, x1)− P 0

±(t2, x2)‖ = ‖b− c‖≤ ‖b− o‖+‖o− c‖≤ ‖a− b‖+‖c− d‖
≤ ‖ΠL1

± (t1, x1)−ΠL1
± (t2, x2)‖+‖ΠL2

± (t1, x1)−ΠL2
± (t2, x2)‖.

Finally, since R± is continuous in space on the initial boundary, and G is continuous as well, this concludes the
proof.
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