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Gradient flows for bounded linear evolution equations
D. R. Michiel Renger, Stefanie Schindler

Abstract

We study linear evolution equations in separable Hilbert spaces defined by a bounded linear
operator. We answer the question which of these equations can be written as a gradient flow,
namely those for which the operator is real diagonalisable. The proof is constructive, from which
we also derive geodesic lambda-convexity.

1 Introduction

A great amount of literature is dedicated to proving that certain evolution equations can be written
as a gradient flow, see for example [JKO98, Maa11, Mie13, CMN19, BCF12]. Such results are im-
portant since a gradient flow structure shows that the equation is consistent with thermodynamic
principles [Ött05], it facilitates the use of additional tools to prove existence, stability and convergence
to equilibrium [AGS08], and it opens up the possibility of using certain numerical schemes [CMW21].

In [BCF12], it is proven that every ordinary differential equation on a finite-dimensional manifold is a
gradient flow if it possesses a strict Lyapunov function. Here in this paper, we answer the question of
which linear equations of the form

ẋ(t) = Ax(t) (1.1)

in a possibly infinite-dimensional separable Hilbert space H can be written as a gradient flow if the
evolution operator A : H → H is linear and bounded.

Gradient systems. In this section, we give a short introduction to gradient systems in Hilbert spaces,
where we follow the notation of [Mie13]. For a basic and more extensive introduction to this topic, we
refer to [CF10].

Since our results will be based on spectral theory we restrict our analysis to separable Hilbert spaces;
for brevity we identify H∗ with H . Throughout this paper a gradient system will be a triple (H,K,F)
where H is a separable Hilbert space, K(x) : H → H is a positive definite symmetric operator
and F : H → R. For ease of presentation we implicitly assume that K is continuous Gâteaux-
differentiable and F is twice continuous Gâteaux-differentiable. Such K and F satisfying these prop-
erties will be called an Onsager operator and a free energy, respectively. The aim is to find, given
operator A and Hilbert space H , a gradient system (H,K,F) so that Ax = −K(x)DF(x) for
all x ∈ H . For such a gradient system one can rewrite (1.1) as ẋ(t) = −K(x(t))DF(x(t)) =
− gradx(t)F(x(t)) on the manifold defined by the corresponding metric:

d(x1, x2)2 := inf
γ∈Γ(x1,x2)

{∫ 1

0

[
sup
ξ∈H

〈
ξ, 2γ̇(s)−K(x)ξ

〉
H

]
ds

}
, (1.2)

with Γ(x1, x2) denoting the space of all curves γ ∈ C1([0, 1], H) connecting x1 and x2.
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In the special case where the Onsager operator K(x) ≡ K is independent of x and the driving
functional is quadratic, i.e. F(x) = 1

2
〈B(x − π), x − π〉H for some symmetric bounded linear

operator B : H → H and equilibrium point π ∈ H , we shall call (H,K,F) a canonical gradient
system.

More generally, we also allow the quadratic form 1
2
〈ξ,K(x)ξ〉 to be replaced by a more general

Ψ∗(x, ξ) that is strictly convex in the second argument and satisfies infξ∈H Ψ∗(x, ξ) = Ψ∗(x, 0) = 0.
Such Ψ∗ is called a dissipation potential, and we implicitly assume that Ψ∗ is continuous Gâteaux-
differentiable in the first argument and twice in the second. We then call (H,Ψ∗,F) a generalised
gradient system if Ψ∗ : H×H → R is a dissipation potential andF : H → R is a free energy. Simi-
lar as before, we shall assume that besides Ψ∗ alsoF is twice continuous Gâteaux-differentiable. The
evolution equation corresponding to the flow of (H,Ψ∗,F) is ẋ(t) = DξΨ

∗(x(t),−DF(x(t))
)
,

thus giving rise to a possible nonlinear relation between ‘driving forces’ and ‘velocities’. These struc-
tures go back at least to [dDvR36], and arise in a large variety of physical and mathematical problems,
see [MPR14, PRST20] and the references therein.

There are good reasons to believe that symmetry of A (i.e. reversibility of generators in the setting of
Markov processes) is a sufficient condition for the evolution (1.1) to be a gradient flow equation: the
foundations of this argument trace back to Boltzmann’s H-Theorem [Bol72] and Onsager’s reciprocity
relations [Ons31], but can also be motivated in relation to large-deviation theory [MPR14]. Perhaps
surprisingly, it turns out that the class of equations that are the flow of a gradient system is much bigger,
namely those equations for which A is real diagonalisable. We illustrate this result in the following
paragraph.

Finite-state Markov chains. Consider the Kolmogorov equation of a finite-state continuous-time
Markov chain; in that case A ∈ Rd×d is a (transposed) generator matrix such that the evolution (1.1)
preserves non-negativity and total probability. The discovery of [Maa11] and [Mie13] showed that
reversible Markov chains are the flow of a system driven by the relative entropy with respect to the
invariant measure. For example if we define

A :=

−2 1 1
1 −2 1
1 1 −2

 , F(x) :=
3∑
i=1

xi log 3xi,

K(x) :=
1

3

∑j 6=1 Λ(3x1, 3xj) −Λ(3x1, 3x2) −Λ(3x1, 3x3)

−Λ(3x1, 3x2)
∑

j 6=2 Λ(3x2, 3xj) −Λ(3x1, 3x3)

−Λ(3x1, 3x3) −Λ(3x2, 3x2)
∑

j 6=3 Λ(3x3, 3xj)

 ,

where Λ(a, b) := (a− b)/(log a− log b) is the logarithmic mean, then K(x) is positive definite and
symmetric, and indeed Ax = −K(x)DF(x).

However, [Die15] showed that reversibility is only a necessary assumption if the driving functional
F is the relative entropy; when allowing more general functionals, then the existence of a gradient
system whose flow is the Kolmogorov forward equation (1.1) is equivalent to real diagonalisability of
A. As an illustration, the Markov chain with the following transposed generator is not reversible but
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real diagonalisable, and it is the flow of the following (canonical) gradient system:

A :=

−2 0 2
1 −3 2
1 3 −4

 , F(x) :=
1

6
xT

 4 −4 0
−4 6 −2
0 −2 2

x,
K(x) :≡

 3 3/2 −3/2
3/2 9/4 −3/4
−3/2 −3/4 21/4

 .
Bounded linear operators on a separable Hilbert space. In this work we generalise the result
of [Die15] to linear equations (1.1) on a separable Hilbert space, not necessarily conserving non-
negativity and total mass. We further generalise by allowing generalised gradient structures as well.
Apart from assuming boundedness of the operator A we also require surjectivity. The surjectivity is
motivated by the fact that solutions to the linear equation (1.1) are contained in Ran(A) modulo
the initial condition. Hence if A is not surjective we can always restrict it – without too much loss of
generality – to the Hilbert space Ran(A).

Our first main result is the following:

Theorem 1.1. Let H be a separable Hilbert space, and A : H → H a surjective bounded linear
operator. Then the following statements are equivalent:

(i) Ax = DξΨ
∗(x,−DF(x)

)
for some generalised gradient system (H,Ψ∗,F) with some equi-

librium π ∈ H , i.e. DF(π) = 0,

(ii) Ax = −K(x)DF(x) for some gradient system (H,K,F) with some equilibrium π ∈ H ,

(iii) Ax = −KDF(x) for some canonical gradient system (H,K,F) with some equilibrium π ∈
H ,

(iv) A is real diagonalisable, i.e. there exist:

(1) a measure space (Ω,A, µ),

(2) an essentially bounded, real-valued f ∈ L∞µ (Ω) with corresponding bounded linear multipli-
cation operator Mf : L2

µ(Ω)→ L2
µ(Ω) defined by

Mf (ϕ)(ω) := ϕ(ω)f(ω) for µ−a.e. ω ∈ Ω,

(3) an invertible bounded linear V : H → L2
µ(Ω) so that 1

A = V −1MfV.

We postpone the proof of this result to Section 2. Let us mention here that the proof of (iv) =⇒ (iii)
will be based on the explicit construction

F(x) := −1

2
(V x,MfV x)L2

µ(Ω) and K := V −1V −T, (1.3)

1Note that V does not need to be unitary, as often required in the literature [Kub12, Sec. 3.6].
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where V T : L2
µ(Ω)→ H is the adjoint of V , and V −T is the adjoint of the inverse or equivalently the

inverse of the adjoint.

Recall from the spectral theorem that any symmetric bounded operatorA is real diagonalisable. Hence
symmetry is indeed a sufficient condition for the evolution equation (1.1) to be a gradient flow, which
is consistent with Onsager theory as mentioned above. However, our Theorem 1.1 shows that the
necessary condition is not symmetry but real diagonalisability.

As a byproduct of Theorem 1.1, we derive geodesic λ-convexity of the constructed gradient struc-
ture (1.3). The relevance of this property lies in the fact – among other facts – that it implicates a
Lipschitz continuous dependence of the solutions on their initial data by the inequality, using the met-
ric (1.2), see for example [AGS08, Th. 4.0.4], [DS14, Th. 2.6]

d(x1(t), x2(t)) ≤ e−λtd(x1(0), x2(0)), for all t ≥ 0.

When λ ≥ 0, this yields a contraction semigroup, and in the special case λ > 0, one even gains
exponential decay towards the unique equilibrium state π. This provides a new perspective to the
classical argument that convergence speed to equilibrium is related to the spectral gap of the operator.

Theorem 1.2. Let H be a separable Hilbert space and A : H → H a surjective, bounded, lin-
ear and real diagonalisable operator A = V −1MfV , and let (H,K,F) be the canonical gradient
system (1.3). Then F is geodesically λ-convex w.r.t. d with

λ := − ess sup
ω∈Ω

f(ω) cV ,

where the constant cV is given by

cV :=

{
‖V −1‖2

L(L2
µ(Ω),H)‖V ‖2

L(H,L2
µ(Ω)), if ess supω∈Ω f(ω) ≥ 0,

‖V −1‖−2
L(L2

µ(Ω),H)‖V ‖
−2
L(H,L2

µ(Ω)), else.

If we additionally assume that the measure space (Ω,A, µ) associated to the diagonalisability of A
is finite and the spectrum satisfies σ(A) ⊂ (−∞, 0] then f ≤ 0 µ-a.e. and so λ ≥ 0.

We give a proof of this theorem in Section 3. After the two proof sections we conclude with a discussion
in Section 4.

2 Gradient systems and diagonalisability

This section is devoted our main Theorem 1.1, which is proven in three separate lemmas.

Lemma 2.1. Statements (i), (ii) and (iii) from Theorem 1.1 are equivalent.

Proof. Clearly a canonical gradient system (H,K,F) is also a gradient system, which in turn is
a generalised gradient system if we define Ψ∗(x, ξ) := 1

2
〈ξ,Kξ〉. Hence, we only need to show

(i) =⇒ (iii).
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Differentiating Ax = DξΨ
∗(x,−DF(x)) in the equilibrium point π ∈ H and using that A is linear

yield:

A = DxDξΨ
∗(π,−DF(π)

)
−D2F(π)D2

ξΨ
∗(π,−DF(π)

)
= −D2

ξΨ
∗(π, 0)D2F(π),

since DF(π) = 0 and DξΨ
∗(x, 0) ≡ 0. Define the canonical gradient system by

F̂(x) :=
1

2
〈D2F(π)x, x〉H and K̂ := D2

ξΨ
∗(π, 0),

the latter being positive definite since Ψ∗ is assumed to be strictly convex. It follows that for all x ∈ H ,

Ax = −D2
ξΨ
∗(π, 0)D2F(π)x = −K̂DF̂ (x).

Lemma 2.2. Statement (iv) implies (iii) in Theorem 1.1.

Proof. Let A be bounded, linear and real diagonalisable, see Theorem 1.1, and define F and K by
(1.3). It is easily seen that (H,K,F) is a canonical gradient system. Indeed, K is independent of x

and therefore smooth, it is symmetric due toKT =
(
V −1V −T

)T
= K , and positive definite because:

〈ξ,Kξ〉H = 〈ξ, V −1V −Tξ〉H = (V −Tξ, V −Tξ)L2
µ(Ω) > 0 for all 0 6= ξ ∈ H.

Further, F is quadratic since Mf is self-adjoint whenever f is real-valued. In particular we get
DF(x) = −V −TMfV x ∈ H . Now we have

Ax = V −1MfV = V −1V −TV TMfV x = −KDF(x),

which was to be demonstrated.

Lemma 2.3. Statement (iii) implies (iv) in Theorem 1.1.

Proof. We are given a canonical gradient system (H,K,F) with F(x) = 1
2
〈Bx, x〉H so that Ax =

−KDF(x) = −KBx for all x ∈ H . Since K is symmetric positive definite it has a unique sym-

metric positive definite bounded square root
√
K : H → H such that K =

√
K

T√
K =

√
K
√
K

[RSN90, VII.104, Th. 4].

We show that this linear operator
√
K is invertible. For the injectivity, pick an arbitrary x ∈ H for

which
√
Kx = 0. Then

〈Kx, x〉H =
〈√

Kx,
√
Kx
〉
H

= 0,

and so x = 0 by the positive definiteness of K . For the surjectivity, note that A = −
√
K
√
KB, and

so by the assumed surjectivity of A we have H = Ran(A) ⊂ Ran(
√
K) ⊂ H .

Define the following two bounded linear operators:

Ā :=
√
K
−1
A
√
K and B̄ :=

√
KB
√
K.

Clearly, B̄ is symmetric since B is symmetric. From A = −KB it follows that Ā = −B̄, and so Ā is
also symmetric.
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We now invoke the spectral theorem for symmetric bounded linear operators [Kub12, Th. 3.11] and
obtain the existence of a finite measure space (Ω,A, µ), a unitary operator U : H → L2

µ(Ω) and
a real-valued f ∈ L∞µ (Ω) with corresponding multiplication operator Mf such that Ā = UTMfU .

After defining the invertible bounded linear operator V := U
√
K
−1

: H → L2
µ(Ω), we conclude that

A =
√
KĀ
√
K
−1

= V −1MfV.

Remark 2.4. Our arguments imply that A is complex diagonalisable if and only if the linear equation
can be written as a “complex-valued gradient flow”. It is unclear to us whether such gradient structures
have any practical relevance.

3 Geodesic λ-convexity

The aim of this section is to prove Theorem 1.2: the geodesic λ-convexity of the function F with
respect to the metric d. Throughout this section we assume that A is surjective, bounded, linear and
real diagonalisable, and (H,K,F) is the corresponding canonical gradient system (1.3). It follows
from the construction that the inverse G := K−1 : H → H exists, and so

d(x1, x2)2 = inf
γ∈Γ(x1,x2)

{∫ 1

0

〈
Gγ̇(s), γ̇(s)

〉
H

ds

}
. (3.1)

Recall [DS14] that geodesic λ-convexity means that the mapping s 7→ F(γ(s)) is λ-convex for all
arc-length parametrised (constant speed) geodesics γ : [0, 1]→ H , i.e. for all θ ∈ [0, 1] we have

F(γ(θ)) ≤ (1− θ)F(γ(0)) + θF(γ(1))− λθ(1− θ)
2

d(γ(0), γ(1))2.

Before we prove this inequality, we show the following lemma. For brevity we shall omit the indices
from the norms ‖·‖L(L2

µ(Ω),H) and ‖·‖L(H,L2
µ(Ω)).

Lemma 3.1. The free energy functional F from (1.3) is λ̃-convex in the Hilbert space H , where

λ̃ := − ess sup
ω∈Ω

f(ω) c̃V , and c̃V :=

{
‖V ‖2, if ess supω∈Ω f(ω) ≥ 0,

‖V −1‖−2, otherwise.

Proof. It holds

〈DF(x1)−DF(x2), x1 − x2〉H = −〈V TMfV (x1 − x2), x1 − x2〉H

= −
(
MfV (x1 − x2), V (x1 − x2)

)
L2
µ(Ω)

= −
∫

Ω

f(ω)
(
V (x− y)(ω)

)2
dµ(ω)

≥ − ess sup
ω∈Ω

f(ω)‖V (x1 − x2)‖2
L2
µ(Ω) ≥ − ess sup

ω∈Ω
f(ω) c̃V ‖x1 − x2‖2

H ,

which is equivalent to λ̃-convexity since F is Gâteaux-differentiable (see [Pey15, Prop. 3.12]).

Next, we show that in our case geodesic λ-convexity can be obtained from λ̃-convexity in H . More
precisely, we have the following lemma:
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Lemma 3.2. Let d be the metric (3.1) with metric tensor G(x) := K−1(x) = V TV , and let
F : H → R be a λ̃-convex functional in H . Then F is geodesically λ-convex with respect to the
metric d, where

λ :=

{
λ̃‖V ‖−2, if λ̃ > 0,
λ̃‖V −1‖2, if λ̃ ≤ 0.

Proof. Let x1, x2 ∈ H be arbitrary and let γ ∈ Γ(x1, x2) be a geodesic connecting x1 and x2. As
K−1 is independent of x, the metric space is flat, and the geodesic between x1 and x2 is a straight
line γ(s) = (1− s)x1 + sx2. Therefore

d(x1, x2)2 (3.1)
=

∫ 1

0

〈
V TV γ̇(s), γ̇(s)

〉
H

ds = ‖V (x2 − x1)‖2
L2
µ
.

This yields the estimates

1

‖V −1‖
‖x2 − x1‖H ≤ d(x1, x2) ≤ ‖V ‖‖x2 − x1‖H . (3.2)

First consider the case λ̃ ≤ 0. Exploiting the λ̃-convexity of F , we can bound for arbitrary θ ∈ [0, 1],

F(γ(θ)) = F((1− θ)x1 + θx2)

≤ (1− θ)F(x1) + θF(x2)− λ̃(1− θ)θ
2

‖x2 − x1‖2
H

(3.2)
≤ (1− θ)F(x1) + θF(x2)− λ̃‖V −1‖2(1− θ)θ

2
d(x1, x2)2

= (1− θ)F(γ(0)) + θF(γ(1))− λ(1− θ)θ
2

d(γ(0), γ(1))2.

Similarly for λ̃ > 0,

F(γ(θ))
(3.2)
≤ (1− θ)F(x1) + θF(x2)− λ̃(1− θ)θ

2‖V ‖2
d(x1, x2)2

= (1− θ)F(γ(0)) + θF(γ(1))− λ(1− θ)θ
2

d(γ(0), γ(1))2.

Putting the two lemmas together, we proved the first part of Theorem 1.2, the geodesically λ-convexity
of F in the metric space (H, d). The last claim is stated in the following lemma:

Lemma 3.3. Under the additional assumption that the measure space (Ω,A, µ) associated to the
diagonalisability of A is finite and the spectrum satisfies σ(A) ⊂ (−∞, 0] then f ≤ 0 µ-a.e..

Proof. First, as the measure space (Ω,A, µ) is finite, the spectrum of Mf is given by the essential
range of f (see [Kna08, Lemma 4.55] for a proof). Second, we use that similar operators have the
same spectrum, and obtain

ess ran(f) = σ(Mf ) = σ(V −1AV ) = σ(A) ⊂ (−∞, 0].
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4 Discussion

We end our paper with a discussion about our assumptions and results.

First, our work is restricted to separable Hilbert spacesH because our arguments are based on spec-
tral theory. Further, the assumed boundedness of the operatorA can be generalised to a large extent.
However, it turns out that for unbounded operators the free energy F generally fails to be Gâteaux
differentiable. Our assumptions that both F and Ψ∗(x, ·) need to be twice Gâteaux differentiable can
probably be generalised by approximation arguments, but the once differentiability of F is fundamen-
tal in our definition of a gradient flow. This hints that possible workarounds to allow for unbounded
operators may be found by using more general definitions of gradient flows that do not require differ-
entiability, like “curves of maximal slope” and “minimising movements” [AGS08]. This is beyond the
scope of the current paper.

Let us also mention that our restriction to linear equations is essential, again because we couple
gradient systems to spectral theory, but also because we use a linearisation around the equilibrium to
simplify any (generalised) gradient system to a canonical gradient system. Therefore we expect our
results to be approximately true for nonlinear equations near the equilibrium state.

Finally, the gradient system that we construct for real diagonalisable operators could be perceived as
rather unnatural. After all, canonical gradient systems have quadratic free energy and do not allow
for entropic expressions. In this regard, we stress that our main Theorem 1.1 is an existence result
without any claim of uniqueness.
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