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A large-deviations principle for all the components in a sparse
inhomogeneous random graph

Luisa Andreis, Wolfgang König, Heide Langhammer, Robert I. A. Patterson

Abstract

We study an inhomogeneous sparse random graph, GN , on [N ] = {1, . . . , N} as intro-
duced in a seminal paper [BJR07] by Bollobás, Janson and Riordan (2007): vertices have a type
(here in a compact metric space S), and edges between different vertices occur randomly and
independently over all vertex pairs, with a probability depending on the two vertex types. In the
limit N → ∞, we consider the sparse regime, where the average degree is O(1). We prove a
large-deviations principle with explicit rate function for the statistics of the collection of all the con-
nected components, registered according to their vertex type sets, and distinguished according
to being microscopic (of finite size) or macroscopic (of size � N ). In doing so, we derive explicit
logarithmic asymptotics for the probability that GN is connected. We present a full analysis of the
rate function including its minimizers. From this analysis we deduce a number of limit laws, con-
ditional and unconditional, which provide comprehensive information about all the microscopic
and macroscopic components of GN . In particular, we recover the criterion for the existence of
the phase transition given in [BJR07].

1 Introduction

In this paper, we study the inhomogeneous random graph model as introduced in the seminal paper
[BJR07], that is, an Erdős–Rényi graph whose vertices have types. We consider the limit of a large
number of vertices and concentrate on the sparse setting, where each vertex has a number of edges
that is of order one. This setting is famous for the emergence of a giant cluster. This phase transition
was detected and characterized in [BJR07] with the help of a branching process. We consider the
case in which the type set is a compact metric space, but our analysis builds on the proof for the type
set being any finite set.

In the present paper, we analyze the model from the view point of large deviations in a detailed way.
We go beyond existing results by (1) considering the joint statistics of all the clusters, both microscopic
and macroscopic, (2) registering the types within the clusters (not only their sizes), and (3) giving
a joint large-deviations principle (LDP) for all this information. In particular, we recover the limiting
quantities and the resulting phase transition in great detail, giving a lot of additional information. Our
main results are Theorems 1 and 29 (the LDPs for the type set being a compact metric space and a
finite type set, respectively) and Theorems 9 and 7, where we deduce consequences for the phase
transition. A building block for our study is Theorem 15, which gives explicit logarithmic asymptotics
for the probability of a macroscopic subgraph being connected and which is of independent interest.

The remainder of this section is organized as follows. In Section 1.1 we introduce the inhomogeneous
random graph, in Section 1.2 we present our first main result, the large-deviations principle, and in
Section 1.3 we give an interpretation of the result. Asymptotic results on the connectivity of graphs
are highlighted in Section 1.4.
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L. Andreis, W. König, H. Langhammer, R.I.A. Patterson 2

The structure of the rest of the paper is as follows. Our second main result concerns consequences of
the large-deviations principle for the limiting behaviour of the model, i.e., conditional and unconditional
laws of large numbers. This relies on explicit variational analysis of the rate function of Theorem 1 and
it is explained in Section 2, together with the giant-cluster phase transition and a comparison to the
results of [BJR07]. Additionally, we explain the deep connection with an important inhomogeneous
coagulation process and derive a solution to a spatial version of the Flory equation. In Section 3 we
focus on the finite type setting and prove asymptotics for connection probabilities and derive results
on multivariate power series (and their link with branching processes). These will play a key role in
the remaining sections. The proof of our main result, the LDP, for a finite type set is in Section 4. In
Section 5, we derive the LDP for compact metric type spaces via a discrete approximation in the spirit
of the Dawson–Gärtner theorem. In Section 6 we derive a full characterization of the minimizers of
the microscopic part of the rate function, and in Section 7 we analyze all the other parts of the rate
function.

Let us make some few remarks on the literature. In our earlier work [AKP19], we derived an LDP for
the sizes of all the cluster sizes of the Erdős–Rényi random graph with one type in the sparse setting.
In [AKP19, Section 1.4], we gave a broad survey on known results on such LDPs; summarizing,
there are indeed some results on particular statistics of the graph GN , many of which are a posteriori
contained in [AKP19, Theorem 1.1] as special cases. However all these results concern only the
Erdős–Rényi graph with one type. There is some recent literature on LDPs for various statistics of
different types of random graphs outside the sparse regime, which are by their nature so different
from the setting of the present paper that we do not go into this here. For inhomogeneous graphs
in the sparse regime, there are only a few results in the literature, starting with the seminal paper
[BJR07], which introduced the model and investigated the giant-cluster phase transition in detail.
Furthermore, clusters of critical sizes of order Nα with some α ∈ (0, 1) around the phase transition
have been studied for some types of inhomogeneous random graphs in [BvdHvL10], [BvdHvL12]
and [vdH13] under certain moment assumptions on the (scalar) types. Let us finally mention some
results just outside the sparse setting: [CCH20] analyzes the eigenvalues of the adjacency matrix of
an inhomogeneous Erdős–Rényi random graph with vanishing edge probabilities of order� 1

N
and

[DF14] studies the probability of the graph to be connected when the edge probabilities are of order
logN
N

.

1.1 Inhomogeneous random graphs

We are going to define the random graph model that we study in this paper. It is called an inhomoge-
neous random graph in [BJR07], while at full length it is sometimes named inhomogeneous random
Erdős–Rényi graph.

Let N ∈ N; we consider a random graph on the vertex set [N ] = {1, . . . , N} and fix a non-void
set S , the type set. We take a type vector x = x(N) = (x1, . . . , xN) ∈ SN and interpret xi as
the type of i. The edges of this graph are undirected and randomly drawn; self and multiple edges
are excluded. The

(
N
2

)
possible edges are sampled independently. The probability to draw an edge

between two vertices with types r and s, is called pr,s; this defines a map p : S × S → [0, 1]. The
resulting random graph is denoted G(N,x, p) and is called the inhomogeneous random graph on
[N ] with type vector x and function of probabilities p.

In this paper, we are interested in the limit as N →∞ in the sparse case, i.e., in the case where the
number of edges per vertex is of finite order. This is the case if the probabilities pr,s are of order 1/N .
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A large-deviations principle for all the components in a sparse inhomogeneous random graph 3

Actually, we now impose that they are given by

pr,s = 1 ∧ 1

N
κ(r, s), r, s ∈ S,

where κ : S × S → [0,∞) is a symmetric non-negative bounded function, called a kernel. Without
loss of generality, we are from now on assuming that 1

N
κ ≤ 1, and hence κ(r, s)/N is a probability

for any N ∈ N and any r, s ∈ S . We will study the graph GN = G(N,x, 1
N
κ) in the limit N →∞.

We are interested in the structure of all the components1 of GN , depending on the types, but not the
indices of the vertices. Hence it is sufficient to consider the empirical measure µN = 1

N

∑N
i=1 δxi of

the type vector x and Nµ(R) is the number of vertices with type in R ⊂ S . We will assume that,
as N →∞, µN converges weakly to a given probability measure µ on S . One can conceive GN as
a graph on S where in each point x ∈ S there sit precisely NµN({x}) ∈ N vertices, which are all
distinguished and labelled.

We denote by {Cj}j the collection of all the vertex sets of the connected components of G(N,x, 1
N
κ).

This collection is a random decomposition of [N ]. Since we are only interested in the statistics of
these components, the labeling of the vertices in a component is irrelevant. Actually, we are even only
interested in the statistics of the types of all the vertices, counted with multiplicity. To this end, we
introduce the type-registering empirical-measure function

ηx : P([N ])→MN0(S), ηx(A) =
∑
i∈A

δxi , (1.1)

where P([N ]) is the set of subsets of [N ], andMN0(S) is the space of finite measures on S with
values in N0. We call every element ofMN0(S) a type-configuration and will denote it by k. In words,
ηx(A)(R) is, for any set R ⊂ S , the number of vertices in A ⊂ [N ] with type in R. In particular,
ηx([N ]) = NµN . We writeM(X ) for the set of finite measures on a setX ; the measurable structure
on X will be clear from the context.

We will study the empirical measure of the collection (ηx(Cj))j , i.e., the statistics of how many times
a given type-configuration appears as the type-configuration of a component of GN . We will pay
particular attention to the scale of the size of the component, more precisely, whether it is finite or it has
a size � N . We will call the first scale microscopic and the second scale macroscopic (macroscopic
components are usually called giant components). Hence, the quantities of interest in our study are the
microscopic and the macroscopic empirical measures of the type-configurations of the components,
which we define as follows:

MiN = MiN(x) =
1

N

∑
j

δηx(Cj) and MaN = MaN(x) =
∑
j

δ 1
N
ηx(Cj). (1.2)

It is clear that both MiN and MaN only depend on x through its empirical measure µN . Both MiN
and MaN are random measures onM(S), i.e., they are elements ofM(M(S)). More precisely,
MiN is a measure on the setMN0(S) of measures on S with values in N0, and MaN is a measure
on the setM(S) of measures on S with values in N0. Both MiN and MaN contain precisely the
same information for fixed N , but in the limit N → ∞, MiN asymptotically registers only the micro-
scopic components and MaN only the macroscopic ones. Indeed, the non-microscopic components
leave the state space MN0(S) via the set of measures with unbounded total mass, and the non-
macroscopic ones (with prefactor 1/N ) leaveM(S) via the measures with vanishing total mass, i.e.,
via {0}. The topologies that we will introduce below reflect this effect; it lies at the heart of the phase

1We use “cluster” and “component” synonymously.
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transition of the emergence of a giant cluster, which we are also interested here. On the other side,
they are very natural, as they reduce to the pointwise respectively to the usual vague topology for a
finite set S .

The effect of a diverging or vanishing total mass can also be observed in terms of integrated versions
of MiN respectively MaN . Indeed, observe that for any measurable R ⊂ S and any N ∈ N∫

k(R) MiN(dk) =
1

N

∑
j

∫
MN0 (S)

k(R) δηx(Cj)(dk) =
1

N

∑
j

ηx(Cj)(R) = µN(R). (1.3)

According to our assumption that µN weakly converges towards µ, the right-hand side of (1.3) con-
verges to µ(R), as N → ∞, if R is a µ-continuity set, i.e., if µ(∂R) = 0. However, the topology
on the state space for MiN will be chosen as the vague one, and in this topology any accumulation
point λ of (MiN)N∈N satisfies a priori only

∫
k(R)λ(dk) ≤ µ(R), since the map k 7→ k(R) is

unbounded in general. The same holds for (MaN)N∈N.

To take into account the possibility of a loss of mass we introduce for any λ ∈M(MN0(S)) and any
α ∈MN0(M(S) \ {0}) the measures on S

cλ(R) =

∫
MN0 (S)

k(R)λ(dk), R ⊂ S measurable, (1.4)

cα(R) =

∫
M(S)\{0}

y(R)α(dy), R ⊂ S measurable. (1.5)

We call cλ and cα the integrated type-configurations of λ, respectively of α. If one sees λ as a (not
normalized) ‘distribution’ of finite subsets of S , then cλ registers the ‘expected’ total mass of particles
in a given subset of S that appear in this distribution λ; an analogous statement holds for α. The total
masses of cλ and cα are equal to the integrals of k 7→ k(S) under λ respectively under α; they are
≤ 1 for any accumulation point of (MiN)N∈N respectively of (MaN)N∈N, according to the above.

The natural state space containing MiN for any N ∈ N, is the set

L =
{
λ ∈M(MN0(S)) : cλ ≤ µ or cλ ≤ µN for some N ∈ N, λ({0}) = 0

}
. (1.6)

The condition λ({0}) = 0 is clearly satisfied by any empirical measure MiN , we could have identified
it indeed as an element ofM(MN0(S) \ {0}). However for later notational convenience we do not
exclude {0} but we add the constraint λ({0}) = 0. Notice that with this constraint and the conditions
on c(λ) any λ ∈ L is a sub-probability measure. Any k in the support of λ is a finite and non-zero
point process k =

∑
i δzi with zi ∈ S (with possible repetitions) and stands for the empirical measure

of the types of a vertex set of a component, its type-configuration. Informally, the event {MiN = λ}
is the event that, for every k ∈MN0(S), GN has Nλ({k}) components with type-configuration k.

The natural state space containing MaN for any N ∈ N, is the set

A =
{
α ∈MN0(M(S) \ {0}) : cα ≤ µ or cα ≤ µN for some N ∈ N

}
. (1.7)

One can write α ∈ A as a finite or at most countable point measure α =
∑

n δyn on measures yn
on S (with possible repetitions). The total masses yn(S) of the measures yn can accumulate only
at zero and every α ∈ A is concentrated on the set of sub-probability measures. For each yn we
interpret Nyn as the type-configuration of a giant component. Informally, the event {MaN = α} is
the event that GN has, for any n, a macroscopic component with type-configuration Nyn.

We will be working only with two particular choices of the type set: S as a finite set (equipped with
the power set as topology and as sigma-field) and S equal to a compact metric space (equipped with
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A large-deviations principle for all the components in a sparse inhomogeneous random graph 5

the topology induced by the metric and the corresponding Borel sigma-field). We equipM(S) with
the weak topology that is generated by all the test integrals against continuous bounded functions
S → R. However, on the sets L and A, the appropriate topologies for our purposes are the vague
topologies, the ones that are induced by all the test integrals against compactly supported continuous
test functionsMN0(S) → R, respectivelyM(S) \ {0} → R. If |S| < ∞, thenMN0(S) can be
identified with NS0 and vague convergence inM(MN0(S)) is the same as pointwise convergence
onM(NS0 ). On L × A we use the product topology. We will show in Lemma 38 that both L and A
are compact, hence also L ×A is.

The convergence in this topology is the natural one that reflects the possible loss of mass that we are
interested in in view of the phase transition. The crucial point is that mass of MiN can leak out only
via the unboundedness of k 7→ k(S), i.e., via having larger and larger connected components, while
mass of MaN can leak out due to the fact that y 7→ y(S) is not bounded away from zero. With other
words, mass of MaN leaks out only via the zero measure, where every non-giant component leaves.
See Section 5 for details. By the definitions of L respectivelyA, the integrated type-configurations cλ
and cα for λ ∈ L and α ∈ A are sub-probability measures, while for fixed N ∈ N both cMiN and
cMaN are even probability measures. The total mass one of cMiN can partially go lost and cMaN may
not lose all its mass in the limit N →∞. This is precisely the phase transition that we are after.

1.2 The large-deviations principle for the cluster statistics

In this section we formulate the main result of this paper. We assume that S is a compact metric
space.

We need some notation. For any measure ν on S and any function κ : S × S → [0,∞), we write
κν(r) =

∫
S κ(r, s) ν(ds). The total mass of a measure ν on a measure space X is denoted by

|ν| = ν(X ). The relative entropy of two (possibly non-normalized) finite measures ν, ν̃ on X is
denoted by

H(ν|ν̃) =

{
|ν̃| − |ν|+

∫
X ν(dx) log dν

dν̃
(x), if dν

dν̃
exists,

+∞ otherwise.
(1.8)

We write 〈ν, f〉 for the integral of a function f with respect to a measure ν, and we write f ν for the
measure that has the density f with respect to a measure ν.

An important reference measure is the distribution Qν of a Poisson point process X on S with intensity
measure ν ∈ M(S), then Qν is a measure onMN0(S). Note that we do not assume that ν has a
density, hence X is not necessarily simple.

We define a function τ by

τ(k) :=
∑

T∈T (k)

∏
{i,j}∈E(T )

κ (xi, xj) , k ∈MN0(S), (1.9)

where (x1, . . . , x|k|) ∈ S |k| is any vector that is compatible with k, i.e., k =
∑|k|

i=1 δxi , and T (k) is
the set of spanning trees on [|k|]. Notice that τ depends on (x1, . . . , x|k|) only through k. We use
the convention that τ(0) = 0, since the sum is empty. As we will see in Lemma 14, up to a factor
of N−|k|+1, τ(k) is equal to the large-N asymptotics of the probability that a random subgraph of
G(N,x(N), 1

N
κ) with a given type-configuration k is connected.

We say that κ : S × S → [0,∞) is irreducible with respect to a measure µ ∈M(S) if

A ⊂ S and κ = 0 a.e. on A× (S \ A) =⇒ µ(A) = 0 or µ(S \ A) = 0. (1.10)
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Otherwise κ is called reducible.

Here is the main result of this paper.

Theorem 1 (LDP for (MiN ,MaN)). Fix a probability measure µ on a compact metric space S and
a kernel κ on S × S that is nonnegative, continuous and irreducible with respect to µ. Assume that
x = x(N) ∈ SN is such that its empirical measure µN converges weakly towards µ as N → ∞.
Assume that κN is a nonnegative and continuous kernel for any N ∈ N such that κN converges uni-
formly towards κ as N →∞. Let MiN and MaN be, respectively, the microscopic and macroscopic
empirical measure of the connected components of GN = G(N,x(N), 1

N
κN), for any N ∈ N, as

defined in (1.2).

Then (MiN ,MaN) satisfies a large-deviations principle with speed N and rate function I defined by

I(λ, α) =

{
IMi(λ) + IMa(α) + IMe(µ− cλ − cα), if cλ + cα ≤ µ,
+∞ otherwise,

where, for λ ∈ L, α ∈ A and ν ∈M(S),

IMi(λ) = H(λ|Qµ)− 1− 〈λ, log τ〉+ |cλ| − |λ|+
1

2
〈cλ, κµ〉, (1.11)

IMa(α) =

∫
M(S)\{0}

α(dy)
[〈
y, log

dy

(1− e−κy) dµ

〉
+

1

2
〈y, κ(µ− y)〉

]
, (1.12)

IMe(ν) =
〈
ν, log

dν

κν dµ

〉
+

1

2
〈ν, κµ〉. (1.13)

As in the definition of H in (1.8), we define IMa(α) = ∞ if it is not true that α-almost everywhere
dy

(1−e−κy) dµ
exists. Likewise we define IMe(ν) = ∞ if dν

κν dµ
does not exist. We use the convention

that log 0 = −∞ and 0 log 0 = 0.

Let us recall the notion of an LDP: Theorem 1 says that I(·) is lower semicontinuous and, for any
open set G ⊂ L×A and any closed set F ⊂ L×A,

lim inf
N→∞

1

N
logPN((MiN ,MaN) ∈ G) ≥ − inf

G
I(·), (1.14)

lim sup
N→∞

1

N
logPN((MiN ,MaN) ∈ F ) ≤ − inf

F
I(·), (1.15)

where we wrote PN for the probability measure under the random graph GN . For the theory of large
deviations, see e.g. [DZ10].

An intuitive explanation of Theorem 1 is given in Section 1.3. The proof of Theorem 1 is in Section 5.
It relies heavily on the special case of Theorem 1 for finite sets S , see Theorem 29, whose proof we
present first in Section 4. Our main strategy there is to identify the joint distribution of all the clusters
in G(N,x(N), 1

N
κN) in a combinatorial way and then to explicitly extract the exponential rates. The

proof of Theorem 1 in Section 5 carries out an approximation procedure of S with finite state spaces
in the spirit of the Dawson–Gärtner theorem.

Theorem 1 is an extension of [AKP19, Theorem 1.1] from the special case µ = δ0 and constant κ
(that is, from the standard Erdős–Rényi graph) to an inhomogeneous Erdős–Rényi graph. Note that
this LDP is also highly non-trivial, interesting, and new in the case of an arbitrary µ and constant κ,
to the best of our knowledge.

DOI 10.20347/WIAS.PREPRINT.2898 Berlin 2021
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Remark 2. (Quenched and annealed LDPs) One possible application of Theorem 1 is to the situ-
ation where the vertex types x1, . . . , xN are themselves random and independent with distribution
µ each. Then Theorem 1 can be seen as a conditional LDP given x, sometimes called a quenched
LDP. The rate function turns out to be not random and depending only on µ. One can then obtain an
annealed version of the LDP, i.e., when the probabilities are also taken with respect to the vertices
x1, . . . , xN . The annealing follows from a standard mixture argument when S is a finite set of points;
for general S the construction of a discretization suitable for use in our proof is a delicate matter
that we do not explore here. One possible formulation of the annealed result would be that the triple,
consisting of the empirical measures of the vertices, and MiN and MaN satisfies an LDP with rate
function equal to (ν, λ, α) 7→ H(ν|µ) + Iν(λ, α), where we now wrote Iν for the rate function I of
Theorem 1 with ν the limiting empirical measure of the type vector (instead of µ).

Remark 3. (Detailedness) We decided to register any component of the graph GN only through
its type-configuration, neglecting all the information about the internal connection structure. It is a
natural wish to have also a more detailed analysis, for example by distinguishing each component as
a subgraph instead of the type-configuration. From such a refined LDP, one could derive Theorem 1
via the contraction principle.

For the microscopic components it is indeed not too difficult to derive a refined version of the LDP of
Theorem 1, since for each type-configuration k ∈ MN0(S), the statistics of the ≈ Nλ(k) compo-
nents with type-configuration k follow an explicit multinomial distribution. The form of the term τ(k)
gives the hint that only spanning trees survive. The macroscopic components are much more involved
and it is not clear which type of structure give the decisive contribution in the limit.

Here is a standard corollary from the LDP in Theorem 1 about separate LDPs for MiN and MaN .

Corollary 4 (Separate LDPs for MiN and MaN ). Under the assumptions of Theorem 1, the empir-
ical measures (MiN)N∈N and (MaN)N∈N each satisfy an LDP on L, respectively on A, with rate
functions

IMi(λ) = inf
α∈A

I(λ, α) and IMa(α) = inf
λ∈L

I(λ, α).

The LDP assertion directly follows from the contraction principle (see [DZ10]), since both projections
(λ, α) 7→ λ and (λ, α) 7→ α are continuous. The identification of the two contracted rate functions
is formulated in Theorem 9 and discussed in Section 2.1.

Remark 5. (LDP for the mesoscopic part) Analogously to the corresponding result in [AKP19], we
could formulate and prove also a corollary about the mesoscopic part of the configuration (Cj)j of
the components of GN , i.e., about those components whose cardinalities satisfy R < |Cj| < εN in
the limit N → ∞, followed by R → ∞ and ε ↓ 0. It is clear that we cannot consider the empirical
measure of all these components anymore, but only the empirical measure of the total number of
vertices of a given type in any of the mesoscopic components. Our conjecture is that (similarly to
[AKP19, Corollary 1.4]), this measure on S satisfies an LDP as N →∞ for fixed R ∈ N and ε > 0
with a rate that converges towards IMe defined in (1.13) as R → ∞ and ε ↓ 0. We abstained from
writing out the details.

1.3 Interpretation of the LDP

Our main result, the LDP of Theorem 1, is highly compressed and contains a number of interesting
results as special cases, so let us comment on the impact and draw some conclusions from it. We

DOI 10.20347/WIAS.PREPRINT.2898 Berlin 2021
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will restrict here to the large-deviations issues; the limiting issues and the consequences for the giant-
cluster phase transition are deferred to Section 2.

We are examining the probability of the event {MiN = λ,MaN = α}, asymptotically for large N ,
for any λ ∈ L and α =

∑
n δyn ∈ A. Indeed, we want to heuristically argue that one has

PN(MiN = λ,MaN = α) ≈ e−NI(λ,α). (1.16)

Recall from Section 1.1 that this is the event that GN has∼ Nλ(k) components with type-configuration
k, for any k ∈ MN0(S), and a macroscopic component with type-configuration ∼ Nyn, for any n.
We can clearly restrict to the case that cλ + cα ≤ µ, since otherwise the number of vertices of some
type in all the microscopic or macroscopic components together would be larger than the number of
existing vertices of that type. However, it might be that the difference ν = µ − cλ − cα is a positive
measure; this means that there are ∼ Nν(R) of the vertices with type in R in mesoscopic compo-
nents for any R ⊂ S , e.g., in components with N -dependent cardinalities like logN or N1/3, or any
mixture.

Recall that the types of all the vertices of GN are approximately distributed as 1
N

∑N
i=1 δxi ≈ µ.

The probability of {MiN = λ,MaN = α} consists of a number of terms that are more or less
independent, i.e., lead to a sum of exponential rates. These terms are the following:

� a combinatorial term that expresses the number of decompositions of [N ] into the collection of
subsets as above (respecting all the types),

� the probability that each of these subsets are connected (this depends on the type-configurations
k of the microscopic components and on the type-configuration Nyn of the n-th macroscopic
component, respectively),

� the probability that any two of all these vertex sets are not connected.

The above decomposition is the starting point of our combinatorial analysis in Lemma 31, but the
large-deviations rate terms that we finally obtained are organized and interpreted in a slightly different
fashion as follows.

Let us first consider the microscopic part. The first two terms in IMi(λ), H(λ|Qµ) − 1, describe
the number of labellings of N |cλ| vertices into microscopic subsets, according to λ and respecting
the type configurations. A priori, it is only notationally convenient to write this as an entropy, but this
interpretation allowed us to make the step from discrete to continuous setting. The next three terms,
−〈λ, log τ〉+ |cλ| − |λ|, describe the probability that all the considered subsets are connected, see
the comment below (1.9). The last term, 1

2
〈cλ, κµ〉, collects the costs of isolating each microscopic

component from the rest of the system.

For the macroscopic part, given a macroscopic measure α =
∑

n δyn , the term
∑

n〈yn, log dyn
dµ
〉

comes from the number of labellings of N |cα| vertices into macroscopic subsets, according to α and
to the type configurations. The term−

∑
n〈yn, log(1−e−κyn)〉 summarizes the connection probabili-

ties of all the macroscopic components, see Theorem 15. Finally, for each n, the term 〈yn, κ(µ−yn)〉
is the cost of isolating the macroscopic component from the rest of the system.

In the mesoscopic part of the rate function, we see only the dependence on the measure ν of all
the vertices of mesoscopic components, without any information about the components themselves.
Again, the term 〈ν, log dν

dµ
〉 is a result of the relabelling of the N |ν| vertices according to the type

configuration, and the integral of − log(κν) with respect to ν describes in a summarizing way that
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A large-deviations principle for all the components in a sparse inhomogeneous random graph 9

each of the vertex sets is connected. The term 1
2
〈ν, κµ〉 represents the cost of isolating such vertices

from the rest of the graph.

1.4 Connectivity of inhomogeneous graphs

On our way to a proof of Theorem 1, we derive some interesting formulas for quantities that are of
general interest in the theory of multi-type Erdős–Rényi graphs. Indeed, in Lemma 31 we give a closed
formula for the joint distribution of the entire collection of the vertex sets of all the components of GN .
One important ingredient there is the probability for a given subset of vertices⊂ [N ] to be connected
in GN . We give sharp estimates for this probability in Lemma 23 for a fixed type-configuration. Another
crucial ingredient is a sharp estimate on the logarithm of this probability for a type-configuration of
order N , which is given in Theorem 15. In particular, for the connection probability of the entire graph
GN , we obtain the following as a consequence of Theorem 15.

Corollary 6 (Connectivity probability of GN ). In the situation of Theorem 1 with S a finite set, then

lim
N→∞

1

N
logPN

(
G(N,x(N), 1

N
κN) is connected

)
=
∑
r∈S

µr log
(
1− e−(κµ)r

)
. (1.17)

Corollary 6 holds true even in the case of a general compact metric space S as a consequence of
Theorem 1.

The question about the connection probability of a random graph has attracted quite some interest.
Let us mention [DF14], which studies for the inhomogeneous random graph the regime where the
edge probability is of order logN

N
and proves a phase transition: the probability of the graph to be

connected either converges to 1 or to 0, depending on the parameters µ and κ (in our notation). In
our case, where the edge probability is of order 1

N
, we are in the case in which the probability of the

graph being connected is always going to 0. Corollary 6 above identifies the exponential rate of its
decay, which we think is of independent interest.

2 Limiting consequences

In this section we present and discuss the second part of our main results, some consequences of
the LDP of Theorem 1 that imply detailed and comprehensive limiting assertions about the inhomo-
geneous random graph. These results rely on involved variational analysis, using recursive formulas
and elements of combinatorial power series analysis as methods to explicitly construct minimizers.

Like many large-deviations principles, also Theorem 1 implies a law of large numbers. This is par-
ticularly interesting here, since it implies and illustrates the well-known phase transition about the
emergence of a giant cluster that was established in [BJR07], and which we record and discuss in
Section 2.1. There we also reveal our identification and interpretation of that phase transition in terms
of the minimizer(s) of the rate function of our LDP in Theorem 1. In Section 2.2, we compare to the
description of this phase transition that was given in [BJR07] in terms of a strongly related multi-type
branching process. Furthermore, in Section 2.3 we comment on the irreducibility of κ and explain
what the LDP looks like if this assumption is dropped. One of our main motivations for the present
work is explained in Section 2.4 where we map the inhomogeneous Erdős–Rényi graph on a par-
ticular particle process with a random coagulating mechanism and discuss the consequences of our
results for this process, in particular the phase transition of gelation type, i.e., the emergence of a gel,
a macroscopic particle.
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2.1 The phase transition

We give now comprehensive information about the well-known phase transition of the emergence of
a giant component for the inhomogeneous Erdős-Rényi graph using the LDP of Theorem 1. Indeed,
we derive a detailed picture of all the limiting microscopic and macroscopic clusters, according to their
type-configurations. In this way, we go substantially beyond the work [BJR07], to which we compare
in Section 2.2 below. Unlike [BJR07], our point of departure is not a multitype branching process, but
the variational analysis of the rate function. This leads us in a natural way to deal with a transformed
Poisson point process, which indeed shows deep connections with the multitype branching process.

We introduce first the minimizing microcluster distribution. Let us fix a kernel κ as in Theorem 1.
Recall that, for any measure ν on S , we denote by Qν the distribution of a Poisson point process on
S with intensity measure ν. For c ∈M(S), we introduce the measure λc onMN0(S) by

λc(dk) = eθc(S)τ(k)Qθc(dk), where θc(dr) = e−κc(r) c(dr). (2.1)

In words, λc is obtained by transforming the Poisson point process with intensity measure e−κc(r) c(dr)
with the function τ . It will turn out in the subcritical case (and is implicit in the following theorem) that
this measure possesses the integrated type configuration c, that is, the choice of the measure θc
implies the crucial property that cλc = c, where we recall the notation cλ(dr) =

∫
λ(dk) k(dr).

We now introduce an important quantity (which was shown to be crucial in [BJR07]) that we use for
separating the sub- and supercritical regimes. For any measure ν on S , we denote by L2(ν) the
usual L2-space of functions S → R with respect to the measure ν. We introduce the operator

Tκ,ν : L2(ν)→ L2(ν), Tκ,νf(x) =

∫
S
κ(x, y)f(y) ν(dy), (2.2)

and its operator norm

Σ(κ, ν) = ‖Tκ,ν‖L2(ν) = sup
f∈L2(ν) : ‖f‖L2(ν)=1

‖Tκ,νf‖L2(ν). (2.3)

Informally (an argument will follow in Section 3.1), in the special case that the support of ν is finite
(i.e., the case of a finite set S), then Tκ,ν can be identified with the matrix (κ(r, s)ν(s))r,s∈S , and
Σ(κ, ν) is its spectral radius.

Recall the rate function I and the reference measure µ from Theorem 1, now we describe its mini-
mizer.

Theorem 7 (Minimizers of the rate function). Suppose that κ and µ are as in Theorem 1, then the
following hold.

(i) If Σ(κ, µ) ≤ 1, then the unique minimizer of I is equal to (λµ, 0).

(ii) If Σ(κ, µ) > 1, then the unique minimizer of I is equal to (λc∗ , δµ−c∗), where the subproba-
bility measure c∗ is the unique solution to the characteristic equation

e−κc(r) c(dr) = e−κµ(r) µ(dr) on S, (2.4)

satisfying c∗ ≤ µ and Σ(κ, c∗) < 1.
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In particular, (
MiN ,MaN

) N→∞
=⇒

{
(λµ, 0) if Σ(κ, µ) ≤ 1,

(λc∗ , δµ−c∗) if Σ(κ, µ) > 1.
(2.5)

The proof of Theorem 7 is in Section 7. Most of it is original research, but take from [BJR07] the
discussion of the solutions of the fixed point equation (2.4), see Lemma 16 where we summarize it.

The law of large numbers in (2.5) is a standard consequence of an LDP with a unique minimizer for
the rate function. This is a very precise and detailed formulation of the famous giant-cluster phase
transition in the graph GN . Indeed, the following happens with probability tending to one exponentially
fast:

(i) In the subcritical phase Σ(κ, µ) < 1, all vertices (meaning all up to o(N)) are in microscopic
components, more precisely in the unique optimal configuration encoded by λµ. That is, for
any k ∈ MN0(S), the number of components with vertex set given by k is asymptotically
Neθµ(S)τ(k)Qθµ(dk), with θµ(dr) = e−κµ(r) µ(dr). We have cλµ = µ, no giant component
appears, and the number of vertices in mesoscopic components is o(N).

(ii) In the case Σ(κ, µ) > 1, a unique giant cluster appears with ∼ N(1 − c∗(S)) vertices
and type-configuration asymptotically equal to N(µ− c∗) with c∗ characterized by (2.4), since
θµ = θc∗ . The microscopic components are distributed according to the optimal distribution
λc∗ , and the number of vertices in mesoscopic components is o(N). Note that this microscopic
distribution is not saturated, that is Σ(κ, c∗) < 1, as in the one-type setting [AKP19]. That is,
we encounter a phase transition of explosion type, rather than of saturation type, see Remark
8 and [AKP19, Section 1.6].

Remark 8. (Phase transition: saturation versus explosion) Here is an explanation of the phase
transition in terms of a dynamical process. Consider a process of Erdős–Rényi graphs in increasing
connection probability, i.e., by adding more and more bonds between the vertices, such that compo-
nents grow. A suitable growth parameter is Σ(κ, c), where c stands for the rescaled type-configuration
of all the vertices; however, we consider Σ(κ, c) as a growing function of κ, the bond density. As we
explained in [AKP19, Section 1.6], the well-known giant-cluster phase transition (see also the discus-
sion below Theorem 1 below) is an explosion phase transition in the sense that, when crossing the
threshold one, a positive fraction of finite-size clusters merges rapidly into one giant cluster and, at
any time, every cluster keeps participating in merge events. In particular, the total microscopic mass
starts decreasing at the phase transition. In contrast, in condensation phase transitions like the famous
Bose–Einstein condensation first all microscopic components reach their maximal size (the saturated
state), before a macroscopic component, the condensate, appears, and then the microsocopic ones
do not change anymore, but all of the additional mass goes exclusively into the condensate.

Now we give the description of the two rate functions for the contracted LDPs of (MiN)N∈N and
(MaN)N∈N, respectively, from Corollary 4.

Theorem 9 (Minimizers of the contracted rate function). Suppose that κ and µ are as in Theorem 1.
Then the following hold for λ ∈ L and for α ∈ A, respectively.

IMi(λ) = inf
α∈A

I(λ, α) =

{
IMi(λ) + IMa(δµ−cλ) if cλ ≤ µ,

∞ otherwise,
(2.6)
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and

IMa(α) = inf
λ∈L

I(λ, α) =

{
IMa(α) + J(µ− cα) if cα ≤ µ,

∞ otherwise,
(2.7)

where for c ∈M(S)

J(c) =

{
IMi(λc) = 〈c, log dc

dµ
〉+ 1

2
〈c, κ(µ− c)〉 if Σ(κ, c) ≤ 1,

IMi(λb∗) + IMe(c− b∗) if Σ(κ, c) > 1,
(2.8)

where b∗ = b∗(c) ∈M(S) is the minimal non-trivial (i.e., not equal to c) solution to

κ(c− b∗)(r) b∗(dr) = (c− b∗)(dr), b∗ ≤ c, (2.9)

and it holds that Σ(κ, b∗) = 1.

The proof of Theorem 9 is in Section 6 for IMi and in Section 7 for IMa. The above theorem suggests
us a conditional law of large numbers. Informally, if we fix α ∈ A and a sequence of αN ∈ A such
that αN → α. Then, under the probability PN(·|MaN = αN) we have

MiN
N→∞
=⇒

{
λµ−cα if Σ(κ, µ− cα) ≤ 1,

λb∗ if Σ(κ, µ− cα) > 1.
(2.10)

Notice that when Σ(κ, µ − cα) > 1, then b∗ is not equal to µ − cα, therefore b∗ + cα 6= µ and the
missing mass is interpreted as being mesoscopic.

Remark 10. (Conditional limit with saturation phase transition) In formula (2.8) we encounter a
phase transition of saturation type in a conditional limit, in contrast to a transition of explosion type
of the unconditional one, see Remark 8. We refer back to Section 1.3 for the interpretation. Recall
that IMa(α) is the negative exponential rate of the probability of the event {MaN = α}. When
Σ(κ, µ − cα) ≤ 1, (2.8) shows that IMa(α) = IMa(α) + IMi(λµ−cα), implying that PN(MaN ≈
α) = PN(MiN ≈ λµ−cα , MaN ≈ α)eo(N). The interpretation of this is that, conditionally on the
event {MaN = α}, the non-macroscopic mass optimally organizes according to the microscopic
measure λµ−cα . In contrast, in the case Σ(κ, µ − cα) > 1, from (2.8) we see that IMa(α) =
IMa(α) + IMi(λb∗) + IMe(µ − cα − b∗). This means that, conditionally on the event {MaN =
α}, the non-macroscopic mass cannot be organized fully in microscopic clusters, but it is organized
microscopically according to λb∗ and the remaining vertices, with type-configuration N(µ − cα −
b∗), are put in mesoscopic components. The particular rescaled type-configuration b∗ is saturated
in the sense that Σ(κ, b∗) = 1. This means, given a fixed macroscopic type-configuration, if more
bonds are thrown into the graph, then first all microscopic clusters grow until they reach the saturated
state λb∗ , and then this is frozen and only mesoscopic clusters grow. The latter effect is present
in literature under the name of frozen percolation, see for example [CRY21, MN14, RT+09, Yeo18]
and the difference between the two phase transitions is reflected in substantial differences of the
hydrodynamic limit, as we summarize in Section 2.4.

2.2 Comparison to [BJR07]: branching-process interpretation

Our description of the limiting quantities that we presented in Section 2.1 is based on and derived
from our analysis of the minimizer of I . Therefore we found it most suitable to present them in terms
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of transformed Poisson point processes. However, in the analysis of finite-size components of random
graphs, it is common and was often successful to employ well-adapted branching processes for the
description. The main idea is that a component can be efficiently (sampled and) analyzed by exploring
it via such a branching algorithm. This idea was also a cornerstone in the seminal paper [BJR07], and
it produced a description of the limiting macroscopic component in terms of the extinction probability
of a crucial branching process. In this section, we recall this description and compare it to our Poisson
point process description, also including the microscopic components.

The main tool that is utilized in [BJR07] is a multitype branching process with type space S , in which
each particle of type r ∈ S has offspring with distribution that is a Poisson process with intensity
measure κ(r, s)µ(ds). We define ρ(r) ∈ [0, 1] as the probability of non-extinction of the branching
process, if it starts with precisely one particle that has type r ∈ S . We summarize the most important
facts from [BJR07] that have relevance for our comparison as follows (see [BJR07, Th. 3.1, Th. 3.12,
Th. 6.1, Th. 9.10]).

Theorem 11 (Existence of a giant component, [BJR07]). Suppose the situation of Theorem 1 is given.
Abbreviate GN = G(N,x, 1

N
κN), then the following hold.

(i) ρ : S → [0,∞) is the maximal solution of

ρ = 1− e−Tκ,µρ. (2.11)

(ii) If Σ(κ, µ) ≤ 1, then the largest component of GN has size O(logN) as N → ∞ with high
probability.

(iii) If Σ(κ, µ) > 1, then the largest component C1 of GN has size � N . More precisely, its
normalized empirical measure 1

N
ηx(C1) (recall (1.1)) converges weakly towards the measure

ρ(r)µ(dr), and ρ is positive µ-almost everywhere in S .

Part (iii) identifies the limiting type-configuration of the giant component as N times the measure with
density ρ with respect to µ, and part (i) characterizes ρ via the functional identity (2.11). It is easily
seen to be equivalent to the characteristic equation (2.4) that we use via the substitution ρ(r)µ(dr) =
µ(dr)− c∗(dr) or c∗(dr) = (1− ρ(r))µ(dr). In our analysis of the minimizer of I , (2.4) arose via
the Euler–Lagrange equations, while (2.11) emerged in [BJR07, Lemma 5.4] via a standard formula
for mixed moments of the offspring of the branching process (which itself uses standard Poisson point
process theory).

The statement in part (ii) about the order of the largest component is out of reach of our large-
deviations ansatz, which implies that all but o(N) vertices are in components of finite size.

About the distribution of the microscopic clusters of GN , however, there is no explicit result contained
in [BJR07]. However, we can give a description in terms of the above branching process as well. We
derive this description now from our form of the minimizer λµ defined in (2.1). Let Ξ(dr) be the total
progeny of type r of the branching process; then Ξ is a random measure on S . Then, if Pr denotes
the measure if the process starts from one individual of type r at time 0, we have

µ(dr)Pr(Ξ ∈ dk) = λµ(dk) k(dr), k ∈MN0(S) \ {0}, r ∈ S. (2.12)

In Remark 21 we explain this relation in the setting where S is a finite set. In words, the empirical
statistics of the microscopic components in GN in the subcritical case approximate the distribution of
the total offspring of the characteristic branching process.
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2.3 The reducible case

Let us briefly comment on the case where the kernel κ is reducible with respect to µ, i.e., S is com-
posed of least two irreducible classes (maximal irreducible subsets). Then the graph GN decomposes
into disconnected subgraphs with types in only one of these classes. Accordingly, the collection of all
the connected components can be decomposed into collections for each subgraph. In principle one
can apply the LDP of Theorem 1 to each of the micro/macro empirical measures of the subgraphs.
However, one might have the wish to have a joint LDP for the entire collection. Here one might ex-
pect that the same LDP holds true, and the decomposition into the subgraphs reappears in the rate
function in a natural way.

It turns out that this expectation is not disappointed, as it concerns the microscopic part, but is dis-
appointed for the macroscopic part. Actually, the formulation of the LDP slightly changes. The main
point is that two macroscopic components can very cheaply be connected to form a significantly
larger macroscopic component, just by throwing in one connecting edge, which cannot be seen on
the exponential scale. Hence, the macroscopic part is very unstable on the exponential scale under
adding edges. This argument fails for the microscopic part, since here we are talking now about� N
independent copies of a component of a finite size; if one wants to connect them such that the micro-
scopic statistics change, then one needs to change� N edges, whose probability is clearly seen on
an exponential scale.

As a consequence of this effect, we will see that the rate function is finite only if the macroscopic
measure α =

∑
n δyn is such that for each n the rescaled type-configuration yn is supported in one

of the irreducible classes. To be precise, we say that a measure y ∈ M(S) is connectable (with
respect to κ and µ) if its support is contained in an irreducible class. Furthermore, a measure α ∈ A
is called connectable if each of its atoms is connectable.

For the microscopic configurations λ connectability is implicitly ensured by the fact that the measure
λ has to be absolutely continuous with respect to τ Qµ in order to have a finite value of the rate
function; notice that τ(k) = 0 if supp(k) is not concentrated on a irreducible class of S . We also
have to restrain to a sequence of random graphs that are defined with respect to the same kernel κ,
rather than an approximating sequence κN , since each κN might be irreducible.

Theorem 12 (LDP in the reducible case). Suppose the setting as in Theorem 1, with the only excep-
tion that the kernel κ = κN on S × S is now assumed to be reducible, and that S is equal to the
support of µ. Then (MiN ,MaN) satisfies an LDP with rate function Ĩ defined by

Ĩ(λ, α) =

{
I(λ, α), if α is connectable,

+∞ otherwise,

where I is as in Theorem 1.

The proof follows in a straightforward way from our results, see Remark 36 for the finite type case.
The intuitive reason is that, for α that is not connectable, on the event {MaN ≈ α}, there is a
macroscopic component who has two non-trivial parts (i.e., each with � N types) in two different
irreducible classes, even though there cannot be any edge between these sets. Hence this event has
the probability zero.

We made the choice to state the theorem under the additional assumption that S corresponds to the
support of µ. If this was not the case, one could still approach a not connectable measure y ∈M(S)
with a finite exponential cost if, for each finite N , the support of y is contained in an irreducible class
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of κ with respect to µ(N). The proof would anyway be an extension of our finite type case results, but
it is out of our scope to cover this particular framework.

2.4 Motivation: an inhomogeneous coagulation process

With the present work, we actually continue our study of random particle models with coagulation in
the light of large-deviation arguments initiated in [AKP19]. Indeed, we make here the first step towards
a spatial model.

The model that we are interested in is the following. FixN atoms 1, . . . , N at the locations x1, . . . , xN
in a compact metric space S . We consider a Markov process in continuous time on the set of parti-
tions of [N ] = {1, . . . , N}. Starting with the monodispersed configuration M(0) = ({i})i∈[N ], at
any time any two subsets A,B in the current partition are replaced by their union A ∪ B after an
exponentially distributed random time with parameter

1

N

∑
i∈A,j∈B

κ(xi, xj), (2.13)

where a symmetric κ : S × S → [0,∞) is given. All these random times are supposed to be
independent. If M(t) denotes the partition at time t, then M(s) is a refinement of M(t) for any
s < t. Hence, the number of elements of M(t) is a non-increasing (random) process starting at N .
The special case of a singleton S and κ ≡ 1 (the homogeneous case) is the case of the Marcus–
Lushnikov model that we studied in [AKP19]. There we also explained how the Erdős–Rényi model
can be mapped onto the Marcus–Lushnikov model, and this works also in the inhomogeneous setting.
Indeed, to any unordered pair {i, j} ⊂ [N ] with i 6= j we associate an exponential random time
e(i, j) with parameter 1

N
κ(xi, xj). These random times are independent and we put a bond between

i and j as soon as e(i, j) elapses. At a fixed time t ∈ (0,∞), this graph has the distribution of the
inhomogeneous random graph Gt,N = G([N ], (x1, . . . , xN), 1

N
κt,N) with type space S and

κt,N(r, s) = N
(
1− e−

1
N
tκ(r,s)

)
, r, s ∈ S.

Notice that the random partition M(t) of the above coagulation model is equal in distribution to the
collection (Cj)j of the vertex sets of the components of Gt,N . The two main reasons for this fact are
the memorylessness of the exponential distribution and the property that the minimum of independent
exponential times is also exponential with a parameter that is the sum of all the parameters. The only
difference between the two models is that the graph model registers all the bonds that arrive within
each of the components (and do not change anything in the connectedness), while the coagulation
model just registers that a given set is connected.

We are interested in an LDP for the micro and the macro empirical measure of the partition sets of
M(t) in the limit N →∞, assuming the initial locations of particles are such that 1

N

∑N
i=1 δxi → µ

for some measure µ on S . Since κt,N → tκ, Theorem 1 applies also to the above inhomogeneous
coagulation process under the appropriate assumptions at a fixed time t. Furthermore, from Theorem
7, we obtain that the process (M(t))t∈[0,∞) has a phase transition at the time

tc =
1

Σ(κ, µ)
,

and we have a limiting distribution of the empirical micro and macro measures. This phase transition
is of explosion type, as described in Remark 8, and in the coagulation literature is usually called
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gelation. Further consequences for the limiting distribution of M(t) as N → ∞ follow in a natural
way, but we refrain from writing them down.

Interestingly, we can deduce that the minimizing process of microscopic cluster sizes satisfies the
multitype version of the Flory equation, which is a modification of the well-known Smoluchowski equa-
tion. This is formulated as follows. We think of an inhomogeneous deterministic coagulation process
(λt)t∈[0,∞), conceived as a process in L. Each particle k ∈ MN0(S) consists of k(S) atoms,
k({r}) of which have the type r for any r ∈ S . Coagulation is nothing but addition of measures in

this formulation, i.e., two particles k and k̃ coagulate to a particle k+ k̃. The kernel of this process is
given as

K(k, k̃) = 〈k̃, κk〉 =

∫
S2
κ(r, s) k(dr)k̃(ds), k, k̃ ∈MN0(S).

Then the weak formulation of the Flory equation is, for any test function f ∈ Cc(MN0(S)),

d

dt

∫
MN0 (S)

f(k)λt(dk) =
1

2

∫
MN0 (S)2

f(k + k̃)K(k, k̃)λt(dk)λt(dk̃)

−
∫
MN0 (S)2

f(k)K(k, k̃)λt(dk)λt(dk̃)

−
∫
MN0 (S)2

f(k)K(k, k̃)λt(dk)(λ0 − λt)(dk̃),

(2.14)

where λ0(dk) =
∫
S µ(dr) δδr(dk) is the initial condition, which expresses that µ is the atom type

distribution. In words, the time-evolution of (λt)t∈[0,∞) is described by saying that any coagulation of

two particles k and k̃ (i.e., replacement of k and k̃ by k+ k̃) happens with rateK(k, k̃). In our model
the last term in the right-hand side can be rewritten as −

∫
MN0 (S)

f(k)〈k, κ(µ − cλt)〉λt(dk). It

captures the interaction between the microscopic particles and the gel (the macroscopic mass) once
it forms.

See [NZ11, Section 3] for a mathematical discussion of the (well-known) homogeneous version of
the Flory equation and [Nor00, Section 2] for an introduction of the inhomogeneous version of the
equation. We now identify a solution (λt)t∈[0,∞) to (2.14).

Lemma 13 (Solution to the Flory equation). Assume that S is a finite state space and κ an irreducible
nonnegative symmetric matrix on S . Let λ0(k) =

∑
r∈S µr δδr(k) and for t ∈ (0,∞), define λt to

be the first component of the minimizer appearing in Theorem 7 with κ replaced by tκ.

Then t 7→ λt is a solution to the Flory equation (2.14) on [0,∞).

The proof of Lemma 13, as well as an explicit expression for (λt)t≥0, is given in Section 7.4. We are
confident that Lemma 13 is also true in the general setting of Theorem 7.

The Flory equation is closely related to the Smoluchowski equation, which we write in its multitype
version:

d

dt

∫
MN0 (S)

f(k)λt(dk) =
1

2

∫
MN0 (S)2

f(k + k̃)K(k, k̃)λt(dk)λt(dk̃)

−
∫
MN0 (S)2

f(k)K(k, k̃)λt(dk)λt(dk̃).

(2.15)

The Smoluchowski equation only considers the microscopic clusters, that is, it excludes any interac-
tion with a possible gel, which we see in the third line of the Flory equation (2.14). The solutions of
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A large-deviations principle for all the components in a sparse inhomogeneous random graph 17

equations (2.14) and (2.15) coincide until the gelation time tc = 1/Σ(κ, µ), after which differences
appear. At the level of the underlying stochastic microscopic models this difference is seen in terms of
the type of the phase transitions, as cited in Remark 8. The microscopic models of frozen percolation-
type, as in [CRY21, MN14, RT+09, Yeo18], correspond to (2.15), while models like ours correspond
to (2.14).

3 Connection probabilities and the characteristic equation

In this and the subsequent section we will exclusively deal with the finite type case, i.e., we assume
that S is a finite set. We assume that κ = (κ(r, s))r,s∈S ∈ [0,∞)S×S is a nonnegative and symmet-
ric matrix. For any N ∈ N, let κN be another such matrix, and assume that κN converges pointwise
to κ as N → ∞. We write vectors y ∈ RS as (yr)r and 〈a, f〉 =

∑
r arfr for the integral of a

function f with respect to a measure a on S .

Let k ∈ NS0 and let x = (x1, . . . , x|k|) ∈ S |k| be a type vector which is compatible with k, meaning

that
∑|k|

i=1 δxi = k. The aim of this section is to understand the asymptotic behavior of the connection
probability of the graph G(|k|,x, 1

N
κN) given by

pN(k) = P
(
G(|k|,x, 1

N
κN) is connected

)
. (3.1)

It will be crucial to distinguish between the following two cases. In the first case, we keep k ∈ NS0
fixed, whereas N → ∞. We will refer to pN(k) as the connection probability of a microscopic
cluster. In the second case we consider a sequence k(N) ∈ NS0 and assume that for any s ∈ S the

limit limN→∞
k
(N)
s

N
= ys exists and the vector y = (ys)s∈S is non-trivial. In that case we refer to

pN(k(N)) as the connection probability of a macroscopic cluster.

It will be easy to see that the connection probability of a microscopic cluster is asymptotically close to
the cost of connecting the cluster via a spanning tree. Let us recall the combinatorial quantity τ that
collects the weight of all spanning trees. For k ∈ NS0 we defined

τ(k) =
∑

T∈T (k)

∏
{i,j}∈E(T )

κ (xi, xj) , (3.2)

where x ∈ S |k| is compatible with k and T (k) is the set of spanning trees on [|k|]. By τN we
will denote the same quantity, but defined with respect to the kernel κN . The following lemma is an
immediate consequence of Lemma 23 that we will prove in Section 3.2.

Lemma 14. Fix k ∈ NS0 . Then, as N →∞,

pN(k) = N−(|k|−1)τN(k)(1 + o(1)). (3.3)

Understanding the asymptotics of the connection probability of a macroscopic cluster is much harder.
Most of this section is dedicated to the verification of the following result, which is the multi-type
version of a result from [Ste70], see [AKP19, Lemma 2.4].

Theorem 15 (Asymptotics of the connection probability of macroscopic clusters). Fix y ∈ [0, 1]S \
{0}. Let {k(N)}N∈N be a sequence in NS0 such that limN→∞

k
(N)
r

N
= yr for all r ∈ S and assume

that {k(N)
r }N is bounded in N for all r /∈ supp(y). Further, assume that τ(k(N)) > 0 for all but

finitely many N ∈ N. Then

lim
N→∞

1

N
log pN(k(N)) =

∑
r∈S

yr log
(
1− e−κyr

)
∈ [−∞, 0]. (3.4)
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L. Andreis, W. König, H. Langhammer, R.I.A. Patterson 18

We use the convention 0 log 0 = 0 and log 0 = −∞.

The assumptions that {k(N)
r }N is bounded for all r /∈ supp(y) and τ(k(N)) > 0 for almost allN ∈ N

are only needed for the lower bound in (3.4). If the right-hand side of (3.4) is not equal to −∞, then
the assumption on τ(k(N)) is crucial for the lower bound, since it implies that pN(k(N)) > 0 for all but
finitely many N . Note that if y > 0 on S and κ is irreducible with respect to y, then both assumptions
for the lower bound are satisfied.

Roughly, the idea of the proof is to construct a larger graph that contains with high probability a
macroscopic component k(N). In order to choose the right parameters for the larger graph we have to
understand a certain characteristic equation that describes how a graph will split into several micro-
scopic clusters and a macroscopic one.In Section 3.1 we investigate the characteristic equation from
the point of view of the microscopic clusters, more precisely, from the point of view of weighted trees
and their generating function. In Section 3.2 we provide the asymptotics of the connection probabilities
for the two cases.

3.1 The characteristic equation and tree combinatorics

In this section we discuss a power series representation of the solution of fixed point equation (2.4) in
the finite type setting. This will be crucial both in the proof of Theorem 15 and in the analysis of the
minimizers of the rate function in Section 6.

We rewrite the equation in the following way. Fix ν = (νs)s∈S ∈ [0,∞)S . We say that ν∗ = (ν∗s )s∈S
is a solution to the characteristic equation with respect to ν if

ν∗s e−(κν∗)s = νse
−(κν)s , s ∈ S. (3.5)

Recall that this is equivalent to the characteristic equation (2.11) that was studied in [BJR07] via the
substitution ν = µ and ρ = 1 − dν∗

dν
. However, we will need equation (3.5) on different occasions

and for several choices of ν. Note that any solution ν∗ to (3.5) is necessarily non-negative and for
any s ∈ S we have that ν∗s > 0 if and only if νs > 0. Also note that ν itself is always a solution.
Whether there exists a non-trivial solution ν∗ (i.e., ν∗ 6= ν) or not will turn out to depend on the
quantity Σ(κ, ν), introduced in (2.2) and (2.3):

Σ(κ, ν) = ‖Tκ,ν‖ν = sup
{
‖Tκ,νf‖ν : f ∈ [0,∞)S , ‖f‖ν = 1

}
= sup

{(∑
r∈S

νr

(∑
s∈S

κ(r, s)f(s)νs

)2)1/2

: f ∈ [0,∞)S ,
∑
r∈S

νrf(r)2 ≤ 1
}
,

(3.6)

where we write ‖ · ‖ν for the norm on L2(RS , ν) and also for the corresponding operator norm. We
note that Σ(κ, ν) is equal to the spectral radius of the matrix Tκ,ν = (κ(r, s)νs)r,s∈S , as is seen
from an elementary analysis of (3.6), also using Frobenius eigenvalue theory. Indeed, the variational
equations for the maximizer f in (3.6) (with

∑
r νrf(r)2 = 1 instead of ≤ 1) say that f is a positive

eigenvector of the matrix T 2
κ,ν . Since also the (up to positive multiples, unique) positive eigenvector

of Tκ,ν is a positive eigenvector of T 2
κ,ν , we have that f is the Frobenius eigenvector of Tκ,ν . The

corresponding Frobenius eigenvalue, i.e., the spectral radius, is equal to Σ(κ, ν).

Another elementary application of Frobenius eigenvalue theory yields that the map ν 7→ Σ(κ, ν) is
non-decreasing with respect to componentwise ordering.

Now we cite the results from [BJR07] regarding the solutions of the characteristic equation.
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A large-deviations principle for all the components in a sparse inhomogeneous random graph 19

Lemma 16. Let ν ∈ [0,∞)S .

(i) If Σ(κ, ν) ≤ 1, then the only solution ν∗ to the characteristic equation (3.5) satisfying ν∗ ≤ ν
is given by ν∗ = ν.

(ii) If Σ(κ, ν) > 1, then there exists a solution ν∗ to (3.5) that satisfies ν∗ ≤ ν and ν∗ 6= ν.
If additionally κ is irreducible, then ν∗ is the only solution to (3.5) that satisfies ν∗ ≤ ν and
ν∗ 6= ν. Further, Σ(κ, ν∗) < 1.

Proof. See Theorem 6.2 and Theorem 6.7 in [BJR07] and substitute ρ = 1− dν∗

dν
.

Our aim is to verify the following.

Proposition 17. Let ν ∈ [0,∞)S . Then for any r ∈ S∑
k∈NS0

τ(k)kr
∏
s∈S

(νse
−(κν)s)ks

ks!
= ν∗r (3.7)

where ν∗ is the smallest solution to (3.5).

The result of Proposition 17 will be used in Section 3.2 to derive the asymptotics of the probability
that a macroscopic set of vertices is connected. Further, it will be used in Section 6 to optimize the
microscopic part of the rate function. The left-hand side of equation (3.7), when divided by νr, is
equal to the extinction probability of the branching process that we mentioned in Section 2.2. This
observation, together with additional results from [BJR07], is already enough to prove Proposition
17. However, we will provide a different proof that mainly uses the structure of the power series and
additionally gives us a refined control of the convergence of the series, thanks to the estimates given
in Lemma 20. They will be used later to bound probabilistic terms that we derive from components of
mesoscopic sizes, but also in Section 6 where we need uniform convergence for a certain family of
power series.

We now prepare for the proof of Proposition 17. We define a function Γ = (Γr)r∈S : [0,∞)S →
[0,∞)S by putting, for θ = (θs)s∈S ∈ [0,∞)S ,

Γr(θ) :=
∑
k∈NS0

τ(k)kr
∏
s∈S

θkss
ks!
∈ [0,∞] for r ∈ S. (3.8)

The idea of the proof is to show that θ 7→ Γ(θ) is the inverse of the function ν 7→ θ(ν) := νe−κν on
the domain {ν[0,∞)S : Σ(κ, ν) ≤ 1}. It turns out that this is an easy example of a technique known
as Lagrange inversion, where directed trees are used to extract the variables of a power series, see
[JKT19, JKT21] for more general results on this topic. The relation of our combinatorial quantity τ to
directed trees is given in the following lemma. The second statement will be useful to derive a criterion
for analyticity of the power series defined in (3.8).

Lemma 18. Let k ∈ NS0 and r ∈ S . Then the following holds.

1 Let
−→
T r(k) denote the set of directed trees with vertex set {1, . . . , |k|}, root of type r and

edges directed away from the root. Then

τ(k)kr =
∑

T∈
−→
Tr(k)

∏
(i,j)∈E(T )

κ(xi, xj). (3.9)
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2 Write S0 := supp(k) ⊂ S and
−→
Tr(S0) for the set of all directed trees with vertex set S0, root

vertex given by r and edges directed away from the root. Then

τ(k)kr =

(∏
s∈S0

(κk)ks−1
s

)
×∆r(k) (3.10)

where
∆r(k) =

∑
A∈
−→
Tr(S0)

∏
(s,s′)∈E(A)

κ(s, s′)ks. (3.11)

Proof. (1) Given some vertex i ∈ [|k|] of type r, we can turn any undirected tree from T (k) uniquely
into a directed tree that has vertex i as its root by giving to each edge the direction away from the
root. For each undirected tree T in T (k) there are kr ways to choose the root, hence the weight of
T appears kr times on the right-hand side of (3.9).

(2) We use the formula derived in [BM14, Theorem 2] with xs,s′,i := κ(s, s′) = κ(s′, s). Note that
in [BM14] the edges of the trees are directed towards the root. Adapted to our notation their formula
reads as ∑

T∈
−→
Tr(k)

∏
s,s′∈S0

κ(s, s′)#{(i,j) : xi=s,xj=s
′} =

(∏
s∈S0

(κk)ks−1
s

)
×∆r(k). (3.12)

By (3.9) we have that

τ(k)kr =
∑

T∈
−→
Tr(k)

∏
(i,j)∈E(T )

κ(xi, xj) =
∑

T∈
−→
Tr(k)

∏
s,s′∈S0

κ(s, s′)#{(i,j) : xi=s,xj=s
′},

so together with (3.12) we have proven equation (3.10). Note that in the case r /∈ S0, we have that−→
Tr(S0) = ∅, so both sides of (3.12) are 0.

Lemma 19. If Γ is analytic in θ (i.e., Γr is analytic in θ for all r ∈ S), then for all r ∈ S

Γr(θ) = θr exp ((κΓ(θ))r) . (3.13)

Proof. Using formula (3.9) we can rewrite the power series using directed trees. Given a tree T in−→
T r(k) and some h ∈ NS0 we say that a vertex i ∈ [|k|] is of parent-type (r, h) if i is of type
r and points to exactly hs vertices of type s for any s ∈ S . In that case, its weight is defined by
w(i) =

∏
s∈S κ(r, s)hs =: gr,h. The weight of the tree T is defined by w(T ) :=

∏|k|
i=1w(i).

Defining gr(x) =
∑

h∈NS0
gr,h
∏

s∈S
xhss
hs!

, for x ∈ RS , we can apply the multinomial theorem to see

that gr(x) = exp{(κx)r}. Althogether, we have that

Γr(θ) =
∑
k∈NS0

( ∑
T∈
−→
Tr(k)

w(T )
)∏
s∈S

θkss
ks!

,

which is an exponential generating function, evaluated in θ ∈ RS and shall be understood as a formal
power series. We now cite a fact from [Ges87] (see the proof of Theorem 1):

Γr(θ) = θr
∑
h∈NS0

gr,h
∏
s∈S

(Γs(θ))
hs

hs!
= θrgr(Γ(θ)), r ∈ S, (3.14)
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where all equations denote equality of formal power series, i.e., we have equality of the coefficients
of θkss . In particular, Γr(θ) might be infinite. However, by our assumption that Γ is analytic in θ,
equation (3.14) holds in the usual sense, i.e., all series in (3.14) converge absolutely. Recalling that
gr(x) = exp{(κx)r}, we have verified that (3.13) holds.

The idea behind proving (3.14) is to decompose the set of trees with root of type r into sets of trees
with root of parent-type (r, h) for each h ∈ NS0 . For fixed h ∈ NS0 , one then decomposes a tree with
root of parent-type (r, h) into a single vertex of type r and exactly hs many trees with root of type s
for each s ∈ S . By studying how this decomposition affects the exponential generating function, one
obtains the formula.

Next, we derive a criterion for analyticity of the map θ 7→ Γ(θ), i.e., about the domain of convergence
of the corresponding power series. We need to introduce the quantity

χ(κ, θ) = inf
{〈

v, log
v

(κv)θ

〉
: v ∈M1(S), v � θ

}
, (3.15)

whereM1(S) denotes the set of probability measures on S . One can easily see that θ 7→ χ(κ, θ)
is lower semi-continuous.

Lemma 20. 1 For any θ ∈ [0,∞)S and r ∈ S ,∑
k∈NS0 : |k|=n

τ(k)kr
∏
s∈S

θkss
ks!

= eo(n)e−n[χ(κ,θ)−1], n→∞. (3.16)

2 Fix θ ∈ [0,∞)S . If χ(κ, θ) > 1, then for any r ∈ S the series Γr defined in (3.8) is analytic in
θ. If on the other hand χ(κ, θ) < 1, then Γr(θ) diverges.

3 For arbitrary ν ∈ (0,∞)S and θs(κ, ν) = νse
−(κν)s , s ∈ S , we have that

χ(κ, θ(κ, ν)) = Σ(κ, ν)− log Σ(κ, ν) ≥ 1 (3.17)

with equality if and only if Σ(κ, ν) = 1.

Proof. (1) We will use the identity (3.10) from Lemma 18. Let n ∈ N. We writeM(n)

1 (S) for the set
of all probability measures v on S satisfying nv ∈ NS0 . For any k ∈ NS0 with |k| = n we substitute
k = nv to get∑

k∈NS0 : |k|=n

τ(k)kr
∏
s∈S

θkss
ks!

=
∑

v∈M(n)
1 (S)

( ∏
s∈supp(v)

(n(κv)s)
nvs−1

)∏
s∈S

θnvss

(nvs)!
∆r(nv)

=
∑

v∈M(n)
1 (S)

eo(n)n−|supp(v)|en
[

1−
∑
s vs log vs

(κv)sθs

]
∆r(nv),

where we used Stirlings formula N ! = NNe−Neo(N) as N → ∞ and assumed throughout that
k � θ and v � θ respectively. Note that

∣∣M(n)

1 (S)
∣∣ = eo(n) and that the terms n−|S| and ∆r(nv)

are only polynomial in n, thus also of order eo(n). Collecting everything, we arrive at (3.16).

(2) As a consequence of (1) we get the following. If χ(κ, θ) > 1, then the series Γr(θ) converges
and since the mapping θ 7→ χ(κ, θ) is lower-semicontinuous, we get that Γr is analytic in θ. If
χ(κ, θ) < 1, then Γr(θ) diverges.
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(3) Put φ(x) = x log x for x ≥ 0. Inserting the definition θs(ν) = νse
−(κν)s , s ∈ S , we can estimate

for any v ∈M1(S)〈
v, log

v

(κv)θ(ν)

〉
=
〈
v, log

v

(κv)ν

〉
+ 〈v, κν〉 = 〈ν, κv〉

∑
r∈S

(κv)rνr
〈ν, κv〉

φ
( vr

(κv)rνr

)
+ 〈v, κν〉

≥ 〈ν, κv〉φ
( ∑

r vr
〈ν, κv〉

)
+ 〈v, κν〉 = − log〈ν, κv〉+ 〈ν, κv〉

where the estimate is due to Jensen’s inequality applied to the convex function φ. Further, we used
the fact that v is a probability measure and the symmetry of κ. Since φ is even strictly convex, the
application of Jensen’s inequality gives an equality if and only if v is such that the map S 3 r 7→
vr/((κv)rνr) is constant, i.e., if there is some a ∈ R such that (κv)r = avr

νr
for any r ∈ S .

Clearly, a > 0. It follows that 〈ν, κv〉 = a and that w = (vr/νr)r∈S is an eigenvector of the matrix
Tκ,ν = (κ(r, s)νs)r,s∈S with eigenvalue a. Our assumption ν > 0 and the irreducibility of κ imply
that Tκ,ν is also irreducible. Hence the Perron–Frobenius theorem gives that, if a would be smaller
than the spectal radius Σ(κ, ν) of Tκ,ν , then w could not be non-negative, implying that v = (wrνr)r
would not be inM1(S). Hence, a is necessarily equal to Σ(κ, ν) and equation (3.17) holds. Since
x− 1 ≥ log x holds for any x ≥ 0 with equality if and only if x = 1, the rest of the statement in (3)
holds.

Now, we can give the proof of Proposition 17.

Proof of Proposition 17. We will proceed in three steps and weaken the assumptions on ν gradually.

(1) Assume that ν ∈ (0,∞)S and that κ is irreducible with respect to ν. Consider the case Σ(κ, ν) 6=
1, then by Lemma 20 we have that χ(κ, θ(ν)) > 1 and thus for any r ∈ S the power series Γr
defined as in (3.8) is analytic in θ(ν). Applying Lemma 19 and using the definition of θ(ν) we get that

νr exp(−(κν)r) = θr(ν) = Γr(θ(ν)) exp(−(κΓ(θ(ν)))r) (3.18)

for any r ∈ S . In other words, Γ(θ(ν)) is a solution of (3.5). Now, Lemma 16 gives that ν = Γ(θ(ν)) if
Σ(κ, ν) ≤ 1 and the claim follows. If Σ(κ, ν) > 1, then by Lemma 16 there exists (a strictly positive)
ν∗ ≤ ν, ν∗ 6= ν, solving equation (3.5) and satisfying Σ(κ, ν∗) < 1. So, Γ(θ(ν)) = Γ(θ(ν∗)) = ν∗

follows by applying the previous case.

Now, consider the case Σ(κ, ν) = 1, which is equivalent to χ(θ(ν)) = 1. Let ν(n) ↗ ν, in particular
Σ(κ, ν(n)) < 1 for all n. Then by Fatou’s lemma and the first case we get that for any r ∈ S

Γr(θ(ν)) =
∑
k∈NS0

τ(k)kr
∏
s

θs(ν)ks

ks!
≤ lim inf

n→∞

∑
k∈NS0

τ(k)kr
∏
s

θs(ν
(n))ks

ks!
= lim inf

n→∞
ν(n)

r = νr.

(3.19)
Put ν∗ := Γ(θ(ν)) and assume towards a contradiction that ν∗ 6= ν. Then there exists s ∈ S
such that ν∗s < νs and by irreducibility of κ there exists at least one s′ such that κ(s′, s) > 0,
and thus κ(s′, s)ν∗s < κ(s′, s)νs. Hence the Perron–Frobenius theorem implies that Σ(κ, ν∗) < 1.
Therefore the power series is analytic in θ(ν), so by Lemma 19 and the definition of θ(ν) we get
that ν∗ exp(−κν∗) = ν exp(−κν). Applying Lemma 16 yields ν∗ = ν in contradiction to our
assumption.
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(2) Let ν ∈ (0,∞)S and an arbitrary κ. Then we can decompose S into disjoint sets Sj , j ∈ J , such
that κ(j) = κ|Sj×Sj is irreducible with respect to ν(j) = ν|Sj for any j ∈ J . For any j ∈ J we can
apply (1) to get that

Γ(j)

r (θ(ν(j))) :=
∑
k∈N

Sj
0

τ(k)kr
∏
s∈Sj

(ν(j)e−(κ(j)ν(j))s)ks)

ks!
= ν(∗,j)

r , r ∈ Sj, (3.20)

where ν(j) solves equation (3.5) on Sj . Observe that if k ∈ NS0 is such that supp(k) 6⊂ Sj holds for
any j ∈ J , then τ(k) = 0. Consequently for fixed r and j such that r ∈ Sj we get that

Γr(θ(ν)) = Γ(j)

r (θ(ν(j))) (3.21)

where we also used that (κν)s = (κ(j)ν(j))s for s ∈ Sj holds by construction. Define ν∗ = (ν∗s )s∈S
by putting ν∗s := ν(∗,j)

s if s ∈ Sj . Then it is easy to verify that ν∗ is the smallest solution to (3.5).

(3) Let ν ∈ [0,∞)S . Observe that for r /∈ supp(ν) we have Γr(θ(ν)) = 0. The rest follows by
restricting to supp(ν) and applying (2).

Remark 21. Connection with branching processes. For the reader who is familiar with the results
and techniques used in [BJR07], a natural question that arises is about the connection between the
power series that we study in Proposition 17 and the multi-type branching process that is used in
[BJR07] to explore the clusters of the random graph, as we mention in Section 2.2. Indeed, both
objects carry the same information, as is shown in the following lemma.

Lemma 22. Fix ν ∈ (0,∞)S . Let X be a multi-type branching process, where the individuals are
equipped with types from S and an individual of type r ∈ S gives birth to a number of individuals of
type s ∈ S that is Poisson distributed with parameter κ(r, s)νs, independently for each s ∈ S . Let Ξ
be the vector in NS0 that counts the total progeny of the processX according to their types. For r ∈ S
let Pr be the probability measure under which X starts with one single individual of type r. Then

Pr(Ξ = k) = τ(k)
kr
νr

∏
s∈S

(νse
−(κν)s)ks

ks!
, k ∈ NS0 . (3.22)

We omit the proof of the lemma, which comes from combinatorial manipulations and properties of the
Poisson distribution of the offspring.

As a consequence, the result of Proposition 17 can be reformulated in terms of the branching process
X . If ρ∗r denotes the probability that the process X goes extinct under Pr, then

ρ∗r =
∑
k∈NS0

Pr(Ξ = k) =
1

νr

∑
k∈NS0

τ(k)kr
∏
s∈S

(νse
−(κν)s)ks

ks!
, r ∈ S. (3.23)

Furthermore, by substituting ρ∗ := ν∗

ν
, the statement of Proposition 17 is equivalent to the fact that

the survival probability ρ = 1− ρ∗ is the maximal non-negative solution to

ρ = 1− e−κ(ρν)

as stated in Theorem 11.

Recall that, in the single-type case |S| = 1, the right-hand side of (3.22) is identical to the Borel
distribution on N0. Hence, we call it also in the general case where S is a finite set the multi-type
Borel distribution and denote it by Boκ,ν . It is a probability measure on NS0 if and only if ρ∗ = 1.
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3.2 Asymptotics for the connection probability

Using the results from Section 3.1 we can now study the connection probabilities for microscopic and
macroscopic clusters, respectively. The first result for the microscopic clusters is elementary and uses
well-known arguments. The result formulated in Theorem 15 concerning the connection probabilities
of macroscopic clusters is, to the best of our knowledge, a new one and might be of independent
interest in the theory of random graphs.

Recall the definition of τ(k) from (3.2) and that κ ∈ [0,∞)S×S is the limiting matrix of the sequence
κN as N → ∞. We define τN(k) as in (3.2) with respect to κN instead of κ. We will assume that
κN(r, s) ≤ N for any r, s ∈ S , which holds in the finite type setting if N ∈ N is large enough.

Lemma 23 (Bounds for the connection probability of microscopic clusters). For any N ∈ N and
k ∈ NS0 , (

1− ‖κN‖∞
N

)|k|2/2
≤ pN(k)

N1−|k|τN(k)
≤ 1. (3.24)

Proof. We start with the upper bound. For T ∈ T (k) we denote by ΩT the event that the edge set
E(T ) of T is contained in the edge set of G(|k|,x, 1

N
κN). Since G(|k|,x, 1

N
κN) has to contain at

least one spanning tree in order to be connected, we have

pN(k) = P
( ⋃
T∈T (k)

ΩT

)
≤
∑

T∈T (k)

P(ΩT ) =
∑

T∈T (k)

∏
{i,j}∈E(T )

κN (xi, xj)

N
≤
(

1

N

)|k|−1

τN(k),

where we used the fact that each T ∈ T (k) has exactly |k| − 1 edges.

Now we continue with the lower bound. For T ∈ T (k) we denote by Ω̃T the event that the edge set
of G(|k|,x, 1

N
κN) is equal to E(T ). Note that the events Ω̃T , T ∈ T (k), are disjoint and therefore

pN(k) ≥
∑

T∈T (k)

P(Ω̃T ) =
∑

T∈T (k)

( ∏
{i,j}∈E(T )

κN(xi, xj)

N

)
×

∏
{i,j}/∈E(T )

(
1− κN(xi, xj)

N

)

≥
(

1− ‖κN‖∞
N

)(|k|2 )−(|k|−1)(
1

N

)|k|−1

τN(k)

≥
(

1− ‖κN‖∞
N

)|k|2/2(
1

N

)|k|−1

τN(k).

Now we turn to the proof of Theorem 15, which comes as a consequence of the following Lemmas
25 – 28. The intuitive idea of the proof is to embed G(|k(N)|,x, 1

N
κN) in a larger random graph with

vertex set given by some m(N) ∈ NS0 such that the component k(N) appears with high probability as
the typical giant component in this graph. We make heavy use of the expansion in Lemma 24, which
is a straight forward multi-type generalization of equation (4) from [Gil59].

Lemma 24. Fix m ∈ NS0 and r ∈ S such that mr ≥ 1. Then the following formula holds

1 =
∑

h∈NS0 : er≤h≤m

[∏
s∈S

(
ms − δr,s
hs − δr,s

)]
pN(h)

∏
s,s̃∈S

(
1− κN(s, s̃)

N

)hs(ms̃−hs̃)
. (3.25)
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Proof. Consider the graph G(|m|, x, 1
N
κN) where x is a fixed vector compatible with m. Fix a vertex

i ∈ {1, . . . , |m|} of type r. For fixed h ∈ NS0 with er ≤ h ≤ m denote by Ω(h) the event that
the connected component containing i is given by some set C ⊂ {1, . . . , |m|} that contains exactly
hs vertices of type s for each s ∈ S . We claim that the summand on the right-hand side of (3.25)
is the probability of Ω(h). Indeed, there are

∏
s∈S
(
ms−δr,s
hs−δr,s

)
possibilities to choose a set C \ {i}

from {1, . . . , |m|} \ {i}. The probability that C is the connected component containing vertex i is
given as the product of pN(h), i.e., the probability that it is connected, and the probability that no
edge exists between C and its complement {1, . . . , |m|} \ C , which is easily seen to be equal
to
∏

s,s̃∈S(1 − κN (s,s̃)
N

)hs(ms̃−hs̃). Equation (3.25) follows by the observation that the events Ω(h),
er ≤ h ≤ m, form a decomposition of the underlying probability space.

The idea is now to pick m = m(N) in such a way that the summand for h = k(N) is maximal, such
that, on the exponential scale, the right-hand side of (3.25) can be replaced by just this summand. It
will turn out that the correct choice is m(N) ∼ Nν with νr = yr/(1 − e−(κy)r) for r ∈ S . Intuitively,
this choice of ν comes from inverting equation (2.11): indeed one can see that y = ρν where ρ solves

ρ = 1− e−Tκ,νρ.

Notice that the assumption y � κy is crucial for ν to be well-defined. While in the upper bound of
Lemma 25 this is not important (in that case we see from (3.27) that the upper bound of pN(k(N))
converges to 0), we need it in order to get a non-trivial lower bound in Lemma 27.

Lemma 25 (Upper bound in (3.4)). Let k ∈ NS0 with kr ≥ 1 for some r ∈ S . Let m ∈ NS0 such that
m ≤ k. Then

pN(k) ≤
[∏
s∈S

(
ms − δr,s
ks − δr,s

)]−1 ∏
s,s̃∈S

(
1− κ(s, s̃)

N

)−ks(ms̃−ks̃)
. (3.26)

Fix y ∈ [0, 1]S \ {0}. Let {k(N)}N∈N be a sequence in NS0 such that limN→∞
k
(N)
r

N
= yr for all

r ∈ S . Then

lim sup
N→∞

1

N
log pN(k(N)) ≤

∑
r∈S

yr log
(
1− e−(κy)r

)
, (3.27)

where the right-hand side takes the value −∞ when y 6� κy.

Proof. The inequality (3.26) is a direct consequence of (3.25), where from the right-hand side we pick
only the summand for h = k, which is present since m ≥ k.

Let us focus now on (3.27). Let m(N) ∈ NS0 be such that m(N)
r : = bk(N)

r (1− e−
1
N

(κk(N))r)−1c for
all r ∈ S , therefore m(N) ≥ k(N). Fix r ∈ S such that k(N)

r ≥ 1 and consider (3.26).

For brevity we will write k and m instead of k(N) and m(N). With the help of Stirling’s formula
n! = (n/e)neo(n) and the exponential limit theorem limn→∞(1 + c

n
)n = ec and some elemen-

tary calculation, we get that, as N →∞,[∏
s∈S

(
ms − δr,s
ks − δr,s

)] ∏
s,s̃∈S

(
1− κN(s, s̃)

N

)ks(ms̃−ks̃)
= exp

(
−
〈
k, log

k

m

〉
−
〈
m− k, log

m− k
m

〉)
× exp

(
− 〈m− k, κk〉

)
eo(N)

= exp
(
−
〈
k, log(1− e−

1
N
κk)
〉)

eo(N),
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where in the last step we used that k/m = 1 − e−
1
N
κk (by the definition of m). Now, we insert the

asymptotics in (3.26) and see that

pN(k(N)) ≤ exp
(
N
∑
r∈S

k(N)
r

N
log
(
1− e−

1
N

(κk(N))r
))

eo(N).

Consequently, the claim in (3.27) follows, including the convention for y 6� κy.

In order to prove the lower bound we need the following auxiliary lemma.

Lemma 26. For h′, h ∈ NS0 with h′ ≤ h we have, for any N ∈ N,

pN(h′) ≤ pN(h)
∏
r∈S

(
1− e−

1
N

(κh′)r
)−(hr−h′r). (3.28)

Proof. Let I := [|h|] and let x = (xi)i∈I be compatible with h, i.e.,
∑

i∈I δxi = h. Consider the
graph G := G(|h|, x, 1

N
κN) on the vertex set I . There exists I ′ ⊂ I such that x′ = (xi)i∈I′ is com-

patible with h′. The subgraph G′ of G that is induced by I ′ can be identified with G(|h′|, x′, 1
N
κ′N),

where κ′ denotes the restriction of κ to I ′ × I ′. If G′ is connected and for any i ∈ I \ I ′ there is an
edge {i, j} ∈ E(G) with j ∈ I ′, then also G is connected. Therefore, using that 1 − x ≤ e−x for
any x ∈ R, we have

pN(h) ≥ pN(h′)
∏
r∈S

(
1−

∏
s∈S

(
1− κN(r, s)

N

)h′s)hr−h′r
≥ pN(h′)

∏
r∈S

(
1− e−

1
N

(κh′)r
)hr−h′r .

In the following lemmas we give the lower bound for the connection probabilities in the macroscopic
setting. It is sufficient to restrict to the case y � κy, since otherwise the limit is already ensured to
be −∞ by Lemma 25.

Lemma 27 (Lower bound in (3.4) for irreducible κ). Fix y ∈ (0, 1]S satisfying y � κy and assume

that κ is irreducible with respect to y. Let {k(N)}N∈N be a sequence in NS0 such that limN→∞
k
(N)
r

N
=

yr for all r ∈ S and assume that τ(k(N)) > 0 holds for all N ∈ N. Then

lim inf
N→∞

1

N
log pN(k(N)) ≥

∑
r∈S

yr log
(
1− e−κyr

)
. (3.29)

Proof. For δ ≥ 0 satisfying 2δ < inf{ys : s ∈ S} define y(δ) := y − δ as well as

ν(δ)

s :=
y(δ)
s

1− e−(κy(δ))s
, for s ∈ S. (3.30)

For purely technical reasons that will become apparent later, we cannot work directly with ν := ν(0).
Note that for all δ ≥ 0 our construction ensures that with respect to ν(δ) the characteristic equation
(3.5) has a non-trivial solution, which is equivalent to Σ(κ, ν(δ)) > 1 by Lemma 16. Let m(N,δ) ∈ NS0
be such that m(N,δ)

r = b(k(N) −Nδ)(1− e−
1
N

(κ(k−Nδ))r)−1c. In particular, limN→∞
m(N,δ)

N
= ν(δ).

Clearly, we have that ν(δ) → ν as δ → 0. Note that y ≤ ν. Moreover, there exist δ∗ > 0 and N0

such that m(N,δ) ≥ k(N) for all δ ≤ δ∗ and N ≥ N0, which we will assume from now on. For brevity
we will write k and m(δ) instead of k(N) and m(N,δ).
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Fix r ∈ S with yr > 0 and note that by the assumption y � κy this implies (κy)r > 0 and thus
yr < νr. From here on, h will always denote an element in the set {h ∈ NS0 : er ≤ h ≤ m(δ)}. For
such h abbreviate

a(δ)

N (h) :=
[∏
s∈S

(
m(δ)
s − δr,s
hs − δr,s

)]
pN(h)

∏
s,s̃∈S

(
1− κN(s, s̃)

N

)hs(m(δ)
s̃ −hs̃)

. (3.31)

Recall from Lemma 24 that the sum of a(δ)

N (h) over the mentioned h’s is equal to one. In the following,
we will split this sum into the three parts where |h| ≤ R, andR < |h| ≤ εN and |h| > εN for some
large R ∈ N and some small ε > 0. We will show that the first part converges towards something
in (0, 1), the second part vanishes, and we will identify the exponential rate of the other one explicitly
via some Laplace approximation. Explicitly, we will prove the following three claims:

Claim 1: lim sup
δ↓0

lim sup
R→∞

lim sup
N→∞

∑
h : |h|≤R

a(δ)

N (h) ≤ 1− yr
νr
∈ [0, 1). (3.32)

Claim 2: If ε is small enough, for some sufficiently small δ0 > 0 and some sufficiently large N0 ∈ N,

lim sup
R→∞

sup
N≥N0

sup
δ∈(0,δ0]

∑
h : R<|h|≤εN

a(δ)

N (h) = 0. (3.33)

Claim 3: For any δ > 0, ∑
h : |h|>εN

a(δ)

N (h) ≤ eo(N)eNC(δ)e−Nf̃(y,ν)pN(k) + εN , (3.34)

for some sequence (εN)N = (εN(δ))N that converges to 0, where f̃(y, ν) = 〈y, log(1 − e−κy)〉,
and C(δ) is a constant only depending on δ and vanishing as δ ↓ 0.

Let us first explain how the assertion of the lemma follows from these three claims. We start by using
Lemma 24 and Claim 3 to obtain, in the limit as N →∞,

1−
∑

h : |h|≤R

a(δ)

N (h)−
∑

h : R<|h|<εN

a(δ)

N (h) ≤ eo(N)eNC(δ)e−Nf̃(y,ν)pN(k) + εN .

By (3.32) and (3.33), the left hand side is not smaller than yr/νr, when taking the limits as N →∞,
followed by R→∞ and δ ↓ 0, if ε is small enough. In particular, the left-hand side is bounded away
from zero when taking these limits. Hence, the exponential rate of the right-hand side as N → ∞
is nonnegative. This implies that lim infN→∞

1
N

log pn(k) ≥ f̃(y, ν), which is the assertion of the
lemma. It remains to prove the three claims.

Proof of Claim 3: As we explained in the proof of Lemma 25, the exponential rate of the two products
in the definition of a(δ)

N (h) can easily be identified with the help of Stirling’s formula and the exponential
limit theorem limn→∞(1 + c

n
)n = ec and elementary calculations. Indeed, for any sequence h(N)

such that limN→∞
h(N)

N
= x exists and x ∈ [0, 1]S \ {0}, and for any δ > 0,

a(δ)

N (h(N)) = eo(N)e−Nf(x,ν(δ))pN(h(N)), N →∞, (3.35)

where we introduce f(x, x̃) = 〈x, log x
x̃
〉+ 〈x̃− x, log x̃−x

x̃
〉+ 〈x̃− x, κx〉 for x, x̃ ∈ [0, 1]S \ {0}

and x ≤ x̃. We can write

f(x, x̃) =
∑
s∈S

x̃s

[xs
x̃s

log
xs
x̃s

1− e−(κx)s
+
(

1− xs
x̃s

)
log

1− xs
x̃s

e−(κx)s

]
+
∑
s∈S

xs log(1− e−(κx)s)

= 〈x̃, H(x; x̃)〉+ 〈x, log(1− e−κx)〉,
(3.36)
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where we write H = (Hs)s∈S and for s ∈ S we write Hs(x; x̃) for the entropy of the Bernoulli
distribution with parameter xs/x̃s with respect to the one with parameter 1− e−(κx)s .

The second term in the second line of (3.36) will be handled jointly with the exponential rate of
pN(h(N)), so let us discuss here the minimum of the first. Since every component of H is an en-
tropy between probability measures, we have that H(x, ν(δ)) ≥ 0 pointwise for all x ≤ ν(δ) with
equality if and only if x

ν(δ)
= 1 − e−κx. As κ is irreducible with respect to ν(δ) the latter condition is

true if and only if x = y(δ) or x = 0, see Lemma 16. Hence, we have seen that, for ε sufficiently
small, minx : |x|≥ε〈ν(δ), H(x; ν(δ))〉 = 〈ν(δ), H(y(δ); ν(δ))〉.
Let us now prove (3.34). The work we still have to do is to combine (3.35) with estimates for the
pN -term from Lemmas 25 and 26, and we have to distinguish the cases that h is left of k but close
to k (then Lemma 26 applies), or bounded away from k (then Lemma 25 suffices). Let h(N) be such
that |h(N)| > εN and assume that x := limN→∞

h(N)

N
exists. Note that x ∈ [0, 1] \ {0}. We first

examine the case where h(N) ∈ [k − 2Nδ, k] for large N and hence |x− y| ≤ 2δ. With the help of
(3.35) and using the estimate from Lemma 26 we get that

a(δ)

N (h(N)) ≤ eo(N)eN(f(y,ν)−f(x,ν(δ))−〈y−x,log(1−e−κx)〉)e−Nf(y,ν)pN(k)

≤ eo(N)eNC(δ)e−Nf(y,ν)pN(k) (3.37)

where
C(δ) = sup

x : |x−y|≤2δ

|f(y, ν)− f(x, ν(δ))− 〈y − x, log(1− e−κx)〉| (3.38)

and it can be easily verified that C(δ) → 0 as δ → 0. Now, let us examine the case h(N) /∈
[k − 2Nδ, k] for large N , i.e., |x− y(δ)| ≥ δ. We start with (3.35) and use the estimate (3.27) from
Lemma 25 to get

a(δ)

N (h(N)) ≤ eo(N)e−N〈ν
(δ),H(x,ν(δ))〉 ≤ eo(N)e−NC̃(δ) (3.39)

where the number
C̃(δ) := inf

x : |x|>ε,|x−y(δ)|≥δ
〈ν(δ), H(x, ν(δ))〉 (3.40)

is strictly positive since the function x 7→ H(x, ν(δ)) is continuous and its only zeros are at x = 0
and x = y(δ). Now, it is not hard to see that #{h ∈ NS0 : h ≤ m(δ)} ≤ (νN)|S| = eo(N), hence

a simple Laplace approximation argument implies that (3.34) holds with εN := eo(N)e−NC̃(δ), which
vanishes as N →∞ since C̃(δ) > 0.

Proof of Claim 1: Applying Lemma 23 to pN(h) we get,for any N,R ∈ N and δ > 0,∑
h : |h|≤R

a(δ)

N (h)

≤ N

m(δ)
r

∑
h : |h|≤R

τN(h)hr
∏
s∈S

m
(δ)
s

N
m

(δ)
s −1
N
· · · m

(δ)
s −hs+1
N

(∏
s̃∈S(1− κN (s,s̃)

N
)m

(δ)
s̃ −hs̃

)hs
hs!

≤ N

m(δ)
r

∑
h : |h|≤R

τN(h)hr
∏
s∈S

[ 1

hs!

(
m(δ)
s

N
e−κN (m

(δ)−h
N

)s

)hs ]
, (3.41)

where we used that 1− x ≤ e−x for any x ∈ R in the second line. Hence,

lim sup
N→∞

∑
h : |h|≤R

a(δ)

N (h) ≤ 1

ν(δ)
r

∑
h : |h|≤R

τ(h)hr
∏
s∈S

[ 1

hs!

(
ν(δ)

s e−(κν(δ))s
)hs ]

=: Λ(δ)

R (3.42)
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Observe that by Proposition 17 and by the definition of ν(δ) given in (3.30), we have that limR→∞ Λ(δ)

R =
ν
(δ)
r −y

(δ)
r

ν
(δ)
r

∈ [0, 1) and clearly limδ→0 limR→∞ Λ(δ)

R = νr−yr
νr
∈ (0, 1).

Proof of Claim 2: For the sum on h satisfying R < |h| ≤ εN , we can use basically the same
estimates as in (3.41), but we modify the second line by now estimating∏

s,s̃∈S

(
1− κN (s,s̃)

N

)(m
(δ)
s̃ −hs̃)hs ≤

(∏
s∈S

e−
1
N

(κNm
(δ))shs

)
e

1
N
‖κN‖∞|h|2 , (3.43)

since we do not have that m(δ) ≥ h on this sum. This gives

∑
h : R<|h|≤εN

a(δ)

N (h) ≤ N

m(δ)
r

εN∑
n=R+1

enε‖κN‖∞
∑

h : |h|=n

τN(h)hr
∏
s∈S

[ 1

hs!

(m(δ)
s

N
e−( 1

N
κNm

(δ))s
)hs]

.

(3.44)
This is the main part of a power series with coefficients τ , which we studied in Lemma 20. Note that
the term in round brackets converges to νse−(κν)s as N → ∞, followed by δ ↓ 0. Furthermore,
this vector θ(κ, ν) = νe−κν satisfies χ(κ, θ(κ, ν)) > 1, since Σ(κ, ν) > 1 by construction (see
Lemma 20(3)). It will turn out that this is sufficient to estimate the sum on n against some convergent
geometric series.

We pick a small threshold ε′ > 0. We may pick δ0 so small and then N0 ∈ N so large that

m(δ)
s

N
e−( 1

N
κNm

(δ))s ≤ νse
−(κν)seε

′
, δ ∈ (0, δ0], N ≥ N0, s ∈ S.

Additionally, we can also assume that N/m(δ)
r ≤ 1 + 1/νr for these δ and N . By τ we denote the

function defined as in (3.2) for the matrix κ, then, since limN→∞ κN = κ, we may also pick N0 so
large that additionally

τN(h) ≤ τ(h)eε
′|h|, h ∈ NS0 , N ≥ N0.

We also may and will assume that ‖κN‖∞ ≤ 1 + ‖κ‖∞ for N ≥ N0. Therefore, we can now
estimate, for δ ∈ (0, δ0] and N ≥ N0, and any R ∈ N,

∑
h : R<|h|≤εN

a(δ)

N (h) ≤
(
1 + 1

νr

) ∞∑
n=R+1

enε(1+‖κ‖∞)e2ε′n
∑

h : |h|=n

τ(h)hr
∏
s∈S

[ 1

hs!

(
νse
−(κν)s

)hs]
.

Now we can apply (3.16) in Lemma 20 to estimate the sum on h against eo(n)e−n[χ(κ,θ(κ,ν))−1]. We
recall that χ(κ, θ(κ, ν))− 1 > 0 and pick now ε and ε′ so small that the sum on n can be estimated
against a convergent geometric series. Hence, the entire sum vanishes as R → ∞, which ends the
proof.

In the following we want to verify the statement of Lemma 27 without assuming that κ is irreducible with
respect to y but still under the assumption that τ(k(N)) > 0. What we have in mind are components
k(N) where for a certain set of types S̃ ⊂ S only o(N) vertices of those types are available, i.e.,
k(N)
s ∈ o(N) for all s ∈ S̃. However, these types might be necessary in order to connect the

vertices with types in S \ S̃. For that case we prove in the following that on the exponential scale the
asymptotics of the connection probability pN(k(N)) are the same as in the previous lemma.

Lemma 28 (Lower bound in (3.4) under generalized assumptions). Fix y ∈ [0, 1]S \ {0} satisfying

y � κy. Let {k(N)}N∈N be a sequence in NS0 such that limN→∞
k
(N)
r

N
= yr for all r ∈ S and
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assume that {k(N)
s }N is bounded for all s /∈ supp(y). Assume further that τ(k(N)) > 0 holds for all

but finitely many N ∈ N. Then

lim inf
N→∞

1

N
log pN(k(N)) ≥

∑
r∈S

yr log
(
1− e−κyr

)
. (3.45)

Proof. Throughout the proof we will assume without loss of generality that S =
⋂
N supp(k(N)). If

y > 0 on S and κ is irreducible with respect to y, then we are in the setting of Lemma 27, which
yields the claim. In the other case, it always holds that S̃ := S \ supp(y) 6= ∅. We decompose
supp(y) into disjoint sets Sj , j ∈ J , satisfying that the restriction of κ to Sj × Sj is irreducible with
respect to y restricted to Sj .

We will start with the special case where k(N)
s = 1 for all s ∈ S̃ and N ∈ N. It is easily seen that the

assumption τ(k(N)) > 0 for all but finitely many N ∈ N implies that there exists a tree T on the type
set S such that

∏
{r,s}∈E(T ) κ(r, s) > 0. Define

Ẽ := {{r, s} ∈ E(T ) : r ∈ S̃ or s ∈ S̃}. (3.46)

For every r ∈ S we now fix a vertex ir ∈ [|k(N)|] that is of type r. Note that {ir : r ∈ S̃} already
contains all the vertices with types in S̃. We will abbreviate GN = G(|k(N)|, x, 1

N
κN). Note that the

event {{ir, is} ∈ E(GN) : {r, s} ∈ Ẽ} is independent of the existence of edges {i, i′}, if the types
of i and i′ are in Sj for any j ∈ J . Therefore,

pN(k(N)) ≥
[∏
j∈J

pN(k(N)1lSj)
]
×

∏
{r,s}∈Ẽ

P({ir, is} ∈ E(GN))

≥
[∏
j∈J

pN(k(N)1lSj)
]
×

∏
{r,s}∈Ẽ

1

N
κN(r, s).

Clearly the second product is≥ eo(N), since κN is bounded away from zero, uniformly in all large N .
Applying Lemma 27 to k(N)1lSj for every j ∈ J , we get that

1

N
log pN(k(N)) ≥ o(1) +

∑
j∈J

∑
r∈Sj

yr log(1− e−(κ(y1lSj ))r)) = o(1) +
∑
r∈S

yr log(1− e−(κy)r),

(3.47)
where in the last equation we used that with fixed j ∈ J , for any r ∈ Sj and s ∈ S \ Sj we have
either κ(r, s) = 0 or ys = 0. Thus, for r ∈ Sj we get

(κ(y1lSj))r =
∑
s∈Sj

κ(r, s)ys =
∑
s∈S

κ(r, s)ys = (κy)r. (3.48)

This implies that equation (3.45) holds in the special case.

Now, consider the general case, where {k(N)
s }N is bounded in N for all s ∈ S̃. Then by Lemma 26

pN(k(N)) ≥ pN(k(N)1lS\S̃ + 1lS̃)×
∏
r∈S̃

(1− e−(κy)r)k
(N)
r −1.

Observe that the last product is eo(N) by assumption, hence the claim is implied by the treatment of
the first case.
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4 The large-deviations principle for a finite type set

In this section we still assume that S is a finite set and derive the large-deviations principle (LDP) of
Theorem 1 for this case, Theorem 29. This is not only an important special case that is worth being
formulated and studied on its own, but it will also serve as an important input in the proof of Theorem
1 in Section 5. The formulation in the discrete case is notationally pretty different from the formulation
in the general setting and many objects simplify because of the finiteness of S . Therefore we are
going to formulate the setting and the LDP from scratch in Section 4.1.

The proof will rely on the study of the connection probabilities that was done in Section 3.2. The
organization of this section is as follows. In Section 4.2 we identify the distribution of MiN . We will
decompose this distribution into a micro–, meso– and macroscopic part whose exponential rates we
derive in Section 4.3. The proof of the LDP of Theorem 29 is finally finished in Section 4.4.

4.1 Formulation of the LDP

Fix a probability measure µ on S , which we will denote as a vector µ = (µs)s∈S . For any N ∈ N
let x(N) = (x(N)

1 , . . . , x(N)

N ) ∈ SN be a type vector such that the normalized empirical measure,
µ(N) = 1

N

∑N
i=1 δx(N)

i
, converges to µ as N →∞.

We denote by {Cj}j the collection of the vertex sets of all the connected components of GN =
G(N,x(N), 1

N
κN). We want to study empirical measures depending on the random collection {Cj}j .

For this we introduce the type-registring mapping η : P([N ])→ NS0 that gives the (type) composition
of an arbitrary vertex set A ⊂ [N ], i.e., η(A) = (ηs(A))s∈S , and ηs(A) = #{i ∈ A : x(N)

i = s}
is the number of vertices in A with type s. Note that the mapping η depends on the entire type vector
x(N), not only on its normalized empirical measure, µ(N) = 1

N

∑N
i=1 δx(N)

i
.

We identifyMN0(S) with NS0 and will work in [0, 1]S instead ofM(S). Now we recall the definition
of the main objects, the empirical measures of the connected components of GN , in microscopic,
respectively macroscopic, registration. The microscopic empirical measure MiN is defined as a mea-
sure on NS0 via

MiN(dk) :=
1

N

∑
j

δη(Cj)(dk). (4.1)

Since NS0 is a discrete space, we will abbreviate MiN(k) = MiN({k}) for any k ∈ NS0 . The
macroscopic empirical measure is defined as a measure on [0, 1]S \ {0} via

MaN(dy) :=
∑
j

δ 1
N
η(Cj)(dy). (4.2)

Therefore our state spaces for MiN and MaN are now

L :=
{
λ = (λk)k∈NS0 ∈ [0,∞)N

S
0 : |c(λ)| ≤ 1

}
(4.3)

and
A :=

{
α ∈MN0([0, 1]S \ {0}) : |c(α)| ≤ 1

}
, (4.4)

respectively, where

cr(λ) =
∑
k∈NS0

λkkr and cr(α) =

∫
[0,1]S\{0}

α(dy) yr, r ∈ S (4.5)
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and |c| =
∑

s cs for any (cs)s∈S . One can easily verify that for any fixedN we have cr(MiN) = µ(N)
r

as well as cr(MaN) = µ(N)
r for any r ∈ S , so indeed MiN ∈ L and MaN ∈ A. However, the idea

is that due to the topologies that we choose, some of the (rescaled) vertex mass specified by µ(N) will
get lost when we take the limit for N →∞.

We equip L andA with the vague topologies that we introduced in Section 1.2. On L, this is identical
with the topology of pointwise convergence (i.e., limN→∞ λ

(N) = λ if and only if limN→∞ λ
(N)

k = λk
for any k ∈ NS0 ). The vague topology onA is formulated by saying that limN→∞ α

(N) = α if and only
if limN→∞

∫
α(N)(dy)f(y) =

∫
α(dy)f(y) for any continuous and compactly supported function

f : [0, 1]S \ {0} → R; note that for every such function f there is an ε > 0 such that f = 0 on
{x ∈ [0, 1]S : |x| ≤ ε}.
Recall the definition of τ given in (3.2). Here is the main result of Section 4:

Theorem 29 (LDP for (MiN ,MaN) with finitely many types). Assume that the empirical measure
µ(N) of the type sequence (x(N)

1 , . . . , x(N)

N ) converges weakly towards a positive probability vector
µ ∈ (0, 1]S as N →∞ and that the kernel κN converges on S × S towards a µ-irreducible kernel
κ ∈ [0,∞)S×S .

Then (MiN ,MaN) satisfies a large deviations principle (LDP) with speedN and rate function (λ, α) 7→
I(λ, α) defined by

I(λ, α) =

{
IMi(λ) + IMa(α) + IMe(µ− c(λ)− c(α)), if c(λ) + c(α) ≤ µ,
+∞ otherwise,

where

IMi(λ) =
∑
k∈NS0

λk log
λk

τ(k)
∏

s∈S
µkss
ks!

+
∑
k∈NS0

λk(|k| − 1) +
1

2
〈c(λ), κµ〉, (4.6)

IMa(α) =

∫
M(S)\{0}

α(dy)
(〈
y, log

y

(1− e−κy)µ

〉
+

1

2
〈y, κ(µ− y)〉

)
, (4.7)

IMe(ν) =
〈
ν, log

ν

(κν)µ

〉
+

1

2
〈ν, κµ〉 (4.8)

and where we always use the convention that log 0 = −∞ and 0 log 0 = 0.

Theorem 29 is indeed nothing but the special case of Theorem 1 for a finite set S . Indeed, it is clear
that the setting and the two rate functions IMa and IMe are the discrete-space versions, but (4.6)
looks a bit different from the formula for IMi in Theorem 1. But from substituting the notation of the
entropy in (4.6) and noting that the distribution of a Poisson point process with intensity measure µ
can here be identified as

Qµ(k) =
∏
r∈S

[
e−µr

µkrr
kr!

]
, k ∈ NS0 ,

one sees that (4.6) is indeed a discrete analog of (1.11). Furthermore, one can also write

IMi(λ) =
∑
k∈NS0

λk log
λk

λk(µ)
+
∑
k∈NS0

λk(|k| − 1)− 1

2
〈c(λ), κµ〉 (4.9)

where λ(µ) is defined as the discrete analog of (2.1) with c = µ, i.e.,

λk(µ) = τ(k)
∏
s∈S

(µse
−(κµ)s)ks

ks!
, k ∈ NS0 . (4.10)
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This formula will be helpful in Section 6 when we will identify minimizers of IMi.

We will now give an extension of Theorem 29 for kernels κ that are not µ-irreducible. Recall the notion
of connectability for α ∈ A that was introduced in Section 2.3.

Theorem 30 (Finite-type LDP for (MiN ,MaN) without irreducibility). For (λ, α) ∈ L ×A define

Ĩ(λ, α) =

{
I(λ, α), if α is connectable,

+∞ otherwise.
(4.11)

(i) Given all the assumptions from Theorem 29, except the assumption that κ is µ-irreducible,
the pair (MiN ,MaN) satisfies the lower large-deviations bound (1.14) with speed N and rate
function Ĩ .

(ii) Given all the assumptions from Theorem 29, except the assumption that κ is µ-irreducible
and with the additional assumption that κN = κ for all but finitely many N ∈ N, the pair
(MiN ,MaN) satisfies an LDP with speed N and rate function Ĩ .

The proof is given in Remark 36.

We omit to restate the finite-S analogs of Theorem 9, Theorem 7 and all the related corollaries, as
they can be deduced as special cases. For the critical quantity Σ(κ, µ), we refer to (3.6), and we
recall that it is in this setting equal to the spectral radius of the matrix (κ(r, s)µs)(r,s)∈S2 .

4.2 The distribution of MiN

Let us identify the distribution of MiN for any N in explicit terms. Note that as long as N ∈ N is
fixed, the measure MaN contains exactly the same information as MiN , hence, we are also deriving
its distribution. We start by noting that NMiN takes values in

LN :=
{
` = (`k)k∈NS0 : `k ∈ N0 for all k and

∑
k∈NS0

`kkr = Nµ(N)

r for all r ∈ S
}
. (4.12)

Lemma 31 (The distribution of MiN ). Let N ∈ N and assume that κN(r, s) ≤ N for all r, s ∈ S .
Then for any ` ∈ LN we have that

P
(
NMiN(k) = `k ∀k ∈ NS0

)
=
(∏
r∈S

(Nµ(N)

r )!
)
×
∏
k∈NS

ζ (N)(`, k), (4.13)

where

ζ (N)(`, k) =
pN(k)`k

`k!
∏

r∈S(kr!)`k

( ∏
r,s∈S

(
1− κN(r, s)

N

) 1
2
kr[Nµ

(N)
s −ks])`k

, (4.14)

and pN(k) is defined in (3.1).

Proof. This is proved in an analogous way to [AKP19, Corollary 2.2]; we omit the details.

The formula in (4.13) is easy to understand. Indeed, the combinatorial term on the right (with an
additional factor 1/N !) is equal to the inverse of the number of possible labelings of all the vertices;
the event {NMiN(k) = `k ∀k} means that `k is equal to the number of clusters in [N ] whose
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vertex set has the type configuration k, for any multi-index k. The product of pN(k)`k over k is the
probability that all these clusters are connected, the product over the powers of 1 − κN(r, s)/N is
equal to the probability that each two of them are not connected, and the product of the two remaining
combinatorial terms (with an additional factor N !) is equal to the number of ways to decompose all
the types into clusters having the prescribed vertex structure.

4.3 Exponential rates for micro-, meso- and macro parts

The proof of the LDP in Theorem 29 is carried out in the same way as in [AKP19, Section 3]. The main
idea is to split the distribution that we obtained in Lemma 31 into three parts, which we will call micro-
, meso- and macroscopic part. These parts roughly give the terms e−NIMi(λ), e−NIMe(µ−c(λ)−c(α))

and e−NIMa(α), if a properly rescaled version of ` is close to (λ, α). In the next lemma we give the
decomposition into the three parts. Afterwards, we derive the exponential asymptotics of them in
Lemmas 33 – 35.

Lemma 32 (Decomposition into three contributions). Fix ` ∈ LN . For k ∈ NS0 define

z(N)(`k, k) :=
pN(k)`k

∏
s∈S(Nµs

e
)ks`k

`k!
∏

s∈S(ks!)`k

∏
r,s∈S

(
1− κN(r, s)

N

) 1
2
ks(Nµr−kr)`k

, (4.15)

and for any two numbers A,B ∈ [0,∞) write

z(N)

A,B(`) :=
∏

k∈NS0 : A<|k|≤B

z(N)(`k, k).

Then, for any fixed R ∈ N and ε > 0 we have that, as N →∞

PN(NMiN = `) = eo(N)z(N)

0,R(`)z(N)

R,εN(`)z(N)

εN,N(`).

Proof. On the right-hand side of (4.13) we apply Stirling formula n = eo(n)(n/e)n to the terms
(Nµ(N)

r )! and use that Nµ(N)
r =

∑
k `kkr. Note that we also used that µ(N)

r → µr.

Lemma 33 (Asymptotics of the micro part). Fix R ∈ N and let λ ∈ L. Define

I (R)

Mi (λ) :=
∑

k∈NS0 : |k|≤R

λk log
λke

|k|−1

τ(k)
∏

s
µkss
ks!

+
1

2
〈c(R)(λ), κµ〉, (4.16)

where
c(R)

r (λ) =
∑

k∈NS0 : |k|≤R

λkkr, r ∈ S, (4.17)

and where we use the convention that log 0 = −∞ and 0 log 0 = 0. In particular, the right-hand
side of (4.16) is equal to +∞ if there is some k ∈ NS0 with |k| ≤ R such that τ(k) = 0, but λk > 0.
Otherwise, the right-hand side is finite.

Then for all `(N) = (`(N)

k )k∈NS0 satisfying `(N)

k ∈ N0 and λk = limN→∞
1
N
`(N)

k for all k with |k| ≤ R
we have

lim
N→∞

1

N
log z(N)

0,R(`(N)) = −I (R)

Mi (λ). (4.18)
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Proof. We use Stirling’s formula for the terms `(N)

k ! as well as the fact that for any k ∈ NS0 with
|k| ≤ R we have that pN(k) = eo(1)N1−|k|τN(k) as N → ∞, which is a consequence of the
bounds obtained in Lemma 23. Therefore, as N →∞, we have

∏
k : |k|≤R

pN(k)`
(N)
k
∏

s∈S(Nµs
e

)ks`
(N)
k

`(N)

k !
∏

s∈S(ks!)`
(N)
k

= eo(N)e−
1
2

∑
k : |k|≤R log `k

∏
|k|≤R

( τN(k)
∏

s
µkss
ks!

(`(N)

k /N)e|k|−1

)`(N)
k

= eo(N) exp
(
N
∑
|k|≤R

λk log
τ(k)

∏
s
µkss
ks!

λke|k|−1

)
,

(4.19)

where, we have used that 0 ≤
∑

k : |k|≤R log `k ≤ |{k : |k| ≤ R}| log
(∑

k : |k|≤R `k

|{k : |k|≤R}|

)
= o(N).

Further, we use that limN→∞(1 + x
N

)N = ex to get that, as N →∞,∏
|k|≤R

∏
r,s∈S

(
1− κN (r,s)

N

) 1
2
ks(Nµr−kr)`(N)

k =

exp
(
− N

2

〈 ∑
|k|≤R

`
(N)
k

N
k, κ(µ− k

N
)
〉)

= eo(N)e−
N
2
〈c(R)(λ),κµ〉, (4.20)

where in the last step we used that

0 ≤ 1
2

∑
|k|≤R

`
(N)
k

N

∑
r,s

kr
N
κN(r, s)ks ≤ 1

2
‖κN‖∞

R
N
|c(R)( `

(N)

N
)|,

where the right-hand side converges to 0 as N → ∞. Combining the asymptotics from (4.19) and
(4.20) gives the claim.

Lemma 34 (Asymptotics of the macro part). Fix α ∈ A, and note that α can be written as α =∑
j∈J δy(j) where y(j) ∈ [0, 1]S \ {0} for all j ∈ J and J is a countable set. Fix any ε > 0 with

ε /∈ {|y(j)| : j ∈ J}. Define Jε(α) : = {j ∈ J : |y(j)| > ε}, which is a finite set, and

I (ε)

Ma(α) :=

∫
α(dy)1l{|y|>ε}

〈
y, log

y

(1− e−κy)µ

〉
+

1

2

∫
α(dy)1l{|y|>ε} 〈y, κ(µ− y)〉, (4.21)

where we use the convention that log 0 = −∞ and 0 log 0 = 0. In particular, the right-hand side of
(4.21) is equal to +∞, if there is some i ∈ Jε(α) such that the condition y(i) � κy(i) fails. Then we
have the following.

1 For any sequence `(N) ∈ LN denote α(N) =
∑

k `
(N)

k δ k
N

and assume that α(N) restricted to

{y : |y| > ε} converges to α restricted to {y : |y| > ε}, as N →∞. Then it holds that

lim sup
N→∞

1

N
log z(N)

εN,N(`(N)) ≤ −I (ε)

Ma(α). (4.22)

2 For all j ∈ Jε(α), let {k(j,N)}N∈N be a sequence in NS0 such that τ(k(j,N)) > 0 for allN ∈ N,

limN→∞
k(j,N)

N
= y(j) and {k(j,N)

s }N∈N is bounded for all s /∈ supp(y(j)). Let `(N) be an
element of LN such that `(N)

k = #{j ∈ J : k(j,N) = k} for |k| > εN . Denote α(N) =∑
k `

(N)

k δ k
N

, then α(N) restricted to {y : |y| > ε} converges to α restricted to {y : |y| > ε},
and

lim
N→∞

1

N
log z(N)

εN,N(`(N)) = −I (ε)

Ma(α). (4.23)
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Proof. We start with the first statement. Let us first turn to the first term on the right of (4.15). We apply
Stirling’s bound n! ≥ nne−n to each of the terms ks! and the simple bound `(N)

k ! ≥ 1 for all k ∈ NS0 .
Using the upper bound (3.27) for pN(k) that was derived in Lemma 25 we obtain, as N →∞,

∏
k : |k|>εN

pN(k)`
(N)
k
∏

s∈S(Nµs
e

)ks`
(N)
k

`(N)

k !
∏

s∈S(ks!)`
(N)
k

≤ eo(N) exp

(
N

∫
{|y|>ε}

〈
y, log

(1− e−κy)µ

y

〉
α(N)(dy)

)
,

(4.24)
where we used that

∑
|k|>εN `

(N)

k ≤ 1
ε

The second term on the right of (4.15) is estimated using
1− x ≤ e−x for x = κN(r, s)/N as follows for N →∞,∏
|k|>εN

∏
r,s∈S

(
1− κN (r,s)

N

) 1
2
ks(Nµr−kr)`(N)

k ≤ eo(N) exp
(
− N

2

∫
{|y|>ε}

〈y, κ(µ− y)〉α(N)(dy)
)
.

(4.25)

Note that the product of the right-hand sides of (4.24) and (4.25) is equal to eo(N)e−NI
(ε)
Ma(α(N)). Us-

ing the convergence assumption on α(N) and the fact that ε < infj∈Jε |y(j)| one can verify that
I (ε)

Ma(α(N))→ I (ε)

Ma(α) as N →∞. This gives the result.

To show the second statement, let us first notice that it is clear from the definition that α(N) re-
stricted to {y : |y| > ε} converges to α restricted to {y : |y| > ε}. Therefore we can apply
the first assertion and we have the upper bound (4.22). In order to get also the lower bound, we
lower estimate z(N)

εN,N(`(N)) against the sum on k(N,j) over the finite set j ∈ Jε(α) and note that

these are the only summands k with |k| > εN such that `(N)

k > 0. For each such j we apply
the asymptotic (3.4) from Theorem 15 and obtain the corresponding lower bound, also noting that∏
|k|>εN(`(N)

k !)−1 ≥ e−
1
ε

logN = eo(N) and, by estimating ks ≤ N , we get that (ks)
− `k

2 ≥ e−
1
2ε

logN

for any s ∈ S . To derive the lower bound equivalent of (4.25) we use that (1− c
N

)N = e−c(1+o(1)).
This proves the claim.

In Lemma 34(2) we restrict to sequences `(N) such that each connected component k with `(N)

k > 0
is connectable in the sense that τ(k) > 0. We will see in the proof of Theorem 29 that for each
α ∈ A such that IMa(α) < ∞ and for each ε > 0, we will always be able to find such a sequence.
Our second restriction ε /∈ {|y(j)| : j ∈ J} is clearly only technical and gives no problem at all when
we later take the limit as ε ↓ 0; it frees us from unwanted terms.

Lemma 35 (Asymptotics of the meso part). Fix R ∈ N and ε > 0. For any sequence `(N) ∈ LN let
ν(N)
s := 1

N

∑
R<|k|≤εN `

(N)

k ks for s ∈ S . Assume that νs := limN→∞ ν
(N)
s exists (it depends on R

and ε). Recall the definition of IMe from (1.13). Then

lim sup
N→∞

1

N
log z(N)

R,εN(`(N)) ≤ −IMe(ν) + C(R, ε, κ), (4.26)

where C(R, ε, κ) is a constant neither depending on `(N) nor ν, which vanishes for R → ∞ and
ε→ 0.

Proof. We first derive an estimate for the connection probability. For fixed k ∈ NS0 denote Sk :=
supp(k). For pN(k) and r ∈ Sk we use the upper bound in (3.24) from Lemma 23 and also the
formula for τ(k)kr given in (3.10) to obtain

pN(k) ≤ N1−|k|(1 + o(1))τ(k) = N1−|k|(1 + o(1))
1

kr

(∏
s∈Sk

(κk)ks−1
s

)
∆r(k), (4.27)
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where ∆r(k) is defined in (3.11). Note that

∆r(k) =
∑

A∈
−→
Tr(Sk)

∏
{s,s′}∈E(A)

κ(s, s′)ks′ ≤ ‖κ‖|Sk|−1
∞ |Tr(Sk)|

∏
s∈Sk\{r}

ks ≤ C
∏

s∈Sk\{r}

ks, (4.28)

where C = (‖κ‖∞|S|)|S|−1. Next, we use both estimates together with the Stirling bound n! ≥
nne−n , which we apply to `(N)

k ! as well as the terms ks! for all s ∈ S . This gives that

∏
R<|k|≤εN

pN(k)`
(N)
k
∏

s∈S(Nµs
e

)ks`
(N)
k

`(N)

k !
∏

s∈S(ks!)`
(N)
k

≤
∏

R<|k|≤εN

(N∆r(k)
∏

s∈Sk(κk)ks−1
s

kr`
(N)

k e−1
∏

s∈Sk

(
ks
µs

)ks )`(N)
k

≤ eN〈ν
(N),log µ〉 ×

∏
R<|k|≤εN

∏
s∈Sk

((κk)s
ks

)(ks−1)`
(N)
k ×

∏
R<|k|≤εN

( NeC

`(N)

k (kr)2

)`(N)
k

.

(4.29)

The first term on the right-hand side of (4.29) is clearly equal to eo(N)eN〈ν,logµ〉. We now take a look
at the second one. For s ∈ S we put

Cs(`
(N)) :=

∑
k : R<|k|≤εN, ks>0

`(N)

k (ks − 1) = ν(N)

s −
∑

k : R<|k|≤εN, ks>0

`(N)

k . (4.30)

Then Cs(`(N)) ∈ [ν(N)
s − 1

R
, ν(N)
s ] since

∑
k : R<|k|≤εN `

(N)

k ≤ 1
R

∑
k : R<|k| |k|`

(N)

k ≤ N/R. Next,
we apply Jensen’s inequality and the fact that x 7→ log x is concave to get that∏
R<|k|≤εN

∏
s∈Sk

((κk)s
ks

)(ks−1)`
(N)
k

= exp

(∑
s∈S

Cs(`
(N))

∑
R<|k|≤εN, ks>0

`(N)

k (ks − 1)

Cs(`(N))
log

(κk)s
ks

)

≤ exp

(∑
s∈S

Cs(`
(N)) log

( ∑
R<|k|≤εN, ks>0

`(N)

k (ks − 1)

Cs(`(N))

(κk)s
ks

))

≤ exp

(
N
∑
s∈S

1
N
Cs(`

(N)) log
(κν(N))s
1
N
Cs(`(N))

)
= eo(N) exp

(
N
〈
ν, log

κν

ν

〉)
eNδR

for some δR ∈ R that converges to 0 as R→∞ and does not depend on `(N) nor on ν.

It remains to argue that the large-N exponential scale of the last term on the right-hand side of (4.29)
vanishes when taking R → ∞ afterwards. Recall that the choice of r may depend on k; we will
denote it as rk. We first use that

∏
R<|k|≤εN

( NeC

`(N)

k (krk)
2

)`(N)
k

=

exp

(
N

∑
R<|k|≤εN

`(N)

k

N
log

NeC

`(N)

k (krk)
2+|S|

)
exp

(
N |S|

∑
R<|k|≤εN

`(N)

k

N
log |k|

)
.

Abbreviating D :=
∑

R<|k|<εN `
(N)

k /N and using Jensen’s inequality we get that

exp

(
N

∑
R<|k|≤εN

`(N)

k

N
log

NeC

`(N)

k (krk)
2+|S|

)
≤ exp

(
ND log

(
eC
D

∑
R<|k|≤εN

k−2−|S|
rk

))
. (4.31)

It is easy to see that choosing rk such that krk = maxs∈S ks ensures the convergence of
∑

k k
−2−|S|
rk

and the fact that
∑
|k|≥R k

−2−|S|
rk is polynomial inR. Further, as we remarked below (4.30),D ≤ 1/R
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and therefore the right-hand side of (4.31) is bounded by exp(Nδ′R) for some δ′R that vanishes as
R → ∞. Next, we use that R/ logR ≤ |k|/ log |k| holds on our summation area of k if R is large
enough and therefore

exp

(
N |S|

∑
R<|k|≤εN

`(N)

k

N
log |k|

)
≤ exp

(
N |S| logR

R

∑
R<|k|≤εN

`(N)

k

N
|k|
)

= exp

(
N |S| logR

R

)
.

(4.32)
Noting that 1

R
logR → 0 as R → ∞, we have shown that the last term on the right-hand side of

(4.29) can be bounded by eNδ
′′
R for some δ′′R that vanishes as R → ∞. So far, we have handled the

first term in the definition of z(N)

R,εN(`(N)), and we saw that its exponential rate is not larger than the
first term in −IMe(ν).

Let us now handle the second and last part of z(N)

R,εN(`(N)). We use 1−x ≤ e−x for x = κN(r, s)/N

as well as 1
2

∑
R<k≤εN `

(N)

k 〈k, κk〉 ≤ 1
2
‖κ‖∞ε

∑
R<|k|≤εN `

(N)

k |k| ≤ N
2
‖κ‖∞ε to get that∏

R<|k|≤εN

∏
r,s∈S

(
1− κN (r,s)

N

) 1
2
ks(Nµr−kr)`(N)

k ≤ eo(N)e−
N
2
〈ν,κµ〉e

N
2
‖κ‖∞ε.

Noting that the exponential rate of the last factor on the right-hand side vanishes as ε → 0, we see
that we have completed the proof.

4.4 Proof of Theorem 29

Here we finish now the proof of the LDP of Theorem 29. Let dL and dA be, respectively, metrics that
induce the vague topologies on the state spaces L andA (see (4.3) and (4.4)). Notice that, thanks to
the contraints |c(λ)| ≤ 1 and |c(α)| ≤ 1, the spaces L and A endowed with the vague topologies
are compact by the Bolzano–Weierstrass theorem and Fatou’s lemma. Moreover the rate function I
is lower semicontinuous on L ×A, which makes it a good rate function. Hence, a weak LDP implies
the claim of Theorem 29 and it suffices to prove that

lim
δ,ρ→0

lim
N→∞

1

N
logPN

(
MiN ∈ Bδ(λ),MaN ∈ Bρ(α)

)
= −I(λ, α), λ ∈ L, α ∈ A. (4.33)

where Bδ(λ) and Bρ(α) are closed balls centered at λ and α with radii δ and ρ, respectively.

Fix λ ∈ L and α ∈ A.

Step 1: Cardinality of LN . Recall the definition of LN that was given in (4.12). Each ` ∈ LN has a
unique representation as a product measure ` =

⊗
r∈S `

(r), where `(r) = (`(r)j )j∈N0 and
∑

j `
(r)

j j =

Nµ(N)
r for all r ∈ S . By the same argument as in [AKP19, Lemma 3.2] there are at most eo(Nµ

(N)
r )

ways to choose the marginal `(r). Consequently we have

|LN | = eo(N).

Fix R ∈ N and ε > 0. We denote by dRL and dεA the distance of the projections of measures on
{k : |k| ≤ R} and {y : |y| > ε}, respectively. Then dL ≥ dRL and dA ≥ dRA. For δ > 0 and ρ > 0
denote by L(R,ε)

N (δ, ρ) the set of all ` ∈ LN with dRL( 1
N
`, λ) < δ and dεA(`bN ·c, α) < ρ. Note that

P
(
MiN ∈ Bδ(λ),MaN ∈ Bρ(α)

)
≤

∑
`∈L(R,ε)N (δ,ρ)

P (NMiN = `) .
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According to the preceding, also

|L(R,ε)

N (δ, ρ)| ≤ |LN | = eo(N).

Step 2: Case c(λ) + c(α) 6≤ µ. Assume that there is some r ∈ S such that cr(λ) + cr(α) > µr.
Then it is easy to see that LN(δ, ρ) = ∅ for sufficiently large N and hence

lim
N→∞

1

N
logP

(
MiN ∈ Bδ(λ),MaN ∈ Bρ(α)

)
= −∞ = −I(λ, α),

which is proved with the same argument as in [AKP19, Lemma 3.7].

Step 3: Proof of the upper bound in (4.33) for c(λ) + c(α) ≤ µ. For any R ∈ N and any ε ∈ (0, 1]
we have by Step 1 and Lemma 32 that

P
(
MiN ∈ Bδ(λ),MaN ∈ Bρ(α)

)
≤ eo(N) sup

`∈L(R,ε)N (δ,ρ)

P (NMiN = `)

≤ eo(N) sup
`∈L(R,ε)N (δ,ρ)

z(N)

0,R(`)z(N)

R,εN(`)z(N)

εN,N(`).
(4.34)

For λ̃ ∈ L and α̃ ∈ A we define

c(R)

s (λ̃) :=
∑

k : |k|≤R

λ̃kks and c(ε)s (α̃) :=

∫
{|y|>ε}

ys α̃(dy), s ∈ S. (4.35)

We require that ε ∈ (0, 1] \ {|y| : y ∈ supp(α)} (recall that supp(α) is countable). This is a
prerequisite to apply Lemma 34 to α̃. Now, applying Lemmas 33, 34(1) and 35 to the right-hand side
of (4.34) we get

lim sup
N→∞

1

N
logP

(
MiN ∈ Bδ(λ),MaN ∈ Bρ(α)

)
≤ sup

λ̃ :
dRL(λ̃,λ)<δ

α̃ : dεA(α̃,α)<ρ

(
− I (R)

Mi (λ̃)− I (ε)

Ma(α̃)− IMe

(
µ− c(R)(λ̃)− c(ε)(α̃)

))
+ C(R, ε, κ),

where we used the cut-off versions of the rate functions defined in Lemmas 33, 34 and 35 and
C(R, ε, κ) is the constant introduced in Lemma 35. Note that the functions I (R)

Mi and c(R) are contin-
uous (in any point) and the functions I (ε)

Ma and c(ε) are continuous in α due to our requirement that
ε /∈ {|y| : y ∈ supp(α)}.
Hence,

lim sup
δ,ρ→0

lim sup
N→∞

1

N
logP

(
MiN ∈ Bδ(λ),MaN ∈ Bρ(α)

)
≤ −I (R)

Mi (λ)− I (ε)

Ma(α)− IMe(µ− c(R)(λ)− c(ε)(α)) + C(R, ε, κ)

Observe that the right-hand sideconverges to −I(λ, α), if we let R→∞ and ε→ 0, which proves
the upper bound in (4.33). Notice that the requirement that ε /∈ {|y| : y ∈ supp(α)} is no a problem
since supp(α) is countable.

Step 4: Construction of a recovery sequence. In this step, we prepare for the proof of the lower bound
in (4.33) (see Step 5) by constructing an almost optimal sequence of `’s. We handle here only the
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case that κ is irreducible; see Remark 36 for hints how to handle the case of a reducible κ. We may
assume that c(λ) + c(α) ≤ µ, since the rate function is equal to∞ otherwise. For the same reason,
we also may assume that the mesoscopic mass ν := µ − c(λ) − c(α) satisfies ν � κν, since
otherwise IMe(ν) =∞.

For R ∈ N and ε ∈ (0, 1] we construct a suitable recovery sequence `(N) = `(N)(R, ε) that will
turn out in Step 5 as asymptotically optimal. To this end, we construct it in such a way that it will put
all mesoscopic mass ν := µ − c(λ) − c(α) into several components that can all be described by
the same configuration k(Me,N) and which are actually on the lower end of the macroscopic scale,
such that (3.4) of Theorem 15 can be applied. Our construction also ensures that all components of
macroscopic scale have a strictly positive probability of being connected. Denote by 1l the element
of NS0 that is equal to 1 in each entry. Define k(Me,N) := bNενc + 1l. Using the representation
α =

∑
i δy(i) put k(i,N) := bNy(i)c+ 1l for i ∈ Jε(α) := {i : |y(i)| > ε}.

Let us check now that we can actually apply Theorem 15 to pN(k(i,N)) for all i ∈ Jε(α) ∪ {Me}. To
check that τ(k(i,N)) > 0 for all i ∈ Jε(α)∪{Me} note the following: Depending on the support of y(i)

we might not have that κ is irreducible with respect to y(i). However, the vectors k(i,N) have support
on the full type space S for all N ∈ N by construction. Consequently, τ(k(i,N)) > 0 is implied by the
fact that κ is irreducible with respect to µ. Secondly, since ν � κν, we also have that y(i) � κy(i)

for all i ∈ Jε(α): if not, IMa(α) =∞ by definition and the lower bound −∞ in (4.33) trivially holds.
By construction it holds for all i ∈ Jε(α) that k(i,N)

s = 1 for s /∈ supp(y(i)) and for all N ∈ N, which
ensures the boundedness condition. The same holds for k(Me,N).

Define now

`(N)

k :=



bλkNc if 2 ≤ |k| ≤ R

0 if R < |k| ≤ εN and k 6= k(Me,N)

bε−1c for k = k(Me,N)

#{i ∈ Jε(α) : k = k(i,N)} if εN < |k|
Nµ(N)

r −
∑

m:2≤|m| `
(N)
m mr if k = er for any r ∈ S,

(4.36)

where the last line ensures that `(N) ∈ LN . Observe that

lim
N→∞

1

N
`(N)

er − λer = cr(λ)− c(R)

r (λ) + νr −
⌊
ε−1
⌋
(ενr) + cr(α)− c(ε)r (α) for r ∈ S

lim
N→∞

1

N
`(N)

k − λk = 0 for 2 ≤ |k| ≤ R,

which implies that limR→∞,ε→0 limN→∞ dL( 1
N
`(N), λ) = 0. Similarly, limε→0 limN→∞ dA(α(N), α) =

0, where α(N) =
∑

k `
(N)

k δ k
N

.

Step 5: Proof of the lower bound in (4.33). Now we finish the proof of the lower bound by showing that
the recovery sequence (`(N))N∈N that we constructed in Step 4 is giving the right asymptotics.

Fix δ, ρ > 0. Then by choosing R ∈ N large enough and ε > 0 small enough, we have that
1
N
`(N) ∈ Bδ(λ) and α(N) ∈ Bρ(α) for all but finitely many N ∈ N. Hence, Lemma 32 implies that

P (MiN ∈ Bδ(λ),MaN ∈ Bρ(α)) ≥ P(NMiN = `(N))

= eo(N)z(N)

0,R(`(N))z(N)

R,εN(`(N))z(N)

εN,N(`(N)).

Next, we want to use Lemmas 33 and 34(2) to get the exponential rates for the z-terms. Note that
we do not have limN→∞

1
N
`(N) = λ on {k : |k| ≤ R}, so we will instead apply Lemma 33 to the
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sequence bλNc, which gives

lim
N→∞

1

N
log z(N)

0,R(bλNc) = −I (R)

Mi (λ)

Using the definition (4.15), it is easy to verify that

lim
N→∞

1

N
log z(N)

0,R(`(N)) = lim
N→∞

1

N
log z(N)

0,R(bλNc) + lim
N→∞

1

N

∑
r∈S

log
z(N)(`(N)

er , er)

z(N)(bλerNc, er)

= −I (R)

Mi (λ) + C̃(R, ε).

for some constant C̃(R, ε) vanishing as R → ∞ and ε → 0. For the mesoscopic part, we use the
asymptotic formula (3.4) of Theorem 15 for pN(k(Me,N)). We proved in Step 4 that we can actually
apply Theorem 15 to pN(k(Me,N)). This, together with Stirling’s formula, gives us

lim
N→∞

1

N
log z(N)

R,εN(`(N)) =
⌊
ε−1
⌋〈
εν, log

(1− e−κ(εν))µ

εν

〉
− 1

2

⌊
ε−1
⌋
〈εν, κ(µ− εν)〉.

The right-hand side clearly converges to−IMe(ν) as ε→ 0. The analysis of the macroscopic part in
Step 4 shows that we can directly use Lemma 34(2) to see that

lim
N→∞

1

N
log z(N)

εN,N(`(N)) = −I (ε)

Ma(α).

Taking the limits R → ∞ and ε → 0 we obtain the lower bound in (4.33). This finishes the proof of
Theorem 29.

Remark 36. (The reducible case: proof of Theorem 30) Recall from Section 2.3 that in the case
that κ is reducible, one can decompose the type space S =

⋃
j Sj in such a way that κ restricted

to Sj × Sj is irreducible and κ|Si×Sj = 0 for i 6= j. Assume that α ∈ A is connectable as defined

in Section 2.3: for each y ∈ supp(α) there is some j such that supp(y) ⊂ Sj . Then we can argue
that the lower bound in the proof of (4.33) holds. For any j we can construct a recovery sequence as
before, where we approximate the macroscopic components by defining k(i,N) := bNy(i)c + 1lSj for
any y(i) ∈ supp(α) to ensure that τ(k(i,N)) > 0. In the same way we approximate the mesoscopic
mass by defining ν(j) := ν1lSj and k(Me,j,N) := bNεν(j)c + 1lSj . The rest will work out as in the
proof above. The only additional observation needed is that for any j we have that (κν(j))s = (κν)s
if s ∈ Sj .
On the other hand, if α ∈ A is not connectable, then we can argue that the upper bound of the LDP
holds with I(λ, α) = ∞ by additionally requiring that κN = κ for all but finitely many N ∈ N:

Indeed, there exists y ∈ supp(α) such that for any sequence k(N) with limN→∞
k(N)

N
= y we have

that τ(k(N)) = 0 and by using that κN = κ we get that pN(k(N)) ≤ τ(k(N))N−(|k|−1) = 0, which
gives that I(λ, α) =∞.

5 Proof of Theorem 1

The aim of this section is to finally prove our main result, Theorem 1, for the general case, where the
type space S is some compact metric space. The main idea is to approximate the general graph model
introduced in Section 1.1 by a discretized model with a finite type space and discretized kernels. To
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derive the LDP we will use the LDP of Theorem 29 for finite type spaces, together with the Dawson–
Gärtner theorem, which we will slightly modify for our purposes.

In Section 5.1 we introduce the approximation scheme and derive lower and upper approximations
for the distribution of the empirical measures of the general graph via a comparison with certain
discretized graph models. In order to lift statements about the distribution of the discretized model to
the general case we introduce in Section 5.2 a projective system. There, we also identify the projective
limit spaces with the state spaces of our empirical measures, i.e., with L × A, and verify that the
projective limit topology is strong enough to imply an LDP result also with respect to our chosen
topology. In Section 5.3 we conclude with the derivation of our main result by using the Dawson–
Gärtner approach, adapted to our purposes: we have to use different distributions for the lower and
the upper bound and will have to deal with some additional technical difficulty concerning the lower
bound. Finally, Theorem 1 is implied by combining the results of Lemma 52, where we prove the upper
bound, and Lemma 54, where we prove the lower bound.

The following objects will be fixed for the remainder of the section. Let S be a compact metric space.
Fix a probability measure µ on S . For any N fix a type vector x = x(N) = (x1, . . . , xN) ∈ SN
such that its empirical measure µN = 1

N

∑N
i=1 δxi weakly converges to µ as N → ∞. Further-

more, let a continuous kernel κ : S × S → [0,∞) be given that is irreducible w.r.t. µ, as well as
a sequence of continuous kernels κN that converges to κ uniformly on S × S as N → ∞. By
GN = G([N ],x, 1

N
κN) we denote the inhomogeneous random graph introduced in Section 1.1 and

by (Ci)i we denote the vertex sets of the connected components of GN . We will denote the probability
measure corresponding to the graph GN by PN . Recall the definition of the microscopic and macro-
scopic empirical measures MiN and MaN given in (1.2). The goal is to derive the LDP for the pair
(MiN ,MaN) that is formulated in Theorem 1.

Before chosing a discretization scheme, we would like to collect some properties of our state space
L ×A. Recall that

L :=
{
λ ∈M(MN0(S)) : cλ ≤ µ or cλ ≤ µN for some N ∈ N, λ({0}) = 0

}
, (5.1)

A :=
{
α ∈MN0(M(S) \ {0}) : cα ≤ µ or cα ≤ µN for some N ∈ N

}
, (5.2)

and that both are equipped with vague topologies, i.e., a sequence (λn)n∈N in L converges to λ,
if for any continuous, compactly supported test function g : MN0(S) → R the integrals

∫
g dλn

converge to
∫
g dλ, as n → ∞. In the same way, a sequence (αn)n∈N in A converges to α, if

for any continuous, compactly supported test function g : M(S) \ {0} → R the integrals
∫
g dαn

converge to
∫
g dα, as n → ∞. Both onMN0(S) andM(S) \ {0} we consider the topologies of

weak convergence. In the next lemma, we give a short characterization of compactness that is implied
by this choice; a verification is left to the reader.

Lemma 37. The following assertions hold:

1 A subsetN ⊂MN0(S) is compact if and only if it is closed and sup {ν(S) : ν ∈ N} <∞.

2 A subsetN ⊂M≤1(S)\{0} is compact if and only if it is closed and inf {ν(S) : ν ∈ N} >
0.

The following lemma implies that any vague accumulation points of MiN and MaN are indeed ele-
ments of L andA if they exist.

Lemma 38. Both L andA are compact spaces.
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Proof. Denote M := {µ} ∪ {µN : N ∈ N}.
(1) Compactness of L: For any λ ∈ L note that |λ| ≤ cλ(S) ≤ supµ̃∈M µ̃(S) = 1. The set
B1 := {λ ∈ M(MN0(S)) : |λ| ≤ 1} is a bounded subset of the dual of C0(MN0(S) \ {0}) (the
space of continuous functions g onMN0(S) with limk(S)→∞ g(k) = 0), so by applying the Banach-
Alaoglu Theorem we get that B1 is compact w.r.t. the vague topology. Since L ⊂ B1 it remains to
argue that L is closed. Let (λn)n∈N be a sequence in L with vague limit λ. Then for each n ∈ N
there exists µ̃n ∈ M such that cλn ≤ µ̃n. Since M is compact w.r.t. the weak topology, we can
find µ̃ ∈ M and a subsequence (which we will also denote by (µ̃n)n∈N) such that µ̃n → µ̃ weakly,
as n → ∞. We now argue that this implies that cλ ≤ µ̃. Let f : S → [0,∞) be a continuous
and bounded function. For any R ∈ N, let χR : [0,∞) → [0,∞) be a smooth function satisfying
1l[0,R] ≤ χR ≤ 1l[0,R+1], such that R 7→ χR is increasing pointwise. Define

Φf
R : MN0(S)→ R, Φf

R(k) =
(∫
S
f(s) k(ds)

)
χR(k(S)) (5.3)

and note that Φf
R(k)↗

∫
f(s) k(ds), as R→∞, pointwise for any k. By Lemma 37 we have that

Φf
R is compactly supported and it can be easily seen that continuity of χR and f imply that Φf

R is
continuous. Therefore∫

S
f(s) cλ(ds) = sup

R∈N

∫
Φf
R(k)λ(dk) = sup

R∈N
lim
n→∞

∫
Φf
R(k)λn(dk)

≤ sup
R∈N

lim
n→∞

∫
S
f(s) cλn(ds) ≤ lim

n→∞

∫
S
f(s) µ̃n(ds) =

∫
S
f(s) µ̃(ds).

Since this holds for any f ≥ 0, we can conclude that cλ ≤ µ and thus λ ∈ L.

(2) We only sketch the construction of a vague limit point. Fix a sequence (εi)i∈N, with εi ↘ 0 as
i → ∞, and define Nεi := {y ∈ M≤1(S) \ {0} : |y| ≥ εi}. Note that εiαn(Nεi) ≤ cαn(S) ≤ 1
implies that αn(Nεi) ≤ 1/εi. Thus, for fixed i ∈ N, the restricted measures (αn|Nεi )n∈N are
bounded and thus have a vaguely converging sub-sequence. By diagonalization we can construct for
each i ∈ N a subsequence of (αn)n∈N such that the restrictions to Nεi converge vaguely to some
α(i) ∈ M(Nεi) and in such a way that α(i+1)|Nεi = α(i) holds for all i ∈ N. Thus the monotone

limit limi→∞ α
(i) =: α onM≤1(S) \ {0} is a countably additive extension of the measures α(i),

i ∈ N. Since every compactly supported test function has its support contained in Nεi for some i by
Lemma 37 one sees that in the vague topology αn → α.

To see that α ∈ A (i.e., that A is closed) we can proceed as in the proof for L. Note that for ε > 0
we can find a smooth function χε : [0,∞)→ [0,∞) satisfying 1l[2ε,∞) ≤ χε ≤ 1l[ε,∞), which allows
us to define Φf

ε as above but by truncating with χε.

5.1 Discretization and Approximation

Let (Pm)m∈N be a sequence of finite partitions of S into non-empty sets. For m ∈ N we denote
Pm = {Am,i : i = 1, . . . , |Pm|}. We say that (Pm)m∈N is nested if for m ≤ n and any Am,i ∈ Pm
there is J ⊂ {1, . . . , |Pn|}, such that Am,i =

⋃
j∈J An,j . For any subset A we write diam(A) :=

sup{d(x, y) : x, y ∈ A}. For any measure ν on S a set A ⊂ S is called a continuity set of ν if
ν(∂A) = 0. The following lemma is a modification of Lemma 7.1 from [BJR07].

Lemma 39. There exists a sequence of finite partitions (Pm)m∈N of S with the following properties:
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1 For any m ∈ N and any i = 1, . . . , |Pm| we have that Am,i is measurable and a continuity
set of µ and µN for all N ∈ N.

2 (Pm)m∈N is nested.

3 It holds that

lim
m→∞

max
i=1,...,|Pm|

diam(Am,i) = 0. (5.4)

Proof. The proof can be done as in the proof of Lemma 7.1 in [BJR07] with two small modifications.
Let A ⊂ S be the set of points that are atoms of µ or µN for some N ∈ N. Then A is still a
countable set, so we may pick the balls Bmi in a way such that they are continuity sets of µ and µN
for all N ∈ N. Since in our case the set S is compact, we can cover it with finitely many of these
balls, hence we get the stronger property formulated in (5.4).

In the following we always assume that (Pm)m∈N has all the properties given in Lemma 39. For
m ∈ N and any Am,i ∈ Pm we pick exactly one point xm,i from the set Am which we call the
representative of Am,i. We define

Sm := {xm,i : i = 1, . . . , |Pm|} (5.5)

and define the projection
πm : S → Sm, x 7→ xm,i (5.6)

where i is such that Am,i is the unique set containing x.

Further we can lift the projection to the space M(S), the space of finite measures on S . For any
m ∈ N we introduce (by abuse of notation)

πm : M(S)→M(Sm), πm(ν) := ν ◦ π−1
m for ν ∈M(S).. (5.7)

Going one level further, we also define

πm : M(M(S))→M(M(Sm)), πm(λ) := λ ◦ π−1
m for λ ∈M(M(S)). (5.8)

We can now apply the projections to all the levels of our graph setting. On the first level of discretiza-
tion, i.e., from S to Sm, we approximate the type of a vertex by some type from the discrete set Sm.
On the second level, we approximate the type configuration of a vertex set which, depending on the
context, may or may not be a cluster. On the third level, we approximate measures that count the mul-
tiplicities of type configurations and are therefore suited to register the number of clusters described
by the different type configurations.

Fix m ∈ N. We write πm(x) = (πm(x1), . . . , πm(xN)) ∈ (Sm)N for the discretized type se-
quence and denote by µ(m)

N = 1
N

∑N
i=1 δπm(xi) its empirical measure. It is easy to check that

µ(m)

N = πm(µN). Since our partition Pm has carefully been chosen such that the sets Am,i ∈ Pm
are continuity sets of µ, it holds that µ(m)

N converges weakly to µ(m) := πm(µ), as N → ∞. We
also define ηπm(x) : P([N ])→MN0(Sm) as the discrete analog of the type registering measure ηx
from (1.1), i.e., for any A ⊂ [N ] we have that ηπm(x) =

∑
i∈A δπm(xi) ∈ MN0(Sm). Abbreviating

ηm = ηπm(x) we can now define

Mi(m)

N =
1

N

∑
i

δηm(Ci) and Ma(m)

N =
∑
i

δ 1
N
ηm(Ci). (5.9)
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It is straight forward to show that Mi(m)

N = πm(MiN) and Ma(m)

N = πm(MaN). Both empirical
measures Mi(m)

N and Ma(m)

N evaluate type information given by the vertices of the clusters only roughly
by approximating the type of each vertex by an element from Sm. Note that c

Mi
(m)
N

= πm(cMiN ) ≤
µ(m)

N and c
Ma

(m)
N

= πm(cMaN ) ≤ µ(m)

N . Hence, the natural state spaces for the discretized empirical
measures are given by

Lm =
{
λ ∈M(MN0(Sm)) : cλ ≤ µ(m) or cλ ≤ µ(m)

N for some N ∈ N, λ({0}) = 0
}
,(5.10)

Am =
{
α ∈MN0(M(Sm) \ {0}) : cα ≤ µ(m) or cα ≤ µ(m)

N for some N ∈ N
}
, (5.11)

and we endow them with vague topologies.

At this point it is important to note that we cannot apply the discrete LDP from Theorem 29 directly to
get an LDP for the measure PN((Mi(m)

N ,Ma(m)

N ) ∈ ·), since the edges of the random graph GN are
drawn according to the non-discretized types of the vertices. Before applying Theorem 29 one has to
approximate the underlying graph itself by a discrete version.

Let κ(m)

N : Sm × Sm → [0,∞), N ∈ N, be a sequence of kernels on Sm. We will specify later, in
which sense they should be an approximation for κN . Consider the inhomogeneous random graph
G(m)

N = G([N ], πm(x), 1
N
κ(m)

N ) and denote by (C(m)

i )i the collection of the vertex sets of its connected
components.

Instead of choosing just one approximating kernel, we will consider a lower and an upper approxima-
tion for κN , which will allow us to find upper and lower bounds for the distributionPN((Mi(m)

N ,Ma(m)

N ) ∈
·). For fixed m ∈ N let κ(m,−)

N and κ(m,+)

N , N ∈ N, be two sequences of kernels on Sm satisfying

κ(m,−)

N (πm(x), πm(x̂)) ≤ κN(x, x̂) ≤ κ(m,+)

N (πm(x), πm(x̂)), ∀ x, x̂ ∈ S, ∀ N ∈ N. (5.12)

An obvious choice is given by

κ(m,−)

N (r, s) := inf{κN(x, x̂) : x, x̂ ∈ S, πm(x) = r, πm(x̂) = s}, for r, s ∈ Sm (5.13)

κ(m,+)

N (r, s) := sup{κN(x, x̂) : x, x̂ ∈ S, πm(x) = r, πm(x̂) = s}, for r, s ∈ Sm. (5.14)

Defining κ(m,∗) = limN→∞ κ
(m,∗)
N for both ∗ ∈ {+,−} it is obvious that

κ(m,−)(πm(x), πm(x̂)) ≤ κ(x, x̂) ≤ κ(m,+)(πm(x), πm(x̂)), for all x, x̂ ∈ S, (5.15)

and we see that

lim
m→∞

κ(m,∗)(πm(x), πm(x̂)) = κ(x, x̂), uniformly in x, x̂ ∈ S, ∗ ∈ {+,−}. (5.16)

For both ∗ ∈ {+,−} we will denote by P(m,∗)
N the probability measure corresponding to the graph

G(m,∗)
N = G([N ], πm(x), 1

N
κ(m,∗)
N ).

The following comparison lemma shows how we can estimate the distribution PN((Mi(m)

N ,Ma(m)

N ) ∈
·) from below and above.

Lemma 40. Fix m ∈ N and let κ(m,−)

N and κ(m,+)

N , N ∈ N, be two sequences of kernels on Sm
satisfying (5.12). Assume that N ∈ N is large enough such that 1

N
κ(m,+)

N ≤ 1. Then, for any ` ∈
MN0(MN0(Sm)),

(∆(m)

N )−1P(m,−)

N (NMiN = `) ≤ PN(NMi(m)

N = `) ≤ P(m,+)

N (NMiN = `)∆(m)

N , (5.17)

where

∆(m)

N =
∏

r,s∈Sm

(1− 1
N
κ(m,−)

N (r, s)

1− 1
N
κ(m,+)

N (r, s)

) 1
2
N2µ

(m)
N (r)µ

(m)
N (s)

. (5.18)
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Proof. As in the discrete setting of Section 4.1 we can identify elements from MN0(Sm) with ele-
ments from NSm0 and identify ` with (`k)k∈NSm0

. For ∗ ∈ {+,−} and any k ∈ NSm0 we write

p(m,∗)
N (k) = P(m,∗)

N

(
G(|k|,xk, 1

N
κ(m,∗)
N ) is connected

)
, (5.19)

with xk ∈ S |k|m any |k|-dimensional vector compatible with k. The main idea is that we identify
in the exact formula (4.13) in Lemma 31 those terms that are increasing in κ and those that are
decreasing in κ. Indeed, the connection probabilities are increasing in κ since the event of being
connected is increasing in the edge parameter. Indeed, for any k ∈ NSm0 and x ∈ S |k| such that
πm(

∑|k|
i=1 δxi) = k,

p(m,−)

N (k) ≤ PN(G(|k|,x, 1
N
κN) is connected ) ≤ p(m,+)

N (k).

Furthermore, the powers of (1 − 1
N
κ(·)) that describe the probabilities of not being connected are

increasing for negative powers, and decreasing for positive powers. With those observations and
combinatorial factors we can estimate

PN(NMi(m)

N = `) ≤
( ∏
r∈Sm

(Nµ(m)

N (r))!
)( ∏

k∈NSm0

p(m,+)

N (k)`k

`k!
∏

r∈Sm(kr!)`k

)
×
( ∏
r,s∈Sm

(
1− 1

N
κ(m,+)

N (r, s)
) 1

2

∑
k kr(Nµ

(m)
N (s)−ks)`k

)
∆(m)

N

(5.20)

The lower bound and its proof are analogous.

5.2 Projective system

Using our discretization scheme from Section 5.1 we now introduce a projective system that fits into
the framework of [DZ10, Section 4.6]. Recall the notions introduced at the beginning of Section 5.1, in
particular the family of finite partitions (Pm)m∈N that has the properties formulated in Lemma 39 and
the definition (5.5) of the discretized type spaces Sm. For any pair m,n ∈ N with m ≤ n we define

πm,n : Sn → Sm, xn,j 7→ xm,i (5.21)

where xm,i is the representative of Am,i and Am,i is the unique set in Pm containing xn,j . As before,
we lift this definition to the measure spaces by defining (with abuse of notation)

πm,n : M(Sn)→M(Sm), πm,n(ν) = ν ◦ π−1
m,n, (5.22)

as well as
πm,n : M(M(Sn))→M(M(Sm)), πm,n(λ) = λ ◦ π−1

m,n. (5.23)

It is easy to check that restricting the latter mapping to Ln and An, respectively, gives us two well-
defined mappings πm,n : Ln → Lm and πm,n : An → Am, respectively. Now, (Lm, πm,n)m≤n (or
(Am, πm,n)m≤n) is called a projective system, if

� for any m ∈ N the space Lm is a Hausdorff topological space,

� for any m,n ∈ N with m ≤ n the mapping πm,n : Ln → Lm is continuous,

� for any m,n, p ∈ N with m ≤ n ≤ p we have πm,p = πm,n ◦ πn,p.
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The projective limit of the projective system (Lm, πm,n)m≤n is denoted by lim←−Lm and is defined
as the subset of the product space

∏
m∈N Lm that contains all elements (λm)m∈N that satisfy

πm,n(λn) = λm for any pair m,n ∈ N with m ≤ n. The projective limit lim←−Lm is equipped
with the topology that is induced by the product topology on

∏
m∈N Lm. We call this the projective

limit topology. In particular, a sequence λ(n) ∈ lim←−Lm converges to λ ∈ lim←−Lm as n → ∞ if it
holds for any m ∈ N that λ(n)

m converges to λm as n→∞.

Lemma 41. (Lm, πm,n)m≤n and (Am, πm,n)m≤n are projective systems.

Proof. The fact that Lm and Am are Hausdorff topological spaces is a consequence of the equiva-
lence of their topologies with the discrete topologies that we described in Section 4.1. Form ≤ n, the
continuity of πm,n is easily verified for the lowest level, i.e., on Sn → Sm, and then lifted to the higher
levels. Indeed, for each open setO ∈M(Sm) (which can be identified as an open set in RSm≥0 \{0}),
we see that π−1

m,n(O) is an open set inM(Sm). The same is true at the higher level with open sets
in Lm andAm, which are images of open sets in Ln andAn.

Throughout this section we will denote L∞ = lim←−Lm andA∞ = lim←−Am. The aim of this section is
to prove the following

Proposition 42. The following assertions hold.

1 The set L ×A can be identified with L∞ ×A∞.

2 The projective limit topology on L∞ ×A∞ is equivalent to the vague topology on L ×A.

The proof will be a consequence of the following lemmas. In Lemma 44 we explain how to project from
L×A to L∞×A∞. As a direct consequence of Lemma 45 we get that this operation is continuous.
Afterwards, we deal with the inverse operation. In Lemma 46 we show the existence of the inverse
and in Lemma 48 we argue that it is continous.

Here is a basic property of the mappings πm and πm,n, which we need to prepare for Lemma 44.

Lemma 43. Let m ≤ n. Then the equality πm = πm,n ◦ πn holds on all levels, i.e., for all mappings
that were defined in (5.6)–(5.8) and (5.21)–(5.23).

Proof. On the lowest level, i.e., on S → Sm, the equality is a direct consequence of the fact that
(Pm)m∈N is nested. On the higher levels, the equality follows by the definition of the image measure.

Lemma 44. The following holds.

1 Let λ ∈ L. Then for any m ∈ N we have that πm(λ) ∈ Lm. Further, we have that the
sequence (πm(λ))m∈N is an element of the projective limit L∞.

2 Let α ∈ A. Then for any m ∈ N we have that πm(α) ∈ Am. Further, we have that the
sequence (πm(α))m∈N is an element of the projective limitA∞.

Consequently, the mapping Π: L × A → L∞ × A∞, (λ, α) 7→
(
(πm(λ))m∈N, (πm(α)m∈N)

)
is

well-defined.
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Proof. (1) For any λ ∈ L and m ∈ N we have that cπm(λ) = πm(cλ) ≤ πm(µ̃), where µ̃ ∈
{µ} ∪ {µN : N ∈ N}, hence πm(λ) ∈ Lm. As a direct consequence of Lemma 43 the sequence
(πm(λ))m∈N satisfies the consistency condition and is therefore an element of L∞.

(2) For α ∈ A the proof is analogous.

Lemma 45. Fix any m ∈ N. The mappings πm : L → Lm and πm : A → Am are continuous w.r.t.
the vague topologies. Consequently, the mapping Π defined as in Lemma 44 is continuous.

Proof. On the lowest level, i.e., for πm : S → Sm, it is obvious that πm is continuous on the set
S \

⋃|Pm|
i=1 ∂Am,i. Consider the second level, i.e., πm : M(S) → M(Sm). We claim that πm is

continuous on
N0 := {ν ∈M(S) : ν(∂Am,i) = 0 for all i = 1, . . . , |Pm|} (5.24)

w.r.t. weak convergence: Given some ν ∈ N0 and a sequence (νn)n∈N inM(S) such that νn → ν
weakly as n→∞ and some continuous bounded function f : Sm → R we clearly have that∫

Sm
f dπm(νn) =

∫
S
f ◦ πm dνn →

∫
S
f ◦ πm dν =

∫
Sm
f dπm(ν),

as n → ∞, since f ◦ πm is continuous ν-almost everywhere. Hence, πm(νn) → πm(ν) weakly as
n→∞.

Now, consider πm : L → Lm. For λ ∈ L we have that cλ ≤ µ̃, where µ̃ ∈ {µ} ∪ {µN : N ∈ N}.
This implies that for any i = 1, . . . , |Pm| we have that

λ
(
{k : k(∂Am,i) > 0}

)
≤

∞∑
n=1

nλ
(
{k : k(∂Am,i) = n}

)
= cλ(∂Am,i) ≤ µ̃(∂Am,i) = 0 (5.25)

by Lemma (39). With other words, λ is concentrated on a subset of the set N0 given in (5.24). Now,
let (λn)n∈N be a sequence in L that converges vaguely to λ as n → ∞. Then for any function
g : MN0(Sm)→ R that is continuous and compactly supported, we have that∫

MN0 (Sm)

g dπm(λn) =

∫
MN0 (S)

g ◦ πm dλn →
∫
MN0 (S)

g ◦ πm dλ =

∫
MN0 (Sm)

g dπm(λ),

as n → ∞, since g ◦ πm is compactly supported and continuous λ-almost everywhere. Hence,
πm(λn)→ πm(λ) vaguely as n→∞.

The proof for πm : A → Am is analogous.

In the next lemmas we will deal with the construction of the inverse of the projection mapping Π and
verify its continuity. This requires, for any m ∈ N, to identify measures λm ∈ Lm with measures
λ̄m ∈ L. To prepare for this identification we now define for any m ∈ N

Mm(S) := {ν ∈M(S) : ν is concentrated on Sm}, (5.26)

where for any measure ν on some measure space X and any measurable U ⊂ X we say that ν is
concentrated on U if ν(X \U) = 0. It is clear thatMm(S) can be identified withM(Sm). Observe
that this is possible because Sm ⊂ S , as we have defined it via the representatives of each partition.
For any νm ∈M(Sm) we will denote the corresponding element by ν̄m ∈Mm(S) and we will write
π̄m : M(S) →Mm(S) for the mapping that we obtain by concatenating πm : M(S) →M(Sm)
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as defined in (5.7) with the operation νm 7→ ν̄m. Then we can identify the space Lm that was defined
in (5.10) with

L̄m :=
{
λ ∈ L : λ is concentrated onMm(S) ∩MN0(S)

}
. (5.27)

For any λm ∈ Lm we will denote the corresponding element by λ̄m ∈ L̄m and we will write π̄m : L →
L̄m for the mapping that we obtain by concatenating πm : L → Lm with the operation λm 7→ λ̄m. In
the same way, we identify the spaceAm that was defined in (5.11) with

Ām :=
{
α ∈ A : α is concentrated onMm(S) ∩M(S) \ {0}

}
. (5.28)

Now we construct the inverse of the projection mapping Π that was defined in Lemma 44.

Lemma 46. The following assertions hold.

1 Let (λm)m∈N ∈ L∞. Then there exists a unique λ ∈ L such that λm = πm(λ) holds for all
m ∈ N.

2 Let (αm)m∈N ∈ A∞. Then there exists a unique α ∈ A such that αm = πm(α) holds for all
m ∈ N.

Consequently, the mapping Π defined in Lemma 44 is bijective with inverse Π−1.

Proof. Fix (λm)m∈N ∈ L∞. The idea is to identify for any m ∈ N the measure λm ∈ Lm uniquely
with the element λ̄m ∈ L̄m and to prove that the sequence (λ̄m)m∈N has a vague limit point in L,
which we will denote by λ. It then remains to show that πm(λ) = λm holds for any m ∈ N.

Next, we will argue for the existence of a vague limit point of (λ̄m)m∈N. As an element of L∞ the
sequence (λm)m∈N satisfies the consistency condition λm = πm,n(λn) for anym ≤ n. Abbreviating
MN0 :=MN0(S) \ {0} andMN0,m :=MN0(Sm) \ {0}, we get that

λ̄m(MN0) = λm(MN0,m) = λn(π−1
m,n(MN0,m)) = λn(MN0,n) = λ̄n(MN0)

and consequently, λ̄m, m ∈ N, is of constant total variation. Note that the measures λ̄m, m ∈ N,
are in the dual of C0(MN0) and that, due to the Banach–Alaoglu theorem, they are compact w.r.t.
the weak∗-topology, which implies compactness w.r.t. the vague topology on L. Hence, there exists a
vague limit point λ ∈ M(MN0) and a subsequence (λ̄mi)i∈N in L converging vaguely to λ. Since
L is compact by Lemma 38, we also have that λ ∈ L.

Next, we fix m ∈ N and our goal is to show that λm = πm(λ). Observe that as a consequence of
our identification between λn and λ̄n we have that πn(λ̄n) = λn for any n ∈ N. Together with the
consistency and Lemma 43 we get for n ≥ m that

λm = πm,n(λn) = πm,n(πn(λ̄n)) = πm(λ̄n).

Choosing a subsequence (λ̄ni)i∈N that converges vaguely to λ, we get that λm = limi→∞ πm(λ̄ni) =
πm(λ) where we used the continuity of the mapping πm that we showed in Lemma 45.

For a given (αm)m∈N ∈ A∞ the proof is analogous.

To prepare for the proof of the continuity of Π−1 we need the following lemma.

Lemma 47. On bounded subsets ofM(S), the mappingM(S)→M(S), ν 7→ π̄m(ν), converges
uniformly to the identity as m→∞.
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Proof. Recall that we equipM(S) with the weak topology, which is generated by all the test integrals
against continuous bounded functions S → R. The weak topology onM(S) admits a number of
metrisations, especially since S is compact. We introduce the dual bounded-Lipschitz distance given
by

dBL(ν, ν̂) := sup
φ : ‖φ‖BL≤1

∣∣∣∣∫
S
φ dν −

∫
S
φ dν̂

∣∣∣∣, (5.29)

where ‖φ‖BL = ‖φ‖∞+ Lip(φ) and Lip(φ) is the infimum of all Lipschitz constants of φ : S → R.
Let φ : S → R satisfy ‖φ‖BL ≤ 1 then

∣∣∣∣∫
S
φ dπm(ν)−

∫
S
φ dν

∣∣∣∣ ≤ |Pm|∑
i=1

∫
Am,i

|φ(xm,i)− φ(x)| ν(dx) ≤ max
i=1,...,|Pm|

diam(Am,i)ν(S),

(5.30)
where xm,i is the representative of Am,i as defined right before definition (5.5). Now, ifN ⊂M(S)
is bounded, i.e., supν∈N ν(S) < ∞, then dBL(ν, πm(ν)) vanishes as m → ∞ uniformly on N by
assumption (5.4).

In the next lemma we verify that the mapping Π−1 constructed in Lemma 46 is continuous.

Lemma 48. The following assertions hold.

1 Let λ(n), n ∈ N, be a sequence inL. Assume for allm ∈ N that πm(λ(n)) converges to πm(λ)
vaguely in Lm as n→∞. Then λ(n) converges vaguely to λ.

2 Let α(n), n ∈ N, be a sequence in A. Assume for all m ∈ N that πm(α(n)) converges to
πm(α) vaguely inAm as n→∞. Then α(n) converges vaguely to α.

Consequently, the mapping Π−1 constructed in Lemma 46 is continuous.

Proof. (1) Let λ(n), n ∈ N, be a sequence in L, such that for all m ∈ N it holds that πm(λ(n))
converges to πm(λ) vaguely in Lm as n → ∞. Abbreviate MN0 := MN0(S) \ {0} and fix a
continuous and compactly supported function g : MN0 → R. Recall the identification of Lm and L̄m
introduced before Lemma 46. Clearly, we have for any m ∈ N that∣∣∣ ∫ g dλ(n) −

∫
g dλ

∣∣∣ ≤ ∣∣∣∣∫ g dλ(n) −
∫
g dπ̄m(λ(n))

∣∣∣∣
+

∣∣∣∣∫ g dπ̄m(λ(n))−
∫
g dπ̄m(λ)

∣∣∣∣+

∣∣∣∣∫ g dπ̄m(λ)−
∫
g dλ

∣∣∣∣
≤
(
|λ(n)|+ |λ|

)
‖g − g ◦ π̄m‖∞ +

∣∣∣∣∫ g dπ̄m(λ(n))−
∫
g dπ̄m(λ)

∣∣∣∣. (5.31)

Note that λ(n) ∈ L implies that |λ(n)| ≤ cλ(n)(S) ≤ supN∈N µN(S) ∨ µ(S) = 1 for all n ∈ N,
and in the same way |λ| ≤ 1. Further, the support of the function g is compact, and thus bounded.
So by Lemma 47 we have that the mappings π̄m restricted to the support of g converge uniformly to
the identity, as m → ∞. Hence, we can first choose m ∈ N sufficently large such that

(
|λ(n)| +

|λ|
)
‖g − g ◦ π̄m‖∞ is arbitrarily small, uniformly in n. Then we can use that, π̄m(λ(n)) → π̄m(λ),

as n→∞, holds by assumption, so the second summand on the right-hand side of (5.31) vanishes
as n→∞.
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(2) Let α(n), n ∈ N, be a sequence in A, such that for all m ∈ N it holds that πm(α(n)) converges
to πm(α) vaguely in Am as n → ∞. Recall that for all n ∈ N the measures α(n) are concentrated
on M≤1(S), i.e., on subprobability measures on S , since for any y ∈ supp(α(n)), we have that
y(S) ≤ cα(n)(S) ≤ supN∈N µN(S) ∨ µ(S) = 1. The same holds for α. Hence, without loss of
generality we can show vague convergence by considering any continuous compactly supported test
function g : M≤1(S) \ {0} → R. By Lemma 37 there exists ε > 0 such that the support of g is
contained in Nε := {ν ∈M≤1(S) \ {0} : ν(S) ≥ ε}. Analogously to (5.31) we get∣∣∣∣∫ g dα(n) −

∫
g dα

∣∣∣∣ ≤(
α(n)(Nε) + α(Nε)

)
sup
y∈Nε
|g(y)− g ◦ π̄m(y)|+

∣∣∣∣∫ g dπ̄m(α(n))−
∫
g dπ̄m(α)

∣∣∣∣. (5.32)

To bound the first summand observe the following: Since α(n) ∈ A one has that εα(n)(Nε) ≤
cα(n)(S) ≤ 1 and hence α(n)(Nε) ≤ 1/ε. The same holds for α and hence α(n)(Nε) + α(Nε) ≤
2/ε. Also, by Lemma 47 the supremum in (5.32) vanishes, as m → ∞. So, by first choosing m
large enough and then using that π̄m(α(n)) → π̄m(α), as n → ∞, the right-hand side of (5.32)
vanishes.

5.3 Dawson–Gärtner and identification of the rate function

As an easy consequence of Lemma 40 and the LDP of Theorem 29, we obtain upper and lower LDP
bounds for (Mi(m)

N ,Ma(m)

N ) with different rate functions. In order to formulate this (in particular, to
identify the rate functions) we need to introduce additional notation.

For dealing with the microscopic clusters, we need the discretized version of the connection parameter
τ defined in (3.2), which now has to be understood with respect to the discretized kernels. For ∗ ∈
{+,−} and k ∈M(Sm) \ {0} we write

τ (∗)
m (k) =

∑
T∈T (k)

∏
{i,j}∈E(T )

κ(m,∗)(ri, rj), (5.33)

where (ri)i=1,...,|k| ∈ S |k|m is such that k =
∑|k|

i=1 δri ∈ MN0(Sm) and T (k) is the set of spanning
trees on [|k|] and we recall that |k| = k(Sm). Further, we define for ∗ ∈ {+,−}

C(∗)
m =

1

2
〈µ(m), κ(m,∗)µ(m)〉, (5.34)

Î (m,∗)
Mi (λ) = H(λ|Qµ(m))− 1− 〈λ, log τ (∗)

m 〉+ |cλ| − |λ|, λ ∈ Lm, (5.35)

Î (m,∗)
Me (ν) =

〈
ν, log

dν

(κ(m,∗)ν) dµ(m)

〉
, ν ∈M(Sm). (5.36)

where we recall that Qµ(m) is the distribution of a Poisson point process on Sm with intensity measure
µ(m) and that H denotes relative entropy between non-normalized measures, defined as in (1.8).
Again, we adopt the convention that I (m,∗)

Me (ν) = ∞ if dν
(κ(m,∗)ν) dµ(m) does not exist. We have to be

more careful in the definition of the macroscopic rate. For α ∈ Am we define

Î (m,∗)
Ma (α) =

{∫
M(Sm)\{0} α(dy)

[〈
y, log dy

(1−e−κ
(m,∗)y) dµ(m)

〉
− 1

2
〈y, κ(m,∗)y〉

]
if α is connectable,

∞ otherwise,
(5.37)
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where again we define IMa(α) = ∞, if it is not true that α-almost everywhere the density in the
log-term exists. The definition of ÎMa also takes into account the possibility that the discretized kernel
might not be irreducible. In particular if κ is irreducible, it is not always true that κ(m,−) is also irre-
ducible. In that case we have to additionally assume that α is connectable with respect to κ(m,∗) to
get a finite rate, as it is formulated in the generalized version of Theorem 29, i.e., Theorem 30. We will
comment on this in detail below.

When estimating the distribution of the pair (Mi(m),Ma(m)) under the measure PN by Lemma 40 we
will get an additional error term. To deal with that we define for (λ, α) ∈ Lm ×Am

I (m,+)(λ, α) =

{
Î (m,+)

Mi (λ) + Î (m,+)

Ma (α) + Î (m,+)

Me (µ(m) − cλ − cα) + C(−)
m if cλ + cα ≤ µ(m),

∞ otherwise,
(5.38)

I (m,−)(λ, α) =

{
Î (m,−)

Mi (λ) + Î (m,−)

Ma (α) + Î (m,−)

Me (µ(m) − cλ − cα) + C(+)
m if cλ + cα ≤ µ(m),

∞ otherwise.
(5.39)

Corollary 49 (LDP bounds for (Mi(m)

N ,Ma(m)

N ) under GN ). Assume that µN converges to µ as N →
∞. Let κN converge to a continuous kernel κ that is irreducible w.r.t. µ. Fix m ∈ N and let κ(m,−)

N

and κ(m,+)

N , N ∈ N, be two sequences of kernels on Sm satisfying (5.12). Then the distribution of
(Mi(m)

N ,Ma(m)

N ) under PN satisfies, as N →∞, the upper large-deviations bound with rate function
I (m,+) and the lower large-deviations bound with rate function I (m,−).

Proof. It is easy to verify that

lim
N→∞

1
N

log ∆(m)

N = 1
2
〈µ(m), κ(m,+)µ(m)〉 − 1

2
〈µ(m), κ(m,−)〉 = C(+)

m − C(−)

m ,

where ∆(m)

N is defined as in (5.18). Note that irreducibility of κ implies irreducibility of κ(m,+). Hence,
for the upper large-deviations bound we can apply Theorem 29 after using the upper bound from
Lemma 40. For the lower bound we use the lower bound from Lemma 40 and the lower bound from
Theorem 30 that also applies if κ(m,−) is reducible.

Of course, the basic idea is to use Corollary 49 for very large m and the hope is that the discretized
rate functions approximate the rate function I given in Theorem 1. However, the problem is that the
lower bound can be arbitrarily bad due to the following issue. Observe that although κ is assumed to
be irreducible with respect to µ, as a consequence of the definition of the lower approximation κ(m,−)

given in (5.13) we have to deal with the possibility that κ(m,−) is not irreducible with respect to µ◦π−1
m .

This might even be the case for all m ∈ N. To illustrate this, we give a brief example.

Example 50. Choose S = [0, 1], let µ be the Lebesgue measure and κN(x, x′) = κ(x, x′) = xx′

for x, x′ ∈ S and allN ∈ N. Let {Pm}m∈N be any nested partition for S and let Sm, m ∈ N, be any
choice for the sets of representative points. Then for any m ∈ N there exists some set Am ∈ Pm
such that 0 ∈ ∂Am and µ(Am) > 0. Let xm be the representative of Am. It can be directly verified
that for any x′m ∈ Sm we have that κ(m,−)(xm, x

′
m) = 0, although µ(m)({xm}) = µ(Am) > 0. On

the other hand, assumption (5.4) implies that µ(Am)→ 0 as m→∞ so there exists m0 such that
for m ≥ m0 we also have that µ(m)(Sm \ {xm}) > 0 and hence κ(m,−) is reducible with respect to
µ(m) for all m ≥ m0. ♦

Regarding the approximation of the rate function I by its discrete version the problem of (missing)
irreducibility enters our analysis only via the function Î (m,−)

Ma . Indeed, for Î (m,+)

Ma the additional case
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distinction given in (5.37) is not necessary, since κ(m,+) is always irreducible and hence every α is
connectable with respect to κ(m,+). In order to make the lower approximation work, we formulate
additional assumptions on α. Since they are not satisfied for any α we have to find a way how to deal
with the other cases.

Lemma 51 (Identification of the rate function). Let κ : S×S → [0,∞) be continuous and irreducible
with respect to µ. Assume that κ(m,+), κ(m,−) : Sm × Sm → [0,∞) are given such that κ(m,−) ≤
κ(m,+) and

lim
m→∞

κ(m,∗)(πm(x), πm(y)) = κ(x, y), uniformly in x, y ∈ S, ∗ ∈ {+,−},

monotonously decreasing for ∗ = + and monotonously increasing for ∗ = −. We abbreviate
Πm(λ, α) := (πm(λ), πm(α)) for m ∈ N, (λ, α) ∈ L × A. Then the rate function I introduced in
Theorem 1 satisfies the following.

1 For any (λ, α) ∈ L ×A it holds that I (m,+)(Πm(λ, α))↗ I(λ, α) as m→∞.

2 Let (λ, α) ∈ L × A and assume that α satisfies the following: there exists some m0 ∈ N
such that for all m ≥ m0 the measures πm(α) are connectable with respect to κ(m,−). Then
I (m,−)(Πm(λ, α))→ I(λ, α) as m→∞.

Proof. Fix λ ∈ L and α ∈ A. Also, we will denote λm = πm(λ) and αm = πm(α).

We first assume that cλ+cα ≤ µ. It is straight forward to show that this implies that cλm+cαm ≤ µ(m)

for all m ∈ N. We denote νm = µ(m) − cλm − cαm .

We will see in the proof that in each of the terms that we handle, the main part is an entropy between
two image measures under πm plus a perturbation and other terms that will turn out to converge
monotonically as m→∞. Then we will use [Geo88, Prop. 15.6], which says that the named entropy
converges, as m→∞, to its supremum over m.

For this, we will handle each of the four terms in (5.34)–(5.36) separately.

Step 1: term C(∗)
m . It is easy to deduce that limm→∞C

(+)
m = 1

2
〈µ, κµ〉 = limm→∞C

(−)
m and that

C(∗)
m is decreasing in m for ∗ = + and increasing for ∗ = −. Note that I (m,+) is defined with C(−)

m ,
so it has the right direction of monotonicity.

Step 2: term Î (m,∗)
Mi (λm). Let us turn to the part Î (m,∗)

Mi (λm). Recall that λm = λ ◦ π−1
m .

Since λm = λ ◦ π−1
m and Qµ(m) = Qµ ◦ π−1

m by the mapping theorem for Poisson point processes,
[Geo88, Prop. 15.6] implies that H(λm|Qµ(m)) converges towards H(λ|Qµ), and H(λm|Qµ(m)) is
increasing in m. According to our assumption in (51), using the monotone convergence theorem, we
see that the term −〈λm, log τ (∗)

m 〉 converges towards −〈λ, log τ〉 (also if −〈λ, log τ〉 = ∞). For
∗ = + the convergence is from below, as desired. It is easy to verify that |cλm| − |λm| = |cλ| − |λ|
holds for all m. Hence, we have shown that Î (m,+)

Mi (πm(λ))↗ ÎMi(λ) and Î (m,−)

Mi (πm(λ))→ ÎMi(λ)
as m→∞.

Step 3: term Î (m,∗)
Me (νm). Now we turn to the mesoscopic term Î (m,∗)

Me (νm). Note that for ν = µ−cλ−cα
the definition of the image measure implies that νm = ν ◦ π−1

m . Further, we have that

Î (m,∗)
Me (νm) =

〈
νm, log

νm
µ(m)

〉
− 〈νm, log(κ(m,∗)νm)〉.

Hence, we may apply [Geo88, Prop. 15.6] to the first term and see that 〈νm, log dνm
dµ(m) 〉 converges as

m→∞ to its supremum on m, and for the second term we use (51) to see that

lim
m→∞

−〈νm, log(κ(m,∗)νm)〉 = −〈ν, log(κν)〉
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holds by the monotone convergence theorem (also if−〈ν, log(κν)〉 =∞). For ∗ = + the sequence
is increasing as desired.

Step 4: term Î (m,∗)
Ma (αm). Finally, we turn to the macroscopic term Î (m,∗)

Ma (αm). Note that irreducibility
of κ with respect to µ implies irreducibility of κ(m,+) with respect to µ(m). Hence the measures πm(α),
m ∈ N, are connectable. In the setting of statement (2) this is true for m ≥ m0 by assumption.
Therefore, without loss of generality, we assume m ≥ m0. Applying the definition of the image
measure we have that

Î (m,∗)
Ma (αm) =∫

α(dy)
〈
ym, log

dym
dµ(m)

〉
−
∫
α(dy)

[
〈ym, log(1− e−κ

(m,∗)ym)〉+
1

2
〈ym, κ(m,∗)ym〉

]
,

where we wrote ym = y ◦ π−1
m . Now the convergence (including the desired monotonicity) can be ar-

gued in the same way as for the microscopic and the mesoscopic terms above, using the monotonicity
of the entropy and our assumption in (51).

This finishes the proof of (1) and (2) in the case cλ + cα ≤ µ.

Finally, we are considering the case that λ ∈ L and α ∈ A do not satisfy cλ + cα ≤ µ. Then
there exists a µ-continuity set A ⊂ S such that cλ(A) + cα(A) > µ(A). Then with Am = πm(A)
we have that π−1

m (Am) ⊇ A and hence cλm(Am) + cαm(Am) ≥ cλ(A) + cα(A). Now, let 0 <
ε < cλ(A) + cα(A) − µ(A). By Lemma 47 we have that π̄m(µ) → µ weakly, as m → ∞.
Hence, we can choose m0 large enough such that µ(A) ≥ π̄m(µ)(A)− ε/2 = πm(µ)(Am)− ε/2
holds for all m ≥ m0. Consequently, cλm(Am) + cαm(Am) ≥ πm(µ)(Am) + ε/2. Therefore
I (m,∗)(Πm(λ, α)) =∞ for any m ≥ m0 and ∗ ∈ {+,−}.

Now we derive an upper and a lower bound LDP for the distribution of (MiN ,MaN) under GN by
following the two parts of the proof of the Dawson–Gärtner theorem, [DZ10, Theorem 4.6.1] and
using the fact that due to Proposition 42 it is sufficient to work with open and closed sets from the
projective limit topology.

Lemma 52 (LDP – upper bound). Suppose that all assumptions of Theorem 1 are satisfied. Then the
distribution of (MiN ,MaN) under PN satisfies the upper bound part of the LDP with rate function I
as defined in Theorem 1.

Proof. Fix a set F ⊂ L × A that is closed with respect to the vague topology. Then by Proposition
42 the set F is also closed with respect to the projective limit topology. For any m ∈ N we use
the notation Πm(λ, α) := (πm(λ), πm(α)) and recall that (Mi(m)

N ,Ma(m)

N ) = Πm(MiN ,MaN).
Therefore,

lim sup
N→∞

1

N
logPN

(
(MiN ,MaN) ∈ F

)
≤ lim sup

N→∞

1

N
logPN

(
(Mi(m)

N ,Ma(m)

N ) ∈ Πm(F )
)

≤ − inf
Πm(F )

I (m,+) = − inf
F
I (m,+) ◦ Πm,

where we used Corollary 49 for the second inequality. Since the left-hand side does not depend on
m, we can proceed with the supremum over m ∈ N on the right-hand side. By Lemma 51 we have
that supm I

(m,+) ◦ Πm = I , which implies the claim.
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It remains to prove the lower bound of the LDP formulated in Theorem 1. Since the approximation of
I from below via I (m,−) works only in the case where α satisfies the assumptions given in the second
statement of Lemma 51, we have to do some additional work. The idea is the following: given some
α that does not fulfill the assumptions, we will first approximate α by some suitable choice for which
the assumptions hold. Then we can apply Lemma 51.

Lemma 53. Let α ∈ A with cα ≤ µ and IMa(α) <∞. Then there exists a sequence (α(δ,ε))δ>0,ε>0

inA such that the following properties hold:

(1) for fixed δ > 0 and ε > 0 there exists m0 = m0(δ) such that for all m ≥ m0 the measures
πm(α(δ,ε)) are connectable with respect to κ(m,−);

(2) α(δ,ε) → α as δ → 0 and ε→ 0 with respect to the vague topology;

(3) for any λ ∈ L we have that I(λ, α(δ,ε))→ I(λ, α) as δ → 0 and ε→ 0.

Proof. We always write α =
∑

i∈J δyi , where J is a countable set. The idea is to pick some type
x ∈ S and to restrict the measures yi ∈M≤1(S) \ {0}, i ∈ J , to a subset Sδ of S that contains all
types x′ ∈ S that can be connected to x by using a finite sequence of intermediate types xh−1, xh
for which we have κ(xh−1, xh) ≥ δ. Then for large enough m connectivity is preserved with respect
to κ(m,−), which will imply (1). The parameter ε > 0 is only introduced to deal with the fact that J
might be infinite and ensures the convergence claimed in (3).

Fix some x ∈ supp(µ). For δ > 0 define

Sδ := Sδ(x) := {x′ ∈ S : ∃k ∈ N, ∃x0, x1, . . . , xk ∈ S, x0 = x, xk = x′, κ(xh−1, xh) ≥ δ, ∀h ∈ [k]}.
(5.40)

We first show that µ(S \ Sδ) → 0 as δ → 0, which we will need for the proof of (2) and (3).
Observe that Sδ ⊂ Sδ′ if δ > δ′ and put S0 :=

⋃
δ>0 Sδ. Since κ is irreducible with respect to

µ and x ∈ supp(µ) it is easy to see that for δ small enough we have that µ(Sδ) > 0 and hence
µ(S0) > 0. We now argue that κ = 0 µ-almost everywhere on S0 × S \ S0. Assume the contrary,
i.e.,

∫
S0

∫
S\S0

κ(x′, x′′)µ(dx′)µ(dx′′) > 0. Then by continuity of κ we find sets of positive measure

A ⊂ S0 and B ⊂ S \ S0 where δ′ := infx′∈A,x′′∈B κ(x′, x′′) > 0, which is a contradiction to the
fact that B ⊂ S \ S0. By the irreducibility of κ with respect to µ, the facts that µ(S0) > 0 and κ = 0
holds µ-almost everywhere on S0 × S \ S0 imply that µ(S \ S0) = 0, so by continuity of measures
we have that µ(S \ Sδ)→ 0 as δ → 0.

Now for any δ ≥ 0 and ε ≥ 0 we define

α(δ,ε) :=
∑
i∈Jε

δ
y
(δ)
i
, where y(δ) := y(· ∩ Sδ) for any y ∈M≤1(S) (5.41)

and where Jε = {i ∈ J : |yi| > ε}. Note that |cα| ≤ 1 implies that for ε > 0 the set Jε is finite.

Now we show that (α(δ,ε))δ,ε>0 has the three properties.

(1) Fix ε > 0 and δ > 0. Now take m0 such that ‖κ− κ(m,−) ◦ πm‖∞ ≤ δ/2 holds for all m ≥ m0.
Let m ≥ m0. Then we have that κ(m,−) ◦ πm is irreducible on Sδ, since κ(xi−1, xi) ≥ δ implies
κ(m,−) ◦ πm(xi−1, xi) ≥ δ/2. With other words, κ(m,−) is irreducible on π−1

m (Sδ). For any i ∈ J we
have that supp(y(δ)

i ) ⊂ Sδ by construction and hence supp(πm(y(δ)

i )) ⊂ π−1
m (Sδ). Therefore, we

get for all m ≥ m0 that πm(α(δ,ε)) is connectable with respect to κ(m,−).

(2) It is straight forward to show that for all i ∈ J and δ > 0 we have dBL(yi, y
(δ)

i ) ≤ yi(S \ Sδ) ≤
µ(S \ Sδ), where dBL is the metric defined in (5.29) that induces the weak topology onM(S). For
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any continuous compactly supported test function f : M≤1(S) \ {0} → R there exists εf > 0 such
that f = 0 on {y ∈M≤1(S) \ {0} : |y| ≤ εf}, so for ε ≤ εf (including the case ε = 0) we have∣∣∣ ∫ α(δ,ε)(dy)f(y)−

∫
α(dy)f(y)

∣∣∣ =
∑
i∈Jεf

|f(y(δ)

i )− f(yi)| ≤ |Jεf |max
i∈Jεf

|f(y(δ)

i )− f(yi)|.

(5.42)
Observe that the right-hand side converges to 0 as δ → 0. This implies (2).

(3) By lower-semicontinuity of the rate function it is clear that I(λ, α) ≤ limδ,ε→0 I(λ, α(δ,ε)). So we
only have to deal with the other estimate, i.e., we need to find an upper bound for

I(λ, α(δ,ε))− I(λ, α) =
(
IMe(µ− cλ − cα)− IMe(µ− cλ − cα(δ,ε))

)
+
(
IMa(α(δ,ε))− IMa(α(0,ε))

)
+
(
IMa(α(0,ε))− IMa(α)

)
.

(5.43)

Let γ > 0. It is straight forward to verify that cα(δ,ε) → cα weakly as δ, ε→ 0. Since IMe is continuous
we can choose δ0 and ε0 such that |IMe(µ− cλ− cα)− IMe(µ− cλ− cα(δ,ε))| ≤ γ/3 for all δ ≤ δ0,
ε ≤ ε0.

Recall that

IMa(α) =

∫
α(dy)fMa(y), where fMa(y) = 〈y, log dy

(1−e−κy)dµ
〉 − 1

2
〈y, κy〉, (5.44)

and where we interpret the log term as equal to +∞ if the density does not exist.

We have that

IMa(α) = IMa(α(0,ε)) + IMa(
∑

i/∈Jε δyi) ≥ IMa(α(0,ε)) + IMa(
∑

i/∈Jε yi),

where the inequality follows from (7.1), which is proved in Lemma 69. Note that |
∑

i/∈Jε yi| → 0 as
ε → 0 and fMa(y) → 0 as |y| → 0. So we can choose ε ≤ ε0 such that IMa(α(0,ε)) − IMa(α) ≤
γ/3.

As a last step we want to choose δ = δ(ε) ≤ δ0 such that |IMa(α(δ,ε)) − IMa(α(0,ε))| ≤ γ/3, so it
remains to show that

lim
δ→0

IMa(α(δ,ε)) = IMa(α(0,ε)). (5.45)

Notice that the definition of y(δ) given in (5.41) implies that |y|−µ(S \Sδ) ≤ |y(δ)| ≤ |y|. Therefore,
we can choose δ small enough such that µ(S \ Sδ) ≤ 1

2
mini∈Jε(|yi| − ε) to ensure that for all

i ∈ Jε we have that |y(δ)

i | > ε. Now, we choose a function χε : M≤1(S) \ {0} → R that is equal
to one on {y ∈ M≤1(S) \ {0} : |y| > ε}, equal to zero on {y ∈ M≤1(S) \ {0} : |y| ≤ ε/2}
and continuous. In particular, the function χεfMa is then compactly supported and we have that for all
δ′ ≤ δ

IMa(α(δ′,ε)) =

∫
α(δ′,0)(dy)χε(y)fMa(y).

Technically, we still have the problem that fMa can take values in R ∪ {+∞}. But our assumption
IMa(α) <∞ implies that fMa(yi) <∞ for all i ∈ Jε, so by continuity of fMa and the finiteness of Jε
we can tune δ′ ≤ δ such that uniformly for all i ∈ Jε we have fMa(y(δ)

i ) ≤ C for some constantC . We
already showed in (2) thatα(δ′,0) → α, so having established continuity and compactly supportedness
of the function in the integral we get that

lim
δ′→0

IMa(α(δ′,ε)) = lim
δ′→0

∫
α(δ′,0)(dy)χε(y)(fMa(y) ∧ C)

=

∫
α(dy)χε(y)(fMa(y) ∧ C) = IMa(α(0,ε)).
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Altogether the right-hand side of (5.43) can be bounded by γ, which proves the claim.

Lemma 54 (LDP – lower bound). Suppose that all the assumptions of Theorem 1 are satisfied. Then
the distribution of (MiN ,MaN) under PN satisfies the lower bound part of the LDP with rate function
I .

Proof. Fix a set G ∈ L×A that is open with respect to the vague topology and a point (λ, α) ∈ G.
We will show that for any γ > 0 we have that

lim inf
N→∞

1

N
logPN

(
(MiN ,MaN) ∈ G

)
≥ −I(λ, α)− γ. (5.46)

Note that in the case where I(λ, α) = ∞, the claimed estimate always holds, so we assume that
I(λ, α) < ∞. Let γ > 0. We will use the approximating sequence (α(δ,ε))δ>0,ε>0 constructed in
Lemma 53. Let ε > 0 and δ > 0 be small enough such that α(δ,ε) ∈ G and |I(λ, α)−I(λ, α(δ,ε))| ≤
γ/2. Again, we write Πm(λ̃, α̃) = (πm(λ̃), πm(α̃)) and also Πm,n(λ̃, α̃) = (πm,n(λ̃), πm,n(α̃)) for
any n ≥ m. y Proposition 42 the set G is also open with respect to the projective limit topology. It is
a general fact that the set

B1 := {Π−1
m (Um) : m ∈ N, Um ⊂ Lm ×Am open} (5.47)

is a basis of the projective limit topology. From now on, we fix some large m0 ∈ N which we will
specify later. We claim that also the set

Bm0 := {Π−1
m (Um) : m ≥ m0, Um ⊂ Lm ×Am open} (5.48)

is a basis of the projective limit topology and argue this as follows: note that for any m < m0 we can
take any n ≥ m0 and use that πm = πm,n ◦ πn holds by Lemma 43 to derive that Π−1

m (Um) =
Π−1
n (Π−1

m,n(Um)) for any open set Um. Since the set Π−1
m,n(Um) is again open due to the continuity

of πm,n, we get that Π−1
m (Um) ∈ Bm0 . Altogether we have that B1 ⊂ Bm0 .

Having established that Bm0 is a basis for the projective limit topology, we may pick m ≥ m0 and an
open set Um ⊂ Lm ×Am such that (λ, α(δ,ε)) ∈ Π−1

m (Um) ⊂ G. Therefore, we see that

lim inf
N→∞

1

N
logPN

(
(MiN ,MaN) ∈ G

)
≥ lim inf

N→∞

1

N
logPN

(
(Mi(m)

N ,Ma(m)

N ) ∈ Um
)

≥ − inf
Um

I (m,−) ≥ −I (m,−)(Πm(λ, α(δ,ε))),
(5.49)

where we used Corollary 49 for the second inequality. Using Lemma 51 and Lemma 53 we can
pick m0 large enough such that for all m ≥ m0 the measures πm(α(δ,ε)) are connectable and
|I (m,−)(Πm(λ, α(δ,ε)))− I(λ, α(δ,ε))| ≤ γ/2. Altogether, this gives (5.46).

6 The minimizers of IMi

In this section, we derive an explicit description of the minimizer(s) λ of IMi under the constraint
cλ = c for any c ∈ M(S) satisfying c ≤ µ. This will allow us to solve the optimization problem in
(2.6), i.e., to identify the minimizer(s) of the rate function for the LDP for MiN in Theorem 9. It will also
be used as an important intermediate step in deriving the full optimization of the rate function I of the
LDP in Theorem 7, our main result. Recall the notation that we introduced in Section 2.1, in particular
the definition of Σ(κ, c) from (2.3). Here is the main result of this section.
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Proposition 55 (Minimizers of IMi). Fix a probability measure µ on S and a kernel κ on S × S that
is nonnegative and continuous.

Let c ∈M(S) be a measure such that c ≤ µ.

(i) Assume that Σ(κ, c) ≤ 1. Then

inf
λ∈L : cλ=c

IMi(λ) =
〈
c, log

dc

dµ

〉
+

1

2
〈c, κ(µ− c)〉, (6.1)

and the infimum is attained in the unique minimizer λc defined in (2.1).

(ii) Assume that Σ(κ, c) > 1. Then

inf
λ∈L : cλ=c

IMi(λ) ≥ inf
λ∈L : cλ=b∗

IMi(λ) + IMe(c− b∗) (6.2)

where b∗ = b∗(c) ∈M(S) is the minimal, non-trivial (i.e., not equal to c) solution to (2.9) and
satisfies Σ(κ, b∗) = 1.

It is interesting to notice that one can see the phase transition already from the sole consideration of
IMi. We will refer to (i) and (ii) as to the sub- and supercritical cases, respectively.

In the case where S is finite we can actually prove an equality in (6.2). In the general case we also
expect this to be true, but did not attempt a proof, since the inequality will be enough to prove our
main results, Theorems 9 and 7.

The proof is naturally divided into Sections 6.1 – 6.4 according to the distinctions between finite S (the
discrete case) or general compact S and between the sub- and supercritical cases. In Section 6.1 we
construct minimizers for subcritical measures c for finite S ; we analyze if the only candidate λ (coming
from the Euler–Lagrange equations) satisfies the constraint cλ = c, which requires the result about
the multivariate power series from Section 3.1. In Section 6.2 we generalize the results to a general
compact type space via an approximation argument. In order to deal with supercritical measures c for
S a finite set, we also rely on combinatorial results in Section 6.3. Afterwards, we handle the general
supercritical case in Section 6.4.

6.1 The discrete, subcritical case

In this section, we formulate and prove the main assertions about the minimizers of IMi in the discrete
case, i.e., the case of a finite type space S . Here we will be using the notation of linear algebra, i.e.,
measures λ ∈ L onMN0(S) will be written as sequences (λk)k∈NS0 .

Recall the definition of the rate function IMi from Theorem 29 as well as the notation for the integrated
type-configuration cr(λ) =

∑
k∈NS0

λk kr for r ∈ S introduced in (4.5). We write [0, µ] for the set of

all c ∈ [0,∞)S satisfying 0 ≤ cr ≤ µr for any r ∈ S .

For c ∈ [0,∞)S , define λ(c) = (λk(c))k∈NS0 by

λk(c) = τ(k)
∏
s∈S

(cse
−(κc)s)ks

ks!
, k ∈ NS0 (6.3)

and note that this definition is the discrete analog of the general form of the minimizer in (2.1).

The aim of the present Section 6.1 is to verify the subcritical case of Proposition 55 in the discrete
setting, which we restate here quickly.
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Proposition 56. Let c = (cs)s∈S be in [0, µ]. Assume that Σ(κ, c) ≤ 1. Then

inf
λ∈L : c(λ)=c

IMi(λ) =
〈
c, log

c

µ

〉
+

1

2
〈c, κ(µ− c)〉 , (6.4)

and the infimum is attained in the unique minimizer λ(c) defined in (6.3).

To derive the form of the minimizer given in (6.3), we will start by giving a short heuristic. First note
that IMi is a strictly convex function and that {λ : c(λ) = c} is a convex set, which implies that there
is at most one minimizer. Assume that a minimizer λ∗ exists in the interior of {λ : c(λ) = c}. Then
by formally writing down the Euler–Lagrange equations, one can see that

λ∗k = τ(k)
∏
s∈S

θkss
ks!

, k ∈ NS0 , (6.5)

where θ = (θs)s∈S is some non-negative real-valued vector. Note that θ has to be chosen in such a
way that c(λ∗) = c, i.e., for every r ∈ S the multivariate power series

cr(λ
∗) =

∑
k∈NS0

τ(k)kr
∏
s

θkss
ks!

(6.6)

converges with limit cr. We already encountered in Section 3.1 that for θ = ce−κc the power series
on the right-hand side of (6.6) has the right value. The following is just a reformulation of the results
from Lemma 16 and Proposition 17 using the notation of the present section.

Corollary 57. Let c = (cs)s∈S in [0, µ] and assume that Σ(κ, c) ≤ 1. Then for λ∗ = λ(c) we have
that c(λ∗) = c.

A rigorous argument showing that this choice uniquely minimizes IMi can be found at the end of this
section. The identification of the optimal rate IMi(λ(c)) needs an additional property of the minimizer,
namely a formula of its total mass, which we derive in Lemma 59. For this we use the following
recursive formula.

Lemma 58. Let k ∈ NS0 . Then we have the recursion∑
r,s∈S

κ(r, s)
∑

m,m̃∈NS0 : m+m̃=k

(∏
u∈S

ku!

mu!m̃u!

)
τ(m)mrτ(m̃)m̃s = 2(|k| − 1)τ(k). (6.7)

Proof. Let (xi)i∈[|k|] ∈ S |k| be a vector compatible to k, i.e., k =
∑

i δxi and recall the definition of
τ(k) from (3.2). For i, j ∈ [|k|] with i 6= j define

Wi,j :=
∑

T∈T (k) : {i,j}∈E(T )

∏
{v,w}∈E(T )

κ(xv, xw), (6.8)

i.e., Wi,j is the total weight of trees containing the edge {i, j}. Observe, that each tree T on [|k|]
contains exactly |k| − 1 edges and, for each edge {i, j} ∈ E(T ) the weight of T appears once
in Wi,j and once in Wj,i. Thus, the weight of T is counted 2(|k| − 1) times in the sum

∑
i 6=jWi,j ,

which implies that
2(|k| − 1)τ(k) =

∑
i 6=j

Wi,j. (6.9)
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Now, for a fixed pair of types r, s ∈ S consider the weights of trees containing an edge connecting
some type r with some type s vertex, i.e., consider

∑
i 6=j : xi=r,xj=s

Wi,j . Notice that each tree con-

tributing to this weight can be decomposed into an edge of weight κ(r, s) and two trees Tr and Ts
with roots of type r and s respectively. (The term ’root’ is here only used to mark a certain vertex, not
to give some directed structure.) This implies the formula∑

i 6=j : xi=r,xj=s

Wi,j = κ(r, s)
∑

m+m̃=k

(∏
u∈S

ku!

mu!m̃u!

)
τ(m)mrτ(m̃)m̃s. (6.10)

Here we used formula (3.9) to collect the weight coming from the possible choices of Tr and Ts, which
is τ(m)mr and τ(m̃)m̃s respectively. Formula (6.7) now follows by summing over all possible pairs
r, s ∈ S .

Lemma 59. Let c = (cs)s∈S be non-negative with Σ(κ, c) ≤ 1. Then for λ(c) defined as in (6.3) we
have that

|λ(c)| =
∑
k∈NS0

λk(c) =
∑
r∈S

cr −
1

2
〈c, κc〉. (6.11)

Proof. Writing λ∗ = λ(c) and using that c(λ∗) = c we show the equivalent equation∑
k∈NS0

λ∗k(|k| − 1) =
1

2
〈c, κc〉. (6.12)

For fixed k ∈ NS0 the recursive equation (6.7) for τ(k) easily implies

1

2

∑
m,m̃∈NS0 : m+m̃=k

∑
r,s∈S

λ∗mmrκ(r, s)λ∗m̃m̃s = λ∗k(|k| − 1).

With the assumption Σ(κ, c) ≤ 1 all series in the next equations converge (absolutely) by Corollary
57, so by rearranging terms we get that∑

k∈NS0

λ∗k(|k| − 1) =
1

2

∑
m∈NS0

∑
m̃∈NS0

∑
r,s∈S

λ∗mmrκ(r, s)λ∗m̃m̃s =
1

2
〈c, κc〉..

Combining the results from Corollary 57 and Lemma 59 we can now give the proof of Proposition 56:

Proof of Proposition 56. Assume that Σ(κ, c) ≤ 1. Define λ∗ = λ(c) as in (6.3). By Corollary 57 we
have that cr(λ∗) =

∑
k λ
∗
kks = cs for all s ∈ S . Now, take any λ satisfying cs(λ) =

∑
k λkks = cs

for all s ∈ S . Then from (4.6), using the formula from Lemma 59, we get

IMi(λ) =
∑
k

λk log
λk
λ∗k

+
∑
k

λk log
(∏

s∈S

(cse−(κc)s

µs

)ks)
+
∑
k

λk(|k| − 1) +
1

2
〈c, κµ〉

= H(λ|λ∗)− |λ∗|+
〈
c, log

c

µ

〉
+ |c|+ 1

2
〈c, κµ〉 − 〈c, κc〉

≥
〈
c, log

c

µ

〉
+

1

2
〈c, κ(µ− c)〉,

(6.13)
where we wrote H(λ|λ∗) = 〈λ, log λ

λ∗
〉+ |λ∗|− |λ| for the entropy and used that H(λ|λ∗) ≥ 0 with

equality if and only if λ = λ∗.
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6.2 The general subcritical case

In this section we derive Proposition 55(i). The proof is similar to the proof of the discrete variant
in Section 6.1. Again, there is an explicit candidate for the minimizer, but one has to prove that it is
admissable, and we need to identify its total mass. This is done in the analogs of Corollary 57 and
Lemma 59, see Lemmas 61 and 62, whose proofs proceed via a discrete approximation based on the
material of Section 5.1.

In the current case of a general compact metric type space S , the candidate for a minimizer is given in
terms of a Poisson point process, see (6.14). Recall that we write Qθ for the distribution of a Poisson
point process X = (Xi)i∈I in S with intensity measure θ ∈ M(S). We write k =

∑
i δXi ∈

MN0(S) for the measure induced by the random point cloud. Note that the points Xi do not have
to be distinct with positive probability, if θ has no Lebesgue density. We start by noting a simple fact
about the densities between absolute continuous Poisson point processes.

Lemma 60. Let θ, θ̂ ∈M(S) with θ̂ � θ. Then Qθ̂ � Qθ and

dQθ̂

dQθ

(k) = e〈k,log dθ̂
dθ
〉+θ(S)−θ̂(S), k ∈MN0(S).

Recall the definition of τ(k) introduced in (1.9). Also recall that for a fixed c ∈ M according to
definition (2.1) the candidate for the minimizer of IMi under the constraint cλ = c has the form

λc(dk) = eθc(S)τ(k)Qθc(dk), where θc(dr) = e−κc(r)c(dr). (6.14)

We first provide a generalized version of Corollary 57 and Lemma 59. We first impose the stricter
condition Σ(κ, c) < 1.

Lemma 61. Let c ∈M(S) with c ≤ µ. Assume that Σ(κ, c) < 1. Then the following holds.

1 For any continuous test function f : S → [0,∞) we have that∫
MN0 (S)

λc(dk)〈k, f〉 = 〈c, f〉. (6.15)

2 The total mass of λc is given by

|λc| =
∫
MN0 (S)

λc(dk) = c(S)− 1

2
〈c, κc〉. (6.16)

Proof. We focus on showing equation (6.15); the proof of (6.16) is similar (see the end of the proof).
Abbreviating θ := θc and inserting the definition of λc we have to prove that

Qθ

[
τ(k)〈f, k〉eθ(S)

]
= 〈f, c〉, (6.17)

where we conceive k as anMN0(S)-valued random variable on the left-hand side. The idea is to
deduce the equality from the one that we have in the finite-type case by using the discretization
scheme from Section 5.1. Recall the notation from Section 5.1, where we discretized the compact
metric space S into finite spaces Sm, m ∈ N, and defined the projections πm, m ∈ N, on different
spaces in equations (5.6)–(5.8). For k ∈ MN0(S) we will again identify the discretized measure
πm(k) with an element of NSm0 \ {0}. Via Sm ⊂ S the function f can be restricted to Sm and
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write fm = f |Sm . Also, we write cm := πm(c) and identify it with a vector (cm(r))r∈Sm . Recall the
definitions of the discretized kernels. Let κm ∈ {κ(m,+), κ(m,−)}, where κ(m,?) for ? = ± is defined
as in (5.13) and (5.14). Denote θm(r) := e−(κmcm)(r)cm(r), r ∈ Sm. For k ∈ NSm0 let τm(k) be
defined as in (3.2), but with respect to κm. Fix a continuous function f : S → R. Our aim is to show
that

Qθ

[
τ(k)〈f, k〉eθ(S)

]
= lim

m→∞
Qθm

[
τm(k)〈fm, k〉eθm(Sm)

]
= 〈f, c〉, (6.18)

which finishes the proof of (6.15).

We start with proving the second equality of (6.18). It is straight forward to show that∣∣Σ(κm, cm)− Σ(κ, c)
∣∣ ≤ ‖κm ◦ πm − κ‖∞. (6.19)

and hence Σ(κm, cm) → Σ(κ, c), as m → ∞ and so we will have for large m ∈ N that
Σ(κm, cm) < 1. Then we get

Qθm

[
τm(k)〈fm, k〉eθm(Sm)

]
=
∑
r∈Sm

fm(r)
∑
k∈NSm0

τm(k)kr
∏
s∈Sm

(θm(s))ks

ks!

=
∑
r∈Sm

fm(r)cm(r) =

∫
S
f(πm(x)) c(dx)

→
∫
S
f(x) c(dx) = 〈f, c〉, m→∞.

where the second equation only holds if m is large enough, and thus Σ(κm, cm) ≤ 1 due to Lemma
16(i) and Proposition 17.

Now we show the first equation of (6.18). Note that Qθm is a point process on Sm, whereas Qθ is a
point process onS . However, by defining an intensity measure onS by θ̄m(dx) := e−(κmcm)(πm(x))c(dx)
we have that θm = θ̄m◦π−1

m and hence Qθm = Qθ̄m ◦π−1
m holds by the mapping theorem for Poisson

point processes. Therefore, according to Lemma 60,

Qθm

[
τm(k)〈fm, k〉eθm(Sm)

]
= Qθ̄m

[
τm(πm(k))〈f, πm(k)〉eθm(Sm)

]
= Qθ

[
Ψf
m

]
, (6.20)

with
Ψf
m(k) := τm(πm(k))〈f, πm(k)〉e〈k,κc−(κmcm)◦πm〉eθ(S), k ∈MN0(S). (6.21)

Note that Ψf
m converges pointwise to Ψf , where Ψf (k) = τ(k)〈f, k〉eθ(S), k ∈ MN0(S). Hence,

the first equation of (6.18) immediately follows as soon as we have given an argument for interchang-
ing the limit as m→∞ and the integration with respect to Qθ. We will be using Lebesgue’s theorem
about dominated convergence for that. Let us introduce a majorant. Recalling the definition (5.33) of
τ (+)
m we define Ψ̂m by

Ψ̂m(k) := τ (+)

m (πm(k))|πm(k)|e〈k,κc−(κ(m,−)cm)◦πm〉eθ(S), k ∈MN0(S). (6.22)

Then, since κ(m,−) ≤ κm ≤ κ(m,+) we clearly have for any k ∈MN0(S) that Ψf
m(k) ≤ ‖f‖∞Ψ̂m(k)

and Ψ̂m(k) ≤ Ψ̂m0(k) if m ≥ m0. Hence, Ψ̂m0 is a majorant. It remains to show that there exists
m0 such that Qθ(Ψ̂m0) <∞, then the majorant Ψ̂m0 is integrable. Arguing as in (6.20) we have that

Qθ(Ψ̂m) =
∑
k∈NSm0

τ (+)

m (k)|k|
∏
s∈Sm

θ(−)
m (s)ks

ks!
, (6.23)
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where θ(−)
m (s) = e−(κ(m,−)cm)(s)cm(s), for s ∈ Sm. Let χm := χ(κ(m,+), θ(−)

m ) be defined as in
(3.15). We can argue as in the proof of Lemma 20 to get that, for any n ∈ N,∑

k∈NSm0 : |k|=n

τ (+)

m (k)|k|
∏
s∈Sm

(θ(−)
m (s))ks

ks!
≤ eo(n)e−n[χm−1], (6.24)

(where the eo(n)-term is actually given by |M(n)

1 (Sm)|
∑

r∈Sm ∆r(nν)). Abbreviating δm = ‖κ(m,+)−
κ(m,−)‖∞, we further have that

χm = inf
ν∈M1(Sm)

{∑
r∈Sm

νr log
νr

(κ(m,+)ν)r(θ
(+)
m )r

− 〈κ(m,+)cm − κ(m,−)cm, ν〉

}
≥ χ(κ(m,+), θ(+)

m )− δm = Σm − log Σm − δm,

where Σm := Σ(κ(m,+), cm). Now, choose ε > 0 small enough such that Σ(κ, c) + ε < 1 and
Σ(κ, c)− log(Σ(κ, c)) > 1 + ε. It holds that Σm → Σ(κ, c), as m→∞, and clearly we have that
δm → 0, as m → ∞. Additionally, we use that the function x 7→ φ(x) := x − log x is continuous
and decreasing on [0, 1]. Hence, we findm0 such that δm0 ≤ ε/2, as well as Σm0 ≤ Σ(κ, c)+ε < 1
and φ(Σm0) ≥ φ(Σ(κ, c))− ε/2. Consequently,

χm0 ≥ Σm0 − log Σm0 −
ε

2
≥ Σ(κ, c)− log Σ(κ, c)− ε > 1,

which altogether implies that

Qθ(Ψ̂m0) =
∑
k∈NSm0

τ (+)

m (k)|k|
∏
s∈Sm

(θ(−)
m (s))ks

ks!
≤
∑
n∈N

eo(n)e−n[χm0−1] <∞. (6.25)

Thus, Lebesgue’s theorem of dominated convergence is applicable and (6.18) follows.

Equation (6.16) can be shown in the same way and relies on the discrete version of the equation,
derived in Lemma 59.

Lemma 62. The statement of Lemma 61 is also true under the assumption Σ(κ, c) = 1.

Proof. The idea is to construct a sequence c(n) ∈ M(S) with Σ(κ, c(n)) < 1 such that θ(n) :=
θc(n) ↗ θc =: θ monotonically as n→∞.

Recall that S is compact and κ is continuous, hence a standard argument (see e.g. [BJR07, Lemma
5.15]) shows that the operator Tκ,c is a positive Hilbert–Schmidt operator and therefore has a non-
negative eigenfunction corresponding to the eigenvalue Σ(κ, c). By the assumption Σ(κ, c) = 1 we
can find a function g : S → (0,∞) such that Tκ,cg = g. For any n ∈ N define c(n) ∈ M(S)

via dc(n)

dc
:= 1 − 1

n
g. Then for n large enough c(n)(A) < c(A) for any measurable A ⊂ S with∫

A
g dc > 0. In particular Σ(κ, c(n)) < 1. (An ad-hoc argument in the case that κ is irreducible

is as follows: Pick an L2(c(n))-normalized positive eigenfunction gn of Tκ,c(n) corresponding to the
eigenvalue Σ(κ, c(n)) and observe that g̃n(x) = gn(x)(1− 1

n
g(x))1/2 is L2(c) normalized and that

Σ(κ, c(n)) = ‖Tκ,c(n)gn‖L2(c(n)) < ‖Tκ,cg̃n‖L2(c) ≤ ‖Tκ,c‖ = Σ(κ, c). If κ is reducible, then apply
this argument to the irreducible components.) Now, observe that for any n ∈ N we have

dθ(n)

dθ
= eκ(c−c(n)) dc(n)

dc
= eTκ,c(

1
n
g)
(

1− 1

n
g
)

= e
1
n
g
(

1− 1

n
g
)
,
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and the right-hand side converges pointwise monotonically to 1, as n→∞.

Now, fix any continuous test function f : S → [0,∞). Then, by monotone convergence and the fact
that we can apply Lemma 61 to c(n) for all n ∈ N, we get that

Qθ

[
τ(k)〈k, f〉eθ(S)

]
= lim

n→∞
Qθ

[
τ(k)〈k, f〉eθ(S)e〈k,log dθ(n)

dθ
〉
]

= lim
n→∞

Qθ(n)

[
τ(k)〈k, f〉eθ(n)(S)

]
= lim

n→∞
〈c(n), f〉 = 〈c, f〉.

The same argument shows that Qθ

[
τ(k)eθ(S)

]
= c(S)− 1

2
〈c, κc〉.

Now we can identify the minimizers of IMi. The following is a variant of Proposition 56 in the general
setting. Once having established Lemmas 61 and 62, the proof in the general setting follows the ones
in the discrete setting. Recall that µ is the reference probability measure on S .

Lemma 63 (Minimizers of IMi). Assume that c ∈ M(S) with c ≤ µ satisfying Σ(κ, c) ≤ 1. Then
the unique minimizer λ of IMi under the assumption cλ = c is equal to λc defined in (2.1) and

min
λ∈L : cλ=c

IMi(λ) = IMi(λc) = −1

2
〈c, κc〉+ 〈c, log dc

dµ
〉.

Proof. Note that λc is admissible, according to Lemmas 61 and 62, since cλ∗ = c.

Using Lemma 60 and the fact that µ is a probability measure we can rewrite the measure Qµ as

Qµ(dk) = eθ(c)(S)Qce−κ∗c(dk)e〈k,κ∗c〉e−〈k,log dc
dµ
〉e−1

Now, writingM =MN0(S) we get for any λ ∈ L satisfying cλ = c that

IMi(λ) =
〈
λ, log

dλ

τdQµ

〉
+ c(S)− 2λ(M) +

1

2
〈c, κµ〉

=
〈
λ, log

dλ

dλc

〉
+
〈
c, log

dc

dµ

〉
− 〈c, κc〉+ c(S)− λ(M) +

1

2
〈c, κµ〉

= H(λ|λc)− λc(M) +
〈
c, log

dc

dµ

〉
− 〈c, κc〉+ c(S) +

1

2
〈c, κµ〉

= H(λ|λc) +
〈
c, log

dc

dµ

〉
+

1

2
〈c, κ(µ− c)〉.

We used the fact that λc(M) = c(S)− 1
2
〈c, κc〉, which was derived in the last statement of Lemma

61. Since H(λ|λc) ≥ 0 and H(λ|λc) = 0 if and only if λ = λc, the claim follows.

6.3 The discrete, supercritical case

In this section, we assume again that S is a finite space and investigate the case where the measure c
(the one that formulates the constraint) is supercritical, meaning Σ(κ, c) > 1. The aim of this section
is to verify the following result.

Proposition 64 (Discrete, supercritical case). Let c ∈ [0, µ] with Σ(κ, c) > 1. Then

inf
λ : c(λ)=c

IMi(λ) = inf
λ : c(λ)=b∗

IMi(λ) + IMe(c− b∗) (6.26)
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where b∗ = b∗(c) is the minimal non-trivial (i.e., not equal to c) solution to

κ(c− b∗)b∗ = c− b∗, b∗ ≤ c, (6.27)

and satisfies Σ(κ, b∗) = 1.

Indeed, one possible realization of the rate (6.26) is given by constructing a minimizer as in formula
(6.3) with respect to the (sub-)critical parameter b∗ and realizing the remaining part c− b∗ by means
of a diverging sequence k(n), such that the mesoscopic rate term appears.

The proof will be a consequence of the next lemmas. In Lemma 65 we derive an upper and a lower
bound for infλ : cλ=c IMi(λ) and in Lemma 66 we show that they coincide, if there are solutions to the
fixed point equation (6.27). We will postpone the proof about existence of solutions to Section 6.4,
Lemma 68.

Lemma 65. Let c ∈ [0, µ] with Σ(κ, c) > 1. For b ∈ [0, c] with Σ(κ, b) ≤ 1 we put

Fc(b) =
〈
c, log

b

µ

〉
+ |c− b|+ 1

2
〈b, κb〉 − 〈c, κb〉+

1

2
〈c, κµ〉, (6.28)

Gc(b) =
〈
b, log

b

µ

〉
− 1

2
〈b, κb〉+

〈
c− b, log

c− b
(κ(c− b))µ

〉
+

1

2
〈c, κµ〉. (6.29)

Then
sup

b∈[0,c] : Σ(κ,b)≤1

Fc(b) ≤ inf
λ : c(λ)=c

IMi(λ) ≤ inf
b∈[0,c] : Σ(κ,b)≤1

Gc(b). (6.30)

Proof. We first show the first inequality in (6.30). Fix b ∈ [0, c] with Σ(κ, b) ≤ 1. Let λ∗ := λ(b) be
given as in (6.3). We proceed in the same way as in the proof of Proposition 56, but use that this time
|λ∗| = |b| − 1

2
〈b, κb〉. Then for any λ with c(λ) = c we have

IMi(λ) = H(λ|λ∗)− |λ∗|+
〈
c, log

b

µ

〉
− 〈c, κb〉+ |c|+ 1

2
〈c, κµ〉 ≥ Fc(b).

We now prove the upper bound in (6.30). Fix b ∈ [0, c] with Σ(κ, b) ≤ 1.

Case 1: First, we assume that κ is irreducible with respect to c− b. Let λ∗ := λ(b) be defined as in
(6.3). For n ∈ N define k(n) := bn(c − b)c and write Rn := |k(n)| and b(Rn) :=

∑
|k|≤Rn λ

∗
kk. We

define

λ(n)

k :=


λ∗es + εs if k = es for some s ∈ S
λ∗k if 1 < |k| < Rn

1
n

if k = k(n)

0 else

(6.31)

with ε := c − b(Rn) − 1
n
k(n), which ensures that c(λ(n)) = c holds for all n ∈ N, but is negligible in

the limit, i.e., limn→∞ λ
(n)
es = λ∗es for all s ∈ S . Note that due to the irreducibility assumption we have

that τ(k(n)) > 0 if n is large enough, which ensures that IMi(λ
(n)) is finite.

Using the notation I (R)

Mi (λ) introduced in (4.16) we get

IMi(λ
(n)) = I (Rn−1)

Mi (λ(n)) +
1

2
〈c− b(Rn), κµ〉+

1

n
log

1
n

∏
s k

(n)
s !

τ(k(n))e1−|k(n)|∏
s µ

k
(n)
s
s
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Denote the last summand as An. By using the formula (3.10) from Lemma 18 for some r ∈ supp(c)
as well as Stirling’s formula for the factorial terms, we have that, as n→∞

An = o(1) +
∑
s∈S

(cs − bs) log
cs − bs

(κ(c− b)s)µs
+

1

n
log

n(cr − br)
∏

s κ(c− b)s
e∆r(c− b)

, (6.32)

where ∆r is defined in (3.11), which can be easily extended to arguments in [0,∞)S . Note that by
construction ∆r(c− b) > 0. Clearly, the last summand in (6.32) is of order o(1). By the construction
of λ(n) it is immediate that limn→∞ I

(Rn−1)

Mi (λ(n)) = 〈b, log(b/µ)〉 + 1
2
〈b, κ(µ − b)〉, so altogether

we get that

lim
n→∞

IMi(λ
(n)) =

〈
b, log

b

µ

〉
+

1

2
〈b, κ(µ−b)〉+〈c−b, log

c− b
(κ(c− b))µ

〉+1

2
〈c−b, κµ〉 = Gc(b).

Case 2: If κ is reducible with respect to c − b, we can find a decomposition of supp(c − b) into
disjoint sets Sj such that κ restricted to Sj × Sj is irreducible and κ|Si×Sj = 0 for i 6= j. Then we

have to modify the construction of λ(n) given above by putting mass 1
n

on each of the meso-particles
k(j,n) := bn(c− b)c1lSj . We omit the details.

The following lemma completes the proof of Proposition 64. Its assumptions are verified later and in
more generality in Lemma 68.

Lemma 66. Let c ∈ [0, µ] with Σ(κ, c) > 1. If there exists a non-trivial solution b∗ ∈ [0, c] to (6.27)
and Σ(κ, b∗) = 1, then F (b∗) = G(b∗). Consequently, equation (6.26) holds.

Proof. Using the fixed point equation (6.27) we can substitute |c − b∗| = 〈b∗, κ(c − b∗)〉 to rewrite
Fc(b

∗) and 〈c − b∗, log[(c − b∗)/κ(c − b∗)] = 〈c − b∗, log b∗〉 to rewrite Gc(b
∗). Then Fc(b∗) =

Gc(b
∗).

6.4 The general supercritical case

Building on the results of the previous subsection we derive a slightly weaker result than Proposition
64 for the general case, which will still be enough to derive the optimal rates for the contraction
principle as well as to fully optimize the rate function I .

Lemma 67. Fix c ∈M(S) with c ≤ µ and Σ(κ, c) > 1. Then

inf
λ∈L : cλ=c

IMi(λ) ≥ inf
λ∈L : cλ=b∗

IMi(λ) + IMe(c− b∗), (6.33)

where b∗ = b∗(c) ∈ M(S) is the minimal, non-trivial (i.e., not equal to c) solution to (2.9) and
satisfies Σ(κ, b∗) = 1.

Sketch of proof. We can generalize the proof of the lower bound of Lemma 65 and the definition of
Fc to obtain

inf
λ : cλ=c

IMi(λ) ≥
〈
c, log

db

dµ

〉
+ c(S)− b(S) +

1

2
〈b, κb〉 − 〈c, κb〉 =: Fc(b)
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for any b ∈ M(S) with b ≤ c and Σ(κ, b) ≤ 1. This relies on the admissibility of the (auxiliary)
minimizers λb proved in Lemmas 61 and 62. The lower bound is obtained by writing everything with
entropies as in the proof of Lemma 63.

Observe that if b∗ is a solution of (2.9), then one can argue as in the proof of Lemma 66 to see that

Fc(b
∗) =

〈
b∗, log

db∗

dµ

〉
− 1

2
〈b∗, κb∗〉+ IMe(c− b∗) +

1

2
〈c, κµ〉 =: Gc(b

∗)

Lemma 68 (Solutions to (2.9)). Fix c ∈M(S).

(i) Assume that κ is irreducible w.r.t. c and Σ(κ, c) > 1. Then there exists exactly one solution b∗

to (2.9) that satisfies b∗ 6= c. Further, it holds that Σ(κ, b∗) = 1.

(ii) If Σ(κ, c) ≤ 1, then the only solution b∗ to (2.9) is given by the trivial solution b∗ = c.

(iii) Assume that κ is reducible w.r.t. c and Σ(κ, c) > 1, then there exists at least one solution b∗ to
(2.9) with b∗ 6= c. Moreover, there exists a unique minimal solution b∗ to (2.9) (which is minimal
in the sense that b∗ ≤ b∗ holds c-almost everywhere for all solutions b∗ of (2.9)). Further, we
have that Σ(κ, b∗) > 1 for all solutions b∗ with b∗ 6= b∗ and Σ(κ, b∗) = 1.

Proof. We will study the existence and uniqueness of non-trivial solutions f ∗ : S → [0, 1) to

Tκ,cf
∗ =

f ∗

1− f ∗
. (6.34)

By substituting b∗ = (1− f ∗)c it is easily seen that solving (6.34) is equivalent to solving (2.9).

(i) Existence: We once more reformulate (6.34) by substituting g∗ = f ∗/(1−f ∗) (which is equivalent
to f ∗ = g∗(1 + g∗)). Then (6.34) is equivalent to

U(g∗) := Tκ,c

( g∗

1 + g∗

)
= g∗, (6.35)

i.e., we are searching for a fixed point of U . Note that g∗(s)/(1 + g∗(s)) ≤ 1 for all s ∈ S . Together
with the fact that κ is non-negative this implies that any solution g∗ of (6.35) satisfies g∗ ≤ Tκ,c1l.
Hence, it suffices to study the operator U on the domain D = {g : S → R : 0 ≤ g ≤ Tκ,c1l}. We
construct a solution iteratively by defining g0 := Tκ,c1l and gm := U(gm−1) for m ∈ N. Since the
function x 7→ x/(1 + x) is strictly increasing on [0,∞) and κ is non-negative, we have that g ≤ g′

implies U(g) ≤ U(g′). Since g1 ≤ g0 we can iterate this argument to show that gm ≤ gm−1 holds
for any m ∈ N. Therefore the limit g∗ := limm→∞ gm ∈ D exists and by the continuity of U it
satisfies (6.35). We claim that our assumptions on κ and c imply that g∗ > 0: By the assumptions
that κ is irreducible w.r.t. c, S is compact and κ is continuous, Tκ,c is a positive, irreducible and
compact operator. Therefore there exists a strictly positive eigenfunction v of Tκ,c with eigenvalue
Σ(κ, c) > 1. Note that the function Tκ,cv is continuous (by compactness of S and continuity of κ),
hence v is continuous and by compactness of S it is also bounded. So without loss of generality
we can pick v such that v(s) ∈ (0, 1] for any s ∈ S . Observe that by the irreducibility assumption
g0 = Tκ,c1l > 0. Now, pick δ > 0 such that Σ(κ, c) ≥ 1 + δ and g0 ≥ δv. Observe that for any g
with g ≥ δv we have that

U(g) = Tκ,c

( g

1 + g

)
≥ Tκ,c

( δv

1 + δv

)
≥ δ

1 + δ
Tκ,cv ≥ δv.
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Hence gm ≥ δv holds for all m ∈ N. Consequently, g∗ ≥ δv > 0.

Additionally, we claim that g∗ is the maximal solution to (6.35). Let g̃∗ be any other solution to (6.35),
then we necessarily have that g̃∗ ≤ Tκ,c1l = g0. It follows by the monotonicity of U that g̃∗ =
U(g̃∗) ≤ g1 and, iteratively, g̃∗ ≤ gm for any m ∈ N. Hence g̃∗ ≤ g∗. By the equivalence of (6.34)
and (6.35) and monotonicity of x 7→ x/(1 + x) we have that f ∗ = g∗/(1 + g∗) is the maximal
solution to (6.34).

Uniqueness: Assume towards a contradiction that f ∗ and f̃ ∗ are non-trivial solutions of (6.34) and
f ∗ 6= f̃ ∗ on a set A ⊂ S with c(A) > 0. Without loss of generality we can assume that f ∗ is the
maximal solution (as constructed in the existence part), i.e., f̃ ∗ ≤ f ∗ on S and f̃ ∗ < f ∗ everywhere
on A. For any h : S → [0, 1] put Ψ(h) := (1 − h)Tκ,ch. Then Ψ(f ∗) = f ∗ and Ψ(f̃ ∗) = f̃ ∗ and
we have that

Ψ
(f ∗

2
+
f̃ ∗

2

)
=

1

2
Ψ(f ∗) +

1

2
Ψ(f̃ ∗) +

1

4
(f ∗ − f̃ ∗)Tκ,c(f ∗ − f̃ ∗)

≥ 1

2
Ψ(f ∗) +

1

2
Ψ(f̃ ∗) =

1

2
f ∗ +

1

2
f̃ ∗,

where the inequality relies on the fact that κ is non-negative and f̃ ∗ ≤ f ∗. Note that we even have a
strict inequality on the set A. Now, define h := (f ∗ − f̃ ∗)/2, then f̃ ∗ + h = (f̃ ∗ + f ∗)/2 and we
already argued that Ψ(f̃ ∗ + h) ≥ f̃ ∗ + h where the inequality is strict on A. On the other hand, as
h ≥ 0, we get

Ψ(f̃ ∗ + h) = (1− f̃ ∗ − h)Tκ,c(f̃
∗ + h) ≤ (1− f̃ ∗)Tκ,c(f̃ ∗ + h),

so altogether (1− f̃ ∗)Tκ,c(f̃ ∗+ h) ≥ f̃ ∗+ h with strict inequality on A. Using (6.34) for f̃ ∗ and the
symmetry of κ we get

〈c, f̃ ∗Tκ,c(f̃ ∗ + h)〉 >
〈
c,

f̃ ∗

1− f̃ ∗
(f̃ ∗ + h)

〉
= 〈c, (Tκ,cf̃ ∗)(f̃ ∗ + h)〉 = 〈c, f̃ ∗Tκ,c(f̃ ∗ + h)〉,

which is a contradiction. Hence the solution to (6.34) is unique up to sets that have measure zero
w.r.t. c, which implies uniqueness of b∗.

We now argue that Σ(κ, b∗) = 1. Our procedure is very similar to the one used in the proof of Lemma
6.6 in [BJR07]. Let w : S → R be an eigenfunction of Tκ,b∗ with eigenvalue a. Then using (6.34) and
the symmetry of κ, we get that

〈c, wf ∗〉 = 〈c, w(1− f ∗)Tκ,cf ∗〉 = 〈c, f ∗Tκ,c(w(1− f ∗))〉
= 〈c, f ∗Tκ,b∗w〉 = a〈c, f ∗w〉.

(6.36)

Hence, we either have that 〈c, wf ∗〉 = 0 or a = 1. By the Krein–Rutman Theorem (the extension of
the Perron–Frobenius Theorem to positive compact operators) the eigenfunction w corresponding to
the largest eigenvalue of Tκ,b∗ is non-negative and non-trivial, so 〈c, wf ∗〉 > 0 and hence Σ(κ, b∗) =
1. (Interestingly, we have constructed b∗ in such a way that all other eigenfunctions w̃ of Tκ,b∗ satisfy
〈c, w̃f ∗〉 = 0.)

(ii) Let Σ(κ, c) ≤ 1. Assume towards a contradiction that f ∗ is a solution to (6.34) and
∫
A
f ∗ dc > 0

for some open set A ⊂ S such that c(A) > 0. Using the substitution f ∗ = g/(1 + g) we have that
equation (6.34) is equivalent to Tκ,c(g/(1 + g)) = g and since κ is continuous and S is compact
the left-hand side Tκ,c(g/(1 + g)) is a continuous function, which implies that both g and f ∗ are
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continuous functions. So we can find an ε > 0 and a set Aε ⊂ A such that f ∗ ≥ ε on Aε and
c(Aε) > 0. Therefore,

Tκ,cf
∗ =

f ∗

1− f ∗
≥ f ∗

1− ε

holds on Aε and Tκ,cf ∗ ≥ f ∗ holds on S . This implies that ‖Tκ,cf ∗‖L2(c) > ‖f ∗‖L2(c) and hence
Σ(κ, c) > 1 in contradiction to our assumption.

(iii) Since κ is reducible w.r.t. c, we find a decomposition of supp(c) into (countable many) disjoint sets
Sj , j ∈ J , such that κ(j) = κ|Sj×Sj is irreducible with respect to c(j), the restriction of c to Sj for any

j ∈ J , and κ|Si×Sj = 0 holds c-almost everywhere, if i 6= j. Let J ′ := {j ∈ J : Σ(κ(j), c(j)) > 1}
and note that J ′ 6= ∅. By (i) we get that for any j ∈ J ′ there exists a function f (j) : Sj → [0, 1) that
solves (6.34) on Sj and f (j) > 0. By (ii) we get that for any j ∈ J\J ′ the only function f : Sj → [0, 1)
that solves (6.34) on Sj is equal to 0 c(j)-almost everywhere. Now for σ = (σj)j∈J ′ ∈ {0, 1}J

′

define f (σ) : S → [0, 1) by f (σ)(s) = σjf
(j)(s), if s ∈ Sj for some j ∈ J ′ and f (σ)(s) = 0 for

s ∈ S \
⋃
j∈J ′ Sj . It can now be easily checked that all solutions to (6.34) are given by

F :=
{
f (σ) : σ = (σj)j∈J ′ ∈ {0, 1}J

′
}

(6.37)

and that F contains at least one non-trivial solution. Write b(σ) = (1 − f (σ))c and note that all
possible solutions of (2.9) are of this form. Clearly, the minimal solution b∗ of (2.9) is given via the
maximal solution in F , i.e., by choosing σ ≡ 1.

We will now investigate the quantities Σ(κ, b(σ)) for any choice of σ. First, let σ be such that there
exists some j ∈ J ′ with σj = 0. Then for r ∈ Sj and any function h : S → R

Tκ,b(σ)h(r) =

∫
Sj

κ(r, s)h(s)(1− σjf (j)(s)) c(ds) = Tκ(j),c(j)h(r).

Therefore, given an eigenfunction g(j) of Tκ(j),c(j) that corresponds to the eigenvalue Σ(κ(j), c(j)), we
can construct an eigenfunction g for Tκ,b(σ) with the same eigenvalue by choosing g = g(j) on Sj and
g = 0 on S \ Sj . Hence, Σ(κ, b(σ)) = Σ(κ(j), c(j)) > 1. Now, consider σ ≡ 1. Then we can argue
as in (6.36) to show that Σ(κ, b(σ)) = 1.

7 Analysis of minimizers of the rate function in Theorem 1

In this section we provide the final steps needed for the optimization of the rate function and prove
Theorems 9 and 7. Since the arguments for the remaining steps do not rely on discrete combinatorics
(as it was the case in Section 6), we will immediately work in the general setting. In Section 7.1 we
study a constrained optimization problem for the functions IMe and IMa. In Section 7.2 we prove the
explicit form of the rate functions that is derived by applying the contraction principle and formulated
in Theorem 9. Section 7.3 presents the last step for a full optimization of the rate function I that gives
Theorem 7. In Section 7.4 we derive the Flory equation that we formulated in Proposition 13.

7.1 The minimizers of IMa and IMe

Complementary to what was done in Section 6 for the function IMi we will solve the analogous opti-
mization problems for the functions IMe and IMa defined in (1.12) and (1.13). To optimize the function
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IMe it is beneficial to combine it with IMa. We will again fix a measure c ∈ M(S) to formulate the
constraint. In contrast to the result of Proposition 55 it will turn out that we do not have to distinguish
between the cases Σ(κ, c) ≤ 1 and Σ(κ, c) > 1.

Lemma 69 (Minimizers of IMe and IMa). Let c ∈M(S) be such that c ≤ µ. Then

inf{IMa(α) : α ∈ A, c(α) = c} = IMa(δc), (7.1)

inf{IMa(α) + IMe(ν) : α ∈ A, ν ∈M(S), c(α) + ν = c} = IMa(δc) + IMe(0). (7.2)

If κ is irreducible with respect to c, then the minimizers are unique.

Proof. Writing ÎMa(α) = IMa(α) − 1
2
〈c(α), κµ〉 and ÎMe(ν) = IMe(ν) − 1

2
〈ν, κµ〉 it suffices to

prove equations (7.1) and (7.2) for ÎMa and ÎMe since the difference does not depend on c. Observe
that ÎMa(α) = A(α) +B(α), where

A(α) =

∫
S
µ(dr)

∫
α(dy)

dy

dµ
(r) log

dy
dµ

(r)

κy(r)
, (7.3)

B(α) =

∫
S
µ(dr)

∫
α(dy)

dy

dµ
(r) log

κy(r)

e
1
2
κy(r) − e−

1
2
κy(r)

. (7.4)

Let α ∈ A with c(α) = c. Note that
∫
α(dy)κy(r) = κc(r) for r ∈ S . With φ(u) = u log u we

use Jensen’s inequality to get that

A(α) =

∫
S
µ(dr)κc(r)

∫
α(dy)

κy(r)

κc(r)
φ

(
dy
dµ

(r)

κy(r)

)
≥
∫
S
µ(dr)κc(r)φ

(∫
α(dy)

dy
dµ

(r)

κc(r)

)

=

∫
S
µ(dr)

dc

dµ
(r) log

dc
dµ

(r)

κc(r)
= A(δc),

(7.5)
where we used that

∫
α(dy) dy

dµ
(r) = dc

dµ
(r). We now derive a corresponding lower bound for B(α).

Note that the function u 7→ u/ sinh(u) =: ψ(u) is strictly decreasing on [0,∞) and that for any
y ∈ supp(α) we have that κy ≤ κc. Therefore

B(α) =

∫
S
µ(dr)

∫
α(dy)

dy

dµ
(r) logψ

(
1
2
κy(r)

)
≥
∫
S
µ(dr)

∫
α(dy)

dy

dµ
(r) logψ

(
1
2
κc(r)

)
=

∫
S
µ(dr)

dc

dµ
(r) logψ

(
1
2
κc(r)

)
= B(δc).

(7.6)
This implies equation (7.1). Now, let α ∈ A and ν ∈M(S) be such that c(α) + ν = c. Note that

ÎMa(α) + ÎMe(ν) = A(α + δν) +B(α).

Since c(α+ δν) = c holds, we can use the estimate from before to get that A(α+ δν) ≥ A(δc). To
get the estimate for B(α), observe that we still have that κy ≤ κc for any y ∈ supp(α). So,

B(α) ≥
∫
S
µ(dr)

dc(α)

dµ
(r) logψ

(
1
2
κc(r)

)
≥
∫
S
µ(dr)

dc

dµ
(r) logψ

(
1
2
κc(r)

)
= B(δc),

where the second estimate is due to the the fact thatψ(u) ∈ [0, 1] for u ≥ 0 and thus logψ(1
2
κc(r)) ≤

0. Combining the estimates gives equation (7.2).
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For both uniqueness claims we rely on Lemma 70 below.

To show uniqueness of the minimizer in equation (7.1) assume that α ∈ A with c(α) = c and
α 6= δc. Without loss of generality we can assume that IMa(α) <∞. Now, we only have to note that
the inequality in the estimate (7.6) is a strict inequality, since by Lemma 70 we have that κy < κc
holds on some set A, for which y(A) > 0 and the function ψ is strictly decreasing.

To show uniqueness of the minimizer in equation (7.2) assume that α ∈ A and ν ∈ M(S) with
ν 6= 0 and c(α) + ν = c. Then by the same arguments as before

B(α) ≥ B(δc(α)) =

∫
c(α)(dr) logψ (κc(α)(r)) >

∫
c(α)(dr) logψ (κc(r)) ≥ B(δc)

holds, if κc > κc(α) on some measurable set A ⊂ S for which c(α)(A) > 0. To see that the latter
condition is satisfied, we apply Lemma 70 to the measure δc(α) + δν . This proves the claim.

Lemma 70. Let c ∈ M(S) and let κ be irreducible with respect to c. Let α ∈ A be such that
c(α) = c and assume that α =

∑
i∈I δy(i) with |I| ≥ 2 and IMa(α) <∞. Then for any fixed i ∈ I

there is a measurable set A ⊂ S such that y(i)(A) > 0 and κ(c− y(i))(x) > 0 for all x ∈ A.

Proof. Denote y := y(i), S1 = supp(y) and S2 = supp(c(α) − y). We first study the case where
the sets S1 and S2 are disjoint. Assume towards a contradiction that for y-almost every r we have that
κ(c−y)(r) = 0. Then κ|S1×S2

= 0 which is equivalent to saying that κ|S1×S\S1
= 0 holds c-almost

everywhere. Since κ is irreducible with respect to c we get that either c(S1) = 0 or c(S \ S1) = 0.
Consequently, either y(S1) = 0 or (c−y)(S\S1) = 0, i.e., either y = 0 or c−y = 0 in contradiction
to our assumptions.

Now, assume that S1 and S2 are not disjoint. In that case we can pick j ∈ I \ {i} in such a way that
with ŷ := y(j) there exists r0 ∈ supp(y) ∩ supp(ŷ), which implies that for any open neighborhood
A0 ⊂ S of r0 we have that y(A0) > 0 and ŷ(A0) > 0. By our assumption IMa(α) < ∞, we have
that −∞ < 〈ŷ, log(1 − e−κŷ)〉. This, together with the uniform continuity of κ implies that we can
find a neighborhood A0 of r0 such that κŷ|A0

> 0. Now the claim follows, since κ(c− y) ≥ κŷ and
y(A0) > 0.

7.2 Minimization for the contraction principles

Here, we will exploit the work of Sections 6 and 7.1 to prove Theorem 9, which is an application
of the contraction principle but also provides an explicit solution for the optimization problem. When
studying the optimization problem in the large deviation principle for MaN , we encounter a functional
that combines rates coming from the microscopic and the mesoscopic part. Its optimization is derived
in the following lemma.

Lemma 71. Fix c ∈ M(S) with c ≤ µ. For b ∈ M(S) with b ≤ c and Σ(κ, b) ≤ 1 let Gc be as in
(6.29)

Gc(b) :=
〈
b, log

db

dµ

〉
− 1

2
〈b, κb〉+

〈
c− b, log

d(c− b)
κ(c− b)dµ

〉
+

1

2
〈c, κµ〉.

Then the following holds.

1 If Σ(κ, c) ≤ 1, then

min {Gc(b) : b ∈M(S), b ≤ c,Σ(κ, b) ≤ 1} = Gc(c), (7.7)

and c is the unique minimizer.
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2 If Σ(κ, c) > 1, then

min {Gc(b) : b ∈M(S), b ≤ c,Σ(κ, b) ≤ 1} = Gc(b
∗(c)) (7.8)

and b∗(c) is the unique minimizer, which is given as the minimal, non-trivial (i.e., not equal to
c) solution of (2.9), and it satisfies Σ(κ, b∗(c)) = 1.

Proof. (1) We use that 1
2
〈c, κc〉 − 1

2
〈b, κb〉 = 〈b, κ(c − b)〉 + 1

2
〈c − b, κ(c − b)〉 holds by the

symmetry of κ. Therefore,

Gc(b)−Gc(c) =
〈
b, log

db

dc

〉
− 1

2
〈b, κb〉+

〈
c− b, log

1− db
dc

κ(c− b)

〉
+

1

2
〈c, κc〉

=
〈
b, log

db
dc

e−κ(c−b)

〉
+
〈
c− b, log

1− db
dc

κ(c− b)e− 1
2
κ(c−b)

〉
.

We claim that κ(c − b)e−
1
2
κ(c−b) ≤ 1 − e−κ(c−b) holds pointwise. Indeed, the function ψ(z) :=

1 − e−z − ze−
z
2 , z ≥ 0, satisfies that ψ(0) = 0 and ψ′(z) = e−

z
2 (e−

z
2 − (1 − z

2
)) ≥ 0 for any

z ≥ 0, implying that ψ(z) ≥ 0 for any z ≥ 0. So the claim holds, since κ(c−b) ≥ 0 holds pointwise.
Therefore, we can estimate

Gc(b)−Gc(c) ≥
〈
b, log

db
dc

e−κ(c−b)

〉
+
〈
c− b, log

1− db
dc

1− e−κ(c−b)

〉
=

∫
S
c(dr)

[db

dc
(r) log

db
dc

(r)

e−κ(c−b)(r) +
(

1− db

dc
(r)
)

log
1− db

dc
(r)

1− e−κ(c−b)(r)

]
≥ 0,

with equality if and only if b = c. The last inequality can be seen by applying Jensen’s inequality to the
function x 7→ x log x or by noting the following: For any point r ∈ S the term in brackets in the last
line is an entropy between the Bernoulli distribution with (success) parameter db

dc
(r) and the Bernoulli

distribution with parameter e−κ(c−b)(r) and therefore non-negative.

(2) Define Fc as the generalized analog of (6.28), i.e., for b ≤ c

Fc(b) =
〈
c, log

db

dµ

〉
+ (c− b)(S) +

1

2
〈b, κb〉 − 〈c, κb〉+

1

2
〈c, κµ〉.

Let b, b′ ≤ c with Σ(κ, b) ≤ 1 and Σ(κ, b′) ≤ 1. We want to show that Fc(b′) ≤ Gc(b). By
rearranging terms one can see that

Gc(b)− Fc(b′) = H(c− b|κ(c− b)b′) + H(b|b′)− 1

2
〈b− b′, κ(b− b′)〉. (7.9)

Now, given the signed measure b− b′ we use the Hahn decomposition theorem to decompose S into
two disjoint sets S+, S− with S+ ∪ S− = S such that δ+(·) := (b − b′)(· ∩ S+) and −δ−(·) :=
−(b− b′)(· ∩ S−) are non-negative measures and b− b′ = δ+ − δ−. Observe that

1

2
〈b− b′, κ(b− b′)〉 =

1

2

∫
S+

(b− b′)(ds)κ(b− b′)(s) +
1

2

∫
S−

(b′ − b)(ds)κ(b′ − b)(s)..

We write fb′,b := db′

db
1lS+ and denote by 〈·, ·〉b the inner product onL2(b), i.e. 〈f, g〉b =

∫
f(s)g(s) b(ds).

Note that by the symmetry of κ we have 〈f, Tκ,bg〉b = 〈g, Tκ,bf〉b, so we have that Σ(κ, b) =
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supf 6=0
〈f,Tκ,bf〉b
〈f,f〉b

≤ 1. Then

1

2

∫
S+

(b− b′)(ds)κ(b− b′)(s) =
1

2
〈1lS+ − fb′,b, Tκ,b(1lS+ − fb′,b)〉b

≤ 1

2
Σ(κ, b)〈1lS+ − fb′,b, 1lS+ − fb′,b〉b ≤

1

2

∫
S+

b(ds) (1− fb′,b(s))2.

(7.10)

An elementary analysis shows that 1
2
(1− x)2 ≤ − log x + x− 1 for x ∈ (0, 1] with equality if and

only if x = 1, and since b′ ≤ b on S+ implies that fb′,b(s) ∈ (0, 1] for s ∈ S+, we get that

1

2

∫
S+

b(ds) (1− fb′,b(s))2 ≤
∫
S+

b(ds)
(
− log fb′,b(s) + fb′,b(s)− 1

)
(7.11)

Denote fb,b′ := db
db′

1lS− . Interchanging the roles of b and b′ and replacing S+ by S− one can argue
as in (7.10) to show that

1

2

∫
S−

(b′ − b)(ds)κ(b′ − b)(s) ≤ 1

2

∫
S−

b′(ds) (1− fb,b′(s))2.

An elementary analysis shows that 1
2
(1 − x)2 ≤ x log x + 1 − x for x ∈ (0, 1] with equality if and

only if x = 1, and since b ≤ b′ on S− implies that fb,b′(s) ∈ [0, 1] for s ∈ S−, we get that

1

2

∫
S−

b′(ds) (1− fb,b′(s))2 ≤
∫
S+

b′(ds)
(
fb,b′(s) log fb,b′(s) + 1− fb,b′(s)

)
. (7.12)

Note that the two expressions on the right-hand sides of (7.11) and (7.12) sum up to H(b|b′), hence
we have shown that

H(b|b′)− 1

2
〈b− b′, κ(b− b′)〉 ≥ 0

and we have equality if and only if b = b′. Using this in equation (7.9) and the fact that the first entropy
term in (7.9) is always non-negative, we get that

sup
b≤c : Σ(κ,b)≤1

Fc(b) ≤ inf
b≤c : Σ(κ,b)≤1

Gc(b).

Note that Gc(b)− Fc(b′) = 0 if and only if the following conditions are satisfied: (i) b = b′, (ii) b is a
solution of (2.9) and (iii) Σ(κ, b) = 1. By Lemma 68 the only choice is given by b = b′ = b∗, where
b∗ is the unique minimal solution of (2.9). Hence, the uniqueness claim holds.

Proof of Theorem 9. The projection (λ, α) 7→ λ is continuous with respect to the vague topology, so
the contraction principle gives that the LDP for MiN holds with rate function

IMi(λ) = inf
α : c(α)≤µ−c(λ)

I(λ, α)

= IMi(λ) + inf
α∈A,ν∈M(S) : c(α)+ν=µ−c(λ)

(
IMa(α) + IMe(ν)

) (7.13)

assuming c(λ) ≤ µ (the other case is trivial). By equation (7.2) of Lemma 69 we immediately get the
representation for IMi claimed in equation (2.6).
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The projection (λ, α) 7→ α is continuous with respect to the chosen topology, so the contraction
principle gives that the LDP for MaN holds with rate function

IMa(α) = inf
λ : c(λ)≤µ−c(α)

I(λ, α)

= IMa(α) + inf
c∈[0,µ−c(α)]

(
inf

λ : c(λ)=c
IMi(λ) + IMe(µ− c(α)− c)

)
,

(7.14)

assuming c(α) ≤ µ (the other case is trivial). Define µα = µ− c(α).

Now, assume that Σ(κ, µα) ≤ 1. Then for any fixed c ∈M(S) with c ≤ µα we have that Σ(κ, c) ≤
1, so according to equation (6.1) of Proposition 55 we have

inf
λ : c(λ)=c

IMi(λ) + IMe(µα − c) = Gµα(c)

with Gµα(c) defined as in (6.29). By Lemma 71 we have that minc≤µα Gµα(c) = Gµα(µα), which
implies equation (2.7) under the assumption Σ(κ, µα) ≤ 1.

Now, assume that Σ(κ, µα) > 1. Then by Proposition 55 we have

inf
λ : c(λ)=c

IMi(λ) + IMe(µα − c) =

{
Gµα(c) if Σ(κ, c) ≤ 1,

Gc(b
∗(c)) + 〈µα − c, log µα−c

κ(µα−c)〉 if Σ(κ, c) > 1.

In the case Σ(κ, c) > 1, one can use the same argument as in (7.5) to show thatGc(b
∗(c))+ 〈µα−

c, log µα−c
κ(µα−c)〉 > Gµα(b∗(c)), where b∗ = b∗(c) is given as in (2.9). In particular, Σ(κ, b∗(c)) = 1

holds, so any possible minimizer has to be in the set {c : Σ(κ, c) ≤ 1}. Now, recall that due to
Lemma 71

inf
c : Σ(κ,c)≤1

Gµα(c) = Gµα(b∗(µα))

This proves the claim of equation (2.7) under the assumption Σ(κ, µα) > 1.

7.3 The minimizers of I

Proof of Theorem 7. Note that inf I(λ, α) = infc∈M(S) : c≤µ J (c) where for fixed c ∈ M(S) with
c ≤ µ we define

J (c) = inf
λ,α:c(λ)=c

I(λ, α) =:

{
J≤1(c) if Σ(κ, c) ≤ 1

J>1(c) otherwise.
(7.15)

By Proposition 55 and Lemma 69 we have that

J≤1(c) =
〈
c, log

dc

dµ

〉
+

1

2
〈c, κ(µ− c)〉+ IMa(δµ−c)

J>1(c) ≥
〈
b∗, log

db∗

dµ

〉
+

1

2
〈b∗, κ(µ− b∗)〉+ IMe(c− b∗) + IMa(δµ−c)

with b∗ = b∗(c) characterized in (2.9).

We will start by minimizing the function J≤1 over all c ∈ M(S) with c ≤ µ. Rearranging terms, we
get that

J≤1(c) =

∫
S
µ(dr)

(
dc

dµ
(r) log

dc
dµ

(r)

e−κ(µ−c)(r) +
(

1− dc

dµ
(r)
)

log
1− dc

dµ
(r)

1− e−κ(µ−c)(r)

)
=

∫
S
µ(dr)H(β(r)|γ(r)),
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where for r ∈ S we defined β(r) and γ(r) to be Bernoulli distributions with success rate dc
dµ

(r) and

e−κ(µ−c)(r), respectively (note that c ≤ µ implies that dc
dµ

(r) ≤ 1 for all r ∈ S). By Jensen’s inequality
we have that H(β(r)|γ(r)) ≥ 0 for all choices of β(r) and γ(r) and H(β(r)|γ(r)) = 0 if and only if
β(r) = γ(r), that is if and only if dc

dµ
(r) = e−κ(µ−c)(r). The minimizer of J≤1 is therefore characterized

by (2.4).

In the case Σ(κ, µ) ≤ 1 (which implies Σ(κ, c) ≤ 1 for all c ∈ M(S) with c ≤ µ), Lemma 16
states that µ is the only solution to (2.4).

Now assume that Σ(κ, µ) > 1. Then for any c ∈ M(S) with c ≤ µ and Σ(κ, c) > 1, Lemma
69 implies that IMe(c − b∗) + IMa(δµ−c) > IMa(δµ−b∗), where b∗ = b∗(c) is given as in (2.9) and
satisfies Σ(κ, b∗) = 1. Therefore, J>1(c) > J≤1(b∗(c)), which implies that the minimizer of J
lies in the set {c : Σ(κ, c) ≤ 1}. (Note, that in this way, µ is ruled out as a minimizer, although it
solves equation (2.4)). By the analysis of J≤1 above, the minimizer of J is given by a solution to (2.4)
satisfying Σ(κ, c) ≤ 1. Applying the second part of Lemma 16 finishes the proof.

Remark 72. (Reducibility) Theorem 7 and 9 are proved under the assumptions of Theorem 1, in
particular when κ is irreducible with respect to µ. We see however that this condition does not play
any role in the minimization of Proposition 55 and of Lemma 69. It is indeed Theorem 12 that excludes
the admissibility of a minimizer of the form (λc∗ , δµ−c∗) when Σ(κ, µ) > 1 for Ĩ , as α∗ = δµ−c∗ may
not be connectable. It is straightforward to see that the optimal macroscopic mass in this case takes
the form α̃∗ =

∑
n δy(n) , with y(n)(·) = (µ− c∗)(· ∩ S(n)), for each irreducible class S(n).

7.4 The Flory equation

As we explained in Section 2.4 the graph model studied in this paper has an important connection
with a certain inhomogeneous coagulation process. In this section we prove that the statistics of the
limiting microscopic cluster distribution, i.e., the minimizer of the rate function I , satisfy the Flory
equation (2.14), the related deterministic PDE, over the entire time interval [0,∞), before and after
the gelation time tc = 1/Σ(κ, µ). We prove it in the case of a finite type set S .

We fix an irreducible symmetric matrix κ on the finite type space S . Recall from Proposition 56 the
explicit formula

λk(c;κ) = τ(k;κ)
∏
r∈S

(cre
−(κc)r)kr

kr!
, k ∈ NS0 , c ∈ (0,∞)S , (7.16)

for the minimizer of the microscopic rate function IMi (see also (6.3)). With this notation we stressed
the dependence on κ, since we consider now tκ instead of κ, where t ∈ [0,∞) is a time instant,
writing λ(µ; tκ). Note that λ(µ; tκ) is the minimizer both for t < tc and for t ≥ tc, as the character-
istic equation c∗r(t)e

−t(κc∗(t))r = µre
−t(κµ)r (where c∗(t) is the c∗ of Proposition 56 for tκ instead of

κ) ensures that λ(c∗(t); tκ) = λ(µ; tκ). Note that c(λ(c∗(t); tκ)) = c∗(t). We now show that the
function t 7→ λ(µ; tκ) solves the Flory equation that corresponds to our model.

Lemma 73. The function t 7→ λ(µ; tκ) is a solution of

d

dt
lk(t) =

1

2

∑
m+m̃=k

lm(t)lm̃(t)〈m,κm̃〉 − lk(t)
∑
m

lm(0)〈k, κm〉, for k ∈ NS0 , (7.17)

with initial condition λ(µ; 0) =
∑

r∈S µr1l{er}.
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Proof. The initial condition is easily checked.

Since any tree contributing to the term τ(k; tκ) has exactly |k| − 1 edges, we can rewrite λ(µ; tκ)
for any t ≥ 0 as

λk(µ; tκ) = t|k|−1τ(k;κ)e−t〈k,κµ〉
∏
r∈S

µkrr
kr!

, for k ∈ NS0 . (7.18)

Abreviating λ(t) := λ(µ; tκ), we get that

d

dt
λk(t) = (|k| − 1)

1

t
λk(t)− 〈k, κµ〉λk(t). (7.19)

Now, we study the first summand of the r.h.s. of (7.17). By first inserting (7.18) and then using the
recursive equation (6.7) from Lemma 18, we have that

1

2

∑
m+m̃=k

λm(t)λm̃(t)〈m,κm̃〉

=
1

2
t|k|−2e−t〈k,κµ〉

(∏
u

µkuu
ku!

)∑
r,s

κ(r, s)
∑

m+m̃=k

(∏
u

ku!

mu!m̃u!

)
τ(m)mrτ(m̃)m̃s

= (|k| − 1)
1

t
λk(t).

Furthermore, we have that

λk(t)
∑
m

λm(0)〈k, κm〉 = λk(t)〈k, κµ〉,

which implies the claim.
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bulk of inhomogeneous Erdős-Rényi random graphs. J. Stat. Phys., 181(5):1746–1780,
2020.

[CRY21] Edward Crane, Balázs Ráth, and Dominic Yeo. Age evolution in the mean field forest fire
model via multitype branching processes. The Annals of Probability, 49(4):2031–2075,
2021.

[DF14] Luc Devroye and Nicolas Fraiman. Connectivity of inhomogeneous random graphs. Ran-
dom Structures & Algorithms, 45(3):408–420, 2014.

[DZ10] A. Dembo and O. Zeitouni. Large deviations techniques and applications, volume 38 of
Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin, 2010. Corrected
reprint of the second (1998) edition.

[Geo88] Hans-Otto Georgii. Gibbs measures and phase transitions, volume 9 of De Gruyter
Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1988.

[Ges87] Ira M. Gessel. A combinatorial proof of the multivariable lagrange inversion formula.
Journal of Combinatorial Theory, Series A, 45(2):178–195, 1987.

[Gil59] E. N. Gilbert. Random graphs. Ann. Math. Statist., 30(4):1141–1144, 12 1959.

[JKT19] Sabine Jansen, Tobias Kuna, and Dimitrios Tsagkarogiannis. Virial inversion and density
functionals. arXiv preprint arXiv:1906.02322, 2019.

[JKT21] Sabine Jansen, Tobias Kuna, and Dimitrios Tsagkarogiannis. Lagrange inversion and
combinatorial species with uncountable color palette. In Annales Henri Poincaré, pages
1–36. Springer, 2021.

[MN14] Mathieu Merle and Raoul Normand. Self-organized criticality in a discrete model for
smoluchowski’s equation. arXiv preprint arXiv:1410.8338, 2014.

[Nor00] J. R. Norris. Cluster coagulation. Communications in Mathematical Physics, 209(2):407–
435, Feb 2000.

[NZ11] Raoul Normand and Lorenzo Zambotti. Uniqueness of post-gelation solutions of a class
of coagulation equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 28(2):189–215,
2011.

[RT+09] Balázs Ráth, Bálint Tóth, et al. Erdos-rényi random graphs+ forest fires= self-organized
criticality. Electronic Journal of Probability, 14:1290–1327, 2009.

[Ste70] V. E. Stepanov. On the probability of connectedness of a random graph Gm(t). Theory
of Probability & Its Applications, 15(1):55–67, 1970.

[vdH13] Remco van der Hofstad. Critical behavior in inhomogeneous random graphs. Random
Structures Algorithms, 42(4):480–508, 2013.

[Yeo18] Dominic Yeo. Frozen percolation on inhomogeneous random graphs. arXiv preprint
arXiv:1810.02750, 2018.

DOI 10.20347/WIAS.PREPRINT.2898 Berlin 2021


	Introduction
	Inhomogeneous random graphs
	The large-deviations principle for the cluster statistics
	Interpretation of the LDP
	Connectivity of inhomogeneous graphs

	Limiting consequences
	The phase transition
	Comparison to BoJaRi07: branching-process interpretation
	The reducible case
	Motivation: an inhomogeneous coagulation process

	Connection probabilities and the characteristic equation
	The characteristic equation and tree combinatorics
	Asymptotics for the connection probability

	The large-deviations principle for a finite type set
	Formulation of the LDP
	The distribution of bold0mu mumu MiNMiNGil59MiNMiNMiNMiN
	Exponential rates for micro-, meso- and macro parts
	Proof of Theorem 29

	Proof of Theorem 1
	Discretization and Approximation
	Projective system
	Dawson–Gärtner and identification of the rate function

	The minimizers of IMi
	The discrete, subcritical case
	The general subcritical case
	The discrete, supercritical case
	The general supercritical case

	Analysis of minimizers of the rate function in Theorem 1
	The minimizers of IMa and IMe
	Minimization for the contraction principles
	The minimizers of I
	The Flory equation


