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Adaptive non-intrusive reconstruction of solutions to
high-dimensional parametric PDEs

Martin Eigel, Nando Farchmin, Sebastian Heidenreich, Philipp Trunschke

ABSTRACT. Numerical methods for random parametric PDEs can greatly benefit from adaptive refine-
ment schemes, in particular when functional approximations are computed as in stochastic Galerkin
and stochastic collocations methods. This work is concerned with a non-intrusive generalization of the
adaptive Galerkin FEM with residual based error estimation. It combines the non-intrusive character of
a randomized least-squares method with the a posteriori error analysis of stochastic Galerkin methods.
The proposed approach uses the Variational Monte Carlo method to obtain a quasi-optimal low-rank
approximation of the Galerkin projection in a highly efficient hierarchical tensor format. We derive an
adaptive refinement algorithm which is steered by a reliable error estimator. Opposite to stochastic
Galerkin methods, the approach is easily applicable to a wide range of problems, enabling a fully auto-
mated adjustment of all discretization parameters. Benchmark examples with affine and (unbounded)
lognormal coefficient fields illustrate the performance of the non-intrusive adaptive algorithm, showing
best-in-class performance.

1. INTRODUCTION

High-dimensional parametric partial differential equations (PDEs) play a crucial role in modern simula-
tion methods used in the natural sciences and engineering. Especially when uncertainties or variations
in the data should be incorporated into the physical model, a parameter vector determining the data
realizations leads to a discretization complexity that easily becomes extremely challenging to tackle
due to the inherent “curse of dimensionality”. There has been very active research activity in particular
in the area of Uncertainty Quantification (UQ) to better understand the structure of the problem and
to mitigate the numerical obstacles with new methods. Apart from sampling methods for the estima-
tion of quantities of interest such as Monte Carlo sampling, functional approximations allow to exploit
commonly encountered structured regularity of the PDE solutions to obtain much higher convergence
rates. The central contribution of this paper is the development of an adaptive sample-based Galerkin
method in low-rank tensor format, which can be considered a non-intrusive generalization of the adap-
tive stochastic Galerkin FEM (ASGFEM) as e.g. derived in [1–3]. It combines and generalizes previous
results on the residual based reliable error estimator with the non-intrusive low-rank tensor reconstruc-
tion techniques from [4, 5] and [6]. In contrast to the frequently used intrusive ASGFEM, the presented
method is a versatile generalization that could easily be applied to a broad range of problems with
only small modifications. A main feature it shares with stochastic collocation (SC) methods is its sole
dependence on pointwise solutions. However, opposite to SC, a hierarchical tensor compression of
the solution and coefficient field usually lead to a beneficial scaling with respect to the parameter di-
mensions, allowing to compute very high-dimensional problems that might otherwise only be tractable
by neural network representations.

As a model problem we consider the parameter dependent Darcy equation

(1.1)
´ divx apx, yq∇x upx, yq “ fpxq in D,

upx, yq “ 0 on BD,

on some domain D Ă R2, where y “ py1, . . . , yLq Ă RL is a high or even infinite dimensional
parameter vector determining the (affine or nonlinear in y) coefficient field and hence the solution. To
counter the resulting (possibly) extensive memory complexity caused by a functional representation,
the coefficient tensors of apx, yq and upx, yq are low-rank approximated in the Tensor Train (TT)
format via a least-squares regression technique coined the Variational Monte Carlo (VMC) method [4].
Given a sufficient amount of training samples, which can be estimated by a heuristic criterion, the
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obtained approximation is equivalent to the stochastic Galerkin projection with high probability [5, 7].
In comparison to Monte Carlo methods, exploiting the regularity and low-rank approximability of the
solution may drastically improve the rate of convergence as shown in [4].

The resulting adaptive algorithm only requires access to samples upypiqq (and possibly apypiqq) gen-
erated via a black-box solver. Given an approximate solution reconstruction wN « u, contributions of
the deterministic, stochastic and algebraic erros can be evaluated, leading to a reliable upper bound
of the energy error of the form

}u´ wN}B À ηdetpwNq ` ηstopwNq ` ηalgpwNq.(1.2)

These error estimates then steer the local refinements of the discrete space. It is noteworthy that no
direct interaction with the parametric solver is required besides communicating how the underlying
mesh has to be changed. The error estimators can be proven to be reliable and efficient in many
cases, see [1, 8–10] and [11] for a review of the underlying deterministic derivation.

We demonstrate the performance of the proposed algorithm for the model problem (1.1) with both
affine and lognormal diffusion coefficients apx, yq. It should be pointed out that our algorithm can be
applied with only minor modifications to any linear or (mild) nonlinear problem that permits computable
a posteriori error bounds.

Structure. Section 2 introduces the model problem setting, its variational formulation as well as the
spatial and stochastic discretization. Section 3 then examines how the diffusion field and the solution
of (1.1) can be obtained efficiently and non-intrusively. In Section 4, we recall the residual based error
estimator from [1, 3] and derive a heuristic for controlling the regression error. The resulting adaptive
refinement strategy and the overall algorithm are presented in Section 5. Finally, we test the fully
adaptive scheme in several examples with affine and lognormal coefficient fields in Section 6.

Related work. Theoretical considerations about the class of parametric PDEs used in this paper (1.1)
can e.g. be found in the review articles [12, 13]. Moreover, the technically involved lognormal case is
analysed in detail in [14–16].

Functional representations of high-dimensional problem solutions can be obtained by spectral approxi-
mations, enabling optimal convergence rates numerically. Most prominent are SC [17–19] and SG [20,
21] methods. SC has the advantage of being non-intrusive and thus is easy to use with already existing
simulation codes, whereas SG methods can be understood as an extension of classical finite element
(FE) methods, requiring a problem-specific implementation. To make these methods computationally
feasible, different model reduction techniques can be incorporated. In the context of this paper, two
are most relevant: (i) adaptivity based on computable error estimators and (ii) low-rank compression
with hierarchical tensor formats.

Adaptive algorithms based on a posteriori estimators have been developed to increase the physical FE
space and the stochastic space automatically and problem dependent. They can be seen as an exten-
sion of adaptive methods in deterministic FEM, see [1, 8, 22] for residual based estimators and [23–
26] for hierarchical estimators. Alternative adjoint approaches for quantities of interest can be found
in [27, 28].

Refinement of the stochastic space typically incorporates enlarging the global polynomial basis by
increasing the polynomial degrees and including more stochastic modes. When using tensor formats,
an additional error contribution that has to be controlled is the algebraic (compression) error, leading
to an adjustment of the representation rank. In case of affine coefficient fields, there are first results
on the convergence of adaptive algorithms [8, 9] and even optimality [10] under certain conditions.
Recent results provide optimality in much greater generality by using wavelet expansions [29].

To circumvent exponential growth of the stochastic discretization space, hierarchical tensor formats
can be used if the problem is low-rank representable. Some details on different tensor formats and
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numerical algorithms can be found in [30–33]. Our focus lies on the TT format [33], which has been
used with tremendous success for the solution of parametric PDEs and related UQ problems such
as Bayesian inversion and random field representations, see [34–38]. ASGFEM in hierachical tensor
formats are presented in [2, 39] for affine coefficients. The first ASGFEM for lognormal coefficients is
developed in [3]. In contrast to affine fields, nonlinear expansions as in the lognormal case cannot be
represented easily in tensor formats and are in fact rather challenging to obtain. Accordingly, a limita-
tion of the ASGFEM in [3] is that it relies on a specifically tailored construction of the parametric field.
Other approaches using some tensor completion can be found in [35, 40]. In [6], a general projection
based method is developed to govern the approximation error of arbitrary surrogates. Since it can be
employed with a wide range of coefficient fields, it is very much in the spirit of our method and is used
in Section 3. The basis for the least-squares tensor regression of parametric PDE solutions was laid
with the VMC method in [4]. An alternative technique is the tensor cross approximation of [41]. From a
practical point of view, a major difference of the two methods lies in the integration of training samples.
The cross approximation evaluates the parametric black-box solver during runtime as the interpolation
points are chosen adaptively (“active learning”), whereas the VMC method assumes precomputed
(randomly sampled) evaluations of the solver for random parameter realizations (“passive learning”).

2. THE MODEL PROBLEM

This section establishes the analytical foundations of the model problem (1.1). We recall some details
on the functional setting for two common types of random coefficient fields and point to references for
an in depth analysis when necessary. Throughout this work we assume D Ă R2 to be a polygonal
bounded Lipschitz domain. Moreover, without loss of generality, we limit ourselves to a determinis-
tic source term f P L2pDq and homogeneous Dirichlet boundary conditions since modelling the
right-hand side and the boundary conditions as stochastic fields independent on the diffusion coeffi-
cient apx, yq would not introduce significant modifications. With typical applications in e.g. stochastic
groundwater flow modelling, the diffusion coefficient is often defined by a Karhunen-Loève type ex-
pansion of the form

γpx, yq “ γ0pxq `
L
ÿ

`“1

γ`pxqy` for x P D,(2.1)

and almost all y` „ π` with independent distributions π`,L P NYt8u. In many applications, however,
the far more challenging exponential diffusion field

κpx, yq “ exppγpx, yq ´ γ0px, yqq(2.2)

has to be considered. Solvability of (1.1) for a “ γ follows directly from the uniform boundedness
and positivity of the affine field (2.1) [12]. Well-posedness of (1.1) for the unbounded case a “ κ is
significantly more involved and requires the introduction of adapted function spaces, cf. [14, 16, 42–
44]. We refer to [3] for a concise review of the concepts that we use for the problem setting (1.1).

Let X :“ H1
0 pDq equipped with the standard norm }w}X “ }∇w}L2pDq and let F :“ tµ P

N80 : | suppµ| ă 8u be the set of finitely supported multi-indices, where suppµ denotes the set of
all indices of µ different from zero. For anym P N0 and n P N, let rm :ns :“ tm, . . . , n´ 1u, where
rm :ns :“ t0u if m ě n and rns :“ r0 :ns. Define the full tensor index set

Λd :“ rd1s ˆ . . . rdLs ˆ r1s ˆ ¨ ¨ ¨ Ă F , for L P N and d P NL.(2.3)

By tP `
j u
8
j“0 we denote a set of orthogonal and normalized polynomials in L2pΓ`, π`q, where we

assume Γ` Ă R for ` P N. Moreover, we consider the tensor product case Γ “
ś

`PN Γ` and π “
ś

`PN π` and define an orthonormal product basis tPµuµPF ofL2pΓ, πq byPµpyq :“
ś8

`“1 P
`
µ`
py`q “
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ś

`Psuppµ P
`
µ`
py`q. Note that the use of global polynomials is justified by the high regularity of the so-

lution of (1.1) with respect to the random variables [42, 45, 46]. In our numerical experiments we rely
on (scaled) Hermite and Legendre polynomials as univariate basis functions. Details on the normal-
ization constants for the respective polynomials and an analytical expression for the triple products
τijk “ ErP `

i P
`
jP

`
ks are given in Supplement A. We define the bilinear form

Bpw, vq :“

ż

Γ

ż

D

apx, yq∇wpx, yq ¨∇ vpx, yq dx dπpyq(2.4)

on L2pΓ, π;X q and denote the induced energy norm by }w}B :“ Bpw,wq1{2. We additionally
abbreviate }w}π,D “ }w}L2pΓ,π;L2pDqq. The variational form of (1.1) then reads

Bpu, vq “ F pvq for all v P V ,(2.5)

where F pvq “
ş

Γ

ş

D
fpxqvpx, yq dx dπpyq is supposed to be well defined for an appropriate Hilbert

space V .

A conforming FE space XppT q :“ spantϕiu
N
j“1 is used as spatial discretization of the physical space

X . In particular, we assume T to be a regular triangulation of the domainD with edges E and consider
for p P N the standard conforming order-p Lagrange elements such that XppT q :“ PppT q X CpT̄ q,
where PppT q is the space of element-wise polynomials of order p. For any element T P T and edge
E P E , let hT and hE denote the diameter of T and E, respectively. Define the normal jump of
a function w P H1pD;R2q over the edge E “ T̄1 X T̄2 by JwKE “ pw|T1 ´ w|T2q ¨ νE for the
edge normal vector νE “ νT1 “ ´νT2 of E. Since the direction of the normal νE depends on the
enumeration of the neighbouring triangles, we assume an arbitrary but fixed choice of the sign of νE
for each E P E . This allows us to define the fully discrete approximation space by

VN :“ VNpΛd; T , pq :“
!

vN “
ÿ

µPΛd

vN,µPµ with vN,µ P XppT q for all µ P Λd

)

Ă V .(2.6)

As a consequence, the Galerkin projection uN P VN of the solution u of (2.5) is determined uniquely
by

BpuN , vNq “ F pvNq for all vN P VN .(2.7)

To describe the lognormal case a “ κ, define the set of admissible parameters by

Γκ :“ ty P RL :
L
ÿ

`“1

}γ`}L8pDq|y`| ă 8u.(2.8)

Note that for σ` ą 0 the probability density function for the univariate Gaussian distribution N p0, σ2
` q

can be written as

π`py`;σ`q “ ζ`py`;σ`q
1
?

2π
expp´

1

2
y2
` q with ζ`py`;σ`q :“

1

σ`
exp

´

`1

2
´

1

2σ2
`

˘

y2
`

¯

.

Moreover, for any ρ ě 0 let σ`pρq :“ exppρ}γ`}L8pDqq and let

ζρpyq :“
L
ź

`“1

ζ`py`;σpρqq and πρ :“
L
ź

`“1

π`py`;σpρqq.(2.9)

Note that ρ “ 0 implies ζ0 “ 1 and thus π0 denotes the standard Gaussian density. We henceforth
investigate the following two application cases.

(A) affine case. Consider the affine coefficient field apyq “ γpyq P L8pDq. In this setting, we
assume the univariate random variables y` to be i.i.d. uniformly distributed on Γ` “ r´1, 1s,
i.e. π` “ 1{2. Consequently, we set V “ L2pΓ, π;X q and employ Legendre polynomials as
basis functions. For notational convenience, we additionally set ζρpyq ” 1 and πρ ” π “ 2´L

for any ρ P R for the analysis later on.
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(B) lognormal case. Consider the exponential coefficient field apyq “ κpyq P L8pDq. Since we
assume the univariate random variables y` to follow an i.i.d. standard normal distribution, we
refer to κ as a lognormal coefficient field. For ϑ P r0, 1s, ρ ą 0 and Γ “ Γκ, the solution space
is defined by

V “ tw : Γ Ñ X measurable with Bpw,wq ă 8u,

where B is the bilinear form (2.4) with π “ πϑρ from (2.9). For the polynomial basis we choose
scaled Hermite polynomials tHϑρ

µ uµPF , see Supplement A and [12].

3. DISCRETIZATION OF SOLUTION AND COEFFICIENT

This section describes the approximation of the discrete solution uN of (2.7), the right-hand side f
and the coefficient fields γ and κ in the TT format. A brief summary of notation and some fundamental
properties of the TT format are given in Appendix C. A general and more detailed description of the
TT format is given in [33, 47, 48] and in e.g. [3, 30, 35, 49] TT representations have been applied to
the elliptic model problem (1.1).

3.1. TT approximation of the solution. In the following we recall the notion of nonlinear least-
squares approximation and show that a sample-based quasi-best approximation of u can be ob-
tained with high probability given sufficiently many samples. For this, recall that the discrete solution
uN of (2.7) satisfies the Galerkin orthogonality property BpuN ´ u, vNq “ 0 for all vN P VN ,
which implies that }u ´ vN}B “ }u ´ uN}B ` }uN ´ vN}B for any vN P VN . This means
that uN is the } ‚ }B-best approximation to the solution u in VN . Extending this idea to the subset
Mr “ twN P VN : tt-rankpwq ď ru leads to the best approximation problem

arg min
wNPMr

}u´ wN}B “ arg min
wNPMr

}uN ´ wN}B.

Minimizing the energy norm is straight-forward for the affine case (A), since V “ L2pΓ, π;X q. For the
lognormal case (B) however, minimizing the } ‚ }B-norm introduces an additional dependence on the
diffusion coefficient. Even though this is not problematic from a theoretical point of few, it is possible to
eliminate this dependence by employing the boundedness of the bilinear form B (B.1), i.e.

}uN ´ wN}B ď
a

ĉpϑρq}uN ´ wN}L2pΓ,πρ;X q.

We then aim to find the minimum

(3.1) uN,r :“ arg min
wNPMr

}uN ´ wN}L2pΓ,πρ;X q,

which has the advantage of being independent of the choice of ϑ. Since computing the L2-norm with
respect to πρ is infeasible in practice, we follow the ideas of [4, 50] and replace the high-dimensional
integral with the Monte Carlo estimate

(3.2) }v}n :“

d

1

n

n
ÿ

i“1

}vpypiqq}2X

for any v P V , where the samples ypiq „ πρ are independent for all i “ 1, . . . , n. The computation of
the best approximation then reads

(3.3) uN,r,n :“ arg min
wNPMr

}uN ´ wN}n,

where the uNpyiq can be computed with an arbitrary FE solver. The resulting nonlinear least squares
problem (3.3) is easy to implement and many highly optimized frameworks exist to solve this prob-
lem [50]. Note that this is a fully non-intrusiven approach since it only requires the (pointwise) standard
FE solutions uNpypiqq of the deterministic problem (1.1).
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It remains to show is that the minimizer of (3.3) is comparable to the best-approximation uN,r of (3.1)
given a sufficiently large number of samples n. Let Ṽ :“ L2pΓ, πρ;X q and let δ ą 0. We say that
the restricted isometry property RIPMrpδq holds if

p1´ δq}wN}
2
Ṽ ď }wN}

2
n ď p1` δq}wN}

2
Ṽ for all wN PMr.(3.4)

Applying the following theorem from [5] guarantees that the minimizer uN,r,n is a quasi-best approxi-
mation in Mr.

Theorem 3.1. Assume that RIPtuN,ru´Mrpδq holds. Then

}uN,r ´ uN,r,n}Ṽ ď 2
1

?
1´ δ

}u´ uN,r}8,

where }w}28 :“ ess supyPΓ }wpyq}
2
X . If in addition RIPtu´uN,rupδq is satisfied, then

}uN,r ´ uN,r,n}Ṽ ď 2

?
1` δ

?
1´ δ

}u´ uN,r}Ṽ

and consequently

}u´ uN,r}Ṽ ď }u´ uN,r,n}Ṽ ď
´

1` 2

?
1` δ

?
1´ δ

¯

}u´ uN,r}Ṽ .

Moreover, in [5] a qualitative bound for npr, δ, pq is derived such that both RIPs in Theorem 3.1 hold
with probability 1´ p if n ě npr, δ, pq.

Remark 3.2. The norm equivalence (3.4) holds strictly speaking only for the affine case (A) in the
described form. For the lognormal case (B), an adapted sampling density (cf. [5, 51]) is required.
Nevertheless, in practice we do not observe that this is necessary. Moreover, we note that the sampling
bound npr, δ, pq established in [5] is a worst-case bound and that a significantly smaller number of
samples suffices in our experiments.

3.2. TT representation of the diffusion coefficient.

Affine coefficient field and right-hand side. The constant right-hand side f and the affine coefficient
field γ can be understood as an expansion in univariate multidimensional polynomials. Such functions
possess a natural (exact) representation of their coefficient tensor in the TT format. For d P NL,
consider the set of univariate L-dimensional indices

∆d :“
L
ď

`“1

tj e` : j P rd`su with |∆d| “ 1`
L
ÿ

`“1

pd` ´ 1q,

where e` denotes the unit vector pe`qj “ δ`j for j P N0, and let ι : t0, . . . , |∆d| ´ 1u Ñ ∆d

with ιp0q “ p0, . . . , 0q be an arbitrary enumeration of ∆d. Furthermore, let ιµ` “ ι´1pµ`e`q be the
enumeration index of µ`e` and define for k P N0

δpk, µ`q :“ δk0δµ`0 ` p1´ δk0q
`

δµ`0 ` δkιµ` p1´ δµ`0q
˘

.

Any function wN P VNp∆d; T , pq can formally be written as an expansion with respect to the full
tensor set Λd,

wNpx, yq “

|∆d|´1
ÿ

t“0

wιptqpxqPιptqpyq “
ÿ

jPr|T |s

ÿ

µPΛd

wrj, µsϕjpxqPµpyq,(3.5)

wherewrj, µs “ 0 for µ R ∆d. The following proposition shows that the coefficient tensorw of (3.5)
has an exact representation in the TT format.
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Proposition 3.3. For any wN P VNp∆d; T , pq the coefficient tensor w P RNˆd has an exact
representation in the TT format. This representation is given by

wrj, µs “

|∆d|´1
ÿ

k1“0

. . .

|∆d|´1
ÿ

kM“0

w0rj, k1s

M
ź

m“1

wmrkm, µm, km`1s,

with spatial component tensor w0 P RNˆ|∆d| given by the FE coefficients of the functions wιptqpxq,
i.e.

wιptqpxq :“
ÿ

jPr|T |s

w0rj, tsϕjpxq for all t “ 0, . . . , |∆d| ´ 1,

and stochastic coresw` P R|∆d|ˆd`ˆ|∆d| for ` “ 1, . . . , L´ 1 andwL P R|∆d|ˆdL given by

w`rk`, µ`, k``1s :“ δk`k``1
δpk`, µ`q and wLrkL, µLs :“ δpkL, µLq.

Proof. Contracting the last two coreswL´1 andwL leads to

|∆d|´1
ÿ

kL“0

wL´1rkL´1, µL´1, kLswLrkL, µLs

“ δpkL´1, µL´1qδpkL´1, µLq

“ δ2
kL´10

L
ź

`“L´1

δµ`0 ` p1´ δkL´10q
2

L
ź

`“L´1

pδµ`0 ` δkL´1ιµ`
p1´ δµ`0qq.

Iterating the contraction for the remaining stochastic cores w`, ` “ L ´ 1, . . . , 1, yields the tensor
T P R|∆d|ˆd given by

T rk1, µs “ δLk10δµ0 ` p1´ δk10q
L

L
ź

`“1

´

δµ`0 ` δk1ιµ` p1´ δµ`0q
¯

.(3.6)

Since ∆d is the set of univariate L-dimensional indices, for each µ P Λd we have µ “
řL
`“1 µ`e`

with µ`e` P ∆d. For any µ P Λdz∆d there exist at least two `1 ‰ `2 P t1, . . . , Lu with µ`1 , µ`2 ą 0.
Since ι´1pµ`1e`1q ‰ ι´1pµ`2e`2q and 0 P ∆d, i.e. δµ0 “ 0, it follows that

T rk1, µs “ δk1ιµ`1
δk1ιµ`2

p1´ δk10q
L

L
ź

`1,`2‰`“1

´

δµ`0p1´ δk1ιµ` q ` δk1ιµ`

¯

“ 0.

For any µ P ∆dzt0u there exists exactly one ` P t1, . . . , Lu such that µ “ µ`e` for µ` P r1 : d`s.
Hence, δµm0 “ 1 for all m “ t1, . . . , Lu with m ‰ ` and (3.6) simplifies to T rk1, µs “ p1 ´
δk10qδk1ι´1pµq. Eventually, for µ “ 0 we have ιµ` “ 0 for all ` “ 1, . . . , L and thus T rk1, 0s “
δk10δk1ι´1p0q. Combining the cases above results in T rk1, µs “ δk1ι´1pµq for all µ P ∆d. Combining
this and the definition ofw0 with (3.5) concludes the proof. �

Lognormal coefficient field. There exists no exact TT representation of the lognormal diffusion coeffi-
cient (2.2). Several methods to obtain an approximation of (2.2) in the TT format have been investi-
gated [3, 6, 34, 35, 40]. Since Proposition 3.3 yields an exact representation of the affine exponent,
the method of our choice is to compute the exponential of γ ´ γ0 as proposed in [6]. In the following,
we briefly recall the basic idea of this approach. The lognormal diffusion coefficient (2.2) constitutes a
holonomic function, i.e. κ is the unique solution of the gradient system

(3.7)
∇y κpx, yq :“ κpx, yq∇ypγpx, yq ´ γ0pxqq,

κpx, y0q :“ exppγpx, y0q ´ γ0pxqq,
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for some arbitrary y0 P Γκ and all x P D. We then obtain an approximation of κ by constructing an
approximation to the Galerkin projection of (3.7). For VN,d :“ VNpΛd; T , π0q, the resulting Galerkin
system

(3.8) pApuq, vqL2pΓκ,π0;R|T |q “ pg, vqL2pΓκ,π0;R|T |q for all v P VN,q`1,

is well defined and exhibits a unique solution κN P VN,q, see [6, Lemma 2.1]. We then employ
the Alternating Linear Scheme (ALS) [48] to obtain an approximation κN.s P VN,q of the Galerkin
projection κN in the TT format. The application of the ALS is very efficient since the operator A
and the right-hand side g in fact possess a TT representation with ranks bounded independently of
the problem dimension L. Additionally, this approach allows for an a posteriori approximation error
estimation with respect to the induced energy norm } ‚ }A :“ }Ap‚q}L2pΓκ,π0;R|T |q.

Theorem 3.4 ([6, Theorem 2.4]). For L{2 ` 1 ď k P N let κ P HkpΓκ, π0;L8pDqq be the unique
solution of (3.7) and let wN P VN,q be arbitrary. Then it holds

}RpwNq}V˚N,q`1
ď }κ´ wN}A ď }RpwNq}V˚N,q`1

` }ΠVKN,q`1
g}L2pΓκ,π0;L8pDqq,

where RpwNq “ g ´ ApwNq P V˚N,q`1 denotes the residual and ΠVKN,q`1
is the projection onto the

orthogonal complement of VN,q`1.

Note that it is possible to construct the gradient system (3.7) in a way such that g P VN,q`1, which
directly implies }ΠVKN,q`1

g}L2pΓκ,π0;L8pDqq “ 0. Moreover, we know from [6, Lemma 2.3] that }g ´

Aκ}2 “ }RpκN,sq}V˚N,q`1
, where } ‚ }2 denotes the Frobenius norm and A, g and κ are the coef-

ficient tensors of A, g and κN,s, respectively. With this and since Theorem 3.4 holds for any discrete
wN P VNpΛq; T , π0q, this implies that the computed residual of the ALS effectively bounds the en-
ergy approximation error from above and below. This can be used in the adaptive algorithm to ensure
that the approximation κN,s of κ is sufficiently accurate.

Remark 3.5. We utilize the simple structure of γ, κ and f to generate efficient low-rank approxima-
tions. However, it should be pointed out that there is no restriction per se and the used approximation
technique can readily be applied to more complicated problems or alternative approximation tech-
niques can be used as a substitute without further adaptation of other parts of our approach. As an
example, one could consider non-intrusive reconstruction techniques such as a TT cross approxima-
tion [41] or a VMC reconstruction if the diffusion field is only accessible by pointwise evaluations.

4. ERROR ESTIMATION

In this section we recall the residual based error estimator presented in [3], which is an adaptation
of the development in [1, 8]. Additionally, we motivate an heuristic indicator to steer the number of
regression samples in the adaptive algorithm. The results are stated with the lognormal case (B) in
mind, but equally hold true without any adaptation for the simpler affine coefficient, using the notation
described in case (A).

4.1. Residual based error estimator. We note that there exists no exact TT representation of the
lognormal diffusion coefficient, thus the approximation of κ described in Section 3.2 introduces an
additional error. Since this error can be controlled independently, we assume the approximation of κ
to be sufficiently accurate such that it can be neglected henceforth.

In the following we assume some fixed FE polynomial degree p P N and consider M ď L P N.
Furthermore, let d, q P F with supppdq “ t1, . . . ,Mu Ď t1, . . . , Lu “ supppqq. Assume wN P
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VN “ VNpΛd; T , pq is given by the TT representation

wNpx, yq :“
ÿ

jPrNs

ÿ

µPΛd

´

r
ÿ

k“1

w0rj, k1s

M
ź

m“1

wmrkm, µm, km`1s

¯

ϕjpxqPµpyq

with ranks r P NM . Similarly, assume that the coefficient field aN P L2pΓ, π;L8pDqq is given in a
semi-discretized form

aNpx, yq :“
ÿ

νPΛq

´

s
ÿ

k“1

a0rk1spxq
L
ź

`“1

a`rk`, ν`, k``1s

¯

Pνpyq

with ranks s P NL and a0rk1s P X for all k1 “ 1, . . . , s1. Define the residual Rpvq P V˚ “
L2pΓ, π;X ˚q of (2.5) by Rpvq :“ F ´ Bpv, ‚q. The energy error can then be bounded in the
following way.

Theorem 4.1 ([1, Theorem 5.1]). Let VN Ă V be a closed subspace and wN P VN arbitrary. Let uN
denote the Galerkin projection with respect to B of u onto VN . It then holds that

}u´ wN}
2
B ď

˜

sup
vPVzt0u

|xRpwNq, p1´ ICqvyV˚,V |

č }∇ v}π0,D
` cI}uN ´ wN}B

¸2

` }uN ´ wN}
2
B.

Here, IC denotes the tensor product interpolation operator defined in [3], cI is the operator norm of
1´ IC with respect to } ‚ }B and č is the coercivity constant of the bilinear form B.

We point out, that showing coercivity of the bilinear form for the lognormal case (B) is not trivial,
see Appendix B for more details and references. Since we consider wN P VN as well as a finite
expansion aN of the diffusion coefficient a, the residual RpwNq is itself characterized by a finite
polynomial expansion. In particular, we have RpwNq “ f ` divprpwNqq for rpwNq :“ aN ∇wN .
The semi-discrete expansion

rpwNqpx, yq “
ÿ

µPΛd`q´1

rµpwNqpxqPµpyq,(4.1)

with rµpwNq derived from the TT representations of aN and wN , allows to split the residual into an
active and an inactive part. With the inactive set ∆ :“ Λpd`q´1qz Λd, consider the splitting RpwNq “
RΛdpwNq `R∆pwNq for

RΛdpwNq :“ f `
ÿ

µPΛd

divprµpwNqqPµ and R∆pwNq :“
ÿ

µP∆

divprµpwNqqPµ.

Deterministic estimator contributions. The active part of the residual is associated with the determin-
istic approximation error of the FE discretization. This enables to estimate the error on each triangle
for the active set. Define for any wN P VN the deterministic error estimator contribution

ηdetpwN , T ,Λdq
2 :“

ÿ

TPT
ηdet,T pwN ,Λdq

2
`

ÿ

EPE
ηdet,EpwN ,Λdq

2,(4.2)

where the volume and edge terms respectively read

ηdet,T pwN ,Λdq :“ hT }RΛdpwNq ζϑρ}π0,T for all T P T ,(4.3)

ηdet,EpwN ,Λdq :“ h
1{2
E }

ÿ

µPΛd

JrµKEPµ ζϑρ}π0,E for all E P E .(4.4)

The deterministic estimator contribution bounds the active part of the residual as the following lemma
shows.
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Lemma 4.2 ([3, Proposition 5.3]). For any v P V and any wN P VN , it holds that

|xRΛdpwNq, p1´ ICqvyV˚,V | ď cdetηdetpwN , T ,Λdq}∇ v}π0,D.

Stochastic estimator contributions. The inactive part of the residual is associated with the approxima-
tion error due to the truncation of the polynomial expansion. This can be used to obtain a bound for
the residual on the inactive part. Define for any wN P VN the stochastic error estimator

(4.5) ηstopwN ,∆q :“ }
ÿ

µP∆

rµpwNqPµζϑρ}π0,D.

Again, the stochastic error is bounded for the affine as well as the lognormal case.

Lemma 4.3 ([3, Proposition 5.5]). For any v P V and any wN P VN , it holds that

|xR∆pwNq, p1´ ICqvyV˚,V | ď ηstopwN ,∆q }∇ v}π0,D.

To obtain a localization that can be used in the adaptive refinement strategy, we split ηsto into different
parts each providing information about the influence of the individual stochastic modes. For all ` “
1, . . . , L and look-ahead t` P r1 : q` ´ 1s, consider the index sets of uncoupled parameters

∆`,t` :“
`´1
â

m“1

rdms b rd` : d` ` t`s b
L
â

m“``1

rdms b r1s . . .

The look ahead t` allows for more information about the behaviour of the respective stochastic dimen-
sion than the index sets Ξ` considered in [3]. The local stochastic estimator contributions η2

stopwN ,∆`,t`q

are then defined as in (4.5) for the sets ∆`,t` .

Algebraic estimator contributions. The algebraic error }uN ´ wN}B incorporates the distance of wN
to the VN best approximation uN . Since we employ the sample based VMC regression to obtain an
approximation uN,r,n of uN , this error can be used as an indicator to control the number of VMC
samples to guarantee that uN,r,n is a quasi-best approximation with high probability. The algebraic
error can be bounded by the quantity

ηalgpwNq :“ }pBw ´ fqS´1{2
}2,(4.6)

where } ‚ }2 denotes the Frobenius norm, f is the coefficient tensor of the right-hand side f in VN
and B is the discrete version of the operator induced by (2.4). The rank-one base change tensor S
translates integrals of Hermite polynomials with respect to the measure π to π0 and is given by the
components S0ri, js :“

ş

D
∇ϕi ¨∇ϕj dx for the spatial dimension and

Smrµm, µ
1
ms :“

ż

Γm

Pm
µmpymqP

m

µ1m
pymq dπmpym;σp0qq(4.7)

for the stochastic modes. In the affine case (A) this implies Sm “ Idm . The algebraic error is bounded
in the following way.

Lemma 4.4 ([3, Proposition 5.6]). For any wN P VN and the Galerkin solution uN P VN of (2.7), it
holds that

}uN ´ wN}B ď č´1ηalgpwNq.

Combined error estimator. As a corollary of Theorem 4.1 and Lemmas 4.2–4.4, the energy error can
be bounded by the combined overall error estimator

ηpwNq
2 :“

`

cdetηdetpwN , T ,Λdq ` ηstopwN ,∆q ` cIηalgpwNq
˘2
` ηalgpwNq

2.(4.8)

Corollary 4.5 ([3, Corollary 5.7]). For any wN P VN it holds }u´ wN}B ď č´1 ηpwNq.
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4.2. Regression error indicator. Since the proposed method fundamentally relies on solving the
nonlinear least squares problem (3.3) to compute a tensor representation of the solution, it is important
to adapt the number of samples in order to guarantee a robust approximation. In this section we
discuss a heuristic indicator for doing this when (3.3) is solved by means of an ALS method. ALS
methods are part of a family of iterative methods that minimize (3.3) by solving a sequence of least
squares problems

(4.9) wN,k,n :“ arg min
wNPWk

}uN ´ wN}n

on linear subsets Wk Ď Mr for k P N. Note that wN,k,n is an empirical estimate of the best
approximation wN,k of uN in the linear space Wk. The ensuing estimation error can be bounded by
the subsequent lemma that is adapted from [51].

Lemma 4.6. Let tP1, . . . , PDu be any orthonormal basis of Wk and letGn P RDˆD be the empirical
Gramian given by pGnqij :“ 1

n

řn
t“1 Pipy

ptqqPjpy
ptqq. If the smallest eigenvalue of Gn satisfies

λminpGnq ą 0, then

}uN ´ wN,k,n}L2pΓ,πρ;X q ď p1` λminpGnq
´1{2

q}uN ´ wN,k}L8pΓ,πρ;X q.

Proof. In the following we abbreviate }‚}8,D :“ }‚}L8pΓ,πρ;L2pDqq. Let v PWk be arbitrary and let v
denote the coefficients of v with respect to the basis tP1, . . . , PDu. Now note that }v}2n “ v

ᵀGnv ě
λminpGnq}∇x v}

2
πρ,D

is a Hilbert space norm and that wN,k,n is the orthogonal projection of uN onto
the space Wk with respect to the corresponding inner product. Hence,

(4.10) }u´ v}2n “ }u´ wN,k,n}
2
n ` }wN,k,n ´ v}

2
n ě }wN,k,n ´ v}

2
n.

Combining this observation with the lower bound }∇x v}πρ,D ď λminpGnq
´1{2}v}n yields

}∇xpu´ wN,k,nq}πρ,D ď }∇xpu´ vq}πρ,D ` λminpGnq
´1{2

}v ´ wN,k,n}n

ď }∇xpu´ vq}πρ,D ` λminpGnq
´1{2

}u´ v}n

ď p1` λminpGnq
´1{2

q}∇xpu´ vq}8,D.

The first inequality is simply the triangle inequality and the final inequality follows from the fact that
both }∇x ‚}πρ,D and } ‚ }n are dominated by }∇x ‚}8,D. Since v is arbitrary, we can substitute
v “ wN,k to prove Lemma 4.6. �

Assuming λminpGnq ě ε ą 0, Lemma 4.6 states that the error of the least squares approximation
can be bounded up to the constant factor of p1`ε´1{2q by the best approximation error. The condition
λminpGnq ě ε thus provides an indicator for the necessity of increasing the number of samples, which
is summarized in the following algorithm.

Algorithm 1: Increase number of VMC samples (update_samples)

Input: initial samples typiquni“1; stochastic dimensions d; ratio θalg ą 0; minimum eigenvalue
threshold εG

1 assemble polynomial tensor basis tP1, . . . , PDu from dimension tuple d;
2 compute Gn as in Lemma (4.6);
3 while λminpGnq ă εG do

4 draw tθalgnu new samples typjqnewu;

5 typiqu Ð typiqu Y ty
pjq
newu;

6 update Gn;

7 return samples typiqu
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Note that Lemma 4.6 is only valid for the linear sub-problems (4.9) and that the bound is not applica-
ble to the global nonlinear problem (3.3), but any attempt to integrate this criterion requires extensive
intervention with exiting code. To comply with our objective of non-intrusiveness, we regard the opti-
mization algorithm as a black box and apply Algorithm 1 only to the final result. We note that this result
may be unrelated to the local solutions wN,k,n. Hence, this heuristic cannot guarantee that sufficiently
many samples are available in each step of the optimization. However, in our experiments this never
seemed to cause any problems.

Similar to [3], we rely on ηalg to control the error caused by the approximation of the Galerkin solution
due to a black-box solver, in particular because of an iterative algebraic solver and the low-rank com-
pression. Due to the rank-adaptive nature of the employed recovery method, we only need to consider
a strategy to increase the number of regression samples if ηalg dominates. Nevertheless, note that
ηalg “ }pBu ´ fqS´1{2

}2 is a discretized form of the residual and thus contains more than just
the error }uN ´ uN,r,n}B of the regression. We hence apply the heuristic indicator to check if more
samples are required or if the stochastic space needs to be enlarged.

Algorithm 2: Mark & Refine (mark_and_refine)

Input: mesh T ; stochastic dimensions d; samples typiqu; global estimator contributions
ηdetpwN , T ,Λdq, ηstopwN ,∆q, ηalgpwNq; local estimator contributions ηdet,T pwN ,Λdq,
ηdet,EpwN ,Λdq, ηstopwN ,∆m,tmq; Dörfler thresholds 0 ă θdet, θsto ď 1; ratio θalg ą 0;
minimal eigenvalue threshold εG

1 if ηdetpwN , T ,Λdq “ maxtηdetpwN , T ,Λdq, ηstopwN ,∆q, ηalgpwNqu then
2 choose minimal set M Ă T , such that ηdetpwN ,M,Λdq ě θdetηdetpwN , T ,Λdq;
3 T Ð bisectpT ,Mq;

4 else if ηstopwN ,∆q “ maxtηdetpwN , T ,Λdq, ηstopwN ,∆q, ηalgpwNqu then
5 choose minimal set M Ă N, such that

ř

mPM ηstopwN ; ∆m,tmq ě θstoηstopwN ,∆q;
6 dm Ð dm ` 1 for m PM;

7 else
8 compute Gn as in Lemma (4.6);
9 if λminpGnq ă εG then

10 typiqu Ð update_samplesptypiqu, d, θalg, εGq

11 else
12 choose minimal set M Ă N, such that

ř

mPM ηstopwN ; ∆m,tmq ě θstoηstopwN ,∆q;
13 dm Ð dm ` 1 for m PM;

14 return T , d, typiqu

5. ALGORITHMIC REALIZATION

This section describes the algorithm that steers the adaptive refinement of the FE space, the stochastic
expansion size and the VMC sampling and compression errors. Given the approximation uN,r,n P VN
of the solution obtained via the VMC approach and the diffusion coefficient aN P VNpΛq; T , pq in TT
format, the estimator contributions can be computed efficiently as detailed in [3].

With the combined error estimator from Corollary 4.5 it is possible to define an algorithm that automat-
ically steers the refinement of the spatial triangulation T , adds stochastic modes or increases mode
dimensions if necessary and ensures that the low-rank representation error of the solution uN,r,n is
not predominant. The adaptive algorithm described in this section is based on the one presented in [1,
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3, 8] and consists in principle of three major steps, namely SOLVE, ESTIMATE and MARK & REFINE,
which are iterated until some stopping condition is satisfied.

Given some triangulation T , a fixed FE polynomial degree p P N0 and d, q P F with supppdq Ă
supppqq, the SOLVE step generates low-rank approximations of the solution uN,r,n P VNpΛd; T , pq,
the diffusion coefficient aN P VNpΛq; T , pq and the right-hand side f P VNpΛd; T , p “ 0q. The
solution uN is reconstructed from NVMC many training samples pypiq, upiqq using the VMC method.
To obtain an approximation of the diffusion coefficient, we use Proposition 3.3 to construct the exact
representation of the affine field (2.1). Then, depending on the coefficient type, we either use the
exact TT representation directly or compute the Galerkin projection of (3.7) via the ExpTT algorithm
presented in [6, Algorithm 2]. When employing the ExpTT algorithm, we ensure that the error in
Theorem 3.4 is sufficiently small by automatically decreasing the rounding threshold and increasing
the projection dimensions during rescaling until a certain tolerance is reached. Since we assume a
right-hand side independent of y, Proposition 3.3 also yields an exact representation of f in the TT
format. We note that the TT representations uN,r,n, aN and f in case (B) are not with respect to
the correctly scaled Hermite basis. Thus a subsequent transformation to the correct basis has to be
performed.

Algorithm 3: Adaptive non-intrusive algorithm (aVMC)
Input: initial mesh T0; FE polynomial degree p; initial stochastic dimensions d; initial samples

typiqu; Dörfler thresholds 0 ă θdet, θsto ď 1; ratio θalg ą 0; max. number of iterations
Niter; max. number of TT-DoFs NTT; accuracy ε; minimal eigenvalue threshold εG;

Output: solution uN,r,n; combined estimator ηpuN,r,nq for each iteration;
1 for j “ 1, . . . , Niter do
2 SOLVE
3 generate training samples tupiq “ upx, ypiqqu for i “ 1, . . . , NVMC;
4 uN,r,n Ð VMC

`

VNpΛd; T , pq, typiqu, tupiqu
˘

;
5 construct γ and f according to Proposition 3.3;
6 aN Ð γ in case (A) OR aN Ð ExpTTpγ, q, y0 “ 0, tol “ 10´5q in case (B);
7 ESTIMATE
8 compute ηdetpuN,r,n, T ,Λdq,

`

ηdetpuN,r,n, tT u,Λdq
˘

TPT according to (4.2)–(4.4);

9 compute ηstopuN,r,n,∆q,
`

ηstopuN,r,n; ∆m,tmq
˘

mPN according to (4.5);
10 compute ηalgpuN,r,nq according to (4.6);
11 compute ηj “ ηjpuN,r,nq according to Corollary 4.5;
12 if ηjpuN,r,nq ă ε or tt-dofspuN,r,nq ą NTT then
13 break

14 MARK & REFINE
15 ηglob :“ pηdetpuN,r,n, T ,Λdq, ηstopuN,r,n,∆q, ηalgpuN,r,nqq;

16 ηloc :“
´

`

ηdetpuN,r,n, tT u,Λdq
˘

TPT ,
`

ηstopuN,r,n; ∆m,tmq
˘

mPN

¯

;

17 T , d, typiqu Ð mark_and_refinepT , d, typiqu, ηglob, ηloc, θdet, θsto, θalg, εGq

18 return uN,r,n, pη1, η2, . . . q

The local and global estimator contributions according to Section 4 are computed in the ESTIMATE
step. We emphasize that the global contributions ηdetpuN,r,n, T ,Λdq and ηstopuN,r,n,∆q are used to
determine the refinement strategy, but that we use localized versions ηdetpuN,r,n, tT u,Λdq, T P T ,
and ηstopuN,r,n,∆`,t`q, ` “ 1, . . . ,M ` 1, to determine which triangles and modes are refined.
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The MARK & REFINE step uses the estimator contributions in combination with different selection
criteria to enlarge the FE space, the stochastic dimensions or the number of training samples for
the VMC algorithm, respectively. We employ a Dörfler marking strategy for the spatial and stochastic
refinement and a simple relative increase in the number of VMC samples as described in Algorithm 2.
For the refinement of the spatial mesh T we use newest vertex bisection [52] on all marked elements
T PM, which is denoted by bisectpT ,Mq in Algorithm 2.

Algorithm 3 iterates the solve, estimate, mark and refine loop until the combined estimator ηpuNq is
sufficiently small or a maximum problem size is reached. Note that the algorithmic realization of the
VMC reconstruction is abbreviated by the VMC method in line 4.

6. NUMERICAL EXPERIMENTS

In this section we examine the performance of the adaptive algorithm for benchmark problems similar
to [3, 49]. Tensor calculus is carried out with the open source software package xerus [53]. Finite
element computations to generate training samples are conducted with the FEniCS package [54].
As spatial domain we choose either the unit square D “ r0, 1s2 or the L-shaped domain D “

r0, 1s2zp0.5, 1q2. The derived total error estimator η is used to steer the adaptive refinement of the
triangulation T , the space Λd and the number of reconstruction samples NVMC. We investigate the
behaviour of the individual estimator contributions and how they influence the true (sampled) expected
energy error. Moreover, we comment on the complexity of the coefficient discretization.

6.1. Computation of the error. To validate the reliability of the estimator and its contributions in the
adaptive scheme, we compute an empirical approximation of the true L2pΓ, π;X q-error using NMC

samples, i.e.

EupuN,r,nq2 :“
1

NMC

NMC
ÿ

i“1

}upypiqq ´ uN,r,npy
piq
q}

2
X pT̂ q « }∇pu´ uN,r,nq}

2
π,D.

Here, the parametric solution uN,r,n P VNpΛd; T , pq is compared to the deterministic sampled so-
lution upypiqq projected onto a uniform refinement T̂ of the finest FE mesh obtained in the adaptive
refinement loop. Since all triangulations generated by Algorithm 3 as well as T̂ are nested, we employ
simple nodal interpolation of each uN,r,n onto T̂ to guarantee uN,r,n P VNpΛd; T̂ , pq. Note that the
reference samples upypiqq are computed by the parametric black-box solver of the forward problem,
i.e., no functional approximation of u on T̂ is required to compute EupuN,r,nq. All estimator contri-
butions depend on the diffusion coefficient and the right-hand side. To guarantee that the low-rank
approximation errors of a and f have a negligible impact, we monitor the relative empirical L2-L8

error given by

ε8w pwNq
2 :“

řNMC

i“1 }wpy
piqq ´ wNpy

piqq}2L8pDq
řNMC

i“1 }wpy
piqqq}2L8pDq

, for all w,wN P L
2
pΓ, π;L8pDqq.

The choice of NMC “ 250 proved to be sufficient to obtain consistent estimates of the error in our
experiments.

6.2. The stochastic model problem. In the numerical experiments, we consider the stationary dif-
fusion problem (1.1) with constant right-hand side fpx, yq “ 1. For the affine diffusion field, the
expansion coefficients γ` enumerate planar Fourier modes in increasing total order and are given by
γ0pxq “ 1 and

γ`pxq “
9

10ζpσq
`´σ cos

`

2πβ1p`qx1

˘

cos
`

2πβ2p`qx2

˘

, ` “ 1, . . . , L,
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where ζ is the Riemann zeta function and, for kp`q “ t´1
2
`

b

1
4
` 2`u, β1p`q “ `´kp`qpkp`q`1q{2

and β2p`q “ kp`q´β1p`q. For our experiments we consider a slow (σ “ 2) and a fast (σ “ 4) decay
rate to test if the adaptive algorithm captures the relevance of the higher order modes. The spatial
discretization of the diffusion coefficient is the same space as that of the solution, i.e. conforming
Lagrange elements of order p “ 1 or p “ 3. For the lognormal case (B), we choose ρ “ 1 and
ϑ “ 0.1 similar to [3].

6.3. Tensor train representation of the diffusion coefficient. The affine diffusion coefficient γ and
the constant right-hand side f can be represented in TT format as described in Proposition 3.3.

An approximation κN,s of the lognormal coefficient field is computed via the Galerkin projection de-
scribed in Section 3.2. In particular, we employ a scaling trick to account for numerical instabilities
caused by the global polynomial approximation of an exponential function. We choose a scaling t P N
and construct an approximation κN,s,t « expp2´tpγ ´ γ0qq via the Galerkin approach. The diffusion
coefficient κN,s can then be recovered by squaring κN,s,t t times. For a detailed description of the
process we refer to the algorithms in [6].

As scaling constant we choose t “ 4 and round κN,s,t to a precision of 10´6 and project the sto-
chastic components onto Hermite polynomials of uniform maximum degree 10 in each squaring step
to reduce storage requirements. The ALS algorithm computing the approximation κN,s,t has a ter-
mination threshold of 10´8 that needs to be reached in the Frobenius norm of the difference of two
successive iteration results. This results in a relative approximation error ε8κ pκN,sq ă 10´4, which is
at least one order of magnitude smaller then that of the solution uN,r,n in all experiments.

We also note that the exact TT representation of γ has uniform ranks s “ L`1, which results in large
storage requirements throughout the computations. Such large representation ranks are, however, not
necessary for a sufficient numerical treatment, since the ranks decrease drastically upon rounding γ
to machine precision. Reducing the ranks of γ crucially decreases the required memory of both the
estimator contributions and the operator A in (3.8), which is a limiting factor otherwise. A detailed
investigation of the approximation quality and representation ranks of κN,s can be found in [6].

6.4. Adaptive convergence results. The fully adaptive Algorithm 3 is instantiated with a single sto-
chastic dimension M “ 1 discretized with a linear polynomial, i.e. d1 “ 2. The initial spatial mesh
consists of |T0| “ 143 triangles with p “ 1 ansatz functions and |T0| “ 64 with p “ 3 for the
L-shaped domain. For the initial triangulations of the unit square domain, we choose |T0| “ 205 tri-
angles with p “ 1 ansatz functions and |T0| “ 76 with p “ 3. The marking parameters are set to
θdet “ 0.3, θsto “ 0.5 and θalg “ 0.3, respectively.
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FIGURE 1. Sampled root mean square error EupuN,r,nq and total error estimator ηpuN,r,nq of the fully adaptive
algorithm on the L-shaped domain. Considered are finite element approximations of order p “ 1 and p “ 3 for
slow (σ “ 2) and fast (σ “ 4) decay for the affine (left) and lognormal (right) case.
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Figure 1 depicts the true sampled root mean squared H1
0 pDq error EupuN,r,nq and the corresponding

overall error estimator ηpuN,r,nq for the affine and lognormal case, respectively. Depicted are combi-
nations of slow (σ “ 2) and fast (σ “ 4) decay rates and finite element discretization degrees p “ 1
and p “ 3 on the L-shaped domain.

We observe that there is no significant difference in the error and estimator magnitudes in the exper-
iments between the two different computational domains. For the results on the unit square domain,
we refer to Supplement D. The experiments show that the deterministic estimator contribution ηdet

captures the singularity of the L-shaped domain and prioritizes to refine the mesh at the reentrant
corner as known from deterministic adaptive FE methods.

The p “ 3 FE discretizations converge at roughly thrice the rate of the p “ 1 cases, which is expected.
The rates for both FE discretizations are the same as observed in [1, 9, 25, 55] in the affine case. For
the lognormal case, to the knowledge of the authors only [3] has presented reliable error estimation
yet. Our results are again very similar to the results reported previously.

In both magnitude and convergence rate we observe almost no difference between the two decay
rates. The only exception to this is the p “ 3 FE discretization for the affine case, where the error and
estimator for σ “ 4 reached slightly smaller values.

The obtained convergence rates for the respective affine and the lognormal experiments are the same,
which indicates that the adaptive algorithm works robustly independent of the specific choice of the
diffusion coefficient. We observe that the overall magnitudes of error and estimator are slightly larger
in the more involved lognormal case, but the estimator consistently overestimates the error by a factor
of approximately 10. We also note that both error and estimator values are of the same order of
magnitude with respect to the degrees of freedom as in [1, 3, 9, 25, 55].

The most obvious difference between the two diffusion coefficient types is the smoothness of the nu-
merical convergence graphs. In the affine case the error and error estimator decrease monotonously,
whereas they might sometimes increase after refinement in the lognormal case (B). Interestingly, this
is most prevalent when considering a fast decay rate of σ “ 4. Nevertheless, this behaviour is ex-
pected since the reconstruction accuracy of the forward problem depends on the set of samples that
is used in the training. The samples are drawn randomly and we probably do not use sufficiently
many samples to satisfy the restricted isometry properties of Theorem 3.1 with high probability. Con-
sequently, the VMC algorithm might not find a strictly better (or equally good) approximation in each
step. In particular, we observe that error and estimator might increase after refinement of the spatial
mesh T or enlarging the stochastic approximation space Λd when the amount of training samples is
not sufficiently increased yet.

We also observe that it is possible for the error and estimator to stagnate for several iterations before
continuing convergence. Due to our refinement strategy, which enlarges the deterministic and stochas-
tic spaces via Dörfler marking and the regression samples by a relative factor, the required extensive
enlargement of Λd and NVMC thus might need multiple iterations to reduce the error significantly.

6.5. Representation complexity of the solution. In this section we discuss the memory complexity
of the TT representation of the solution for the experiments during the adaptive refinement of Al-
gorithm 3. Figure 2 shows the growth in the number of modes, the stochastic dimensions and the
representation ranks of uN,r,n for the affine and lognormal case, respectively.

In the affine case we observe the expected behaviour, namely that for the fast decay σ “ 4 the refine-
ment Algorithm 3 focuses on increasing the maximum degree of the stochastic polynomials whereas
in the experiments with slow decay σ “ 2 increasing the number of active modes is prioritized inde-
pendently on the computational domain. We note that the dimension of the first stochastic parameter
is always the largest except for the FE ansatz space dimension. Moreover, the dimensions decrease
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FIGURE 2. Maximum dimensions, ranks and number of active modes of the solution uN,r,n with respect to the
tt-dofs of uN,r,n for the affine and lognormal case on the L-shaped domain.

monotonously for larger modes. Algorithm 3 requires two to three times more iterations if cubic basis
functions p “ 3 are used in the FE discretization. This is again expected bahaviour since the mesh T
needs to be refined less often due to the better approximation properties of higher order FE methods.
In the bottom left graph of Figure 2 we see that the maximal representation rank of the solution uN,r,n
is up to six times larger for the experiments where we let p “ 3. It seems that the maximal rank
increases with an almost constant rate with respect to the tt-dofspuN,r,nq. The first rank is almost
always the largest and that the ranks decrease for larger stochastic modes.

In the lognormal case, Algorithm 3 behaves as expected as well, i.e. σ “ 2 requires the activation
of more stochastic modes and σ “ 4 prioritizes larger polynomial dimensions in the first modes. The
overall number of active modes is similar to the affine case and the maximal polynomial degree is
slightly larger. We suppose that the latter stems from the more complicated structure of uN,r,n for the
lognormal diffusion coefficient κ. The ranks also increase at an overall constant rate with respect to
tt-dofspuN,r,nq although the variation of coefficient realizations in case (B) is larger than in case (A).
A comparison to [3] shows that the number of active modes and the maximal dimensions and ranks
behave similarly in growth rate and magnitude.

Table 1 depicts the number of training samples NVMC used in the last iteration before Algorithm 3
terminates. Most notably we see that the lower order FE discretizations with p “ 1 require up to two
orders of magnitude fewer training samples during the algorithm. Moreover, the number of samples for
the affine case with p “ 1 are not increased during any iteration of Algorithm 3. This can be explained
by the high regularity of the solution u of (1.1) and the relatively large spatial error of the low-order FE
discretization. Opposite to this, we arrive at 105 samples before Algorithm 3 terminates for the p “ 3
lognormal experiments, which can be explained by the same argument. This also causes the adaptive
algorithm to terminate prematurely for fast decay σ “ 4 with p “ 3 in case (B). Here, Algorithm 1
would require an extensive increase of the number of training samples NVMC that exceeds 106. This
is set as a limit since reconstruction times for the solution become prohibitive otherwise.
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affine lognormal

σ “ 2 σ “ 4 σ “ 2 σ “ 4

p “ 1 100 100 1600 5377

p “ 3 13280 3280 3752 162424

TABLE 1. Number of training samples NVMC used in the last iteration of Algorithm 3 for all experiments on the
L-shaped domain.

6.6. Refinement strategy evaluation. In this section we take a detailed look at the concrete refine-
ment decisions of Algorithm 2. Figure 3 depicts the error EupuN,r,nq, the total estimator ηpuN,r,nq and
the three estimator contributions ηdetpuN,r,nq, ηstopuN,r,nq and ηalgpuN,r,nq exemplarily for the lognor-
mal experiments on the L-shaped domain for p “ 1 with fast decay σ “ 4 (left) and p “ 3 with slow
decay σ “ 2 (right). The background patterns indicate by color which of the estimator parts dominate
in the respective iteration. The background hatches display the quantity that Algorithm 2 chooses to
increase based on the dominating estimator contribution and the estimated minimal Gramian eigen-
value. To provide a more detailed view on the stochastic refinement, we distinguish between an in-
crease in the polynomial degrees of the stochastic space and the activation of additional modes.

0 5 10 15
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100

refinement level

0 2 4 6 8 10 12 14
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refinement level

T ↗
max dim ↗
modes ↗
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η(uN,r,n)

ηdet(uN,r,n)

ηsto(uN,r,n)

ηalg(uN,r,n)

Eu(uN,r,n)

FIGURE 3. Error EupuN,r,nq, total estimator ηpuN,r,nq and estimator contributions for each refinement level
for the lognormal case on the L-shaped domain for p “ 1 with σ “ 4 (left) and p “ 3 with σ “ 2 (right).
The background displays the dominating estimator contribution (color) and the resulting refinement strategy
(hatching). The patterns are superimposed when multiple quantities are refined simultaneously.

In the case of the linear FE space p “ 1 with slow decay σ “ 4 (Figure 3, left) each estimator
contribution dominates at some point, which confirms that the error bound indeed relies on all three of
them. We also note that even though ηalgpuN,r,nq dominates several times in the first few iterations,
Algorithm 1 causes an increase of the VMC training samples only after extensively refining the spatial
mesh T and the dimension of the first mode d1. Due to the fast decay σ “ 4, the number of modes
has to be increased only once and only after extensive refinement of the other quantities. In the case
of the cubic FE space p “ 3 with fast decay σ “ 2 (Figure 3, right), the emphasis of Algorithm 2 lies
on the refinement of the stochastic space in the first iterations.
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APPENDIX A. ORTHOGONAL POLYNOMIAL BASIS FUNCTIONS

Legendre polynomials. The standard Legendre polynomials L̃j of degree j P N0 constitute an or-
thogonal basis of L2pΓ`, π`q for Γ` “ r´1, 1s and π`py`q ” 1{2 dy`. With cj “

?
2j ` 1 the set of

polynomials tLj “ cjL̃ju
8
j“0 is orthogonal and normalized with respect to L2pΓ`, π`q. To derive an

analytical expression of the triple product τijk “ Eπ`rLiLjLks of the normalized Legendre polynomi-
als for any i, j, k P N0, we define

ALegpnq “ p2nq! 2´npn!q´2.

The triple product τijk is then given by

(A.1) τijk “

#

cicjck
p2s`1q

ALegps´iqALegps´jqALegps´kq

ALegpsq
if s P N0 and s ě maxti, j, ku,

0 else,

where s “ pi` j ` kq{2.

Hermite polynomials. The standard probabilists Hermite polynomials H̃j of degree j P N0 consti-
tute an orthogonal basis of L2pΓ`, π`q for Γ` “ R and π`py`q “ p2πq´1{2 expp´y2

` {2q dy`. With
cj “ 1{

?
j! the set of polynomials tHj “ cjH̃ju

8
j“0 is orthogonal and normalized with respect

to L2pΓ`, π`q. To derive an analytical expression of the triple product τijk “ Eπ`rHiHjHks of the
normalized Hermite polynomials for any i, j, k P N0, we define

AHerpi, j, kq “
´i` j ` k

2

¯

!.

With the condition
1

2
pi` j ` kq P N0 and

1

2
pi` j ` kq ě maxti, j, ku,(A.2)

the triple product τijk is given by

(A.3) τijk “

#

cicjck
i!j!k!

AHerpi,j,´kqAHerpi,´j,kqAHerp´i,j,kq
if i, j, k satisfy (A.2),

0 else.

Scaled Hermite polynomials. For Gaussian distributions N p0, σ2q with σ ‰ 1 it is easy to scale the
standard probabilists Hermite polynomials to obtain an orthogonal basis. Recall from Section 2 that
the univariate density for N p0, σ`pρq2q is given by

π`py`;σ`pρqq “ ζ`py`, σ`pρqq π`py`, 1q
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for σ`pρq “ exppρ}γ`}L8pDqq and ρ ě 0. Note that σpρq “ pσ1pρq, σ2pρq, . . . q P expp`1pNqq and
define the transformation

ισpρq : R8 Ñ R8, py`q`PN ÞÑ pσ`pρq
´1y`q`PN.

With this we can define the multivariate scaled Hermite polynomials Hρ
µ :“ Hµ ˝ ισpρq, where Hµ

is the multivariate and normalized standard probabilists Hermite polynomial. The set tHρ
µuµPF thus

forms an orthogonal and normalized basis of L2pΓκ, πρq. Moreover, for any w P L2pΓκ, πρq it holds
ż

Γκ

w dπ0pyq “

ż

Γκ

w ˝ ισpρq dπρ,

which implies that EπρrH
ρ
iH

ρ
jH

ρ
k s “ Eπ0rHiHjHks for any i, j, k P N0. Hence, the triple product

with respect to the scaled Hermite polynomials can be computed by (A.3) as well.

APPENDIX B. WELL-POSEDNESS OF THE LOGNORMAL CASE

First we note that by [42, Lemma 2.1] the set Γκ from (2.8) is measurable and it holds π0pΓκq “ 1.
Moreover, Lemma 2.2 of [42] shows that the lognormal field κ is bounded and positive. However,
boundedness and positivity only hold pointwise and not uniformly over the parameter space Γκ. Even
though this leads to a far more intricate analysis, following the arguments of [12] it is still possible to
obtain a well-defined variational formulation by the introduction of the stronger measure πϑρ from (2.9)
for some ρ ą 0 and 0 ă ϑ ă 1. Recall that the bilinear form in the lognormal case (B) is given by

Bϑρpw, vq “

ż

Γκ

ż

D

κ∇w ¨∇ v dx dπϑρpyq

and that the solution space is defined via

Vϑρ “ tw : Γκ Ñ X measurable with Bϑρpw,wq ă 8u.

By [12, Proposition 2.43] it then follows that

L2
pΓκ, πρ;X q Ă Vϑρ Ă L2

pΓκ, π0;X q for any 0 ă ϑ ă 1

are continuous embeddings. With this, Lemma 2.41 and Lemma 2.42 from [12] show that the bilinear
form Bϑρ is Vϑρ–elliptic and bounded in the sense that

|Bϑρpw, vq| ď ĉpϑρq}w}L2pΓκ,πρ;X q}v}L2pΓκ,πρ;X q for all w, v P L2
pΓκ, πρ;X q,(B.1)

Bϑρpw,wq ě čpϑρq}w}2L2pΓκ,π0;X q for all w P L2
pΓκ, π0;X q.(B.2)

APPENDIX C. THE TENSOR TRAIN FORMAT

In the following we briefly recall the TT format and some fundamental properties of TTs. For a more
detailed overview, we refer the reader to [30, 33, 48, 49, 56] and the references therein. Any function
wN P VNpΛd; T , pq has an expansion of the form

wNpx, yq “
ÿ

jPr|T |s

ÿ

µPΛd

wrj, µsϕjpxqPµpyq with w P R|T |ˆd1ˆ¨¨¨ˆdM .(C.1)

Hence, VN is isomorphic to the space of coefficient tensors R|T |ˆd “ R|T |ˆd1ˆ¨¨¨ˆdM . Note that the
size of the coefficient tensor w grows exponentially with the order M , which is commonly referred to
as the curse of dimensionality. To mitigate this exponential dependence on M , we employ a low-rank
decomposition of the tensor w. There are many tensor decompositions available [57–60], but due to
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its simplicity and the wide availability in numerical libraries we chose the TT format for our derivations.
The TT representation of a tensorw P RJˆd, J P N, is given by

wrj, µs “
r1
ÿ

k1“1

. . .
rM
ÿ

kM“1

w0rj, k1s

M
ź

m“1

wmrkm, µm, km`1s for any j P rJs and µ P Λd(C.2)

“:
r
ÿ

k“1

w0rj, k1s

M
ź

m“1

wmrkm, µm, km`1s(C.3)

for some r P NM , where we use the convention rM`1 “ 1. In our application the zeroth component
tensor w0 P RJˆr1 corresponds to the spatial discretization. The stochastic components are given
as order three tensors wm P Rrmˆdmˆrm`1 . If all ranks rm are minimal, this is called tensor train
decomposition ofw with TT rank r and we write tt-rankpwq “ r. The set of all tensors of TT rank r
forms a manifold [48] of dimension

tt-dofspwq “ Jr1 ´ r
2
1 `

M´1
ÿ

m“1

`

rmdmrm`1 ´ r
2
m`1

˘

` rMd,

which shows that the complexity of the TT format behaves likeOpJr̂`Md̂r̂2q for d̂ “ maxtd1, . . . , dMu

and r̂ “ maxtr1, . . . , rMu. In contrast to full tensor representations, with complexity OpJd̂Mq, TTs
depend only linearly on the order M . As a result, the TT format is especially efficient for a small
maximal rank r̂.

Similarily we can express linear operators W : VNpΛd; T , pq Ñ VNpΛq; T , pq in the TT format. For
this recall that the application of W to vN P VNpΛd; T , pq yields

WvNpx, yq “
ÿ

iPrNs

ÿ

νPΛq

ÿ

jPrNs

ÿ

µPΛd

W ri, ν; j, µsvrj, µsφipxqPνpyq.

The TT representation of the tensor operatorW : RJˆd Ñ RJˆq is thus determined by

W ri, ν; j, µs “
r
ÿ

k“1

W 0ri, j, k1s

M
ź

m“1

Wmrkm, νm, µm, km`1s

for any i, j P rJs, µ P Λd and ν P Λq with component tensors W 0 P RJˆJˆr1 and Wm P

Rrmˆqmˆdmˆrm`1 . The TT decomposition always exists and can be computed using the hierarchical
singular value decomposition (SVD) [48]. A truncated hierarchical SVD leads to quasi-optimal approx-
imations of the TT decomposition in the Frobenius norm [31, 33, 61, 62]. This can also be applied to
tensors which are already given in the TT format to obtain a TT decomposition with a lower rank. This
process is referred to as rounding.
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APPENDIX D. EXPERIMENTS ON THE UNIT SQUARE DOMAIN
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FIGURE 4. Sampled root mean square error EupuN,r,nq and total error estimator ηpuN,r,nq of the fully adaptive
algorithm on the unit square domain. Considered are finite element approximations of order p “ 1 and p “ 3
for slow (σ “ 2) and fast (σ “ 4) decay for the affine (left) and lognormal (right) case.
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FIGURE 5. Maximum dimensions, ranks and number of active modes of the solution uN,r,n with respect to the
tt-dofs of uN,r,n for the affine and lognormal case on the unit square domain.
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