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Abstract

We establish that a non-Gaussian nonparametric regression model is asymptotically

equivalent to a regression model with Gaussian noise. The approximation is in the sense

of Le Cam's de�ciency distance �; the models are then asymptotically equivalent for

all purposes of statistical decision with bounded loss. Our result concerns a sequence

of independent but not identically distributed observations with each distribution in the

same real-indexed exponential family. The canonical parameter is a value f(ti) of a

regression function f at a grid point ti (nonparametric GLM). When f is in a H�older

ball with exponent � > 1

2
; we establish global asymptotic equivalence to observations

of a signal �(f(t)) in Gaussian white noise, where � is related to a variance stabilizing

transformation in the exponential family. The result is a regression analog of the recently

established Gaussian approximation for the i. i. d. model. The proof is based on a

functional version of the Hungarian construction for the partial sum process.

1 Introduction

The remarkable success of the Le Cam's asymptotic theory is mostly due to the power of

the concept of weak convergence of statistical experiments, which can be established via

LAN conditions. Weak convergence takes place for experiments localized at the normalizer

rate for the underlying central limit theorem, i. e. the usual n�1=2. However this is useless if

estimators have a slower rate of convergence, i. e. when the problem becomes "ill posed" as in

many nonparametric estimation problems. It is therefore natural to abandon the localization

concept in this case and to replace limits of experiments by approximations in the sense

of Le Cam's de�ciency pseudodistance �. The �-distance can be accessed via coupling of

likelihood processes and new results on strong approximation for sums of random variables.

We refer to Koltchinskii [22] for a result on the empirical processes in the i. i. d. case.
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The global �-distance for nonparametric Gaussian experiments was �rst studied by Brown

and Low [5], who showed that a normal nonparametric regression is asymptotically equivalent

to its continuous version - the signal recovery problem in Gaussian white noise. Then in

Nussbaum [31] it was established that density estimation from i. i. d. data on an interval is

asymptotically equivalent to the signal recovery problem, where the signal is the root density.

The two sequences of experiments are then accompanying in the sense that their de�ciency

pseudodistance � tends to zero. This can be regarded as the natural generalization of the

classical local asymptotic normality theory to "ill posed" problems. The implication for

decision theory is "automatic" transfer of risk bounds from one sequence to another.

The purpose of the present paper is to accomplish a logical next step in these develop-

ments, i. e. to treat the case of non-Gaussian nonparametric regression. Our model is such

that at points ti = i=n; i = 1; :::; n we observe independent r. v.'s Xi which follow a distribu-

tion from an exponential family P with parameters �i = f(ti) 2 �; where f : [0; 1]! � is an

"unknown" function to be estimated. The function f is assumed to belong to the smoothness

class �: The main result of the paper is asymptotic equivalence of this model to a Gaussian

experiment of the homoscedastic form

dY
n
t = � (f(t)) dt+

1p
n
dWt; t 2 [0; 1]; (1.1)

with f 2 �; where the one-to-one transformation �(�) : � ! R is entirely determined by

the local exponential family P (see Section 3.3 for a precise formula for �). Here W is the

standard Wiener process, and f runs a set of functions in a H�older ball with exponent � > 1
2
.

Note that our function f is tied to the canonical parametrization of the exponential family,

while the "natural" parameter (the intensity for the Poisson case etc.) is generally di�erent.

But there is a smooth parameter transformation � = b(�) (de�ned in Section 2.2 below)

which permits to formulate global results of the type (1.1) in "natural" regression models.

Some examples are:

[1] Poisson case: Xi is Poisson(g(ti)); where g is a function on [0; 1] in a H�older ball

with exponent � >
1
2
; with values in [�; ��1] for some � > 0. The Poisson intensity

is � = b(�); where b is a strictly increasing smooth function. De�ning the function

F (�) = �(b�1(�)); we obtain (see Section 4 below) F (�) = 2
p
�. The accompanying

Gaussian experiment is

dY
n
t = 2

p
g(t) dt+

1p
n
dWt; t 2 [0; 1]: (1.2)

[2] Bernoulli case: Xi is Binomial(1; g(ti)); g as above but with values in [�; 1 � �] for

some � > 0. The natural parameter is � = b(�) for some function b with properties as

above. We have F (�) = 2 arcsin(
p
�); and the accompanying Gaussian experiment is

dY
n
t = 2arcsin

p
g(t) dt+

1p
n
dWt; t 2 [0; 1]:

[3] Gaussian variance case: Xi is N(0; g(ti)); g as in example 1. We have F (�) =

2�1=2 log �; and

dY
n
t =

1p
2
log g(t) dt+

1p
n
dWt; t 2 [0; 1]: (1.3)
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For more details see Section 4. We chose to give here the continuous versions of the

accompanying experiments, but the discrete versions are also available.

The motivation for this paper can be concisely expressed in three points.

[A] The �rst example essentially recovers the result of [31] on i. i. d. data with density f on

the unit interval, since the proof in [31] used a Poisson approximation. In the second

example, F (�) = 2 arcsin(
p
�) is the well known variance stabilizing transformation

for the binomial distribution. For scale parameters like the Gaussian variance, the

logarithm is also known to be a stabilizing transformation, and the same applies to

2�1=2 in the Poisson case. Thus, in the evolving theory of asymptotic equivalence

of experiments, we have achieved a better understanding of where global closed form

approximations like (1.1) arise from. The formal connection to di�erential geometric

theory in statistics seems very interesting and remains to be explored (cp. �Cencov [8],

Amari et al. [1]).

[B] The case where the function f is in a linear parametric class ff(x) = �x; � 2 Rg is

known as a generalized linear model (GLM). The inverse of the transformation b(�)

would then be the canonical link function. Accordingly, our model is of the type

nonparametric GLM, cp. Green and Silverman [19], sec. 5.1.2. Models like these, which

o�er tremendous 
exibility, have received much attention in the recent literature, see

also Fan and Gijbels [14]. It would be beyond the scope of this paper to treat the many

(semiparametric) variants and extensions; we refer to [19] and [14]. In particular we

do not discuss logit and probit analysis in our context (cp. example 3, p. 92 in [19]).

Empirical process theory has also been applied by Mammen and van de Geer [28] in

our model (in a more general variant), for constructing estimators.

[C] There are implications for time series models. Example 3 leads on to the white noise

equivalence for the spectral density model for a Gaussian stationary sequence; cf. Gol-

ubev and Nussbaum [17]. Furthermore, Example 3 is related to discrete observations

of a di�usion process:

dY
n
t = g

1=2(Y n
t ; t)dWt; Y

n
0 = y0; t 2 [0; 1]:

Suppose observations in points ti = i=n; i = 1; : : : ; n; where g is unknown. Nonparamet-

ric estimation of g has recently been considered by Genon-Catalot, Laredo and Picard

[16], Florens-Zmirou [15]. Example 3 might be seen as a possible pilot result for those

models, where the distributions of processes on [0; 1] are mutually orthogonal and the

asymptotics is given by grid re�nement.

The standard method of proof is to establish �rst a local version of (1.1) and then to

globalize it by means of a preliminary estimator. We obtain our initial local approximation

in the heteroscedastic form

dY
n
t = f(t) dt+

1p
n
I (f0(t))

�1=2
dWt; t 2 [0; 1]; (1.4)

where f is in a shrinking neighborhood of a function f0 and I(�) is the Fisher information in

the local exponential family P (given in its canonical form). To obtain a global asymptotic

equivalence, the function f0 which was technically assumed "known" has to be replaced by

a preliminary estimator. However, the homoscedastic form (1.1) can be obtained only if the
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function f0 does not show up explicitly in the local approximation. The problem arises to

�nd a transformation �(�) on the parameter space of the local exponential family P such that

an asymptotically equivalent form of (1.4) would be (1.1), with f in a neighborhood of f0:

It is known that such a transformation exists for any exponential family P. The problem is

related to that of a variance-stabilizing transformation. Indeed, for the Poisson observations

of example [1], one can prove easily that an accompanying local experiment, besides (1.4), is

also given by

dY
n
t = g(t) dt +

1p
n

p
g0(t)dWt; t 2 [0; 1]; (1.5)

with g in a neighborhood of g0 (for an analogy with the i. i. d. model see also Nussbaum

[31]). The observations in (1.5) have roughly a Poisson character - the expectation is g(t) and

the variance is approximately also g(t) (since g is in a neighborhood of g0). For the Poisson

distribution, the square root is a variance stabilizing transformation, which agrees with (1.2).

For the proof of the local heteroscedastic approximation (1.4) we establish a functional

Hungarian construction for the partial sums of independent but nonidentically distributed

random variables. The result is similar to that of Koltchinskii [22] for the empirical process,

but the assumption of non-identity and non-smoothness of distributions of the summands

substantially complicate the problem. This is treated separately in [18] based on methods

developed in Sakhanenko [35]. Due to the particularly simple structure of our nonparametric

exponential model, we can straightforwardly apply our strong approximation result to couple

the likelihood process with that of an appropriately chosen Gaussian experiment. Again

coupling of likelihood processes is the key idea for proving asymptotic equivalence, as in [31].

However we would like to mention that our KMT result is useful in more general situations

also.

An essential step in proving a local approximation result like (1.4) is to study the local ex-

periments generated by the fragments of observations Xi over shrinking time intervals. These

experiments we call doubly local. With an appropriate choice of the length of the shrinking

interval and after rescaling it to the unit interval, a doubly local experiment can be viewed

as local experiment on the interval [0; 1] of the usual type, but now with a neighborhood of

the "almost root-n" size (n= log n)�1=2: A similar renormalization technique is known to be

e�ective for pointwise estimation in nonparametrics, cf. Donoho and Liu [10] and Low [27].

We also refer to Millar [30] for n�1=2 -shrinking neighborhoods in the context of nonparamet-

ric estimation. Were it not for the log-factor in (n= log n)�1=2; these rescaled experiments on

the interval [0; 1] would converge to a Gaussian limit in the sense of �. The motivation for

applying the Hungarian construction at this stage is, roughly speaking, to obtain a good rate

for this convergence, i. e. n�1=2 up to some logarithmic factor. We thus implicitly address

a question of Le Cam on rates for convergence of experiments (cp. the remark on p. 509

of [25]). The use of the Hungarian construction for this purpose is in line with its original

motivation, i. e. optimal rates in the functional central limit theorem for the partial sum

process.

Our results are formulated in terms of �-distance approximations; we do not exhibit the

recipes (Markov kernels) which transfer a decision function in one experiment to the other.

The problem of constructive equivalence is an important issue and some promising research

in this direction is going on (Brown and Low [6]). Markov kernels in the present case can

be extracted from the Hungarian construction, but this is beyond of the scope of the present

paper.

The method of the proof is similar to that in Nussbaum [31]. We utilize the natural
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independence structure of our regression model for decomposing it into fragments on the

appropriate shrinking intervals (or equivalently into doubly local experiments). We then

apply the functional version of the KMT construction for establishing a Gaussian local ap-

proximation for the fragments. It is important is to have this approximation with a rate

of convergence which is enough to "beat" the number of shrinking intervals into which the

whole interval [0; 1] has been split. Having obtained the above rate, we still have to ensure the

global approximation on [0; 1]. This we achieve by passing from the Le Cam pseudo-distance

between statistical experiments to the Hellinger distance between the corresponding proba-

bility measures. The passage is made possible by a construction of the likelihood processes

of the local experiments on the same probability space with a Gaussian likelihood process.

The reason to work with the Hellinger distance rather than with total variation distance

is the convenient behavior of the former under multiplication of probability measures (see

(2.13)). This allows to patch together the doubly local experiments for obtaining the Gaus-

sian approximation (1.4) valid globally on the interval of observations [0; 1]; but still around

a speci�ed regression function f0:

After that, we choose the variance-stable version of the Gaussian local approximation

as a starting point for globalization over the parameter space �: The result is the global

approximation (1.1). We trace the rates of convergence throughout, so that the rate of the

de�ciency distance approximation can be made explicit.

2 Background

2.1 Exponential families of distributions

We will consider a one-dimensional linearly indexed exponential family (see Brown [4] or Le

Cam [25], p. 144), which is described by means of the following objects:

� A measurable space (X;B(X); �) equipped with the positive measure �(dx); where X

is a Borel measurable subset in the real line R and B(X) is the Borel �-�eld on X;

� a measurable map U(x) : X ! R;

� an open (possibly in�nite) interval � in R where the Laplace transformation

L(�) =

Z
X
expf�U(x)g�(dx)

is �nite.

Put V (�) = logL(�): Denote by P = fP� : � 2 �g the set of probability measures P� on

the space (X;B(X); �) of the form

P�(dx) = expf�U(x)� V (�)g�(dx): (2.1)

We call P an exponential family on the space (X;B(X); �) with parameter set �: The family

of measures P de�nes the exponential experiment E = (X;B(X);P); which will be the back-

ground object for constructing our nonparametric model. In the case when the measures P�
are de�ned by (2.1) we also say that the exponential family P (or the exponential experiment

E) is given in its canonical form.
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It follows from the de�nition of an exponential family that the function V (�) is analytical

on �: Also note that, for a �xed � 2 �; the function V (� + t) � V (�) coincides with the

cumulant generating function

G�(t) = log

Z
X
expftU(x)gP�(dx)

of the r. v. Y (�) = U(X(�)); where the r. v. X(�) has the distribution in the exponential

family P with parameter �: This implies that dm

d�mV (�) is the cumulant of order m of the r. v.

Y (�): In particular

V
0(�) = E�Y (�); (2.2)

V
00(�) = E�Y (�)

2 � (E�Y (�))
2
; (2.3)

V
000(�) = E�Y (�)

3 � 3E�Y (�))
2
E�Y (�)) + 2(E�Y (�))

3
: (2.4)

For this reason we will call the function V (�) the cumulant generating function associated

with the exponential family P or with the exponential experiment E :
Consider an exponential experiment E : The minimal su�cient statistic in this experiment

is the function U(x); x 2 X: It is easy to see that the corresponding Fisher information I(�)

is

I(�) = V
00(�) =

Z
X

(p0�(x))
2

p�(x)
�(dx); (2.5)

where p�(x) = P�(dx)=�(dx) = expf�U(x)� V (�)g: For any �0 2 � and "0 > 0 denote

B(�0; "0) = f� 2 � : j� � �0j � "0g:

Throughout the paper we assume that the following conditions hold true.

� The Fisher information is positive on �; i. e.

I(�) > 0; � 2 �: (2.6)

� There exists a (possibly in�nite) interval �0 in the parameter set � such that

Imin � inf
�2�0

I(�); sup
�02�0

sup
�2B(�0;"0)

I(�) � Imax; (2.7)

where Imax; Imin and "0 are positive constants depending only on the family P:

We will see that condition (2.7) can easily be checked for all examples in Section 4.

Let us denote by Y (�) the su�cient statistic Y (�) = U(X(�)) centered under the measure

P� : Y (�) = Y (�)�E�Y (�): The following assertions are almost trivial.

Proposition 2.1 Assume that condition (2.7) holds true. Then for any jtj � "0

sup
�2�0

E� expftY (�)g � expft2Imax=2g:
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Proof. For the proof it is enough to remark that for jtj � "0

E� expftY (�)g = expfV (� + t)� V (�)� tV
0(�)g

= expf1
2
t
2
I(� + �t)g

� expf1
2
t
2
Imaxg;

where 0 � � � 1:

Proposition 2.2 Assume that condition (2.7) holds true. Then

sup
�02�0

sup
�2B(�;"0=2)

V
000(�) � c;

where c is a constant depending only on Imax and "0:

Proof. This assertion is an easy consequence of Proposition 2.1 and (2.2), (2.3), (2.4).

2.2 Variance stabilizing transformation

LetXi; i = 1; :::; n be a sequence of i. i. d. r. v.'s each with distribution in the exponential fam-

ily P for the same parameter � 2 �: Let V (�) be the cumulant generating function associated

with the exponential family P: Put for brevity Sn = 1
n

Pn
i=1Xi and b(�) = V

0(�) = E�X1;

I(�) = V
00(�) = V ar�X1: According to the central limit theorem the sequence

p
n (Sn � b(�))

converges weakly under the measure P� to the normal r. v. with zero mean and variance I(�):

We are interested in �nding a function F : R ! R; the variance-stabilizing transformation,

such that under the same measure P�

p
n (F (Sn)� F (b(�)))

d! N(0; 1); (2.8)

for all � 2 �: Such a transformation exists and is given by the equation

F
0 (b(�)) =

1p
I(�)

: (2.9)

The straightforward arguments are similar to those in Barndor�-Nielsen and Cox [3] (p.

37) or in Andersen et al. [2] (p. 109). Indeed, it is easy to see by standard reasoning that

two sequences of r. v.'s
p
n (F (Sn)� F (b(�))) and

p
nF

0(b(�)) (Sn � b(�)) are asymptotically

equivalent in the sense that under the probability P�

p
n (F (Sn)� F ( b(�) ))�pnF 0(b(�)) (Sn � b(�))

d! 0; (2.10)

as n!1: By the central limit theorem, under the measure P�

p
nF

0(b(�)) (Sn � b(�))
d! N(0; 1); (2.11)

as n!1; if the function F is chosen such that (2.9) holds true. From (2.10) and (2.11) we

immediately infer the claim (2.8).

Our proof of the variance-stable form of the asymptotically equivalent Gaussian experi-

ments follows a similar pattern, see Section 5.5.

7



2.3 Basic facts on statistical equivalence

Let P and Q be two probability measures on the measurable space (
;F) : The Hellinger

distance between the probability measures P and Q is de�ned as

H
2 (P;Q) =

1

2
E�

�
(dP=d�)1=2 � (dQ=d�)1=2

�2
; (2.12)

where P and Q are absolutely continuous w.r.t. the probability measure �.

Let P1; :::; Pn and Q1; :::; Qn; be probability measures on (
;F) : Put P n = P1 � :::� Pn

and Qn = Q1 � :::�Qn: Then (see Strasser [36])

H
2 (P n

; Q
n) �

nX
i=1

H
2 (Pi; Qi) : (2.13)

Let E =
�

1
;F1

; fP� : � 2 �g� and G =
�

2
;F2

; fQ� : � 2 �g� be two statistical exper-

iments with the same parameter set �: Assume that (
1
;F1) and (
2

;F2) are complete

separable (Polish) metric spaces. The de�ciency of the experiment E with respect to the

experiment G is de�ned as

�(E ;G) = inf sup
�2�

kKP� �Q�k ;

where the sup is taken over the set M(
1
;F2) of all Markov kernels K from (
1

;F1) to

(
2
;F2): Le Cam's �- distance between the experiments E and G is de�ned by

� (E ;G) = max f�(E ;G); �(G; E)g :

Let En and Gn; n = 1; 2; ::: be two sequences of statistical experiments. We say that En and

Gn are asymptotically equivalent if

� (En;Gn)! 0; n!1:

We will need a relation between Le Cam and Hellinger distances. Let E = (
1
;F1

; fP� :
� 2 �g) and G = (
2

;F2
; fQ� : � 2 �g) be two experiments with the same parameter set

�: Assume that there is some point �0 2 � such that P� � P�0 and Q� � Q�0 : Suppose

that there are versions of the likelihood ratios �1(�) = P�=dP�0 and �2(�) = dQ�=dQ�0

(as processes indexed by �) on a common probability space (
;F ;P): Then the �-distance

satis�es the inequality

�2 (E ;G) � sup
�2�

H
2
�
�1(�);�2(�)

�
; (2.14)

where the Hellinger distance between likelihood ratios �1(�) and �2(�) is de�ned in analogy

to the case of probability measures:

H
2
�
�1(�);�2(�)

�
=

1

2
E
�p

�1(�)�
p
�2(�)

�2
: (2.15)

In particular it follows that for two experiments we construct likelihood ratios on a common

probability space which coincide as random variables, then these experiments are equivalent.

For more details we refer to Nussbaum [31], Proposition 2.2.

Denote by
�
C[0;1];B(C[0;1])

�
the measurable space of all continuous functions on the

unit interval [0; 1] endowed with the uniform metric and by QW the Wiener measure on�
C[0;1];B(C[0;1])

�
:

8



Let P (i)
i = 1; 2 be the Gaussian shift measures on

�
C[0;1];B(C[0;1]); QW

�
induced by the

following observations

dX
(i)
t = f

(i)(t)dt+
1p
�
dWt; 0 � t � 1;

where � > 0 and W is a Wiener process on
�
C[0;1];B(C[0;1]); QW

�
: Then the Hellinger dis-

tance between the measures P (1) and P (2) satis�es the inequality (see for instance Jacod and

Shiryaev [21])

H
2
�
P
(1)
; P

(2)
�
� 1

8
�

Z 1

0

�
f
(1)(t)� f

(2)(t)
�2
dt: (2.16)

2.4 A Koml�os-Major-Tusn�ady approximation for independent r. v.'s

Suppose that on the probability space (
;F ; P ) we are given a sequence of independent r. v.'s
X1; :::; Xn such that for any i = 1; :::; n

EXi = 0

and

Cmin � EX
2
i � Cmax

for some constants 0 < Cmin < Cmax <1: Assume also that the following Cram�er condition

E expfC0jXijg � C1

holds for i = 1; :::; n with some constants C0 > 0 and 1 < C1 <1: Along with this consider

that on another probability space (e
; eF ; eP ) we are given a sequence of independent normal

r. v.'s N1; :::; Nn with eENi = 0; eEN2
i = EX

2
i ;

for i = 1; :::; n: Let H(1
2
; L) be the H�older ball with exponent 1

2
; i. e. the set of all real valued

functions f de�ned on the unit interval [0; 1] and satisfying the following conditions

jf(x)� f(y)j � Ljx� yj1=2;
where L > 0 and

jjf jj1 � L=2:

Let ti =
i
n ; i = 1; :::; n be a uniform grid on the interval [0; 1]:

The following theorem is crucial for our results. The proof can be found in the paper by

Grama and Nussbaum [18].

Theorem 2.1 If the probability space (e
; eF ; eP ) is rich enough (cf. [18]), a sequence of

independent r. v.'s eX1; :::;
eXn can be constructed on (e
; eF ; eP ) such that eXi

d
= Xi; i = 1; :::; n;

and such that for Sn(f) de�ned by

Sn(f) =

nX
i=1

f(ti)( eXi �Ni)

we have

sup
f2H( 1

2
;L)

eP (jSn(f)j > x log2 n) � c1 expf�c2xg; x � 0;

where and c1; c2 are constants depending only on Cmin; Cmax; C0; C1; L:
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Remark 2.1 It should be pointed out that in the above theorem the r. v.'s Xi; i = 1; :::; n are

not supposed to be identically distributed nor to have smooth distributions.

Note that under these circumstances the construction of the r. v.'s eXi; i = 1; :::; n in

Theorem 2.1 appears extremely di�cult. That is why our construction of the asymptoti-

cally equivalent Gaussian experiments can be viewed as an existence theorem rather than

a prescription for transforming the initial sample into "asymptotically equivalent Gaussian

data". This is the price to pay for the fairly general setting of the model as well as for the

optimal result. One can expect that a simpler construction can be performed in case of a

stronger smoothness assumption on the parameter f(t) 2 � and/or on the distributions of

the observed data, i. e. restricting somewhat the class of functions � and/or the class of

allowed distributions. This is the path taken in Brown and Low [6]. The gain is that one

can plug in the "asymptotically equivalent Gaussian data" into an optimal estimator in the

accompanying Gaussian model and use it as an estimator for f(t) in the initial model.

A related approach is to use the Hungarian construction for constructive purposes via

closeness of sample paths of the processes, along with some "continuity" properties of es-

timators. As examples for the case of kernel density estimators we mention Rio [34] or

Einmahl and Mason [13]. The precise relation to asymptotic equivalence theory remains to

be investigated.

For more details on related subjects as well as for various versions of KMT results we

refer the reader to the papers of Koml�os et al. [23], [24], Cs�org}o and R�ev�esz [9], Sakhanenko

[35], Einmahl [12], Massart [29], Rio [32], [33], [34], Koltchinskii [22], Einmahl and Mason

[13], Grama and Nussbaum [18] and to the references therein.

3 Main results

3.1 Notations and formulation of the problem

Let (X;B(X); �) a measurable space equipped with the �-�nite measure �(dx); where X is

a subset of the real line R and B(X) is the Borel �-�eld on X: Let � be an open (possibly

in�nite) interval in R and P = fP� : � 2 �g be an exponential family of distributions on

(X;B(X); �) with parameter set �: The corresponding exponential experiment we denote by

E = (X;B(X); fP� : � 2 �g) : Assume that condition (2.7) holds true. Let us introduce some

further notations.

Let J (�0) be the set of all functions f; de�ned on the unit interval [0; 1] with values in

the parameter set �0

J (�0) = ff : [0; 1]! �0g:
Let H(�; L) be a H�older ball, i. e. the set of functions f : [0; 1] ! R which satisfy the

conditions

jf(x)j � L; jf (m)(x)� f
(m)(x)j � Ljx� yj�;

for x; y 2 [0; 1]; where � = m+�; 0 < � � 1: Later we shall require � � 1
2
: Consider also the

following set of functions:

� = �(�;L) = J (�0) \H(�;L);

this will be the basic parameter set in our model.

10



Let X(�) stand for a r. v. whose distribution is in the exponential family P; with param-

eter � 2 �: On the unit interval [0; 1] consider the time points ti =
i
n ; i = 1; :::; n: Assume

that we observe the sequence of r. v.'s

Xi = X(�i); i = 1; ::; n; (3.1)

with �i = f(ti); where the "unknown" function f is in the set �: We shall prove that the

statistical experiment generated by these observations is asymptotically equivalent to an

experiment of observing the function f in white noise.

Let us give another formal de�nition of the statistical experiments related to the observed

data Xi; i = 1; :::; n. To each time ti we associate an exponential experiment Eti indexed by

functions f 2 � as follows:

Eti =
�
X;B (X) ;

�
Pf(ti) : f 2 �

	�
:

De�ne En to be the product experiment En = Et1 
 ::: 
 Etn : In other words the experiment

corresponding to the sequence of observations Xi; i = 1; :::; n de�ned by (3.1) is

En = E(Xn) = (Xn
;B(Xn); fP n

f : f 2 �g); (3.2)

where P n
f is the product measure

P
n
f = Pf(t1) 
 :::
 Pf(tn); f 2 �: (3.3)

The experiment de�ned by (3.2) (or equivalently by (3.1)) will be also called global to distin-

guish it from the local experiment to be introduced now.

For any �xed function f0 in the parameter set � de�ne a neighborhood by

�f0(
n) = ff 2 � : jjf � f0jj1 � 
ng

where 
n ! 0 as n ! 1: In accordance with rate of convergence results in nonparametric

statistics, the shrinking rate 
n of the neighborhood �f0(
n) should be slower than n�
1

2 : We

will study the case where


n = �0(n= log n)
�

�

2�+1 ; (3.4)

where � is the exponent in the H�older ballH(�; L) and �0 = �0(�) is some constant depending

on �: This choice can be explained in the following way. The neighborhood �f0(
n) with

shrinking rate 
n given by (3.4), is such that in the experiment En there exists a preliminary

estimator bfn satisfying

sup
f02H(�;L)

Pf0(
bfn 2 �f0(
n))! 1; n!1: (3.5)

This property will be of use later when we globalize our local results.

The local experiment, which we will denote by Enf0 is de�ned as

Enf0 =
�
X

n
;B(Xn);

�
P
n
f : f 2 �f0(
n)

	�
: (3.6)

Let us remark that generally speaking for the sequence of nonparametric global experiments

En there is no Gaussian limit experiment in the usual weak sense, since the corresponding

11



likelihood ratios are asymptotically degenerate. Instead it is appropriate to consider a se-

quence of accompanying Gaussian experiments Gn; which is asymptotically equivalent to the

initial sequence En :
�(En;Gn)! 0; n!1:

The same applies to the local experiments Enf0 :
The corresponding accompanying Gaussian experiments will be introduced in subsequent

sections as the results are formulated. We now describe the likelihood ratios for the experi-

ments En and Enf0 : Note that since the measure P� is absolutely continuous w.r.t. the measure
�(dx);

P�(dx)

�(dx)
= expf�U(x)� V (�)g;

thus for any f 2 �
dP

n
f

d�n
=

nY
i=1

expff(ti)U(Xi)� V (f(ti))g:

From this we derive that for any f; f0 2 � the likelihood ratio of measures P n
f and P

n
f0

corresponding to the experiment En = E(Xn) has the form

dP
n
f

dP
n
f0

= expf
nX
i=0

[f(ti)� f0(ti)]U(Xi)�
nX
i=0

[V (f(ti))� V (f0(ti))]g: (3.7)

For the local experiment Enf0 the likelihood ratio has the same form (3.7) but with f 2 �f0(
n):

3.2 Local experiments: nonparametric neighborhoods

We start with the local framework since our global results are essentially based upon the

results for local experiments. For this let f0 2 � be �xed. The corresponding local Gaussian

experiment Gnf0 is generated by the following Gaussian observations in continuous time

dY
n
t = f(t)dt+

1p
n
I (f0(t))

�1=2
dWt; t 2 [0; 1]; f 2 �f0(
n); (3.8)

where W is the standard Wiener process on the probability space
�
C[0;1];B(C[0;1]); QW

�
.

Denote by Qn
f0;f

the Gaussian shift measure on
�
C[0;1];B(C[0;1])

�
induced by the observations

(Y n
t )0�t�1 determined by (3.8). Then Gnf0 can be de�ned as

Gnf0 =
�
C[0;1];B(C[0;1]);

�
Q
n
f0;f : f 2 �f0(
n)

	�
: (3.9)

Theorem 3.1 Assume that � 1
2
: Then the experiments Enf0 and Gnf0 are asymptotically equiv-

alent uniformly over f0 in �

sup
f02�

�(Enf0 ;Gnf0)! 0; n!1:

Moreover

sup
f02�

�2(Enf0 ;Gnf0) � c1n
�

2��1

2�+1 (log n)
14�+5

2�+1 ;

where c1 is a constant depending only on Imin; Imax; "0; L; �:
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The limit 1
2
for the smoothness index � is exact in view of an example by Brown and

Zhang [7] showing that the above asymptotic equivalence fails when � < 1
2
even for the case

of Gaussian observations. We can also refer the reader to the arguments in Efromovich and

Samarov [11].

We will now present a discrete version of the asymptotically equivalent Gaussian experi-

ment. The corresponding local experiment G0;nf0 is generated by the Gaussian observations in

discrete time

Yi = f(ti) + I (f0(ti))
�

1

2 "i; i = 1; :::; n; f 2 �f0(
n); (3.10)

where "i are standard normal r. v.'s. If we denote by Qf0(ti);f(ti) the Gaussian measure

corresponding to one observation Yi of the form (3.10), i. e. the Gaussian measure on real

line with mean f(ti) and variance I (f0(ti))
�1
; then G0;nf0 can be de�ned as

G0;nf0 =
�
R
n
;B(Rn);

n
Q
0;n
f0;f

: f 2 �f0(
n)
o�

;

where

Q
0;n
f0;f

= Qf0(t1);f(t1) 
 :::
Qf0(tn);f(tn); f 2 �f0(
n): (3.11)

Theorem 3.2 Assume that � >
1
2
: Then the experiments Enf0 and G0;nf0 are asymptotically

equivalent uniformly over f0 in �: Moreover

sup
f02�

�2
�
Enf0 ;G

0;n
f0

�
� c1n

�
2��1

2�+1 (log n)
14�+5

2�+1 ;

where c1 is a constant depending only on Imin; Imax; "0; L; �:

It is easy to see that Theorem 3.1 is a consequence of Theorem 3.2 in view of results of

Brown and Low [5]. Although the rate argument is not developed there, it can easily be

made explicit.

3.3 Variance-stable form of the local approximation

Generally speaking there are no reasons to assume that the center of the neighborhood �f0(
n)

is known to a statistician doing nonparametric inference. That is why sometimes we would

prefer to have another form of the asymptotically equivalent Gaussian experiment Gnf0 ; in
which the expression I(f0(t)) does not appear. It turns out that such a form of the Gaussian

accompanying experiment does exist. We will call it variance-stable form, since it involves

the variance-stabilizing transformation pertaining to the exponential family. To introduce it

we need some notations.

Let as before V (�) be the cumulant generating function associated with the exponential

experiment E = (X;B(X); fP� : � 2 �g) : Put for brevity b(�) = V
0(�); � 2 �: It follows from

the assumption (2.6) that b(�) is an increasing di�erentiable function on the open interval

�: Denote by � the range of b(�); i. e. � = fb(�) : � 2 �g : It is clear that � is also an open

interval in R: Let a(�); � 2 � be the inverse of b(�); � 2 �; i. e.

a(�) = inf f� 2 � : b(�) > �g ; � 2 �;

which obviously is an increasing di�erentiable function on �:
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Another equivalent way to de�ne a(�) would be to put a(�) = T
0(�); where T (�) is the

Legendre transformation (or the rate function) of the function V (�) :

T (�) = inf f�� � V (�) : � 2 �g :

It is also easy to see that a(�) satis�es the equation

a
0(�) = I(a(�))�1; � 2 �: (3.12)

Let F (�) be any function on �; having the property

F
0(�) =

p
a0(�); � 2 �: (3.13)

The relations (3.12) and (3.13) show that F (�); � 2 � coincides with the variance-stabilizing

transformation de�ned in Section 2.2. The functions b(�) : �! � and F (�) : �! R de�ne

a transformation of � into the real line as follows

�(�) = F (b(�)) : �! R: (3.14)

Let bGnf0 be the Gaussian experiment generated by observations

dbY n
t = � (f(t)) dt+

1p
n
dWt; t 2 [0; 1]; f 2 �f0(
n); (3.15)

i. e.

bGnf0 = �C[0;1];B(C[0;1]);
n bQn

f : f 2 �f0(
n)
o�

;

where bQn
f is the Gaussian shift measure on

�
C[0;1];B(C[0;1])

�
induced by the observations

(bY n
t )0�t�1 determined by (3.15). Let Gnf0 be the Gaussian experiment de�ned in (3.8) and

(3.9).

Theorem 3.3 Let � >
1
2
: Then the experiments Gnf0 and bGnf0 are asymptotically equivalent

uniformly in f0 2 �: Moreover the Le Cam distance between Gnf0 and bGnf0 satis�es

sup
f02�

�2
�
Gnf0 ; bGnf0� � c1n

�
2��1

2�+1 (log n)
4�

2�+1 ;

where c1 is a constant depending only on Imax and "0:

As an immediate consequence of Theorems 3.1 and 3.3 we get the following result.

Theorem 3.4 Let � >
1
2
: Then the experiments Enf0 and bGnf0 are asymptotically equivalent

uniformly in f0 2 � and the Le Cam distance between Enf0 and bGnf0 satis�es

sup
f02�

�2
�
Enf0 ; bGnf0� � c1n

�
2��1

2�+1 (log n)
14�+5

2�+1 ;

where c1 is a constant depending only on Imax; Imin; "0; L; �:
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We turn to the discrete version of the asymptotically equivalent Gaussian experiment.

The local experiment bG0;nf0 is generated by the Gaussian observations in discrete time

Yi = � (f(ti)) + "i; f 2 �f0(
n); i = 1; :::; n; (3.16)

where "i are standard normal r. v.'s. If we denote by bQf(ti) the Gaussian measure corre-

sponding to one observation Yi of the form (3.16), i. e. the Gaussian measure on the real line

with mean � (f(ti)) and variance 1; then bG0;nf0 can be de�ned as

bG0;nf0 =
�
R
n
;B(Rn);

n bQ0;nf : f 2 �f0(
n)
o�

;

where bQ0;nf = bQf(t1) 
 :::
 bQf(tn); f 2 �f0(
n):

Theorem 3.5 Assume that � >
1
2
: Then the experiments Enf0 and bG0;nf0 are asymptotically

equivalent uniformly over f0 in �: Moreover

sup
f02�

�2
�
Enf0 ; bG0;nf0 � � c1n

�
2��1

2�+1 (log n)
14�+5

2�+1 ;

where c1 is a constant depending only on Imin; Imax; "0; L; �:

In the above theorems the initial exponential experiment E which generates Enf0 ; is assumed
to be in its canonical form. The variance-stable Gaussian approximation appears in an

equivalent but a little more pleasant form (as we will see in Section 4) if the experiment E
is naturally parametrized, i. e. if E given in its canonical form by (2.1) is reparametrized by

means of the one-to-one map � = b(�) : �0 ! �0: Introduce the set of functions

� = fg = b � f : f 2 �g
and for any g0 2 � the neighborhoods

�g0(
n) =
�
g 2 � : kg � g0k1 � c0
n

	
;

with some constant c0 depending Imax; "0: Let Eng0 be the corresponding nonparametric prod-
uct experiment, de�ned analogously to (3.6) and (3.3):

Eng0 =
�
X

n
;B(Xn);

�
P
n
g : g 2 �g0(
n)

	�
;

with P
n
g = P

n
b�f ; where P

n
f ; with f = a � g is the product measure de�ned by (3.3). The

accompanying Gaussian experiment Gng0 is de�ned by the observations

dY
n
t = F (g(t)) +

1p
n
Wt; t 2 [0; 1]; g 2 �g0(
n):

Theorem 3.6 Let � >
1
2
: Then the experiments Eng0 and Gng0 are asymptotically equivalent

uniformly in g0 2 � and the Le Cam distance between Eng0 and Gng0 satis�es

sup
g02�

�2
�Eng0 ;Gng0� � c1n

�
2��1

2�+1 (logn)
14�+5

2�+1 ;

where c1 is a constant depending only on Imax; Imin; "0; L; �; c0:

The discrete version of this theorem is straightforward.
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3.4 Local experiments: almost n�1=2- neighborhoods

It turns out that the key point in the study of asymptotic equivalence of local experiments

is the behavior of its fragments over shrinking time intervals of length

�n = 

1=�
n = �

1=�
0 (n= log n)

�
1

2�+1 :

After a rescaling we arrive at local experiments parametrized by functions f of the form

f = f0 + 

�

ng; where g 2 � and



�

n = �
�

0(n= log n)
�

1

2 ; (3.17)

with some ��0 > 0: We will present the corresponding results since they are of independent

interest. Before stating these results we introduce the necessary notations.

Let f0 2 �: For any g 2 � put

P
n
f0;g = P

n
f0+
�ng

and consider the local experiment

E�;nf0
=
�
X

n
;B(Xn);

�
P
n
f0;g : g 2 �

	�
: (3.18)

In the same way we introduce the accompanying sequence of Gaussian experiments:

G�;nf0 =
�
C
n
[0;1];B(Cn

[0;1]);
n
Q
�;n
f0;g

: g 2 �
o�

;

where

Q
�;n
f0;g

= Q
n
f0;f0+
�ng

;

with Qn
f0;f

from (3.9).

Theorem 3.7 Assume that � > 1
2
: Then the experiments E�;nf0

and G�;nf0 are asymptotically

equivalent uniformly over f0 in �: Moreover

sup
f02�

�2
�
E�;nf0

;G�;nf0
�
� c1n

�1(log n)7;

where c1 is a constant depending only on Imin; Imax; "0; L; �:

Let G0;�;nf0
be the corresponding local experiment generated by the Gaussian observations

in discrete time Yi; i = 1; :::; n de�ned by (3.10) with f = f0+

�

ng; g 2 �. More precisely, let

Q
0;�;n
f0;g

= Q
0;n
f0;f0+
�ng

with Q
0;n
f0;f

from (3.11) and set

G0;�;nf0
=
�
R
n
;B(Rn);

n
Q
0;�;n
f0;g

: g 2 �
o�

: (3.19)

Theorem 3.8 Assume that � > 1
2
: Then the experiments E�;nf0

and G0;�;nf0
are asymptotically

equivalent uniformly over f0 in �: Moreover

sup
f02�

�2(E�;nf0
;G0;�;nf0

) � c1n
�1(log n)7;

where c1 is a constant depending only on Imin; Imax; "0; L; �:
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3.5 Global experiments

The variance-stable form of the accompanying local Gaussian experiments allows to construct

an accompanying global Gaussian experiment. The main idea is to substitute a preliminary

estimator satisfying (3.5) for the unknown function f0 around which the local experiment is

built. Such an estimator is provided by Lemma 6.1 (see Section 6.1). In the variance-stable

form of the local experiment given by (3.15) (or (3.16) in the discrete case) the unknown

function f0 does not show up in the distributions themselves, but appears only as a center of

the parametric neighborhood. This will imply in the sequel that the globalized experiment

does not depend on the speci�c preliminary estimator used; thus a convenient closed form

global approximation for the original regression experiment En can be obtained.

Let �(�) : �0 ! R be the transformation given by (3.14). Let the global Gaussian

experiment Gn be de�ned as

Gn =
�
R
n
;B(Rn);

n bQn
f : f 2 �

o�
;

where bQn
f is the Gaussian shift measure induced by the observations

dY
n
t = � (f(t)) dt+

1p
n
dWt; f 2 �; t 2 [0; 1]:

Theorem 3.9 Let � > 1
2
: Then the global experiments En and Gn are asymptotically equiv-

alent: �(En;Gn)! 0 as n!1: Moreover for � 2 (1
2
; 1)

�2(En;Gn) � cn
�

2��1

2�+1 (log n)
14�+5

2�+1 ;

where c is a constant depending only on Imax; Imin; �0; L; �:

As a particular case this theorem gives us the main result in Brown and Low [5]. We will

discuss the case of normal observations and other examples of interest in the next section.

We present also a discrete version of the asymptotically equivalent global Gaussian exper-

iment in its variance-stable form. The Gaussian experiment G0;n is generated by the Gaussian

observations in discrete time

Yi = � (f(ti)) + "i; f 2 �; i = 1; :::; n (3.20)

where "i are standard normal r.v's. If we denote by bQf(ti) the Gaussian measure corresponding

to one observation Yi of the form (3.20), i = 1; :::; n; then G0;n can be de�ned as

G0;n =
�
R
n
;B(Rn);

n bQ0;nf : f 2 �
o�

; (3.21)

where bQ0;nf = bQf(t1) 
 :::
 bQf(tn); f 2 �: (3.22)

Theorem 3.10 Let � > 1
2
: Then the global experiments En and G0;n are asymptotically equiv-

alent: �(En;G0;n)! 0 as n!1: Moreover for � 2 (1
2
; 1)

�2(En;Gn) � cn
�

2��1

2�+1 (log n)
14�+5

2�+1 ;

where c is a constant depending only on Imax; Imin; �0; L; �:

The case when E is naturally parametrized is similar to Theorem 3.6.

The proofs for the passage from local to global are in Section 6.
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4 Examples and applications

The most striking form for the asymptotically equivalent Gaussian approximation in the

following examples will be obtained if the initial exponential experiment E is taken under

its natural parametrization. By a natural parametrization we mean the following. Let P =

fP� : � 2 �g be an exponential family on (X;B(X); �) in the canonical form, i. e. whose

Radon-Nikodym derivatives dP�=d� are de�ned by (2.1). Let V (�) be its cumulant generating

function. It is clear (see also Section 3.3) that b(�) = V
0(�) is a one-to-one map from �0 to

�0: If we reparametrize the family P by means of the map b(�); we will call the family P
naturally parametrized. Indeed the parameter � = b(�) is the "natural" parameter in many

speci�c families: mean or variance for normal distributions, intensity for exponential, gamma,

or Poisson distributions, probability of success for Bernoully and binomial distributions etc. .

4.1 Gaussian observations: unknown mean

Let P = fP� : � 2 �g be the family of normal distributions on the real line X = R with mean

� 2 � = R and variance 1: The normal distribution P�(dx) can be written

P�(dx) = e
�x�V (�)

�(dx);

�(dx) being the standard normal distribution

�(dx) =
1p
2�
e
�
x
2

2 dx

and U(x) = x; V (�) = �
2
=2: Then the corresponding Fisher information I(�) = V

00(�) � 1;

so the condition (2.7) holds true with �0 = R; Imax = Imin = 1; "0 > 0: Hence the parameter

set � coincides with the H�older ball H(�;L):
Assume that our observations Xi = X(�i); i = 1; :::; n are normal with mean �i = f(ti);

ti = i=n and variance 1; where the function f is in the H�older ball � = H(�;L): Let us
remark that these observations correspond to the regression model

Xi = f(ti) + "i; i = 1; ::::; n;

with standard normal r. v.'s "i; i = 1; :::; n:

Let Enf0 be the local experiment generated by the sequence of observations Xi; i = 1; :::; n;

with f 2 �f0(
n); for some f0 2 �: According to Theorem 3.1 for any � > 1
2
the experiment

Enf0 is asymptotically equivalent to the local experiment Gnf0 generated by the observations

dY
n
t = f(t)dt+

1p
n
dWt; t 2 [0; 1]; (4.1)

where f 2 �f0(
n):

The global form of the asymptotically equivalent Gaussian experiment is given also by

(4.1) but with f 2 �: Thus we recover the main result of Brown and Low [5].

4.2 Gaussian observations: unknown variance

Let P = fP� : � 2 �g be the family of normal distributions on the real line X = R with mean

0 and variance � 2 � � [0;1): The normal distribution P�(dx) has the form

P�(dx) =
1p
2��

expf�x
2

2�
gdx: (4.2)
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After the reparametrization � = �1=�; � 2 � = (�1; 0]; we obtain the linearly indexed

exponential model

P�(dx) = expf�U(x)� V (�)g�(dx); (4.3)

where �(dx) is the Lebesgue measure on the real line and U(x) = x
2
=2; V (�) = �1

2
log(� �

2� ):

The corresponding Fisher information is I(�) = V
00(�) = 1

2
�
�2
; so condition (2.7) holds true

with �0 = [�min; �max] for some constants �1 < �min < �max < 0 and "0 small enough.

Then the parameter set � contains all the functions f(t) from the H�older ball H(�; L); which
satisfy �min � f(t) � �max:

Consider a sequence of normal observations

Xi = X(�i); �i = f(ti); i = 1; :::; n; (4.4)

with ti = i=n; where the unknown function f is in the set �: Let f0(t) 2 � and let Enf0 be the
local experiment generated by the observations (4.4). Then by Theorem 3.1 the experiment

Enf0 is asymptotically equivalent to the Gaussian experiment Gnf0 generated by the observations

dY
n
t = f(t)dt�

p
2p
n
f0(t)dWt; t 2 [0; 1];

for f 2 �f0(
n); W being the standard Wiener process.

For the variance-stable form we easily compute b(�) = V
0(�) = � 1

2� and F (�) = 2�1=2 log �:

Thus by Theorem 3.3 the variance-stable accompanying Gaussian experiment is given by

dY
n
t =

1p
2
log

�
� 1

2f(t)

�
dt� 1p

n
dWt; t 2 [0; 1]: (4.5)

Note that in the above formula f(t) andf0(t) are less than �max < 0:

A more compact form for the accompanying Gaussian experiments is obtained using the

natural parametrization. If we reparametrize the exponential family (4.3) by means of the

map b(�) = � 1
2� ; we recover its original form given by (4.2). Let � = �(�;L) be the set

of all functions g from the H�older ball H(�;L); which satisfy �min � g(t) � �max; where

0 < �min < �max < 1: For any function g0 2 � let �g0(
n) be its neighborhood of radius


n (see (3.4)) in �: Denote by Eng0 the local experiment generated by the observations (4.4)

with f(t) = �1=g(t); g 2 �g0(
n): This experiment can be regarded as generated by the

observations

Xi =
p
g(ti)"i; t 2 [0; 1];

with g 2 �g0(
n); where "i are standard normal r. v.'s. Then for any � > 1
2
the experiment

Eng0 is asymptotically equivalent to the local Gaussian experiment generated by observations

dY
n
t = � 1

g(t)
dt+

p
2p

ng0(t)
dWt; 0 � t � 1;

with g 2 �g0(
n); W being standard Wiener process on (C[0;1];B(C[0;1]); QW ):

The corresponding variance-stable form is determined by the equation (cf. Theorem 3.6)

dY
n
t =

1p
2
log g(t)dt+

1p
n
dWt; t 2 [0; 1]: (4.6)

Global variants of the accompanying Gaussian experiments are also given by (4.5) and (4.6),

with extended parameter space.
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4.3 Poisson observations

Let X = f0; 1; :::g and �(dx) be the �-�nite measure on X assigning 1=x! to each point x 2 X:
Let us consider the case when P is the family of Poisson distributions P�(x); x 2 X with

intensity � 2 (0;1): After the reparametrization � = log �; � 2 � = (�1;1); we get the

canonical form

P�(dx) = e
�x�V (�)

�(dx);

with V (�) = e
�
: The corresponding Fisher information is I(�) = e

�
: It is clear that condition

(2.7) holds true with �0 = [�min; �max]; where �1 < �min < �max <1: Then the parameter

set � contains all the functions f from the H�older ball H(�;L); which satisfy �min � f(t) �
�max:

Consider a sequence of Poisson observations

Xi = X(�i); �i = f(ti); i = 1; :::; n; (4.7)

with ti = i=n; where the unknown function f is assumed to be in the set �: Let f0(t) 2 �

and Enf0 be the local experiment generated by the observations (4.7) with f 2 �f0(
n):

Then, according to theorem 3.1, the experiment Enf0 is asymptotically equivalent to the local

Gaussian experiment Gnf0 generated by the observations

dY
n
t = f(t)dt+

1p
n
e
�f0(t)=2dWt; t 2 [0; 1]; (4.8)

where f 2 �f0(
n):

A variance-stable form of the observations (4.8) can be obtained if we note that b(�) = e
�

and F (�) = 2
p
�: In view of theorem 3.3 the experiment Gnf0 is asymptotically equivalent to

the experiment bGnf0 given by observations

dbY n
t = 2

p
log f(t)dt+

1p
n
dWt; t 2 [0; 1]; (4.9)

where f 2 �f0(
n):

In terms of the original parameter � = e
� these results can be formulated as follows.

Let � = �(�;L) be the set of all functions g from the H�older ball H(�;L); which satisfy

�min � g(t) � �max; where 0 < �min < �max <1: For any function g0 2 � let �g0(
n) be its

neighborhood of radius 
n (see (3.4)) in �: Denote by Eng0 the local experiment generated by

Poisson observations

Xi = X(�i); i = 1; :::; n;

with unknown intensities �i = g(ti); where g 2 �
n
g0(
n): Then for any � >

1
2
the exper-

iment Eng0 is asymptotically equivalent to the local Gaussian experiment generated by the

observations

dY
n
t = log g(t)dt+

1p
ng0(t)

dWt; t 2 [0; 1];

where g 2 �g0(
n); W being the standard Wiener process on (C[0;1];B(C[0;1]); QW ):

The variance-stable result is furnished by theorem 3.6: an accompanying Gaussian exper-

iment (local or global) is also given by the equation

dY
n
t = 2

p
g(t)dt+

1p
n
dWt; t 2 [0; 1]:
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4.4 Bernoulli observations

Let P be the family of Bernoulli distributions P�(x); x 2 X = f0; 1g with P�(1) = �;

P�(0) = 1 � �; � 2 (0; 1): After the reparametrization � = log �
1�� ; � 2 � = (�1;1) we

arrive at the following canonical form

P�(x) = e
�x�V (�)

; x 2 X;

where V (�) = log(1 + e
�): The corresponding Fisher information is I(�) = e

�
=(1 + e

�)2: One

can easily check that the condition (2.7) holds true with �0 = [�min; �max]; where �1 <

�min < �max <1: Then the parameter set � contains all the functions f(t) from the H�older

ball H(�;L); which satisfy �min � f(t) � �max:

Consider a sequence of Bernoulli observations

Xi = X(�i); �i = f(ti); i = 1; :::; n (4.10)

with ti = i=n; where the unknown function f is in the parameter set �: Let f0(t) 2 �

and Enf0 be the local experiment generated by the observations (4.10), with f 2 �f0(
n):

Then, according to Theorem 3.1, the experiment Enf0 is asymptotically equivalent to the local
Gaussian experiment Gnf0 generated by the observations

dY
n
t = f(t)dt+

1p
n

1 + e
f0(t)

ef0(t)=2
dWt; t 2 [0; 1];

with f 2 �f0(
n):

For the variance-stable form we compute b(�) = e
�
=(1+e�) and F (�) = 2 arcsin

p
�: Then

by Theorem 3.3 the variance-stable accompanying Gaussian experiment is associated with

the equation

dY
n
t = 2arcsin

s
ef(t)

1 + ef(t)
dt+

1p
n
dWt; t 2 [0; 1]:

In term of the original parameter � = e
�
=(1 + e

�) this result can be formulated in the

following way. Let � = �(�;L) be the set of all functions g from the H�older ball H(�; L);
which satisfy �min � g(t) � �max; where 0 < �min < �max < 1: For any function g0 2 � let

�g0(
n) be its neighborhood of radius 
n (see (3.4)) in �: Denote by E
n
g0 the local experiment

generated by the observations (4.10) with f(t) = log
g(t)

1�g(t) ; g 2 �g0(
n): Then for any � > 1
2

the experiment Eng0 is asymptotically equivalent to the local Gaussian experiment generated

by the observations

dY
n
t = log

g(t)

1� g(t)
dt+

1p
ng0(t)(1� g0(t))

dWt; t 2 [0; 1];

where g 2 �g0(
n); W being the standard Wiener process on (C[0;1];B(C[0;1]); QW ):

The variance-stable form of the Gaussian accompanying experiment parametrized by g is

(according to Theorem 3.6)

dY
n
t = 2arcsin

p
g(t) dt+

1p
n
dWt; t 2 [0; 1]:

The global variants are straightforward.
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4.5 Exponential observations

Let X = (0;1) and �(dx) be the Lebesgue measure on X: Let P be the family of exponential

distributions P�(dx); on X with parameter � 2 � = (�1; 0)

P�(x) = e
�x�V (�)

�(dx);

where V (�) = log �: The corresponding Fisher information is I(�) = �
�2
; so condition (2.7)

holds true with �0 = [�min; �max] for some constants �1 < �min < �max < 0 and "0 small

enough. Then the parameter set � contains all the functions f(t) from the H�older ball

H(�; L); which satisfy �min � f(t) � �max:

Consider a sequence of exponential observations

Xi = X(�i); �i = f(ti); i = 1; :::; n (4.11)

with ti = i=n; where unknown function f is in the set �: Let f0 2 � and Enf0 be the local

experiment generated by the observations (4.11). Then, by Theorem 3.1, the experiment Enf0
is asymptotically equivalent to the local Gaussian experiment Gnf0 generated by observations

dY
n
t = f(t)dt+

1p
n
f0(t)dWt; t 2 [0; 1]; f 2 �f0(
n):

A variance-stable form for the global experiment can be also obtained. For this we remark

that b(�) = �� and F (�) = log �: Thus by Theorem 3.3 a variance-stable form (local or global)

is given by the equation

dY
n
t = log (�f(t)) dt+ 1p

n
dWt; t 2 [0; 1]:

4.6 Application to the density model

Assume that we observe a sequence of i. i. d. r. v.'s Xi; i = 1; :::; n; each with density f 2 �;

where the set � is as in the previous section. By a poissonization technique one can show

that this experiment is asymptotically equivalent to observing a sequence of Poisson r. v.'s

Xi; i = 1; :::; n with intensities f(ti); i = 1; :::; n respectively, where ti =
i
n ; i = 1; :::; n is the

uniform grid on the unit interval [0; 1]: We skip this technical step, since its proof is similar

to that given in Nussbaum [31], Section 4.

The conclusion we draw from this fact and from the example in Section 4.3 is that esti-

mating a density f(t) from i. i. d. data is asymptotically equivalent to estimating 2 times

the square root of f(t) in white noise. Thus we recover the main result of [31].

5 Local approximation

5.1 Bounds for the Hellinger distance

Let f0 2 � and let 
n be the nonparametric shrinking rate de�ned by (3.4). Recall brie
y

the setting from Section 3.1. Put ti =
i
n ; i = 1; :::; n: Consider the local experiment

Enf0 =
�
X

n
;B(Xn);

�
P
n
f : f 2 �f0(
n)

	�
; (5.1)
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generated by the discrete observations

Xi = X(f(ti)); i = 1; :::; n; f 2 �f0(
n); (5.2)

with distributions in the exponential family P: Its accompanying local Gaussian experiment

G0;nf0 =
�
R
n
;B(Rn);

n
Q
0;n
f0;f

: f 2 �f0(
n)
o�

; (5.3)

is generated by the observations in discrete time

Yi = f(ti) + I (f0(ti))
�

1

2 "i; i = 1; :::; n; f 2 �f0(
n); (5.4)

with standard normal r. v.'s "i:

Theorem 5.1 Assume that � > 1
2
: For any f0 2 � and any n = 1; 2; ::: experiments Enf0 and

G0;nf0 can be constructed on the measurable space (Rn
;B(Rn)) such that

sup
f2�f0

(
n)
H

2(P n
f ; Q

0;n
f0;f

) � cn
�

2��1

2�+1 (log n)
14�+5

2�+1 ;

where c is a constant depending only on Imax; Imin; "0; L; �:

For the proof we make use of the following assertion, which is also of independent interest.

This theorem corresponds to the local experiments obtained by looking only at observations

from a shrinking time interval, which after a rescaling leads to neighborhoods of the "almost

n
�1=2" size. Let 
�n be the shrinking rate de�ned by (3.17), with constant ��0 being arbitrary

positive. Consider the local experiment E�;nf0
de�ned in Section 3.4 obtained by localizing:

f = f0 + 

�

ng and indexing by g 2 � (cf. (3.18)). Consider also the discrete Gaussian

accompanying experiment G0;�;nf0
from Section 3.4, relation (3.19).

Theorem 5.2 Let � > 1
2
: For any f0 2 � local experiments E�;nf0

and G0;�;nf0
can be constructed

on the same measurable space (Rn
;B(Rn)) such that

sup
g2�

H
2(P

�;n
f0;g

; Q
0;�;n
f0;g

) � cn
�1(logn)7;

where c is a constant depending only on Imax; Imin; "0; �
�

0; L:

Remark 5.1 Theorems 3.2 and 3.8 follow immediately from Theorems 5.1 and 5.2 respec-

tively, by (2.14).

The construction for Theorem 5.2 heavily relies upon the results on strong approximation

in Section 2.4 and is given in the next Section 5.2. The proof of Theorem 5.2 is presented in

Section 5.3.

Theorem 5.1 is a consequence of Theorem 5.2. Its proof is presented in Section 5.4.
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5.2 Construction of a local experiment

The construction on the same probability space of a Gaussian experiment and of an expo-

nential one is particularly simple in view of the convenient form of the likelihood ratio of the

latter (cf. (3.7)). This form allows to employ the strong approximation result of Section 2.4.

We proceed to describe formally this construction.

Let f0 be a �xed function in the parameter set �: Consider the local experiments E�;nf0

and G0;�;nf0
: Recall that the shrinking rate 
�n is de�ned by



�

n = �
�

0(n= log n)
�

1

2 ;

where ��0 is arbitrary positive. Since f0 is considered �xed, for the sake of brevity we will drop

the index f0 from the notations for measures P n
f0;g

and Q
0;�;n
f0;g

; so we will write ~P n
g = P

n
f0;g

and ~Qn
g = Q

0;�;n
f0;g

. The corresponding expectations are denoted by E ~Pn
g

and E ~Qn
g

respectively.

Given a function f = f0+

�

ng; g 2 �; we consider the likelihood ratio of the local experiment

E�;nf0
; which according to (3.7) is

d ~P n
g

d ~P n
0

= exp

(


�

n

nX
i=1

g(ti)U(Xi)�
nX
i=1

(V (f(ti))� V (f0(ti)))

)
:

Denote by U(Xi) the r. v. U(Xi) centered under the measure ~P n
0 ; i. e.

U(Xi) = U(Xi)� V
0(f0);

so that by (2.2) and (2.3) we have

E ~Pn

0

U(Xi) = 0; E ~Pn

0

U(Xi)
2 = I(f0(ti)) = V

00(f0(ti)):

The corresponding local Gaussian experiment G0;�;nf0
has likelihood ratio

d ~Qn
g

d ~Qn
0

= exp

(


�

n

nX
i=1

g(ti)I(f(ti))
1=2
"i �

1

2
(
�n)

2
nX
i=1

g(ti)
2
I(f0(ti))

)
; (5.5)

with f = f0+ 

�

ng; g 2 �: Put P = ~Qn
0 and consider the probability space (Rn

;B(Rn);P) on
which "i; i = 1; :::; n is a sequence of i. i. d. standard normal r. v.'s. Put Ni = I(f(ti))

1=2
"i:

Thus we are given a sequence of independent normal r. v.'s Ni; i = 1; :::; n with zero means

and variances EN2
i = I(f0(ti)); for i = 1; :::; n: Because of condition (2.7) and Proposition 2.1

we can apply Theorem 2.1, according to which on this probability space there is a sequence

of independent r. v.'s eUi i = 1; :::; n such that eU d
= U(Xi) for any i = 1; :::; n and for any

function g 2 H(1
2
; L)

P
�jSn(g)j � x(log n)2

� � c1 exp f�c2xg ; x � 0; (5.6)

where

Sn(g) =

nX
i=1

g(ti)
�eUi �Ni

�
;

and c1; c2 are constants depending only on Imin; Imax; "0; L:
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Now we proceed to construct a version of the likelihood process for E�;nf0
on the probability

space (Rn
;B(Rn);P): For this de�ne the experiment F�;nf0

as follows:

F�;nf0
=
�
R
n
;B(Rn);

�
F
n
g : g 2 �

	�
;

where F n
g is the probability measure on the measurable space (Rn

;B(Rn)) de�ned for any

g 2 � by the equality f = f0 + 

�

ng

dF
n
g

dP
= exp

(


�

n

nX
i=1

g(ti)eUi � nX
i=1

�
V (f(ti))� V (f0(ti))� 


�

ng(ti)V
0(f0(ti))

�)
(5.7)

where f = f0 + 

�

ng ; then F
n
0 = P:

Let us remark that since the sequences eUi; i = 1; :::; n and U(Xi); i = 1; :::; n have the

same joint distributions and the su�cient statistic in the experiment E�;nf0
is

nX
i=1

g(ti)U(Xi);

the experiments E�;nf0
and F�;nf0

are equivalent. Therefore we will assume in the sequel thateUi = U(Xi); for i = 1; :::; n and E�;nf0
= F�;nf0

: In particular ~P n
g = F

n
g for any g 2 � and

~P n
0 = P = ~Qn

0 :

5.3 Proof of local equivalence: almost n�1=2- neighborhoods

In this section we present a proof of Theorem 5.2. First recall that according to the last remark

in the previous section we consider the experiment E�;nf0
to be a version of the original one

constructed such that its likelihood process is on a common probability space (Rn
;B(Rn);P)

with the Gaussian likelihood process for G0;�;nf0
: Recall also that the "central" measures (i. e.

those with g = 0) in the local experiments E�;nf0
and G0;�;nf0

coincide with the measure P.
Let f0 2 � and f = f0 + 


�

ng; g 2 �: Note that the function g belongs also to the H�older

ball H(1
2
; L) since � � 1

2
: Then by taking x = c3

c2
log n in (5.6) we arrive at

P(jSn(g)j �
c3

c2

n(log n)

3) � c1 expf�c3 logng; (5.8)

where c1; c2 are the same as in (5.6) and c3 is a "free" constant whose value will be chosen

later. Recall that according to our agreement eUi = U(Xi); i = 1; :::; n and therefore

Sn(g) =

nX
i=1

g(ti)(U (Xi)�Ni):

What we have to prove is that the Hellinger distance between the measures ~P n
g and ~Qn

g

satis�es

H
2
�
~P n
g ;

~Qn
g

�
� c4n

�1(log n)7; (5.9)

for some constant c4 depending only on Imax; Imin; "0; �
�

0; L:

Well known properties of the Hellinger distance (see (2.12) and (2.15)) imply

H
2
�
~P n
g ;

~Qn
g

�
=

1

2
EP

�
�1(g)

1

2 � �2(g)
1

2

�2
;
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where we denote for brevity

�1(g) =
d ~P n

g

dP
; �2(g) =

d ~Qn
g

dP
:

Put un =
c3
c2

n(log n)

3
: Then obviously

H
2
�
~P n
g ;

~Qn
g

�
� J1 + J2;

where (1(A) being the indicator for event A)

J1 =
1

2
EP1 (jSn(g)j < un)

�
�1(g)

1

2 � �2(g)
1

2

�2
;

J2 =
1

2
EP1 (jSn(g)j � un)

�
�1(g)

1

2 � �2(g)
1

2

�2
:

First we give an estimate for J1. Changing the probability measure we obtain

J1 =
1

2
E ~Qn

g

1 (jSn(g)j � un)
�
�2(g)

1

2�1(g)�
1

2 � 1
�2
:

According to (5.7) and (5.5)

�1(g) = exp

(


�

n

nX
i=1

g(ti)U(Xi)�
nX
i=1

(V (f(ti))� V (f0(ti)))

)
(5.10)

and

�2(g) = exp

(


�

n

nX
i=1

g(ti)Ni �
1

2
(
�n)

2
nX
i=1

g(ti)
2
I(f0(ti))

)
:

This gives
�2(g)

�1(g)
= exp f�Sn(f) +R(f0; f)g ;

where

R(f0; f) =

nX
i=1

fV (f(ti))� V (f0(ti))� 

�

ng(ti)V
0(f0(ti))

�1

2
(
�n)

2
g(ti)

2
V
00(f0(ti))g:

A three term Taylor expansion yields

jR(f0; f)j �
1

6
(
�n)

3
nX
i=1

jg(ti)j3
���V 000( efi)��� ;

with efi = f0(ti)+�i

�

ng(ti); 0 � �i � 1: Since jjgjj1 � L and
���V 000( efi)��� � c5; with c5 depending

only on Imax; "0 (see Proposition 2.2), it is clear that

jR(f0; f)j �
1

6
L
3
c5(


�

n)
3
n � c6n

�
1

2 (log n)
3

2 ;
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with c6 depending on c5; L; �
�

0 and for n large enough. This yields the following estimate:

J1 =
1

2
EQn

f
1(jSn(f)j � un)

�
exp

�
�1

2
Sn(f) +

1

2
R(f0; f)

�
� 1

�2

� c7 (jSn(f)j+ jR(f0; f)j)2

� c7

�
c2

c1
n
�

1

2 (log n)
7

2 + c6n
�

1

2 (log n)
3

2

�2

;

with c7 depending on c2; c3; c6: Hence with some c8 depending on c2; c3; c6; c7

J1 � c7n
�1(log n)7: (5.11)

Now we proceed to estimate J2: The H�older inequality implies

J2 �
1

2
J

1

2

3 J

1

2

4 ; (5.12)

where by (5.8)

J3 = P(jSn(f)j � un) � c1 expf�c3 logng; (5.13)

for n large enough, and

J4 = EP

�
�1(g)

1

2 +�2(g)
1

2

�4
: (5.14)

Note that the constant c3 in (5.13) is "free". We will show that J4 is bounded from above by

32 expfc9 log ng; with some constant c9 which we calculate below. Indeed from (5.14) we get

J4 � 16
�
EP(�

1(g))2 +EP(�
2(g))2

�
: (5.15)

First we give a bound for EP(�
1(g))2: It follows from (5.10) that

EP(�
1(g))2 = E expf2
�n

nX
i=1

g(ti)U (Xi)� 2R0(f0; f)g;

where

R0(f0; f) =

nX
i=1

�
V (f(ti))� V (f0(ti))� 


�

ng(ti)V
0(f0(ti))

	
:

The estimate for the remainder R0(f0; f) is straightforward by Taylor's formula:

jR0(f0; f)j �
1

2
(
�n)

2
nX
i=1

jg(ti)j2
���V 00( efi)��� � 1

2
L
2
Imax(


�

n)
2
n;

where efi = f(ti) + �i

�

ng(ti); 0 � �i � 1: Since U(Xi); i = 1; :::; n are independent r. v.'s, by

using Proposition 2.1

EP(�
1(g))2 = exp f�2R0(f0; f)g

nY
i=1

EP exp
�
2
�ng(ti)U(Xi)

	
� exp f2jR0(f0; f)jg

nY
i=1

exp
�
2(
�n)

2
g(ti)

2
Imax

	
� exp

�
3L2

Imax(

�

n)
2
n
	 � exp fc9 log ng ;
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where c9 depends on Imax; L; �
�

0: The bound EP(�
1(g))2 � expfc9 log ng can be proved

similarly. These bounds and (5.15) yield

J4 � 32 exp fc9 logng : (5.16)

Using the bounds for J3 and J4 given by (5.13) and (5.16) in (5.12) we obtain

J2 � 2
p
2c1 exp

�
�1

2
(c3 � c9) log n

�
from which, taking c3 = c9 + 2; we get

J2 � 2
p
2c1=n � 2

p
2c1n

�1(logn)7: (5.17)

The desired inequality (5.9) follows from (5.11) and (5.17).

5.4 Proof of local equivalence: nonparametric neighborhoods

We present here a proof for Theorem 5.1. Before the rigorous argument let us brie
y ex-

pound the main idea. We start by splitting the original local experiment Enf0 into m parts

which correspond to fractions of the observations over shrinking time intervals having length

of order �n = 

1=�
n ; where 
nis the shrinking rate of the neighborhood �f0(
n): One may

call the corresponding experiments doubly local. Denote by nk = O(n�n) the number of

observations (i. e. number of design points ti) in the k-th doubly local experiment. Af-

ter rescaling the latter can be viewed as an experiment on the whole interval [0; 1] over a

shrinking neighborhood of size O(nk= log nk)
�

1

2 : By Theorem 5.2 we can "approximate" this

experiment by a corresponding Gaussian one with a bound for the squared Hellinger distance

between corresponding measures of order O(n�1k (log nk)
7): Further arguments are based on

the crucial inequality (2.13) which is applied to the original (parameter-local) experiment on

the unit interval [0; 1]; construed as a product of the m local doubly local experiments on

the intervals of size �n. Since the Gaussian experiment Gnf0 can be decomposed similarly, we

obtain a bound for the squared Hellinger distance between Enf0 and Gnf0
O(mn�1k (log nk)

7) = O(n��2n (log nk)
7) = o(1);

as n!1; for � > 1
2
; which proves our theorem.

Now we turn to the argument in detail. Let � > 1
2
and f0 2 �: Assume that the shrinking

rate of the neighborhood �f0(
n) is given by


n = �0(n= log n)
�

�

2�+1 ; (5.18)

with some constant �0 depending on �: Put m = [1=�n]; where

�n = (
n)
1

� = �
1=�
0 (n= log n)

�
1

2�+1 : (5.19)

Consider a partition A of the unit interval [0; 1] into intervals Ak = (ak; bk]; k = 1; :::;m of

length 1=m: It is easy to see that for n large enough

1

2�n
� m � 1

�n
: (5.20)

28



Put Ik = fi : ti 2 Akg: Denote by nk the cardinality of Ik; i. e. the number of design points

which fall into the interval Ak; k = 1; :::;m: It is clear that for n large enough

n�n � nk � 2n�n: (5.21)

We particularly point out that (5.18), (5.19), (5.20) and (5.21) imply


n � 

�

n � �
�

0(nk= log nk)
�1=2

; (5.22)

for some constant ��0 depending on �0 and �: Let ak(t) be the linear function which maps

the unit interval [0; 1] onto the interval [ak; bk]; i. e. ak(t) = t=m + ak; t 2 [0; 1]: For any

f 2 �f0(
n) and k = 1; :::;m consider the function fk de�ned on the interval [0; 1] as follows

fk(t) =
(f � f0)(ak(t))


�n

: (5.23)

We will prove that fk 2 �� = �(�;L�); with some L� depending on L and �: Indeed, since

f 2 �f0(
n); then jjfkjj1 � jjf � f0jj1=
�n � 
n=

�

n � 1: On the other hand since f; f0 are

in the H�older ball H(�;L); the function  = f � f0 is also in the H�older ball. Taking into

account (5.19), (5.20) and (5.22) we obtain for any x; y 2 [0; 1]���f ([�])k (x)� fk
([�])(y)

��� = m
�[�]

��� ([�])(ak(x))�  
([�])(ak(y))

��� =
�n
� m

�[�]
L jak(x)� ak(y)j��[�] =
�n

� 2���nL jx� yj��[�] =
�n
= 2�
nL jx� yj��[�] =
�n
� 2�L jx� yj��[�] ;

proving that fk is in the H�older ball �(�;L�) with L� = 2�L:

Let Xk;n = fXi; i 2 Ikg be the fragment of observations fXi; i = 1; :::; ng (de�ned by

(5.2)) associated to the time interval Ak for some k 2 f1; :::;mg. After a rescaling with the

linear function ak(t) these observations can be associated to design points t
k
i =

i
nk
; i = 1; :::; nk

on the unit interval [0; 1]: Let P
n;k
f be the measure on (Rnk ;B(Rnk)) induced by the set of

r. v.'s Xn;k and set P
k;n
f0;g

= P
k;n
f for f = f0 + 


�

ng. For each k 2 f1; :::;mg consider the local
experiment

Ek;nf0
=
�
R
nk ;B(Rnk);

n
P
k;n
f0;g

: g 2 ��
o�

; (5.24)

In the same way introduce the local Gaussian experiment

G0;k;nf0
=
�
R
nk ;B(Rnk);

n
Q
0;k;n
f0;g

: g 2 ��
o�

; (5.25)

generated by the observation fragment Y k;n = fYi; i 2 Ikg ; with Yi de�ned by (3.10). Here

Q
0;k;n
f0;g

is the Gaussian shift measure on (Rnk ;B(Rnk)) induced by the observations Y n;k under

f = f0 + 

�

ng.

According to Theorem 5.2 the experiments Ek;nf0
and G0;k;nf0

can be constructed on the

measurable space (Rnk ;B(Rnk)) such that

sup
g2��

H
2
�
P
k;n
f0;g

; Q
0;k;n
f0;g

�
� c1n

�1
k (lognk)

7
; (5.26)
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with a constant c1 depending on Imax; Imin; "0; �
�

0; L: Now consider the subexperiments of

Ek;nf0
and G0;k;nf0

obtained by setting g = fk; f 2 �f0(
n) in (5.24) and (5.25), where fk is

de�ned by (5.23). Reindex those subexperiments by f 2 �f0(
n) and call them eEk;nf0
; eGk;nf0

respectively. For the respective reindexed measures ~P
k;n
f = P

k;n
f0;fk

and ~Q
0;k;n
f0;f

= Q
0;k;n
f0;fk

we have

as a consequence of (5.26)

sup
f2�f0

(
n)
H

2
�
~P
k;n
f ; ~Q

0;k;n
f0;f

�
� c1n

�1
k (log nk)

7
; (5.27)

since fk 2 �� for any f 2 �f0(
n).

De�ne the experiment Enf0 as

E
n
f0 =

eE1;nf0

 :::
 eEm;n

f0
;

which obviously is (exactly) equivalent to Enf0 de�ned by (5.1), (5.2). The corresponding local
Gaussian experiment Gnf0 de�ned by (5.3), (5.4) is (exactly) equivalent to the experiment

G
n
f0 =

eG1;nf0 
 :::
 eGm;n
f0

:

It remains only to note that P n
f = ~P

1;n
f 
 :::
 ~P

m;n
f and Q

0;n
f0;f

= ~Q
0;1;n
f0;f


 :::
 ~Q
0;m;n
f0;f

and thus,

according to (2.13),

H
2
�
P
n
f ; Q

0;n
f0;f

�
�

mX
i=1

H
2
�
~P
k;n
f ; ~Q

0;k;n
f0;f

�
� mn

�1
k (log nk)

7

� n
�1
�
�2
n (log n)7

� c2n
�

2��1

2�+1 (log n)
14�+5

2�+1 ;

where c2 is a constant depending on Imax; Imin; "0; �; L: This completes the proof of Theorem

5.1.

5.5 Proof of variance-stable form

In this section we present a proof of Theorem 3.3.

As in Section 2.2, set b(t) = V
0(�); � 2 �0: Consider the following experiments: F1;n

f0
generated by observations

dY
1;n
t = (f(t)� f0(t)) dt+

1p
n
I(f0(t))

�1=2
dWt; t 2 [0; 1]; (5.28)

where f 2 �f0(
n); and F2;n
f0

generated by the observations

dY
2;n
t = (b(f(t))� b(f0(t))) I(f0(t))

�1
dt+

1p
n
I(f0(t))

�1=2
dWt; t 2 [0; 1]; (5.29)

where f 2 �f0(
n):
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Proposition 5.1 The experiments F1;n
f0

and F2;n
f0

are asymptotically equivalent. Moreover

�2
�
F1;n
f0
;F2;n

f0

�
� c1n

�
2��1

2�+1 (logn)
4�

2�+1 ;

where c1 is a constant depending only on Imax; Imin and "0:

Proof. By Taylor expansion we have for any � 2 B(�0; "0=2) and � 2 �0

b(�)� b(�0) = (� � �0)b
0(�0) +

1

2
(� � �0)

2
b
00(e�0);

where e�0 = �0 + �(� � �0); 0 � � � 1: According to (2.5) and Proposition 2.2

b
0(�0) = V

00(�0) = I(�0);
���b00(e�0)��� = ���V 000(e�0)��� � c2; (5.30)

with c2 depending only on Imax and "0: Hence, for any f 2 �f0(
n) we obtain with some

j�j � 1

b(f(t))� b(f0(t)) = (f(t)� f0(t)) b
0(f0(t)) + �

c2

2


2
n:

Put for brevity

m1(t) = f(t)� f0(t);

m2(t) = (b(f(t))� b(f0(t))) I(f0(t))
�1
:

Since I(�) � Imin; we have

jm1(t)�m2(t)j � 

2
n

c2

2
I
�1
min:

Let Q
1;n
f0;f

and Q
2;n
f0;f

be the measures induced by observations (5.28) and (5.29) respectively.

Then by formula (2.16) we get for any f 2 �f0(
n)

H
2
�
Q
1;n
f0;f

; Q
2;n
f0;f

�
� n

8

Z 1

0

(m1(t)�m2(t))
2
dt

� n

32


4
nc

2
2I
�2
min = c1n

�
2��1

2�+1 (log n)
4�

2�+1 :

To complete the proof we refer to inequality (2.14).

Introduce the following experiments: F3;n
f0

generated by observations

dY
3;n
t = (b(f(t))� b(f0(t))) I(f0(t))

�1=2
dt+

1p
n
dWt; t 2 [0; 1]; (5.31)

where f 2 �f0(
n); and F4;n
f0

generated by observations

dY
2;n
t = (� (f(t))� � (f0(t))) dt+

1p
n
dWt; t 2 [0; 1]; (5.32)

where f 2 �f0(
n):

Proposition 5.2 The experiments F3;n
f0

and F4;n
f0

are asymptotically equivalent. Moreover

�2
�
F3;n
f0
;F4;n

f0

�
� c1n

�
2��1

2�+1 (logn)
4�

2�+1 ;

where c1 is a constant depending only on Imax; Imin and "0:
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Proof. By Taylor expansion we have for any �; �0 2 �0 = b(�0)

F (�)� F (�0) = (�� �0)F
0(�0) +

1

2
(�� �0)

2
F
00(e�0); (5.33)

where e�0 = �0 + �(�� �0); 0 � � � 1: Now it follows from (3.13) and (3.12) that

F
0(�0) = 1=

p
I(a(�0)); (5.34)

while, using (5.30), the second derivative of F (�) can easily be seen to satisfy���F 00(e�0)��� � c2; (5.35)

where c2 is a constant depending only on Imax; Imin; "0: Put for brevity g0(t) = b(f0(t)) and

g(t) = b(f(t)) for f 2 �f0(
n): It is easy to see that

jg(t)� g0(t)j � jf(t)� f0(t)j Imax � 
nImax: (5.36)

Then by (5.33), (5.34), (5.35) and (5.36) we get

F (g(t)) � F (g0(t)) = (g(t)� g0(t)) I(f0(t))
�1=2 + �c3


2
n;

with c3 = c2I
2
max and j�j � 1:

Put for brevity

m3(t) = (g(t)� g0(t)) I(f0(t))
�1=2

;

m4(t) = F (g(t)) � F (g0(t)):

Let Q
3;n
f0;f

and Q
4;n
f0;f

be the measures induced by observations (5.31) and (5.32) respectively.

Then by formula (2.16) we get

H
2
�
Q
3;n
f0;f

; Q
4;n
f0;f

�
= 1� exp

�
�n
8

Z 1

0

(m3(t)�m4(t))
2
dt

�
� n

8


4
nc

2
3 = c1n

�
2��1

2�+1 (log n)
4�

2�+1 :

Finally, Theorem 3.3 can be obtained easily from the above propositions if we note that

�(Gnf0 ;F
1;n
f0

) = 0 and also �(F2;n
f0
;F3;n

f0
) = 0; �(F4;n

f0
; bGnf0) = 0; i. e. these experiments are

(exactly) equivalent by the remark following immediately after formula (2.15).

6 Global approximation

6.1 The preliminary estimator

The following lemma provides the preliminary estimator which is necessary for the globaliza-

tion procedure over the parameter set �.

Lemma 6.1 Let � 2 (1
2
; 1): In the experiment En there is an estimator bfn : Xn ! � taking

a �nite number of values and such that

sup
f2�

P
n
f

�


 bfn � f





1

> c1
n

�
� c2

1p
n
;

where c1 and c2 are constants depending only on Imax; Imin; �0; L; �:
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Proof. Let 
n be given by (3.4) and �n = 

1=�
n : Introduce the kernel K(u) as a bounded

function of �nite support such that

0 � K(u) � kmax; K(u) = 0; u =2 (��; �);
Z �

��
K(u)du = 1; (6.1)

where kmax and � are some absolute constants. We will assume also that K(u) satis�es a

H�older condition with exponent �. Let

�n(t) =
1

n�n

nX
i=1

K

�
ti � t

�n

�
; (6.2)

where ti = i=n; i = 1; :::; n: It is easy to see that there are two constants �min and �max such

that for n large enough

0 < �min � �n(t) � �max <1; (6.3)

for any t 2 [0; 1]:

Consider the functions f 2 � and g(t) = b (f(t)) ; t 2 [0; 1]; where b(�) = V
0(�); � 2 �0

(see Section 3.3). De�ne an estimator g�n of g as follows: for any t 2 [0; 1] put

g
�

n(t) =
1

n�n�n(t)

nX
i=1

K

�
ti � t

�n

�
U(Xi);

where U(x) is the su�cient statistic in the exponential experiment E : The estimator g�n is

known as Nadaraya-Watson estimator. We will show that there are two constants c3 and c4
depending only on Imax; �0; L; �; kmax; �min; � such that

sup
f2�

P
n
f (kg�n � gk

1
> c3
n) � c4

1

n
: (6.4)

First we note that by (6.2) for any t 2 [0; 1]

E
n
f g

�

n(t)� g(t) =
1

n�n�n(t)

X
i2Jn(t)

K

�
ti � t

�n

�
(g(ti)� g(t)) ; (6.5)

where Jn(t) = fi : ti 2 (t� ��n; t+ ��n)g and #Jn(t) � 2�n�n: It is easy to see that since

f 2 �; we have for i 2 Jn(t)

jg(ti)� g(t)j � ImaxL(2��n)
� = (2�)�ImaxL
n: (6.6)

From (6.1), (6.5) and (6.6) we have

En
f g

�

n � g



1

� c5
n; (6.7)

with some constant c5 depending on Imax; L; �; kmax; �min; �: To handle the di�erence

g
�

n �E
n
f g

�

n we remark that

g
�

n(t)�E
n
f g

�

n(t) =
1

n�n�n(t)

X
i2Jn(t)

K

�
ti � t

�n

�
U(Xi); (6.8)
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where U(Xi) = U(Xi)�En
f U(Xi) = U(Xi)� g(ti): Put for brevity Li(t) = K

�
ti�t
�n

�
: De�ne

a piecewise constant approximation of Li(t) as follows: put eLi(t) = Li(sk) for t 2 Ak; where

A1 = [0; s1]; Ak = (sk�1; sk]; k = 2; :::; n2; sk = k=n
2
; k = 0; :::; n2: Since the function K(u)

satis�es a H�older condition with exponent �; there is a constant c6 such that


Li � eLi



1

� c6

�
1

n

�2�

: (6.9)

Then (6.8) and (6.3) imply 

g�n �E
n
f g

�

n




1

� Q1 +Q2;

where

Q1 � 1

n�n�min
sup
t2[0;1]

�����
nX
i=1

�
Li(t)� eLi(t)�U(Xi)

����� ;
Q2 � 1

n�n�min

sup
t2[0;1]

�����
nX
i=1

eLi(t)U(Xi)

����� :
Using (6.9) we get

Q1 �
c6

n2�+1�n�min

nX
i=1

��U(Xi)
�� :

Put for brevity un = c6

�
�minn

2�+1
�n
n

�
�1

log n: Then with a "free" constant c7 � 1

P
n
f (Q1 > c7
n) � e

�c7 log n
nY
i=1

E
n
f exp

�
un

��U(Xi)
��	 :

Since un � "0 for n large enough, it is easy to see using Proposition 2.1 that

E
n
f exp

�
un

��U(Xi)
��	 � exp func8g ;

where c8 is a constant depending only on Imax; "0: As nun ! 0 for n ! 1; we have for

su�ciently large n

P
n
f (Q1 > c7
n) � exp f�c7 logn+ c8nung � 2 exp f�c7 log ng � 2

1

n
: (6.10)

To obtain a bound for Q2 we remark that eLi(t) is piecewise constant and eLi(sk) = 0 if

i =2 Jn(sk). With c9 > 0 being a "free" constant we obtain

P
n
f (Q2 > c9
n) �

n2X
k=1

P
n
f

0@ 1

n�n�min

������
X

i2Jn(sk)

eLi(sk)U (Xi)

������ > c9
n

1A : (6.11)

Put for brevity vn = eLi(sk) (�minn�n
n)
�1 logn: Then Chebyshev's inequality and the inde-

pendence of the r. v.'s U(Xi); i 2 Ik imply

P
n
f

0@ 1

n�n�min

X
i2Jn(sk)

eLi(sk)U (Xi) > c9
n

1A � e
�c9 log n

Y
i2Jn(sk)

E
n
f exp

�
vnU(Xi)

	
: (6.12)
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Since vn � kmax�
�1
min�

�(2�+1)=�
0 
n � "0 (for n large enough), by Proposition 2.1 we obtainY

i2Jn(sk)

E
n
f exp

�
vnU(Xi)

	 � exp

�
Imax

2
v
2
n2�n�n

�
� exp fc10 log ng ; (6.13)

for some constant c10 depending on Imax; �0; �; kmax; �min; �: Choosing c9 to be c10 + 3 we

get from (6.12) and (6.13)

P
n
f

0@ 1

n�n�min

X
i2Jn(sk)

eLi(sk)U(Xi) > c9
n

1A � exp f�3 logng : (6.14)

In the same way we establish that

P
n
f

0@ 1

n�n�min

X
i2Jn(sk)

eLi(sk)U (Xi) < �c9
n

1A � exp f�3 log ng : (6.15)

From (6.14), (6.15) and (6.11) we get

P
n
f (Q2 > c9
n) � 2n2 exp f�3 log ng = 2

1

n
: (6.16)

Now (6.10) and (6.16) give us

P
n
f

�

g�n �E
n
f g

�

n




1

� c11
n

�
� 4

1

n
; (6.17)

for an appropriate constant c11: Finally (6.7) and (6.17) imply (6.4).

Generally speaking g�n is not bounded. But it is easy to de�ne another estimator on its

basis which satis�es this requirement. For this it is enough to put

g
��

n (t) = max fmin fg�n(t);�maxg ;�ming ;

where �min and �max are the ends of the interval �0: The estimator g
��

n satis�es (6.4), since

for any f 2 � we have �min � g(t) = b(f(t)) � �max which in turn implies

fkg��n � gk
1
> c3
ng = fkg�n � gk

1
> c3
ng :

An estimator for f can be de�ned by putting f�n(t) = a(g��n (t)); where a(�) is the inverse

of the function b(�) (see also Section 3.3). Since the function a(�) is Lipschitz, we obtain

from (3.12)

jf�n(t)� f(t)j � I
�1
min jg��n (t)� g(t)j :

This implies that (6.4) is also satis�ed with f
�

n and f replacing g�n and g; but with other

constants (depending also on Imin). Now we will de�ne an estimator taking a �nite number

of values in �. Since the set � is compact in the uniform metric (it is equicontinuous and

bounded, hence compact by the Arzel�a-Ascoli theorem), we can cover it by a �nite number

of balls of radius 
n and with centers fi 2 �; i = 1; :::;M: The estimate bfn can be de�ned to

be the fi closest to the estimate f�n: In case of nonuniqueness take the fi with lowest index.

The estimator constructed has the properties claimed.

In particular, if we take E to be the Gaussian shift experiment, then from Lemma 6.1 we

get the following.
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Lemma 6.2 Let � 2 (1
2
; 1): In the experiment G0;n there is an estimator bfn : Xn ! � taking

a �nite number of values and such that

sup
f2�

P
n
f

�


 bfn � f





1

> c1
n

�
� c2

1p
n
;

where c1 and c2 are constants depending only on Imax; Imin; �0; L; �:

6.2 Proof of global equivalence

In this section we prove Theorem 3.10.

Let En and G0;n be the experiments de�ned by (3.2), (3.3) and (3.21), (3.22). Let f0 2 �:

Denote by J 0 and J 00 the sets of odd and even numbers, respectively, in J = f1; :::; ng : Put

X
0;n =

Y
i2J 0

X(i); X
00;n =

Y
i2J 00

X(i); R
00;n =

Y
i2J 00

Ri; Sn =

nY
i=1

Si;

where X(i) = X; Ri = R; Si = X if i is odd and Si = R if i is even, i 2 J: Consider the

following product (local) experiments corresponding to observations at points ti with even

indexes i 2 J :

E 00;nf0
=
O
i2J 00

Ef0;ti ; G00;nf0
=
O
i2J 00

Gf0;ti ;

where

Ef0;ti =
�
X;B(X);

�
Pf(ti) : f 2 �f0(
n)

	�
;

Gf0;ti =
�
R;B(R);

n bQf(ti) : f 2 �f0(
n)
o�

:

(cf. (3.20)-(3.21) for the de�nition of bQf(ti)). Along with this introduce global experiments

E 0;n =
O
i2J 0

Eti ; Fn =

nO
i=1

Fn
i ;

where Fn
i = Eti if i is odd and Fn

i = Gti if i is even, i 2 J and where

Eti =
�
X;B(X);

�
Pf(ti) : f 2 �

	�
;

Gti =
�
R;B(R);

n bQf(ti) : f 2 �
o�

:

We will show that the global experiments En and Fn are asymptotically equivalent. To-

ward this end we note that by Theorem 3.5 the experiments E 00;nf0
and G00;nf0

are asymptotically

equivalent uniformly in f0 2 �: Theorem 3.5 in particular implies that the one-sided de�ciency

�

�
E 00;nf0

;G00;nf0

�
satis�es for any f0 2 �

�

�
E 00;nf0

;G00;nf0

�
� "n �

�
c1n

�
2��1

2�+1 (log n)
14�+5

2�+1

�1=2
;

where c1 is a constant depending only on Imin; Imax; �0; L; �: Let k�k denote the total

variation norm for measures and let P
00;n
f ; Q

00;n
f be the product measures corresponding to

the experiments E 00;nf0
and G00;nf0

:

P
00;n
f =

O
i2J 00

Pf(ti); Q
00;n
f =

O
i2J 00

bQf(ti): (6.18)
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By lemma 9.2 in [31] for any f0 2 � there is a Markov kernel Kn
f0
: (X 00;n

;B(R00;n)) ! [0; 1]

such that

sup
f02�

sup
f2�f0

(
n)




Kn
f0 � P

00;n
f �Q

00;n
f




 � "n; (6.19)

Let us establish that there is a Markov kernel Mn : (Xn
;B(Sn))! [0; 1] such that

sup
f2�



Mn � P n
f � F

n
f



 � c2"n; (6.20)

for some constant c2: First note that any vector x 2 Xn can be represented as (x0;x00) where

x
0 and x

00 are the corresponding vectors in X
0;n and X

00;n
: The same applies for s 2 Sn :

s = (x0; y00); where x0 2 X 0;n and y00 2 R00;n: For any x = (x0;x00) 2 Xn and B 2 B(Sn) set

M
n(x;B) =

Z
R00;n

1B
�
(x0; y00)

�
K

n
bfn(x0)

(x00; dy00);

where bfn(x0) is the preliminary estimator of lemma 6.1 in the experiment E 0;n: It is easy to

see that �
M

n � P n
f

�
(B) =

Z
X0;n

Z
X00;n

M
n
�
(x0;x00); B

�
P
00;n
f (dx00)P

0;n
f (dx0)

=

Z
X0;n

Z
R00;n

1B
�
(x0; y00)

� �
K

n
bfn(x0)

� P 00;nf

�
(dy00)P

0;n
f (dx0) (6.21)

and

F
n
f (B) =

Z
X0;n

Z
R00;n

1B
�
(x0; y00)

�
Q
00;n
f (dy00)P

0;n
f (dx0); (6.22)

where P
0;n
f is the measure in the experiment E 0;n de�ned by the analogy with P

00;n
f in (6.18),

but with J 0 replacing J 00: By Lemma 6.1 there are two constants c3 and c4 depending only

on Imax; Imin; �0; L; � such that

P
0;n
f (Ac

f ) � c4"n (6.23)

where Af =
n
x
0 2 X 0;n :




 bfn(x0)� f





1

� c3
n

o
: Then (6.21) and (6.22) imply���Mn � P n

f

�
(B)� F

n
f (B)

�� � 2P
0;n
f (Ac

f )

+

Z
Af

sup
f02�

sup
f2�f0

(
n)




Kn
f0 � P

00;n
f �Q

00;n
f




P 0;nf (dx0):

Using (6.19) and (6.23) we obtain (6.20). This implies that the one-sided de�ciency � (En;Fn)

is less that c2"n: The bound for � (Fn
; En) can be obtained in the same way, using Lemma 6.2.

This proves that the Le Cam distance between En and Fn is less that c2"n: In the same way

we can show that Fn and Gn are asymptotically equivalent. As a result we obtain asymptotic
equivalence of the experiments En and Gn: As to the rate of convergence, it is straightforward
from the above inequality (6.20) and an analogous one for the pair Fn and Gn: Theorem 3.10

is proved.
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