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Coarse-graining and reconstruction for Markov matrices
Artur Stephan

Abstract

We present a coarse-graining (or model order reduction) procedure for stochastic matrices
by clustering. The method is consistent with the natural structure of Markov theory, preserving
positivity and mass, and does not rely on any tools from Hilbert space theory. The reconstruction
is provided by a generalized Penrose-Moore inverse of the coarse-graining operator incorporating
the inhomogeneous invariant measure of the Markov matrix. As we show, the method provides
coarse-graining and reconstruction also on the level of tensor spaces, which is consistent with
the notion of an incidence matrix and quotient graphs, and, moreover, allows to coarse-grain and
reconstruct fluxes. Furthermore, we investigate the connection with functional inequalities and
Poincaré-type constants.

1 Introduction

Coarse-graining or model reduction is a fundamental procedure that reduces the complexity of a phys-
ical model. It is a well-established tool used in many branches of applied mathematics including anal-
ysis, modeling and numerics. In this paper we are interested in coarse-graining for physical systems
on a finite state space described by Markov matrices.

Let us first describe the mathematical setting. Fixing a finite state spaces Z = {1, . . . , n}, n ∈ N,
the statistical states are given by the set of probability vectors

Prob(Z) =

{
p ∈ Rn : pi ≥ 0,

n∑
i=1

pi = 1

}
⊂ Rn := X∗.

Important is the distinction between primal X and dual spaces X∗ (although both are isomorphic to
the Rn as real-vector spaces), where the first contains functions on Z equipped with the supremum-
norm, and the second contains probabilities on Z equipped with the 1-norm. Dual pairing is denoted
by 〈·, ·〉. Apart fromX being a vector space, it has a natural order, i.e. x ≥ y if the pointwise estimate
xi ≥ yi holds for all i ∈ Z . Moreover, it is an algebra, i.e. product of two elements x and y is given
by (x · y)i = xi · yi by pointwise multiplication.

The change of statistical states is described by a Markov matrix (or operator) K : X → X , which,
by definition, satisfies Kij ≥ 0 and

∑
j∈Z Kij = 1 for all i ∈ Z . Equivalently, K maps non-

negative elements inX to non-negative andK11 = 11, where 11X = (1, . . . , 1)T is the constant one-
vector. The invariant vector π ∈ Prob(Z) ⊂ X∗ of K∗ is defined by satisfying

∑
i πiKij = πj , or,

equivalently, by πTK = πT , or K∗π = π. Throughout the paper, we assume that the invariant vector
is unique and positive. (See e.g. [Nor97] for introductory reading on Markov matrices.) We remark that
for further generalizations to infinite and continuous state spaces (in which caseX andX∗ are infinite
dimensional) we denote by B∗ : Y ∗ → X∗ the dual (or adjoint) operator of B : X → Y , which is
just the (real) transpose in matrix representation.
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A. Stephan 2

The aim of the paper is to present an operator-theoretic and structure preserving approach to coarse-
graining for Markov matrices. In contrast to classical model order reduction procedures, it does not rely
on tools from Hilbert space theory like orthonormal projections or symmetry, as for example Krylov
subspace projection methods and so on (see e.g. [SvdVR08]). In general, Hilbert space projections
will not preserve positivity of the measures, which is unphysical. Here, the approach is more direct and
based on clusters. Reduction methods based on clusters as [ChS20, CY∗20] preserve the graph the-
oretical structure for Markov chains, but do not distinguish between primal and dual spaces. With that,
the theory is based on homogenous Euclidean spaces, which are not canonical for Markov matrices
as the invariant measure π ∈ Prob(Z) is in general not homogenous and the natural Hilbert space
would be L2(π).

Here, the coarse-graining procedure is based on the structural duality between X and X∗. Im-
plicitly, the involved operators (maybe in a modified form) have been used in literature (see e.g.
[ChS20, PMK06]) and we recall technical results from [MiS20] in Section 2. However, to the author’s
knowledge no structural study has been done so far. Heuristically, the reconstruction procedure re-
builds the information from the coarser system back to the finer system using the local information
of the invariant probability vector π. The reconstruction operators can be understood as generalized
Penrose-Moore inverse of the coarse-graining operator respecting the (in general inhomogeneous) in-
variant measure π. This procedure has many different mathematical advantages, which become clear
in the following. First, it is consistent with the graph-theoretic notion of a incidence matrix (or operator)
and quotient graph (see Section 3). Moreover, it provides tools for reconstructing functions on tensor
spaces (e.g. fluxes defined on edges) as well (see Section 4.2 for more details).

Another important question regarding coarse-graining is the question how eigenvalues depend on
the reduction procedure. The first nontrivial eigenvalue defines the spectral gap and provides infor-
mation regarding asymptotical decay of the process (see e.g. [BoT06]). In the last decades, func-
tional inequalities for Markov processes on discrete states spaces have been studied intensively
[BoT06, ErM12, Joh17, FaS18, FaF21]. In Section 5, we derive the connection between coarse-
graining and energy functionals. In particular, we derive estimates for functional inequalities and dis-
crete Poincaré-type constants (like the Poincaré constant, or log-Sobolev constant).

2 Coarse-graining

We present the operator theoretic framework for capturing the collection of states, which has also been
introduced in [MiS20].

2.1 Operator theoretic coarse-graining

For two finite state spaces Z = {1, . . . , n}, Ẑ = {1, . . . , n̂} with n̂ < n, we assume that there is
a given surjective function φ : Z → Ẑ , which plays the role of a coarse-graining or clustering map.
We define the coarse-graining operator M : X̂ → X by (Mx̂)i = x̂φ(i) for all x̂ ∈ X̂ . One easily

sees that M is a deterministic Markov matrix since the adjoint (or dual) matrix M∗ : X∗ → X̂∗

maps pure states (or dirac-measures) to pure states. In fact the dual operator M∗ should be called
coarse-graining operator because it maps statistical states in X∗ to coarser states in X̂∗. Since M is
a deterministic Markov matrix we have that for all x̂, ŷ ∈ X̂ it holds M(x̂ · ŷ) = Mx̂ ·Mŷ, where the
multiplication is meant pointwise. (By the way, this characterizes all deterministic Markov matrices.)

Fixing a positive probability vector π ∈ X∗, we may define the multiplication operator given by the
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Coarse-graining and reconstruction for Markov matrices 3

diagonal matrixQπ : X → X∗, i.e. (Qπx)i = πixi. We observe thatQπ is symmetric and its inverse
is given by Q−1

π : X∗ → X , p 7→ ρ = (pi/πi)i. One easily sees that the multiplication operator
satisfies 〈x,Qπy〉 = 〈x · y, π〉 for all x, y ∈ X . Although the spaces are finite-dimensional and
isomorphic, we remark that the parameter π of Qπ is an element of the dual space and the inverse
Q−1
π : p 7→ ρ maps a probability vector p to the relative density ρ of p with respect to π as a discrete

analogue of the Radon-Nikodym derivative.

We define a new coarse-grained measure π̂ by π̂ = M∗π. We easily observe that π̂ is also positive.
We have the following characterization of a deterministic Markov matrix.

Lemma 2.1 ([MiS20, Lemma 2.4]). We have π̂ = M∗π if and only if Qπ̂ = M∗QπM .

Proof. Evaluating Qπ̂ = M∗QπM at 1̂1, we have π̂ = Qπ̂1̂1 = M∗QπM 1̂1 = M∗Qπ11 = M∗π,
which is one direction of the claim.

For the other claim, we introduce the multiplication operator Πŷ : X̂ → X̂ by (Πŷx̂)j = ŷjx̂j with

the dual operator Π∗ŷ : X̂∗ → X̂∗ given by Π∗ŷ ĉ = Qĉŷ. Using that M is a deterministic operator
we have MΠŷ = ΠMŷM , which implies by dualizing Π∗ŷM

∗ = M∗Π∗Mŷ. So we get for any x̂ that
Qπ̂x̂ = Π∗x̂π̂ = Π∗x̂M

∗π = M∗Π∗Mx̂π = M∗QπMx̂.

This important relation does not hold if M is not a deterministic operator. Moreover, it implies that the
following diagram commutes:

X̂∗

X̂

X∗

X
M

M∗
Qπ̂ Qπ

Since Qπ̂ is invertible, it is now possible to “invert” the coarse-graining operator M , by defining the
so-called reconstruction operator N : X → X̂ :

N = Q−1
π̂ M∗Qπ : X → X̂, N∗ = QπMQ−1

π̂ : X̂∗ → X∗. (2.1)

X̂∗

X̂

X∗

X
M

N
M∗

N∗

Qπ̂ Qπ

The operator N∗ reconstructs the coarser statistical states in X̂∗ respecting the measure π ∈ X∗.
Before summarizing properties of N in the next proposition, we introduce the notion of detailed bal-
ance.

Definition 2.2. A Markov matrix K is said to satisfy the detailed balance condition with respect to its
positive invariant measure π, if K∗Qπ = QπK .

Proposition 2.3 ([MiS20, Lemma 2.5, Proposition 2.7]). Let M : X̂ → X be a deterministic Markov
matrix and let π ∈ X∗ be a given positive probability vector. Let N and N∗ be defined by (2.1). Then
the following holds:
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1 N is a Markov matrix and N∗π̂ = π, i.e. N∗ inverts with respect to π.

2 NM = idX̂ and MN =: P is a (Markov) projection on X . We have the splitting X =
Range(P ) + Ker(P ) = Range(M) + Ker(N). The adjoint P ∗ has π as its stationary
measure and satisfies detailed balance.

Proof. Clearly N is nonnegative and N11 = Q−1
π̂ M∗Qπ11 = Q−1

π̂ M∗π = Q−1
π̂ π̂ = 1̂1. Hence, N is

a Markov matrix. Moreover we have N∗π̂ = QπMQ−1
π̂ π̂ = QπM 1̂1 = π.

For the second claim, we use Lemma 2.1, which implies that M∗N∗ = M∗QπMQ−1
π̂ = idX̂∗ ..

Hence, NM = idX̂ and P = MN is a projection. This provides the decomposition of X since N
is surjective and M is injective. Since it is the composition of Markov matrices P is again a Markov
matrix and obviously P ∗π = π. To see that P satisfies detailed balance, we observe

QπP = QπMN = QπMQ−1
π̂ M∗Qπ = N∗M∗Qπ = P ∗Qπ .

Remark 2.4. We remark that in [Ste13] inverse operators for general Markov operators have been
introduced and their relation to the direction of time has been investigated.

Finally, we investigate the connection between the “inverse” operator N and the Penrose-Moore in-
verse of linear algebra. First, we see that N : X → X̂ is a pseudo inverse ofM : X̂ → X , because
MNM = M and NMN = N by Proposition 2.3. Recall that for an injective M : X̂ → X , the
Penrose-Moore inverse of M can be defined by

M+ = (M∗M)−1M∗.

The next proposition shows, that this formula provides exactly N , if the adjoint operator M∗ is under-
stood in the space L2(π). In particular, if π = 1

N
(1, · · · , 1)T, we have that N = M+. To see this,

we define the L2(π)-inner product in X by

(x, y)π := 〈x,Qπy〉 = 〈x · y, π〉 .

Proposition 2.5. The reconstruction operator N = Q−1
π̂ M∗Qπ is the L2(π)-adjoint of M . In partic-

ular, N is generalized Penrose-Moore inverse of M in L2(π).

Proof. We have that

(Mx̂, y)π = 〈x̂,M∗Qπy〉 = 〈x̂, Qπ̂Ny〉 = (x̂, Ny)π̂ .

We note that the notion of detailed balance from Definition 2.2 means that the Markov matrix K is
symmetric in L2(π).

DOI 10.20347/WIAS.PREPRINT.2891 Berlin 2021



Coarse-graining and reconstruction for Markov matrices 5

2.2 Example

For an example, we considerZ = {1, 2, 3} and Ẑ = {1̂, 2̂} and define φ(1) = 1̂, φ(2) = φ(3) = 2̂.
In matrix representation, the coarse-graining operator has the form

M =

1
1
1

 , M∗ =

(
1

1 1

)
.

Setting π = (π1, π2, π3)T we obtain π̂ = (π1, π2 + π3)T, and hence

N =

(
1

π2

π2+π3

π3

π2+π3

)
, P = MN =

1
π2

π2+π3

π3

π2+π3
π2

π2+π3

π3

π2+π3

 .

2.3 Coarse-graining for Markov matrices

Let a Markov matrix K : X → X be given. We assume that its adjoint K∗ has a unique invariant
measure π, i.e. K∗π = π. We define the coarse-grained Markov matrix K̂ by contracting K via

K̂ = NKM : X̂ → X̂.

The next proposition shows that K̂ can indeed be understood as a coarse-grained version of K .

Theorem 2.6. Let a Markov matrix K : X → X with an invariant measure π be given. Let M be a
deterministic Markov matrix, and reconstruction operator N be defined by (2.1). Let K̂ := NKM :
X̂ → X̂ . Then, we have

1 K̂ is a Markov matrix on X̂ .

2 K̂∗ has π̂ as ita invariant measure.

3 Define the Markov chain pk+1 = K∗pk, p0 ∈ X∗. If there is an equilibration of the form
pk = N∗p̂k for p̂k ∈ X̂ and all k ≥ 0, then the probability vectors p̂k satisfy the coarse-
grained Markov chain p̂k = K̂∗p̂k−1.

4 If K satisfies the detailed balance condition with respect to π, then does K̂ with respect to π̂.

Equilibration pk = N∗p̂k means that the densities of pk and p̂k with respect to π or π̂, respectively
are equilibrated, i.e.

pk = QπMQ−1
π̂ p̂k ⇔ ρk = Mρ̂k,

where ρk = Q−1
π pn, ρ̂k = Q−1

π̂ ρ̂k. In particular, this makes clear why K̂ is the natural coarse-graining
Markov matrix of K .

Proof. Since K̂ is the composition of Markov matrices it is itself a Markov matrix. Moreover, we see
that π̂ is the invariant measure of K̂ , because

K̂∗π̂ = M∗K∗N∗π̂ = M∗K∗π = M∗π = π̂ .
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A. Stephan 6

Considering the Markov chain, let pk = K∗pk−1 be given. Assuming that pk = N∗p̂k, we conclude
that p̂k = M∗N∗p̂k = M∗pk. Hence,

p̂k = M∗pk = M∗K∗pk−1 = M∗K∗N∗p̂k−1 = K̂∗p̂k−1 .

Finally, if K satisfies detailed balance with respect to π then QπK = K∗Qπ, and hence, we have

Qπ̂K̂ = Qπ̂NKM = M∗QπKM = M∗K∗QπM = M∗K∗N∗Qπ̂ = K̂∗Qπ̂ .

Conversely, if p̂k+1 = K̂∗p̂k, and K̂ = NKM , then a direct computation shows that pk := N∗p̂k
solves the projected Markov chain pk+1 = P ∗K∗P ∗pk, which in general is different to pk+1 = K∗pk.
In this sense, the projection P describes the information loss going from a coarser system to a finer
system.

Remark 2.7. Theorem 2.6 naturally generalizes to continuous time Markov processes (see for exam-
ple [MiS20]). Let p(t) = etA

∗
p0 or equivalently p solving ṗ = A∗p be given, where A is a Markov

generator such that etA is a semigroup of Markov matrices. If p(t) = N∗p̂(t), then the coarse-grained
probability vectors p̂ satisfies the coarse-grained Markov process ˙̂p = Â∗p̂, with the coarse-grained
Markov generator

Â = NAM.

3 Coarse-grained network

Graph theoretically, a Markov matrixK defines a directed graphG = G(V,E), with vertices given by
the state space Z and edges between states zi and zj whenever Kij > 0. An equivalence relation
given by the coarse-graining map φ : Z → Ẑ (i.e. zi ∼ zj iff φ(zi) = φ(zj)), defines a partition
of the the graph into blocks. By definition, these blocks define the vertices of the so-called quotient
graph Ĝ. The edges in the quotient graph are defined as follows: two blocks B1 and B2 are adjacent
if some vertex in B1 is adjacent to some vertex in B2 with respect to the edges in the starting graph.
That means if on G = G(V,E) there is an equivalence relation ∼ then Ĝ has vertices V̂ = V/ ∼
and edges {([u]∼, [v]∼) : (u, v) ∈ E}. In particular, the edges in each equivalence class (or block)
vanish (see e.g. [Bol98]).

Since we are interested in functions that are defined on the edges (e.g. fluxes), we translate the above
state-based coarse-graining procedure to edges. For this it is convenient to introduce tensor spaces.

3.1 Coarse-graining in tensor spaces

Naturally the space over the edges can be identified by matrices or equivalently by the tensor product
space X ⊗X ' L(X∗, X). In particular, we use both formulations and switch between them when-
ever necessary. In principle, also multi-tensor spaces can be considered for example to capture cycles
between several states. However, we restrict ourselves to tensors of second order.

Importantly the tensor space X ⊗ X is consistent with the concept of Markov matrices capturing
positivity and duality. Positivity is again defined pointwise. The constant 1-element in X ⊗X is given
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Coarse-graining and reconstruction for Markov matrices 7

by 11 ⊗ 11 and will be denoted by 11⊗. The dual space of L(X∗, X) is given by L(X∗, X)∗ '
L(X∗∗, X∗) ' L(X,X∗) ' X∗ ⊗X∗. The duality mapping is given by

A ∈ L(X,X∗) 7→ Tr(A∗·) ∈ L(X∗, X)∗.

In the following we will denote the dual paring between L(X∗, X) and L(X,X∗) by

〈〈A,B〉〉 := Tr(A∗B) = Tr(AB∗) =
∑
i,j

AijBij,

which is just the usual dual paring by pointwise multiplication if the matrices are understood as n×n-
vectors.

We may also define multiplication operators with elements of the dual space. For a given matrix m ∈
L(X,X∗) ' X∗ ⊗X∗ we define the (diagonal) multiplication operator by

Qm : L(X∗, X)→ L(X,X∗), Qmb = (mijbij)ij

by pointwise multiplication. Clearly, we have that Qm11⊗ = m. Indeed, the target space of Qm makes
sense which can been seen from the following observation that Qm is symmetric:

〈〈c,Qmb〉〉 =
∑
i,j

mijbijcij =
∑
i,j

mijcijbij = 〈〈b,Qmc〉〉.

Of great importance for us is the element m = QπK ∈ L(X,X∗) ' X∗ ⊗ X∗, which can be
understood as a weight function defined on the edges.

For the coarse-grained state space X̂ , we analogously define X̂⊗ X̂ ' L(X̂∗, X̂) and X̂∗⊗ X̂∗ '
L(X̂, X̂∗) by replacing X by X̂ . We define a coarse-graining operator on L(X∗, X) by

M̃ : L(X̂∗, X̂) ' X̂ ⊗ X̂ → L(X∗, X) ' X ⊗X
b̂ 7→ M̃ b̂ := Mb̂M∗ .

Proposition 3.1. The operator M̃ has the following properties:

1 M̃ is again a deterministic Markov operator.

2 The adjoint operator is given by

M̃∗ : L(X,X∗)→ L(X̂, X̂∗), M̃∗b = M∗bM .

3 Let m := QπK . Then m̂ := M̃∗m = Qπ̂K̂ .

Proof. Clearly, M̃ is again positive. Moreover, it maps to constant 1-function 1̂1⊗ = 1̂1⊗ 1̂1 in X̂ ⊗ X̂
to the constant 1-function 11⊗ = 11⊗ 11 in X ⊗X because we have

M̃
(

1̂1⊗ 1̂1
∗
)

= M
(
1̂1⊗ 1̂1

)
M∗ = M 1̂1⊗M 1̂1 = 11⊗ 11.

Hence, M̃ is a Markov operator. To see that it is deterministic, we use the representation of the adjoint
operator M̃∗ which is the second claim and proved below. Using that, we have M̃∗ (ei ⊗ ej) =

M∗ei ⊗M∗ej which is again a pure state in X̂∗ ⊗ X̂∗
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To compute the adjoint operator M̃∗ we have for b̂ ∈ L(X̂∗, X̂) and c ∈ L(X,X∗) that

〈〈M̃ b̂, c〉〉 = Tr
((
Mb̂M∗

)∗
c
)

= Tr
(
Mb̂∗M∗c

)
= Tr

(
M∗cMb̂∗

)
= 〈〈M∗cM, b̂〉〉,

where we used that the trace is invariant under commuting matrices. Hence, M̃∗c = M∗cM .

For the last claim, we observe that m̂ = M̃∗m = M∗QπKM = Qπ̂NKM = Qπ̂K̂ .

Proposition 3.1 shows that the (dual) deterministic coarse-graining operator M̃∗ maps the weights
m = QπK on the coarse-grained weight m̂ = Qπ̂K̂ . This allows to define a reconstruction operator
Ñ as the inverse operator of M̃ with respect to m as in Section 2. We define

Ñ : L(X∗, X)→ L(X̂∗, X̂), Ñ = Q−1
m̂ M̃∗Qm . (3.1)

Again, we have that Ñ11⊗ = 1̂1⊗. Its adjoint (with respect to 〈〈·, ·〉〉) is given by

Ñ∗ : L(X̂, X̂∗)→ L(X,X∗), Ñ∗ = QmM̃Q−1
m̂ .

Clearly, the operator Ñ∗ maps m̂ to m. The definition of reconstruction operator Ñ has two advan-
tages. First it allows to define a coarse-grained incidence matrix as we will see next. The incidence
matrix will be crucial for estimating Poincaré-type constants in Section 5. Moreover, it can be used to
reconstruct fluxes, which are functions on edges (see Section 4).

3.2 Coarse-graining of the incidence matrix

The connection between X and X ⊗ X is given by the incidence matrix (or operator) D : X →
L(X∗, X) ≈ X ⊗X for the complete graph of the vertices V , which is (in coordinates) defined by

Dei =
∑
j

(ei ⊗ ej − ej ⊗ ei) ∈ X ⊗X.

We remark that this definition distinguish between outgoing and ingoing edges.

To define the adjoint operator, we fix the canonical basis in the dual space e∗k ∈ X∗ with 〈e∗k, ei〉 = δik.
This also defines a basis {e∗k ⊗ e∗l }k,l in the tensor space X∗⊗X∗ such that it holds 〈〈e∗k⊗ e∗l , ei⊗
ej〉〉 = δijkl. The adjoint operator D∗ is given by

D∗ : X∗ ⊗X∗ → X∗,

D∗
(
e∗i ⊗ e∗j

)
(el) = 〈〈Del, e∗i ⊗ e∗j〉〉 =

∑
k

〈〈el ⊗ ek − ek ⊗ el, e∗i ⊗ e∗j〉〉 (3.2)

=
∑
k

〈〈el ⊗ ek − ek ⊗ el, e∗i ⊗ e∗j〉〉 =


0 l 6= i, l 6= j

1 l = i

−1 l = j

,

whenever i 6= j, and otherwise it is zero.

The next result shows that the coarse-graining procedure is consistent with the definition of the inci-
dence matrix and the quotient graph.

DOI 10.20347/WIAS.PREPRINT.2891 Berlin 2021



Coarse-graining and reconstruction for Markov matrices 9

Theorem 3.2. LetM : X̂ → X be given as above, which is in local coordinatesMêk =
∑

i∈φ−1(k) ei.

Let m ∈ X∗ ⊗ X∗ be arbitrary and fixed, and let Ñ be defined by (3.1). The operator D̂ : X̂ →
L(X̂∗, X̂) defined by

D̂ = ÑDM : X̂ → L(X̂∗, X̂)

is an incidence matrix, i.e. we have

D̂êk =
∑
l

(êk ⊗ êl − êl ⊗ êk) .

Moreover, it holds M̃D̂ = DM .

Remarkably, the form of D̂ is independent of the m ∈ X ⊗X . We note that the second claim does
not follow immediately from D̂ = ÑDM , which would imply M̃D̂ = P̃DM with the projection
P̃ = M̃Ñ on X ⊗ X . The relation M̃D̂ = DM is finer and provides that the coarse-graining
procedure is consistent with the definition of the quotient graph.

Proof. For the proof, we compute D̂êk explicitly. We have Mêk =
∑

i∈φ−1(k) ei and hence,

DMêk =
∑
j

Mêk ⊗ ej − ej ⊗Mêk =
∑
j

∑
i∈φ−1(k)

ei ⊗ ej − ej ⊗ ei .

Moreover, we have that Ñ = Q−1
m̂ M̃∗Qm. To evaluate Ñ (ei ⊗ ej), we observe that M̃∗ (ei ⊗ ej) =

êφ(i) ⊗ êφ(j) which implies that

M̃∗QmDMêk =
∑
j

∑
i∈φ−1(k)

mijM̃
∗ (ei ⊗ ej)−mjiM̃

∗ (ej ⊗ ei)

=
∑
j

∑
i∈φ−1(k)

mij êφ(i) ⊗ êφ(j) −mjiêφ(j) ⊗ êφ(i)

=
∑
lj

∑
j∈φ−1(lj)

∑
i∈φ−1(k)

mij êφ(i) ⊗ êφ(j) −mjiêφ(j) ⊗ êφ(i)

=
∑
lj

m̂klj êk ⊗ êlj − m̂ljkêlj ⊗ êk,

where we have used the definition of m̂ = M̃∗m given by m̂kl =
∑

j∈φ−1(l)

∑
i∈φ−1(k) mij . Hence,

we conclude that

D̂êk = ÑDMêk = Q−1
m̂ M̃∗QmDMêk =

∑
l

êk ⊗ êl − êl ⊗ êk ,

which is the desired formula.

Now we prove M̃D̂ = DM again by direct calculation. We have M̃ (êk ⊗ êl) = Mêk ⊗Mêl and
hence,

M̃D̂êk =
∑
l

Mêk ⊗Mêl −Mêl ⊗Mêk =
∑
l

∑
j∈φ−1(l)

Mêk ⊗ ej − ej ⊗Mêk = DMêk,

which we wanted to show.

Remark 3.3. We finally remark that the coarse-graining procedure can also be applied to undirected
graphs. Introducing the space X � X ' Lsym(X∗, X) containing the symmetric tensors (or ma-

trices), the coarse-graining operator M̃ respect the symmetric structure. Moreover, if m = QπK is
symmetric then also Ñ maps into symmetric tensors. In the following we will treat the case of sym-
metric m with more detail but we will not consider undirected graphs.
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4 Detailed balance Markov matrices

A special situation occurs if the operator K satisfies detailed balance meaning that mij = πiKij =
πjKji = mji. We define the associated Markov generator A by A = K − id and investigate the
following evolution system in X∗:

ċ = A∗c .

In the next lemma, we recall that assuming that K (or equivalently A) satisfies detailed balance, the
system ċ = A∗c can be written as a gradient flow expressed via the incidence operator

ċ = −D∗b,

b =
1

2
QmDρ,

ρ = Q−1
π c ,

where the first equation is a continuity equation between the fluxes b and the concentrations c, the
last equation defines the relative densities ρ of c with respect to π and the second equation is the
constitutive relation between the relative densities ρ and the fluxes b, which uses the tensor valued
diagonal operator Qm. Note that there is a factor 1

2
because the incidence operator D counts every

edge twice.

Lemma 4.1. Let K (or equivalently A) satisfy the detailed balance condition. Then we have A∗ =
−1

2
D∗QmDQ

−1
π .

Proof. By direct computation, we have for ρ =
∑

i ρiei that

Dρ =
∑
i

ρiDei =
∑
i,j

ρi (ei ⊗ ej − ej ⊗ ei) .

Hence, we get that QmDρ =
∑

i,j ρimije
∗
i ⊗ e∗j − ρimjie

∗
j ⊗ e∗i , which implies

−D∗QmDρ = −
∑
i,j

ρimijD
∗ (e∗i ⊗ e∗j)+ ρimjiD

∗ (e∗j ⊗ e∗i ) .
Evaluating both sides at el and using the explicit formula (3.2), we get that

(−D∗QmDρ) el = −
∑
i,j

ρimijD
∗ (e∗i ⊗ e∗j) el +

∑
i,j

ρimjiD
∗ (e∗j ⊗ e∗i ) el

= −
∑
j

ρlmlj +
∑
i

ρimil +
∑
i

ρimli −
∑
j

ρlmjl

= −ρl
∑
j

(mlj +mjl) +
∑
i

ρi (mil +mli) .

Using that mil = mli = πiAil = πlAli and ρi = ci/πi, we get(
−1

2
D∗QmDρ

)
el = −cl

∑
j

mlj/πl +
∑
i

cimil/πi = −cl
∑
j

Alj +
∑
i

ciAil,

which implies that A∗c = −1
2
D∗QmDQ

−1
π c for all c ∈ X .
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4.1 Coarse-graining for detailed balance Markov operators

We are going to show that the above gradient flow decomposition is also consistent with the coarse-
graining procedure. Crucial for that result is the relation DM = M̃D̂.

Theorem 4.2. Let us assume that there is an equilibration of the concentrations c = N∗ĉ. Then the
coarse-grained concentrations ĉ solves the coarse-grained evolution equation of the form

˙̂c = −D̂∗b̂,

b̂ =
1

2
Qm̂D̂ρ̂,

ρ̂ = Q−1
π̂ ĉ .

In particular, we have an equilibration of the fluxes b = Ñ∗b̂.

Proof. SinceM∗N∗ = idX∗ , we observe thatM∗c = ĉ. By Theorem 3.2 we have thatDM = M̃D̂.
Hence, we obtain

˙̂c = M∗ċ = −M∗D∗b = −D̂∗M̃∗b,

Defining b̂ := M̃∗b (which implies that b = Ñ∗b̂) and using that M̃∗Qm = Qm̂Ñ and Q−1
π N∗ =

MQ−1
π̂ , we get

b̂ = M̃∗b =
1

2
M̃∗QmDQ

−1
π N∗ĉ =

1

2
Qm̂ÑDMQ−1

π̂ ĉ =
1

2
Qm̂D̂ρ̂,

where we have introduced the coarse-grained relative density ρ̂ = Q−1
π̂ ĉ.

4.2 Flux reconstruction

Theorem 4.2 provides that an equilibration of the fluxes necessarily occurs if concentrations equili-
brate. In practice, often the converse question arises, namely how fluxes on the large graph can be
reconstructed out of the coarse-grained quantities like concentrations and fluxes. As one would guess
b = Ñ∗b̂ is not the desired flux because additional fluxes between coarse-grained states are needed.

The next proposition provides an affirmative answer and shows that for a given pair (ĉ, b̂) satisfying
the continuity equation ˙̂c = −D̂∗b̂, then there is a reconstructed flux b such that c = N∗ĉ solves
ċ = −D∗b and the reconstructed flux consists of two parts b = b1 + b2 such that b1 = Ñ∗b̂ and
b2 ∈ KerD̂∗M̃∗. Moreover, b depends linearly on b̂.

Proposition 4.3. Let (ĉ, b̂) satisfying the continuity equation ˙̂c = −D̂∗b̂. Define the reconstructed
concentrations by c = N∗ĉ. Then there is a reconstructed flux b, which solves the macroscopic
continuity equation ċ = −D∗b and b is given by b = b1 + b2 with b1 = Ñ∗b̂ and b2 ∈ KerD̂∗M̃∗,
which depends linear on b̂.

Proof. Let b1 = Ñ∗b̂. Then we have to construct b2 ∈ X∗ ⊗X∗ such that

ċ = −D∗(b1 + b2) = −D∗(Ñ∗b̂+ b2).

Since c = N∗ĉ, which implies ċ = N∗ ˙̂c = −N∗D̂∗b̂, we get that b2 has to satisfy the linear equation

D∗b2 =
(
N∗D̂∗ −D∗Ñ∗

)
b̂ =: x∗ ∈ X∗. (4.1)
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Using Fredholm’s alternative, this equation is solvable if for all x ∈ Ker(D) we have that 〈x, x∗〉 = 0.

So let x ∈ Ker(D) ⊂ X . Hence,

〈x, x∗〉 = 〈x,
(
N∗D̂∗ −D∗Ñ∗

)
b̂〉 = 〈D̂Nx, b̂〉 .

Using Proposition 2.3, we decompose x ∈ X = Ker(N) + Range(M). Hence, for proving that

〈x, x∗〉 = 0, we may assume that x ∈ Range(M), i.e. Mx̂ = x. Using that b̂ = M̃∗b1 and that
NM = idX̂ , we compute

〈x, x∗〉 = 〈D̂NMx̂, M̃∗b1〉 = 〈M̃D̂x̂, b1〉 = 〈DMx̂, b1〉 = 〈Dx, b1〉 = 0,

where we have used that M̃D̂ = DM . Hence, there exists b2 with D∗b2 =
(
N∗D̂∗ −D∗Ñ∗

)
b̂,

which implies that b = b1 + b2 solves ċ = −D∗b. By (4.1) we see that b2 depends linearly on b̂.

To see that b2 ∈ Ker(D̂∗M̃∗), we observe that

D̂∗M̃∗b2 = M∗D∗b2 = M∗
(
N∗D̂∗ −D∗Ñ∗

)
b̂ =

(
M∗N∗M∗D∗Ñ∗ −M∗D∗Ñ∗

)
b̂ = 0.

Remark 4.4. We note that the existence of b2 as well as the linear dependence on b̂ as been used in
[Ste21] to coarse-grain fast-slow linear reaction-diffusion systems.

5 Functional inequalities and Poincaré constants

In this section we apply the coarse-graining procedure to derive estimates between functionals on X
and X̂ . First we observe the following for the expectations

Eπ(x) :=
∑
i∈Z

πixi = 〈x, π〉, Eπ̂(x̂) :=
∑
j∈Ẑ

π̂jx̂j = 〈x̂, π̂〉 .

Lemma 5.1. If x̂ = Nx or x = Mx̂, then Eπ(x) = Eπ̂(x̂).

Proof. If x̂ = Nx, we have Eπ̂(x̂) = 〈π̂, x̂〉 = 〈π̂, Nx〉 = 〈N∗π̂, x〉 = 〈π, x〉 = Eπ(x). If
x = Mx̂ we conclude that Nx = x̂.

5.1 Coarse-graining for energy functionals

For any strictly convex and non-negative function Φ : R → [0,∞[ we define the associated energy
functional on X by

EΦ(x) = EπΦ(x)− Φ(Eπx) = 〈Φ(x), π〉 − Φ(〈x, π〉),

where for a vector x ∈ X ' Rn the function Φ(x) ∈ X is defined componentwise, i.e. Φ(x)i =
Φ(xi). Note, that the measure π ∈ X∗ is fixed and implicitly given in the definition of EΦ.

Lemma 5.2. The functional EΦ is non-negative and its minimum is attained on constant vectors.
Moreover, we have for the rescaled function Φ̃(r) = Φ(r) + cr + d that EΦ̃ = EΦ.
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Proof. The first claim follows directly be Jensen’s inequality since Φ is strictly convex. Moreover, a
direct computation shows that

EΦ̃(x) = EπΦ̃(x)− Φ̃(Eπx) = 〈Φ(x) + cx+ d, π〉 − Φ(Eπx)− cEπx− d =

= 〈Φ(x), π〉+ c〈x, π〉+ d〈11, π〉 − Φ(Eπx)− cEπx− d = EΦ(x) .

Typical examples for the function Φ are:

1 Φ(r) = 1
2
r2. Then EΦ(x) = 1

2
(〈x2, π〉 − 〈x, π〉2) corresponds to the quadratic energy or

statistical variance.

2 Φ(r) = r log r− r+ 1. Then EΦ corresponds to the free energy of Boltzmann type, which will
be denoted by Entπ in the following.

Remark 5.3. There are several remarks in order.

1 Often functionals of the form E∗(p) = 〈Ψ(p/π), π〉 as relative energies or entropies are con-
sidered. In contrast to EΦ, which is defined on X , functionals of the latter form are defined on
probability vectors as elements of the dual space X∗. However, they are related via the Leg-
endre transform. To see this, forgetting about the normalization term −Φ(Eπx), the Legendre

transform of the functional ẼΦ, ẼΦ(x) := 〈Φ(x), π〉 is given by

ẼΦ

∗
(p) = sup

x∈X

(
〈p, x〉 − ẼΦ(x)

)
= sup

x∈X
(〈p, x〉 − 〈Φ(x), π〉) .

Introducing the relative density g of p with respect to the positive probability vector π, we get
that

ẼΦ

∗
(p) = sup

x∈X
(〈gπ, x〉 − 〈Φ(x), π〉) = sup

x∈X
(〈g · x, π〉 − 〈Φ(x), π〉)

= sup
x∈X
〈g · x− Φ(x), π〉 = 〈sup

x∈X
(g · x− Φ(x)) , π〉 = 〈Φ∗(g), π〉 = 〈Φ∗

( p
π

)
, π〉,

which is exactly the desired form.

2 We could also investigate functionals of the form ẼΦ(x) = 〈Φ(x−Eπx), π〉 as a generalization
of the variance Φ(r) = r2. These functionals have the property that they are always convex.
However, we will restrict to the above form.

Analogously, we define ÊΦ on X̂ by replacing x by x̂ and π by π̂. The functionals EΦ on X and ÊΦ on
X̂ can be estimated as follows.

Proposition 5.4. We have the following relation for the functionals regarding coarse-graining and
reconstruction.

1 For all x̂ ∈ X̂ , x = Mx̂ implies EΦ(x) = ÊΦ(x̂). This holds even for all functions Φ : R→ R
not necessarily convex.

2 For all x ∈ X , x̂ = Nx implies ÊΦ(x̂) ≤ EΦ(x).
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Proof. For the first claim, take any x̂ ∈ X̂ . Then we have with Lemma 5.1 that

EΦ(x) = EΦ(Mx̂) =
∑
i

πiΦ((Mx̂)i)− Φ(Eπ(Mx̂)) =
∑
j∈Ẑ

∑
i=φ−1(j)

πiΦ((Mx̂)i)− Eπ̂x̂

=
∑
j∈Ẑ

∑
i=φ−1(j)

πiΦ(x̂φ(i))− Eπ̂x̂ =
∑
j∈Ẑ

Φ(x̂j)
∑

i=φ−1(j)

πi − Eπ̂x̂

=
∑
j∈Ẑ

π̂jΦ(x̂j)− Eπ̂x̂ = ÊΦ(x̂),

where we used that π̂j =
∑

i=φ−1(j) πi.

For the second claim, take any x ∈ X . Using Jensen’s inequality for the convex function Φ, which
means that we have the pointwise inequality Φ(Nx) ≤ NΦ(x), we obtain

ÊΦ(Nx) = 〈π̂,Φ(Nx)〉 − Eπ̂(Nx) ≤ 〈π̂, NΦ(x)〉 − Eπ(x) =

= 〈N∗π̂,Φ(x)〉 − Eπ(x) = 〈π,Φ(x)〉 − Eπ(x) = Eπ(x) .

The log-Sobolev constant is defined by estimating EΦ(x2) where Φ(r) = r log r, i.e. Entπ(x2).
From the above proposition it is not clear that is possible to obtain estimates between Entπ̂((x̂)2) and
Entπ((Mx̂)2). In fact, we prove that this is possible even for general convex functions not necessarily
quadratic.

Proposition 5.5. Let g : R→ [0,∞[ be convex and satisfy g(x) > 0 if x 6= 0 and g(0) = 0. Then
we have

∀x̂ ∈ X̂ : Entπ̂(g(x̂)) ≤ Entπ(g(Mx̂)) ,

where again with a small abuse of notation g(x) is meant component-wise, i.e. g(x)i = g(xi).

Proof. The proof is done in two steps. First, we shift the function Φ(r) = r log r to incorporate g.
Secondly, we derive the estimate.

1. Step: Clearly, we have equality for x̂ = 0. So let us take x̂ 6= 0. Then, g(x̂) > 0 and because
π > 0, there is a constant C > 0 such that 〈g(Mx̂), π〉 ≥ C > 0. Let us define c > 0

by c := e−(1+C). We define Φ̃(r) = r log r + c r, which has its minimum at r = C . So
we have Φ̃(r1) ≥ Φ̃(r2) for r1 ≥ r2 ≥ C . Recalling that the energy functional is invariant
under affine shifts (Lemma 5.2), we have that Entπ(x) = EΦ̃(x) and analogously also for the

coarse-grained states x̂. So we are going to show ÊΦ̃(g(x̂)) ≤ EΦ̃(g(Mx̂)), or, equivalently,

〈Φ̃(g(x̂)), π̂〉 − Φ̃(〈g(x̂), π̂〉) ≤ 〈Φ̃(g(Mx̂)), π〉 − Φ̃(〈g(Mx̂), π〉) .

2. Step: We observe that (completely similar to the proof of Proposition 5.4)

〈Φ̃(g(Mx̂)), π〉 =
∑
i

Φ̃(g(Mx̂))iπi =
∑
i

Φ̃(g(Mx̂)i)πi =
∑
j∈Ẑ

∑
i=φ−1(j)

πiΦ̃ ◦ g(x̂φ(i))

=
∑
j∈Ẑ

π̂jΦ̃ ◦ g(x̂j) = 〈Φ̃(g(x̂)), π̂〉 .
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Hence, it suffices to prove that Φ̃(〈g(x̂), π̂〉) ≥ Φ̃(〈g(Mx̂), π〉). To see this we use Jensen’s
inequality which states that g(Mx̂) ≤ Mg(x̂) for all Markov matrices M and convex func-
tions g. Hence, we get 〈g(Mx̂), π〉 ≤ 〈Mg(x̂), π〉 = 〈g(x̂),M∗π〉 = 〈g(x̂), π̂〉. Since
〈g(Mx̂), π〉 ≥ C and the function Φ̃ is monotone for arguments larger thanC by construction,
we conclude that also Φ̃ (〈g(Mx̂), π〉) ≤ Φ̃ (〈g(x̂), π̂〉). Hence, the claim is proved.

5.2 Dirichlet forms and Poincaré-type estimates

To estimate Poincaré-type constants, we introduce the Dirichlet form (or dissipation) for K and K̂ by

DK(x) =
1

2

∑
i,j

πiKij(xi − xj)2, DK̂(x) =
1

2

∑
i,j

π̂iK̂ij(xi − xj)2 .

Without loss of generality, we assume that K and K̂ satisfy detailed balance, because the Dirichlet
form takes into account only the symmetric part of QmK . Using m = QπK and m̂ = Qπ̂K̂ , the
Dirichlet form is related to the generator A = K − id by

DK(x) =
1

2
〈〈Dx,QmDx〉〉 =

1

2
〈x,D∗QmDx〉 = −〈x,A∗Qπx〉 = −〈Ax,Qπx〉 = −〈x·Ax, π〉 .

Moreover, we have DK̂(x̂) = 1
2
〈〈D̂x̂, Qm̂D̂x̂〉〉 = −〈x̂ · Âx̂, π̂〉.

We are interested in estimating the spectral gap λ = λ(K,Φ), which is defined by the largest constant
c > 0 that satisfies the discrete Poincaré-type inequality

DK(x) ≥ c EΦ(x), i.e. λ(K,Φ) = inf

{
DK(x)

EΦ(x)
: ∀x EΦ(x) 6= 0

}
.

Analogously, we define λ̂ = λ̂(K̂,Φ) = inf
{
DK̂(x̂)

ÊΦ(x̂)
: ∀x̂ ÊΦ(x̂) 6= 0

}
. We also define the log-

Sobolev constants λg,LS = inf
{

DK(x)
Entπ(g(x))

: Entπ(g(x)) 6= 0
}

and analogously λ̂g,LS.

Theorem 5.6. With the above notation, we have the following:

1 For all x̂ ∈ X̂ we have that DK(Mx̂) = DK̂(x̂).

2 For all functions Φ we have that λ(K,Φ) ≤ λ(K̂,Φ).

3 We have for the log-Sobolev constants that λg,LS ≤ λ̂g,LS.

Proof. We have

DK(Mx̂) =
1

2
〈〈DMx̂,QmDMx̂〉〉 = −〈Mx̂,A∗QπMx̂〉

= −〈x̂,M∗A∗N∗Qπ̂x̂〉 = −〈x̂, Â∗Qπ̂x̂〉 =
1

2
〈x̂, D̂∗Qm̂Dx̂〉 = DK̂(x̂) ,
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which is the first claim. Hence, we obtain the following relations for the functional inequalities

λ = inf

{
DK(x)

EΦ(x)
: EΦ(x) 6= 0

}
≤ inf

{
DK(Mx̂)

EΦ(Mx̂)
: EΦ(Mx̂) 6= 0

}
= inf

{
DK̂(x̂)

EΦ(Mx̂)
: EΦ(Mx̂) 6= 0

}
.

For the second claim, we use Proposition 5.4 which implies that EΦ(Mx̂) = ÊΦ(x̂) and hence,
λ ≤ λ̂. For the third claim we use Entπ̂(g(x̂)) ≤ Entπ(g(Mx̂)) by Proposition 5.5 to obtain the
bound λg,LS ≤ λ̂g,LS.

Proposition 5.4 states that we have Eπ(x) ≥ Eπ̂(Nx) for all x ∈ X . So naturally the question arises
whether it is possible to obtain uniform estimates betweenDK(x) andDK̂(Nx). The counterexample
in the next section shows that this is in general not true.

5.3 Counterexample

We compute and compare DK̂(Nx) and DK(x) for a fixed x ∈ X . We have

DK̂(Nx) =
1

2
〈〈D̂Nx,Qm̂D̂Nx〉〉 =

1

2
〈x,N∗D̂∗Qm̂D̂Nx〉 = −〈x, P ∗A∗QπPx〉 =

= −〈Px,QπAPx〉 = −〈Px · APx, π〉 .

Recall, that we have DK(x) = −〈x · Ax, π〉. It is clear that DK(x) ≥ DK̂(Nx) holds for all
x ∈ Range(P ) (because then the inequality is a trivial equality) and also for all x ∈ Range(id −
P ) = Ker(P ) (because DK̂(Nx) = 0). In particular, we always have DK(x) ≥ DK̂(Nx) in the
simple case of Z = {1, 2}.
For a ≥ 0, we define on R3 the parameter dependent Markov generator

Aa =

−8 4 4
1 −2 1
a a −2a

 .

Then A∗a has the stationary measure πa = 1
5a+4

(a, 4a, 4)T. One easily checks that Aa satisfies
detailed balance with respect to πa. As in the example from Section 2.2, we define the coarse-graining
function φ : Z → Ẑ with φ(1) = 1̂ and φ(2) = φ(3) = 2̂. The corresponding Markov operator

M : X̂ → X is given by M =

1
1
1

. The coarse-grained stationary measure is given by π̂a =

M∗πa = 1
5a+4

(a, 4a + 4)T .The inverse operator Na : X → X̂ and the projection Pa : X → X
are given by

Na = Q−1
π̂a
M∗Qπa =

(
1

a
a+1

1
a+1

)
, Pa = MNa =

1
a
a+1

1
a+1

a
a+1

1
a+1

 .

We compute DKa(x) and DK̂a(Nax) for x = (3, 1, 2)T. We have −〈x · Aax, πa〉 = 24a
5a+4

. More-

over, we have −〈Pax · AaPax, πa〉 = 8a(1+2a)2

(a+1)2(5a+4)
. Hence we have that DKa(x) ≥ DK̂a(Nax) is
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equivalent to

24a

5a+ 4
≥ 8a(1 + 2a)2

(a+ 1)2 (5a+ 4)
⇔ (1 + 2a)2 ≤ 3 (a+ 1)2 ⇔ a ≤ 1 +

√
3 =: a∗ .

In particular, we have for x = (3, 1, 2)T that DKa(x) ≥ DK̂a(Nax) for a ∈ [0, a∗] and that
DKa(x) ≤ DK̂a(Nax) for a ∈ [a∗,∞[. Summarizing, it is not possible to have uniform estimates
between DKa and DK̂a(Na·). Hence, no inequality for the Poincaré-type constants can be expected.
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