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Non-local and local temporal cavity soliton interaction in delay
models of mode-locked lasers

Andrei G. Vladimirov

Abstract

Interaction equations governing slow time evolution of the coordinates and phases of two
interacting temporal cavity solitons in a delay differential equation model of a nonlinear mirror
mode-locked laser are derived and analyzed. It is shown that non-local pulse interaction due to
gain depletion and recovery can lead either to a development of harmonic mode-locking regime, or
to a formation of closely packed incoherent soliton bound state with weakly oscillating intersoliton
time separation. Local interaction via electric field tails can result in an anti-phase or in-phase
stationary or breathing harmonic mode-locking regime.

Temporal cavity solitons (TCSs) are short pulses of light circulating in optical resonators. These soli-
tons were detected experimentally in driven fiber cavities [15] and optical microcavities for frequency
comb generation [9, 11]. Another optical system which can support TCSs is a mode-locked (ML) laser
(see [6] and references therein) used for short optical pulse generation. Only those pulses, however,
that are localized in time on a scale much smaller than the cavity round trip time, can be interpreted
as TCSs. In particular, in monolithic semiconductor ML lasers, where the gain relaxation time is larger
than the cavity round trip time, self-starting ML pulses have a long gain recovery tail and therefore
cannot be considered as localized. On the contrary, when the cavity round trip time is sufficiently large
as compared to the gain relaxation time the pulses emitted by a passively ML external cavity semicon-
ductor laser can be transformed into TCSs [17]. Note, however, that cavity solitons can also appear in
Haus master equation models of ML fiber lasers where gain is so slow that it can be considered as
constant within the cavity round trip time, see e. g. [7, 19, 22].

Being well separated from one another TCSs can interact via their exponentially decaying tails. Their
interaction in ML lasers was studied in a number of publications using experimental, numerical and
combined analytical and numerical tools [1, 2, 6, 12, 13, 16, 20–22, 31]. Many of these studies were
performed within the framework of the mean-field Haus master equations for the case where the
gain was either adiabatically eliminated or constant in time. The effect of the gain (and/or absorption)
saturation and recovery on the pulse interaction in ML lasers was investigated in [1, 3, 10, 13, 18, 22,
25, 33]. In particular, it was shown using a phenomenological approach that the gain depletion and
subsequent recovery can result in repulsive pulse interaction leading to formation of harmonic mode-
locking (HML) with equally spaced pulses [13]. A similar result was obtained in [3, 18] using the delay
differential (DDE) model of a passively ML laser developed in [28–30].

Here using an approach different from that of Ref. [18] the interaction of TCSs is studied in a DDE
model of nonlinear optical loop mirror - nonlinear amplifying loop mirror (NOLM-NALM) ML laser with
arbitrary gain relaxation time proposed in [26] (see also Ref. [25] for the model with adiabatically
eliminated gain). Unlike Haus master equations, DDE models of ML lasers do not assume small gain
and loss per cavity round trip, which means that ML pulses in these models are always asymmetric.
Depending on the ratio of the spectral filtering width and the gain relaxation rate two types of TCS
interaction are considered, which are referred below as non-local and local TCS interaction. For both
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these types of interaction the equations governing the slow evolution of the time coordinates and
phases of the interacting solitons are derived. It is shown that apart from the repulsion non-local TCS
interaction due to gain depletion and recovery an attractive interaction is also possible, which can lead
to a closely packed “incoherent” oscillating TCS bound state. Local TCS interaction via electric field
component can lead to a formation of HML regimes with fixed phase difference between the interacting
TCSs as well as breathing HML regimes. The analytical results obtained here can be used to study
the TCS interaction in the model of passively ML laser [29] and other DDE ML laser models.

A NOLM-NALM ML laser also known as figure-of-eight laser contains a main cavity with gain medium
coupled to a bidirectional nonlinear mirror loop with intensity dependent reflectivity. Let us consider
the DDE laser model of a NOLM-NALM laser developed in [26] using the lumped element approach
described in [28–30]:

∂tA+ (Γ + iω)A = Γ
√
κe

1−iα
2

gτ+iθR
(
|Aτ |2

)
Aτ , (1)

γ−1∂tg = p− g − (eg − 1) |A|2
∣∣R (|A|2)∣∣2 . (2)

Here A(t) is the electric field envelope, g(t) is the cumulative gain, Γ – is the normalized bandwidth
of the spectral filter, κ is the linear round-trip attenuation factor, α is the linewidth extension factor, γ
is the normalized gain relaxation rate, p is the pump parameter, and θ = θ0−ωτ is a phase shift and
ω is the reference frequency, which will be chosen below. The subscript τ denotes delayed argument,
where the delay time τ is equal to the dimensionless cold cavity round trip time. Complex reflectivity
of the nonlinear mirror is defined by the relation:

R
(
|A|2

)
=
√
G
[
(1−K) e−iχ(1−K)|A|2 −Ke−iχKG|A|

2
]
,

where 0 < K < 1 is the splitting ratio, G < 1 (G > 1) is the linear attenuation (amplification) in the
nonlinear mirror loop, and χ is the normalized Kerr coefficient. In particular, K = 0.5 corresponds
to a symmetric splitter. The quantity |R|2 in Eq. (2) is the intensity reflectivity of the nonlinear mirror
[4, 5, 14]. This quantity oscillates with the intensity between the minimal value |R|2 = G (1− 2K)2

and the maximal value |R|2 = G, where the first minimum is achieved at |A|2 = 0 and corresponds
to zero reflectivity |R|2 = 0 in the case of symmetric splitter, K = 0.5.

Linear stability of the trivial solution of Eqs. (1) and (2), A = 0 and g = p, is determined by the
equation

∂tA+ (Γ + iω)A = Γ
√
κe

1−iα
2

p+iθ−iωτR (0)Aτ , (3)

giving an infinite set of eigenvalues that can be expressed in terms of the Lambert function:

λ = −Γ− iω +
1

τ
Wk

[
Γτ
√
κR (0) eΓτ+ 1−iα

2
p+iθ
]

(4)

with k = 0,±1 ± 2 . . . . Real parts of these eigenvalues for −10 ≤ k ≤ 10 are shown in Fig. 1(a)
as functions of the splitting ratio K . It is seen that the trivial solution is stable when K is sufficiently
close to 0.5. In particular, the real parts of all the eigenvalues tend to −∞ for K → 0.5, except for a
single eigenvalue λ0 → − (Γ + iω). Therefore, the use of almost symmetric beam splitter is needed
to achieve the TCS regime in Eqs. (1) and (2).

In order to derive the interaction equations governing the slow evolution of the time coordinates and
phases of two well separated interacting TCSs let us first rewrite the model equations (1) and (2) in a
more general form:

∂tU = F (U) + H (Uτ ) , (5)
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where the column vector U =
(
<A =A z

)T
, z = g− p, F (0) = H (0) = 0, and subscript τ

denotes time delay. Furthermore, in our case similarly to the DDE ML laser model in [29] only two first
components of the vector H are nonzero, see Eqs. (1) and (2).

Let us assume that the cavity round trip is sufficiently large, τ � Γ−1, γ−1 and consider τ0-periodic
TCS solution of Eq. (5) defined by U = u0 and ω = ω0, where u0 (t) = u0 (t+ τ0) with u0 =(
<A0 =A0 z0

)T
, ω0 is the frequency shift, and the period τ0 is close to the delay time τ .

The decay rates of the TCS tails are determined by the linear equation (3), where the delay time τ
and the frequency offset ω are replaced with −δ = τ − τ0 and ω0, respectively [25, 32], and the
linearization of Eq. (2) on the trivial solution:

∂tA+ (Γ + iω0)A = Γ
√
κe

1−iα
2

p+iθ+iω0δR (0)A−δ, (6)

∂tz = −γz. (7)

Equation (7) assumes that the decay rate of the TCS tail at t → ∞ is determined by the eigen-
value −γ, while Eq. (6) has an infinite number of eigenvalues defined by Eq. (4), where τ and ω are
replaced with −δ and ω0, respectively. However, in the limit K → 0.5, where R (0) → 0, only a
single linear eigenvalue − (Γ + iω0) with negative real part remains, while the real parts of all the
other eigenvalues tend to +∞. Hence, in this limit the leading edge of the TCS decays faster than
exponentially [25], whereas the field component of the trailing edge of the TCS contains only a single
decaying exponent. Therefore, in a laser with symmetric beam splitter the TCS asymptotical behavior
at sufficiently large positive times t > 0 is described by:

A0 ∼ ae−(Γ+iω0)t, z0 ∼ be−γt. (8)

Here a(b) is complex (real) coefficient, which depends on the particular form of the pulse solution and
can be calculated numerically. Since the leading edge of the pulse decays faster than exponentially
it can be neglected when constructing the interaction equations. Note, that in Eq. (8) it is assumed
that the pulse is positioned at the origin of the coordinate t. In the case where Γ > γ, the gain tail
behind the TCS is longer than the tail of the electromagnetic field and well separated TCSs interact
via their gain components. Below this type of interaction will be referred to as “non-local” interaction.
When, on the other hand, Γ < γ the gain tail is shorter than the field tail and the TCSs interact via the
field components. This second type of interaction will be further referred to as “local” interaction. Local
interaction can take place, in particular, when the gain variable is eliminated adiabatically [25]. Note,
that a small asymmetry of the splitter does not change the analytical results presented below and only
slightly modifies the decay rate of the TCS trailing tail. Sufficiently large asymmetry on the other hand
can destabilize the trivial solution [26] thus breaking a necessary condition of the TCS formation.

Linear stability of the TCS solution U = u0 is determined by linearizing Eq. (5) on this solution and
calculating the spectrum of the resulting linear operator L. Due to the translational and phase shift
symmetries of the model equations, A(t) → A(t − t0) and A(t) → A(t)eiφ0 with arbitrary con-
stant t0 and φ0, the operator L has a double zero eigenvalue, Lv(τ,φ) = 0, where the translational

and phase shift neutral (Goldstone) modes are v(τ) = ∂tu
(τ)
0 and v(φ) =

(
−=A0 <A0 0

)T
,

respectively. Let us assume that the TCS is stable, which means that the rest of the spectrum of L lies
in the left half of the complex plane. Similarly, the adjoint operator L† has a double zero eigenvalue
associated with the so-called adjoint neutral modes w(τ,φ), L†w(τ,φ) = 0. Since the adjoint operator
L† is obtained from L by the transformations including the time reversal, t → −t (see Appendix A),
the asymptotic behavior of the adjoint neutral modes at sufficiently large negative times t < 0 is given
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by
ξ(τ,φ) ∼ c(τ,φ)e(Γ−iω0)t, ζ(τ,φ)

g ∼ d(τ,φ)eγt, (9)

where the adjoint neural mode is given by the row vector w(τ,φ) =
(
<ξ(τ,φ) =ξ(τ,φ) ζ

(τ,φ)
g

)
and c(τ,φ) (d(τ,φ)) is a complex (real) coefficient, which can be calculated numerically. Similarly to the
leading tail of the TCS solution, the trailing tail of the adjoint neutral mode decays faster than expo-
nentially at t > 0. The adjoint neutral modes are assumed to satisfy the bi-orthogonality condition:∫ τ0

0
w(j) · v(k)dt = δjk with j, k = τ, φ.

Let us look for the solution of Eq. (5) in the form of a sum of two well separated TCSs

U = uΣ + δu, uΣ = u1 + u2, (10)

where u1,2 =
(
<A1,2 =A1,2 g1,2

)T
with A1,2 = A0 (t− τ1,2) eiφ1,2 and g1,2 = z0 (t− τ1,2),

plus a small correction δu = O (ε). Here the small parameter ε characterizes the weak overlap of the
TCSs. Coordinates τ1,2 and phases φ1,2 of the interacting TCSs are assumed to be slow functions of
time, ∂tτ1,2, ∂tφ1,2 = O (ε).

Substituting Eq. (10) into Eq. (5), collecting the first order terms in small parameter ε, and using the
solvability conditions [8] yields

∂tτ1,2 = −
〈
w

(τ)
1,2P

〉
, ∂tφ1,2 =

〈
w

(φ)
1,2P

〉
, (11)

P =− ∂tuΣ + F (uΣ) + G [uΣ (t− τ)] , (12)

where 〈·〉 =
∫ τ0

0
·dt, w(τ,φ)

1,2 =
(
<ξ(τ,φ)

1,2 =ξ(τ,φ)
1,2 ζ

(τ,φ)
1,2

)
with ξ(τ,φ)

1,2 = ξ(τ,φ) (t− τ1,2) e−iφ1,2

and ζ(τ,φ)
1,2 = ζ(τ,φ) (t− τ1,2). Similarly to the case of dissipative soliton interaction in partial differen-

tial equations models , the right hand side (RHS) of the interaction equations (11) can be expressed
in terms of the TCS solution itself and the adjoint neutral modes, see, e.g. [23, 24, 27]. The details of
the calculations are given in the Appendix A. As a result, the interaction equations for τ0-periodic TCS
take the form

∂tτ1,2 = ±w(τ)
1,2 (0)u2,1 (0)∓w

(τ)
1,2

(τ0

2

)
u2,1

(τ0

2

)
, (13)

∂tφ1,2 = ∓w(φ)
1,2 (0)u2,1 (0)±w

(φ)
1,2

(τ0

2

)
u2,1

(τ0

2

)
, (14)

where without the loss of generality one can assume that t = 0 and t = τ0/2 correspond respectively
to the middle point between two TCS and the opposite point on a circle with the circumference τ0, see
Fig. 1. Note that due to the super-exponential decay of the TCS leading and adjoint neutral modes
trailing tails the terms w

(τ,φ)
1 (0)u2 (0) and w

(τ,φ)
2 (τ0/2)u1 (τ0/2) in Eqs. (13) and (14) can be

neglected. The remaining terms w
(τ,φ)
2 (0)u1 (0) and w

(τ,φ)
1 (τ0/2)u2 (τ0/2) entering the RHS of

the equations for τ2(φ2) and τ1(φ1) respectively, have very different magnitudes except for the case
where the TCSs are close to equidistant in the cavity, ∆ = τ2 − τ1 ≈ τ0/2. This means that except
for this case the TCS interaction is strongly asymmetric and does not satisfy third Newton’s law [3, 24].

Let us first consider the case of non-local interaction, Γ > γ. Here the gain component of the trailing
tail of the TCS decays slower than the field component and, hence, TCSs interact via the gain tail
behind the pulse. This interaction will be called non-local interaction since the gain tail can last much
longer than the tail of the electromagnetic field component. Therefore, when the time separation of
two TCSs is sufficiently large the terms proportional to e−Γt(eΓt) in the asymptotic expressions (8)
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Figure 1: Largest real parts of the eigenvalues λ defined by Eq. (4) (a). Schematic representation of
two interacting TCSs labeled as 1 and 2 (b). ∆ is the TCS time separation and τ0 is the TCS period.

and (9) for the TCS and adjoint neutral modes can be neglected. Then substituting these asymptotic
expressions into Eqs. (13) and (14) yields

∂t∆ = −s(τ)
[
e−γ∆ − e−γ(τ0−∆)

]
, (15)

∂tψ = s(φ)
[
e−γ∆ − e−γ(τ0−∆)

]
, (16)

where ∆ = τ2 − τ1 and ψ = φ2 − φ1 are the TCS time separation and phase difference, s(τ,φ) =
bd(τ,φ). The interaction equations (15) and (16) have a single stationary solution corresponding to a
HML regime with two equidistant pulses in the cavity, ∆τ = τ0/2. This solution is stable for s(τ) < 0
and unstable for s(τ) > 0 . The first case corresponds to the repulsion of two TCSs on a circle when
the distance between them is increasing until the pulses become equidistant. In the second case two
TCS are attracted to one another.

Figure 2(a) illustrates the evolution of the TCS coordinates with the round trip number calculated
by numerical integration of the model equations (1) and (2). In this figure corresponding to positive
s(τ) = 0.432 and s(φ) = −3.531 the first TCS attracts the second one until the distance between
them becomes sufficiently small and a closely packed bound state of two TCS is formed. The intensity
time trace of this bound state is shown in Fig. 3(a) where the peak power of the first TCS is larger
than that of the second one. Similar bound states were observed experimentally in a NOLM-NALM
figure-of-eight ML laser in [12]. Fig. 3(b) obtained by numerical integration of the model equations (1)
and (2) illustrates how the TCS phase difference ψ and time separation ∆ evolve with the cavity round
trip number. It is seen that similarly to the “type-A” bound states reported in a Haus model of passively
ML laser with a slow absorber [22] the phase difference ψ grows monotonously in time. Therefore, this
bound state can be called “incoherent.” Furthermore, it is seen that the TCS time separation ∆ is in fact
not stationary, but exhibits small amplitude oscillations with the period equal to the time interval during
which ψ changes by 2π. This indicates that the oscillations of ∆ are due to local interaction of the
TCSs via exponentially decaying tails of the electromagnetic field. Note that since the dependence of
ψ on time is not strictly linear [see Fig. 3(b)], the time-averaged local interaction force between the two
TCSs can be nonzero. Note, however, that the approach based on the properties of the unperturbed
TCS solutions and their adjoint neutral modes is hardly applicable to describe the bound state shown
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A. G. Vladimirov 6

Figure 2: Interaction of two TCSs leading to a closely packed incoherent TCS bound state at p = 5.5
(a) and a stable HML with two equidistant pulses circulating in the laser cavity at p = 5.7 (b). Other
parameters are: T = 50., Γ = 1, κ = 0.8, α = 0, γ = 0.3, G = 0.5, χ = 2.

in Fig. 3(a), where the peak power of the second interacting TCS is noticeably smaller than that of the
first one.

Figure 2(b) corresponds to the case of negative s(τ) = −2.643 leading to TCS repulsion and
s(φ) = −3.599. In this figure the second TCS is repelled from the first one until the two TCS be-
come equidistant in time, which corresponds to a HML regime with two pulses per cavity round trip.

In the case where Γ < γ the gain tail behind the pulse is shorter than that of the electric field. In
this case the field component dominates the interaction of well separated TCS and the interaction
equations take the form:

∂t∆ = −<
[
q(τ)f (∆, ψ)

]
, ∂tψ = <

[
q(φ)f (∆, ψ)

]
, (17)

f (∆, ψ) = e−(Γ+iω0)∆−iψ − e−(Γ+iω0)(τ0−∆)+iψ, (18)

where q(τ,φ) = ac̄(τ,φ) and bar denotes complex conjugation. These equations have two steady states
with equal pulse separations, ∆ = τ0/2, and opposite phase differences, ψ = 0 and ψ = π, on the
interval ψ ∈ [0, 2π). They correspond to HML regimes with equidistant in time in-phase and anti-
phase TCSs. Due to the symmetry property of Eqs. (17) and (18), t→ −t and ψ → ψ + π, if one of
the two steady states is asymptotically stable, another is unstable, and vice versa. Furthermore, Eqs.
(17) and (18) can exhibit an Andronov-Hopf bifurcation at <

{[
q(τ) (Γ + iω0)− iq(φ)

]
e−iω0τ0/2

}
=

0, where a pair of limit cycles of opposite stability (stable and unstable) bifurcate simultaneously from
the in-phase and anti-phase steady states. These two cycles are shown in Fig. 5(a) for the parameter
values of Fig. 4, which correspond to q(τ) = −9.386 + 10.312i, q(φ) = 5.870− 16.291i, and ω0 =
0.183427. It is seen that in agreement with the results of numerical simulations shown in Fig. 4 two
stable attractors, fixed point with ψ = π and a stable limit circle born from the fixed point with ψ = 0,
coexist in the phase plane of the interaction equations. With the increase of the pump parameter p
limit cycles shown in Fig. 5(a) shrink and disappear in the inverse Andronov-Hopf bifurcations of the
corresponding fixed points. This bifurcation stabilizes (destabilizes) the fixed point with ψ = 0 (ψ =
π). The resulting phase portrait of Eqs. (17) and (18) with q(τ) = −19.633+7.608i, q(φ) = 17.251−

DOI 10.20347/WIAS.PREPRINT.2894 Berlin 2021
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Figure 3: Intensity time trace of the closely packed TCS bound state (a); intersoliton phase difference
ψ and time separation ∆ of this bound state as a functions of round trip number (b). Parameters are
the same as for Fig. 2(a).

11.001i, and ω0 = 0.181633 calculated numerically for p = 7.2 is shown in Fig. 5(b). This figure is
in agreement with the direct numerical simulations of the model equations (1) and (2) which indicate
that a stable HML regime with two in-phase pulses is formed as a result of the local TCS interaction
at p = 7.2. Note, that in a laser with sufficiently broad spectral filtering width Γ local interaction of
the pulses can be too weak against the background noise. Therefore a laser with relatively narrow
spectral filter bandwidth generating sufficiently broad pulses is required for experimental observation
of the local TCS interaction leading to HML regimes.

To conclude, the interaction equations governing the time evolution of the coordinates and phases
of locally and non-locally interacting TCSs in a ML NOLM-NALM laser have been derived. It has
been shown that in the case of non-local TCSs interaction due gain depletion and slow recovery
apart from the usual repulsion leading to the development of HML regime an attractive interaction is
also possible. It has been demonstrated numerically that when the distance between two attractively
interacting TCS becomes sufficiently small an incoherent closely packed TCS bound state similar to
that observed experimentally in [12] can be formed, This bound state having a similarity with the bound
state reported in a Haus master equation model of a ML laser with a slow saturable absorber [22] is
weakly oscillating and affected by both the non-local and local interaction. Local interaction, unlike the
non-local one, depends strongly on the phase difference of the interacting TCSs. In the case of locally
interacting TCSs in a laser with relatively narrow spectral filter in-phase or anti-phase HML regime can
develop depending on the value of the pump parameter. Moreover, a bistability between stationary and
breathing HML regimes is also possible. Note that the approach presented here is very general and
applicable to describe TCS interaction in a wide class of ML lasers, which can be modeled by DDEs
of the form (5).

DOI 10.20347/WIAS.PREPRINT.2894 Berlin 2021



A. G. Vladimirov 8

Figure 4: Local TCS interaction leading to a development of stationary bistable anti-phase (a) and
breathing (b) HML regimes calculated numerically using different initial conditions. p = 6.8, τ = 20,
γ = 10. Other parameters are the same as for Fig. 2.
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Figure 5: Phase plane of Eqs. (17) and (18) calculated for p = 6.8 (a) and p = 7.2 (b). Stable
(unstable) limit cycle and steady states are shown by blue (red) color. Other parameters are the same
as in Fig. 4.
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Appendix A Derivation of Eqs. (13) and (14).

Linear operator L describing the stability of the TCS solution of Eq. (5) and the adjoint operator L†
are given by:

Lv = −∂tv + B(t)v + C(t− τ)vτ , (19)

L†w = ∂tw + wB(t) + w(t+ τ)C(t), (20)

where v (w) is a column (row) vector and the matrices B and C are obtained by linearization of F and
H on the TCS solution U = u0.

Using the fact that u1 and u2 in Eq. (10) are the solutions of Eq. (5) the quantity P defined by Eq.
(12) can be rewritten in the form P = Q + S (t− τ) ,where Q = F (uΣ) −

∑2
k=1 F (uk) and

S = H (uΣ)−
∑2

k=1 H (uk).

Let us for simplicity consider the RHS of the interaction equations for the TCS with the index 2. The
RHS of the interaction equation for the first TCS can be obtained in a similar way. Furthermore, to
avoid complicating the notation we omit the superscripts τ and φ in the adjoint neutral modes. The
right hand sides of the interaction equations are then given by

〈w2P〉 = 〈w2 [Q + S (t− τ)]〉 = 〈w2Q〉+ 〈w2 (t+ τ)S〉

=
2∑

k=1

[〈w2Q〉k + 〈w2 (t+ τ)S〉k] , (21)

where I have used τ0-periodicity of the TCSs and their adjoint neutral modes and split the integral
over the interval [0, τ0] into two parts 〈·〉 = 〈·〉1 + 〈·〉2 with 〈·〉1 ≡

∫ τ0/2
0
·dt and 〈·〉2 ≡

∫ τ0
τ0/2
·dt.

Here without the loss of generality it is assumed that the coordinate origin is located in the middle
point between two TCSs, see Fig. 1. Since u1 is small on the integration interval [0, τ0/2], we obtain
Q ≈ (B2 − B0)u1 and S ≈ (C2 − C0)u1 on this interval. Here the linearization matrices B2 (t) and
C2 (t) are similar to B (t) and C (t) in Eqs. (19) and (20), but evaluated on u2 instead of u0, while
B0 and C0 are the linearizations of F and H on the trivial solution U = 0. Similarly, on the interval
[τ0/2, τ0] the second TCS u2 is small and one can write Q ≈ (B1 − B0)u2 and S ≈ (C1 − C0)u2,
where B1 (t) and C1 (t) are the matrices B (t) and C (t) evaluated on u1 instead of u0. Substituting
these approximate relations into (21) and neglecting the second order terms containing w2 and u2 on
the interval [τ0/2, τ0] yields:

〈w2P〉 ≈ 〈[w2 (B2 − B0) + w2(t+ τ) (C2 − C0)]u1〉1 . (22)

Using the relation L2w2 = ∂tw2 + w2B2 + w2(t + τ)C2 = 0, where L2 is the linear operator L
evaluated on the solution u2 instead of u0, one gets

〈w2P〉 ≈ − 〈[∂tw2 + w2B0 + w2(t+ T )C0]u1〉1 .
Finally using the relation L0u1 = −∂tu1 +B0u1 + C0u1(t− τ) ≈ 0 on the interval [0, τ0/2], where
u1 is small, one obtains

〈w2P〉 ≈ − 〈[(∂tw2)u1 + w2∂tu1 + w2(t+ T )C0u1 −w2C0u1 (t− τ)]u1〉1 =

w2 (0)u1 (0)−w2 (τ0/2)u1 (τ0/2) . (23)

Here the relation C0 = 0, which is valid for the symmetric splitter, has been used. Similarly to (23),
one can get

〈w1P〉 ≈ w1 (τ0/2)u2 (τ0/2)−w1 (τ0)u2 (τ0) = −w1 (0)u2 (0) + w1 (τ0/2)u2 (τ0/2) .
(24)
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