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Abstract

An equivariant center-manifold reduction near relative equilibria of G-equivariant

semiows on Banach spaces is presented. In contrast to previous results, the Lie group

G is possibly non-compact. Moreover, it is not required that G induces a strongly

continuous group action on the underlying function space. In fact, G may act discon-

tinuously. The results are applied to bifurcations of stable patterns arising in reaction-

di�usion systems on the plane or in three-space modeling chemical systems such as

catalysis on platinum surfaces and Belousov-Zhabotinsky reactions. These systems

are equivariant under the Euclidean symmetry group. Hopf bifurcations from rigidly-

rotating spiral waves to meandering or drifting waves, and from twisted scroll rings are

investigated.

1 Introduction

Spiral waves arise as stable spatio-temporal patterns in various chemical and physical sys-

tems. They have been observed experimentally, for instance, in catalysis on platinum

surfaces [14], Belousov-Zhabotinsky reactions [10, 20], and the Rayleigh-Benard convection

[17]. The dynamics of the �rst two systems is modeled by reaction-di�usion equations

ut = D�u+ f(u; �); x 2 R
N
; N = 2; 3(1.1)

on the plane or in three-space. Here, D is a diagonal matrix with non-negative entries,

and f is a smooth nonlinearity. The function u : RN ! R
M can be interpreted as a vector

of spatially dependent concentrations of chemical species. Equation (1.1) is well-posed

on the space C0
unif(R

N
;R

M) of uniformly continuous, bounded functions or, under certain

additional growth conditions on f in case the di�usion matrix D is singular, on the space

L
2(RN

;RM). On both spaces, it then generates a smooth local semiow denoted by �t(u; �),

see [8].

The Euclidean group SE(N) is the semi-direct product SO(N) _+RN of the orthogonal group

SO(N) and the group of translations RN with composition

(R; S)( ~R; ~S) = (R ~R; S + R ~S)(1.2)

on the product SO(N) � RN. The Lie algebra se(N) of SE(N) can be represented as

the product so(N)�RN of the Lie algebra so(N) of SO(N) consisting of anti-symmetric

matrices and RN, see [5]. The commutator and the exponential map on so(N)� RN are

given by

[(r; s); (~r; ~s)] = (r~r� ~rr; r~s� ~rs)

exp((r; s)t) = (exp(r t); r�1(exp(r t)� id)s):
(1.3)

The group SE(N) acts on functions on RN by

((R; S)u)(x) := u(R�1(x� S)):
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Equation (1.1) is equivariant with respect to this SE(N)-action, that is, �t(u; �) is a

solution whenever (R; S)�t(u; �) is.

We consider bifurcations from relative equilibria of (1.1). Relative equilibria are solutions

satisfying

�t(u�; ��) = (R(t); S(t))u�;

with (R(t); S(t)) = exp((r�; s�)t) for suitable elements (r�; s�) 2 se(N). In other words, u�

is a relative equilibrium if its time orbit is contained in its group orbit SE(N)u�. Rigidly-

rotating spiral waves u� are rotating waves obeying

�t(u�; ��) = (R(t); 0)u�;

where R(t) = exp(r�t) is the one-parameter family of rotations generated by some �xed

element r� 2 so(N). Thus, spiral waves are equilibria in a rotating frame (x; t) 7!

(exp(�r�t)x; t).

We shall further distinguish two kinds of modulated waves; these solutions are not relative

equilibria. Meandering spiral waves are modulated rotating waves, that is, quasiperiodic

solutions which are periodic in a rotating frame. In contrast, drifting spiral waves are mod-

ulated travelling waves, that is, periodic in a moving frame (x; t) 7! (x� s�t; t) generated

by some element s� 2 R
N.

Meandering spiral waves emanate from rigidly-rotating spiral waves by a Hopf bifurcation

in the rotating frame. This has been veri�ed numerically by Barkley [1]. Furthermore, in

simulations of a two-parameter system, he observed a curve of drifting spiral waves emerging

from the rotating wave if the rotation frequency of the rotating wave is a multiple of the

eigenvalue leading to the Hopf bifurcation, see [2]. Barkley proposed a �ve-dimensional

system of ordinary di�erential equations modeling the qualitative behavior of reaction-

di�usion systems near Hopf bifurcations from rotating waves. However, a rigorous relation

between the two systems has not been established yet. We remark that the system studied

by Barkley has a singular di�usion matrix D, which seems to model the chemical situation

more accurately. For that reason, we allow for degenerate di�usion matrices.

In three dimensions, Hopf instabilities of twisted scroll rings have been observed numerically

in [15]. Mathematically, scroll rings are rotating waves which, at the same time, drift along

the axis of rotation. Thus, they are relative equilibria with respect to the one-parameter

family (R(t); S(t)) = (exp(r�t); s�t) for elements (r�; s�) 2 so(3)�R3 = se(3) with r�s� = 0.

In this article, we will explain the phenomena mentioned above using an equivariant center-

manifold reduction of the reaction-di�usion system (1.1). Standard results for center man-

ifolds are not applicable since the group action of SE(N) is not norm-continuous on ei-

ther C0
unif(R

N
;R

M) or L2(RN
;R

M), see [22]. In fact, on C
0
unif(R

N
;R

M), rotations act not

even as a strongly continuous semigroup: a counterexample is provided by the function
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u(x1; x2) = cosx1. In addition, the group SE(N) is not compact. Therefore, it is not clear

how to obtain a smooth and equivariant center manifold. We emphasize that the spiral

waves found analytically, for instance in [7], are Archimedean or logarithmic spirals, which

are contained in C
0
unif but not in L

2. It seems then inevitable to consider discontinuous

SE(N)-actions.

To circumvent these di�culties, we make the following hypotheses. Consider a smooth

group orbit associated with a relative equilibrium. Assume that the center-unstable

eigenspace of the linearization at the wave has a �nite-dimensional generalized eigenspace.

Note that the group action always enforces spectrum on the imaginary axis. Next, we as-

sume that the group acts smoothly on elements in the center-unstable eigenspace, whence

the center-unstable bundle along the group orbit will itself be smooth. Under these as-

sumptions, we will prove the existence of a smooth center manifold M
cu
�

tangent to the

center bundle. The group will act smoothly on M
cu
�
. Note that the group SE(N) is not

assumed to act smoothly on the whole function space. We shall emphasize that the result

is optimal in the sense that whenever an invariant manifold M cu
�

with the above properties

exists, the group will already act smoothly on the center bundle. In particular, the group

orbit of u� must be smooth.

We should comment on the satisfaction of these assumptions for the reaction-di�usion

system (1.1). It turns out that SE(2) acts smoothly on relative equilibria in either

C
0
unif (R

2
;R

M) or L2(R2
;R

M). In addition, SE(N) acts smoothly on vectors in the �nite-

dimensional eigenspace provided it acts smoothly on the underlying relative equilibrium.

Therefore, the only hypothesis which is not automatically satis�ed is that the eigenspace

is indeed of �nite dimension. This last assumption, however, has been veri�ed numerically

at Hopf-bifurcation points of spiral waves, see Barkley [1].

Therefore, at the outcome, we have reduced the in�nite-dimensional dynamical system to

ordinary di�erential equations on the center manifold. The structure of these equations

has been clari�ed and analyzed in detail in the related paper [5]. In particular, drifting

along the group orbit as well as bifurcations in the normal direction can be analyzed

separately. We will apply these results to the phenomena mentioned above, that is, to

Hopf bifurcations from spiral waves and twisted scroll rings, see Theorems 4 and 6 in

section 5 and 6, respectively.

Similar results hold for relative periodic solutions of (1.1). They can be used to study

secondary bifurcations of meandering or drifting waves to higher-dimensional tori, or to

investigate the inuence of periodic forcing. This is work in progress and will appear

elsewhere.

Finally, we mention related results. Wul� [22] investigated Hopf bifurcations from rotating

to meandering and drifting one-armed planar spiral waves using Lyapunov-Schmidt reduc-
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tion in the largest subspace of C0
unif on which the rotations act as a strongly continuous

semigroup. This was the �rst rigorous result on bifurcations of spiral waves involving non-

compact groups. Some of the results of this paper have been announced in [18]. Based

on results by Krupa [12], Golubitsky et al. [6] used a formal center-bundle construction

to derive ODEs describing bifurcations near `-armed planar spiral waves. They exploited

the structure of these ODEs using ideas from [5], and derived new conditions for drifting.

Fiedler et al. [5] clari�ed the structure of the ODEs associated with relative equilibria with

compact isotropy for general non-compact groups and gave conditions for drifting. In the

present paper, these ODEs are derived rigorously using center-manifold reductions.

The paper is organized as follows. In section 2, an abstract result for the existence of

center manifolds is given. It is proved in section 3. In section 4, we verify the smoothness

hypothesis for the Euclidean group SE(N). We apply the results to Hopf bifurcations of

spiral waves and twisted scroll rings in section 5 and 6, respectively.

Acknowledgement. B. Sandstede was partially supported by a Feodor-Lynen Fellowship

of the Alexander von Humboldt Foundation.

2 Center-manifold reduction near relative equilibria

Consider a semilinear di�erential equation

ut = �Au+ F (u);(2.1)

on some Banach space X . We assume that A is sectorial and F is a Ck+2-function from

Y = X
� to X for some k � 1 and � 2 [0; 1), see Henry [8] for the notation. The norms

for vectors and operators on Y are denoted j � j and k � k, respectively. The local semiow

on Y associated with (2.1) is denoted by �t(u). Let G be a �nite-dimensional but possibly

non-compact Lie group, and � : G ! GL(Y ), g 7! �g be a representation of G in the

space of bounded invertible operators. We assume that there exists a constant K such

that k�gk � K for all g 2 G. After introducing an equivalent norm on Y , we may assume

that k�gk = 1 for all g, see Lemma 3.1. We suppose that �t(u) is G-equivariant, that is,

�t(�gu) = �g�t(u) for t � 0, g 2 G, and u 2 Y .

Throughout, we �x a point u� and denote its group orbit and the isotropy group by Gu�

and H , respectively, that is, we set Gu� = f�gu�; g 2 Gg and H = fg 2 G; �gu� = u�g.

Suppose that the element u� chosen is a relative equilibrium of (2.1):

Hypothesis 1 Let u� 2 Y and assume that there exists an element �� 2 alg(G) in the Lie

algebra of G such that

�t(u�) = �g�(t)u�;
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where g�(t) = exp(��t) 2 G is the one-parameter family generated by ��.

Next, we consider the linearization of the ow evaluated at u�.

Hypothesis 2 Assume that f� 2 C ; j�j � 1g is a spectral set for the linearization

�exp(���)D�1(u�) 2 L(Y )

with associated projection P� 2 L(Y ) such that the generalized eigenspace Ecu
�

= R(P�) is

�nite-dimensional.

Note that the isotropy H acts on E
cu
�
. Hence, whenever H is non-compact and does not

possess any �nite-dimensional representation on the space Y , the spectral hypothesis 2

must be violated.

Finally, as announced in the introduction, we impose smoothness conditions.

Hypothesis 3 (i) �gu� is C
k+2 in g 2 G.

(ii) For any � > 0 there exists a � > 0 such that j�gu� � u�j � � for all g 2 G satisfying

dist(g;H)� �.

(iii) �gv is Ck+1 in g 2 G for any point v in E
cu
�
.

(iv) The projections �gP��g�1 are C
k+1 in g 2 G in the operator norm.

It follows from Hypotheses 3(i) and (ii) that the group orbit Gu� is an embedded C
k+2-

manifold. In many applications, Hypothesis 3 follows from Hypothesis 2, see section 4. We

remark that, if the group G were compact and the G-action on Y smooth, Hypothesis 3

would always be satis�ed.

We have then the following theorem, which is proved in section 3.

Theorem 1 Assume that Hypotheses 1 { 3 are obeyed. Under these conditions, there exists

a G-invariant manifold M
cu
�
� Y which is locally invariant under �t for any t � 0. The

manifold M
cu
�

and the action of G on M
cu
�

are of class Ck+1. Furthermore, M cu
�

is locally

exponentially attracting and contains all solutions which stay close to the group orbit of u�

for all backward times.

Similar results are valid for the equation

ut = �Au+ F (u) + �G(u; �); (u; �) 2 Y �Rp
;(2.2)

with j�j < � for some small � > 0 whenever the nonlinearity G : Y �Rp! X is Ck+2. The

resulting manifold is Ck+1 in �.
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We shall investigate the structure of the vector �eld on the center manifold. For that

purpose, we need to introduce more notation. The adjoint representation of G on alg(G)

is de�ned by

Adg � = g � g
�1 =

d

dt

�
g exp(�t) g�1

����
t=0

; g 2 G; � 2 alg(G):

The isotropy group H acts naturally on the eigenspace E
cu
�

and the tangent space

Tu�(Gu�) � E
cu
�

of the group orbit, and both spaces are invariant under the H-action. Ac-

tually, the representation of H is via the image of �, that is, �(H) � GL(Ecu
�
) acts on Ecu

�
.

Since the latter space is �nite-dimensional and group elements are isometries, we see that

clos �(H) � GL(Ecu
�
) is compact. Using the Haar measure associated with clos �(H), we

can construct an H-equivariant projection Q� : E
cu
�
! E

cu
�

with kernel N(Q�) = Tu�(Gu�).

Its range V� := R(Q�) is an H-invariant complement of Tu�(Gu�). We then consider the

manifold G� V� with an H-action de�ned by (g; v)! (gh�1
; �hv) for (g; v) 2 G� V� and

h 2 H .

Theorem 2 Suppose that the assumptions of Theorem 1 are met, and that the isotropy

group H is compact. The manifold M
cu
�

is then di�eomorphic to (G � V�)=� where the

equivalence relation on G � V� is de�ned by identifying orbits under the above H-action,

that is, (g; v) � (gh�1
; �hv) for (g; v) 2 G � V� and h 2 H. Furthermore, there exist

C
k-functions fG : V� ! alg(G) and fN : V� ! V� such that any solution of 

_g

_v

!
=

 
gfG(v)

fN(v)

!
(2.3)

on G � V� corresponds to a solution of the vector �eld on M
cu
�

under the identi�cation.

The vector �eld (2.3) is H-equivariant: fG(�hv) = Adh fG(v) = hfG(v)h
�1 and fN(�hv) =

�hfN(v) for all h 2 H and v 2 V�. Finally, fG(0) = �� and fN(0) = 0.

We say that the vector �eld (2.3) is the pull-back of the vector �eld on M
cu
�

to G � V�.

Note that it is of skew-product form. We refer to [5] for more properties of the pull-back.

Proof. The statement follows from [5, Theorem 1.1] provided the Lie group G induces

a proper action on M
cu
�
. We prove that this is indeed the case. The action being proper

means that if yn 2 M
cu
�

and gn 2 G are sequences such that yn ! y and �gnyn ! ~y, then

fgng has a convergent subsequence. The action restricted to the group orbit satis�es this

condition, and thus is proper, since Gu� is embedded on account of Hypothesis 3(ii). We

show that the above condition is an open property using that each �g is an isometry.

Due to Hypothesis 3(ii), compactness of the isotropy group H , and local compactness of

G, there exist � > 0 and a neighborhood U of H in G such that U is precompact and

j�gu� � u�j � � > 0(2.4)
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for all g =2 U . Note that the same estimate is valid with u� and U replaced by ~gu� and

~g U ~g�1, respectively, for any ~g 2 G since k�gk = 1 for all g.

Suppose now that yn ! y and �gnyn ! ~y in M cu
�

as n!1. Since �g is linear and of norm

one, j�gnyn � �gnyj � jyn � yj. Therefore, �gny ! ~y in M
cu
�
. We have to show that fgng

has a convergent subsequence.

Due to the proof of Theorem 1 in section 3, any point on M
cu
�

is of the form �g(u� +

v� + �#(u� + v�)) with v� 2 V� where �# is a smooth and G-equivariant map satisfying

kD�#k � 1 and �#(u�) = 0. Hence, without loss of generality, we may assume that

y = (id+�#)(u� + v�), and

�gn(id+�#)(u� + v�)! (id+�#)(u� + ~v�)(2.5)

for some ~v� 2 E
cu
�
. Indeed, ~y = �~g(id+�#)(u� + ~v�) for some ~g 2 G and ~v� 2 E

cu
�
, and we

may replace the sequence fgng by f~g
�1
gng.

We will argue by contradiction. Assume that the sequence fgng has no convergent sub-

sequence. We may then assume that gn =2 U for all n since the neighborhood U of H is

precompact. Therefore, for the sequence appearing in (2.5), we obtain

j�gn(id+�#)(u� + v�)� (id+�#)(u� + ~v�)j

� j�gnu� � u�j � j�gnv� � ~v�j � j�#(u� + v�)j � j�#(u� + ~v�)j � � � 2(jv�j+ j~v�j);

using (2.4) and the properties of the map �# mentioned above. For jv�j; j~v�j � �=8, this

contradicts convergence of the sequence. Therefore, G acts properly on a �=8-neighborhood

of Gu� in M
cu
�

and the theorem is proved.

We shall comment on the relation between the spectral assumption 2 and the spectrum of

the reduced vector �eld (2.3).

Lemma 2.1 Suppose that assumptions 1 { 3 are obeyed, and that H is compact. Under

these conditions, there exists a matrix B� 2 L(Ecu
�
) such that

e
B�tv := �g�1

�
(t)D�t(u�)v(2.6)

for any v 2 E
cu
�

and t � 0, and

B� =

0
@ �[��; �] DfG(0)

0 DfN(0)

1
A ;(2.7)

using Ecu
�
= Tu�(Gu�)� V�.

Proof. Notice that the matrix B� is well-de�ned. Indeed, �g�1
�

(t)D�t(u�) maps the space

E
cu
�

into itself and, by equivariance, meets the semiow properties, whence [16, Corollary
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1.4] applies. It remains to show that B� satis�es (2.7). The linearization of (2.3) at the

relative equilibrium �t(u�) = �exp(��t)u� is given by 
_�

_v

!
=

 
��� + exp(��t)DfG(0)v

DfN(0)v

!
;

using fG(0) = ��. Solving the second component, we may write its solution as

(�(t); eDfN (0)t
v0) with v(0) = v0. Using the variation-of-constant formula and multiply-

ing by exp(���t), we obtain the expression

exp(���t) �(t) = exp(���t) �0 exp(��t)+R t
0
exp(���(t� �))DfG(0)(e

DfN (0)�
v0) exp(��(t� �)) d�

for the �rst component with �(0) = �0. Comparing its derivative with respect to t with the

�rst component of B�(�0; v0) proves (2.7).

3 Graph transform near group orbits

In this section, the center-manifold theorem will be proved using the graph transform. We

will show how the set-up of the previous section �ts into the standard framework. For the

remaining part of the proof, we then refer to [4, 9, 19, 21], where the reader may also �nd

background in graph transform. The graph transform requires a �rst approximation of

the desired manifold, normal hyperbolicity, and a property called overowing. We outline

their veri�cation. The �rst approximation is constructed using the group orbit Gu� with

the spaces �gV� attached to it. Normal hyperbolicity means that the linearization of the

ow near the group orbit contracts vectors in the center direction with a smaller rate than

in the direction normal to it. This property will follow from the spectral hypothesis 2.

Finally, for the overowing property, we show that solutions starting at the boundary of

the �rst approximation leave a �xed neighborhood of it immediately. This will be achieved

by modifying the vector �eld in a G-equivariant fashion. Complications arise due to the

presence of Jordan blocks and since the cut-o� function used for this purpose has to be

G-invariant and smooth.

As claimed in the previous section, an equivalent norm may be chosen such that group

elements act as isometries on the underlying Banach space.

Lemma 3.1 There exists a norm k � k on Y such that k�gk = 1 for all g 2 G. Moreover,

the old and new norm are equivalent.

Proof. De�ne kyk := supg2G j�gyj. It is straightforward to verify that this norm satis�es

the properties claimed in the lemma.

From now on, we assume that the above norm replaces the original norm on Y .
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3.1 Jordan blocks in Rl

To outline the basic idea of the cut-o� mechanism, consider

_v =

0
@ 0 K

0 0

1
A v; v 2 R

2
;(3.1)

for K 6= 0. We seek a small neighborhood Û of zero such that any solution starting

on the boundary @Û will leave Û immediately. Such neighborhoods are called overow-

ing. Apparently, for (3.1), overowing neighborhoods do not exist. Therefore, we add an

outward-directed vector �eld of norm � > 0,

_v =

0
@ � K

0 �

1
A v:(3.2)

For small � > 0, we may then choose Û = fv; jv1j < �; jv2j < �
�

2jKj
g. Indeed, for the

�rst component, and with v1 > 0, say, we obtain _v1 = �v1 +Kv2 > 0 whenever v 2 @Û .

However, we should not change the vector �eld near zero. Thus, we consider

_v =

0
@ ��(v1

�
) K

0 ��(2Kv2
��

)

1
A v:(3.3)

Here, �(�) is the standard cuto�-function on [0; 1], that is, �(�) 2 [0; 1], �(�) = 0 and

�(�) = 1 for � close to zero and one, respectively. Then, (3.3) coincides with (3.2) on the

boundary @Û , while it coincides with (3.1) near zero. Moreover, the derivative
0
@ ��(v1

�
) + �

v1
�
D�(v1

�
) 0

0 ��(2Kv2
��

) + �
2Kv2
��

D�(2Kv2
��

)

1
A
 � � (1 + kD�k)

of the perturbation is small since v 2 Û . Note that we have to choose a vector-valued

cut-o� function for obtaining the above bound.

We consider now the set-up of section 2. Recall that the space Ecu
�

= Tu�(Gu�) � V� can

be decomposed into two H-invariant subspaces. The projection onto V� along the tangent

space Tu�(Gu�) is denoted Q�. Moreover, by Lemma 2.1, there exists a matrix B� 2 L(Ecu
�
)

with

e
B�tv = �g�1

�
(t)D�t(u�)v;

for all v 2 E
cu
�
. Let A� := Q�B�jV� in L(V�). We will de�ne an H-invariant neighborhood

Û of zero in V�, which depends on small parameters � and �, such that any solution of

_v = (A� + � id)v; v(0) 2 @Û ;

will leave Û immediately.
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As remarked in the previous section, without loss of generality, we may assume that H is

compact since its action on V� is induced by the bounded subgroup �(H) � GL(V�). Fur-

thermore, we may choose an H-invariant scalar product using the Haar measure associated

with �(H) � GL(V�). Thus, by an H-invariant change of coordinates, we can transform A�

into complex Jordan normal form. Let K > 0 be a bound for the o�-diagonal elements of

the matrix A� written in normal form. Without loss of generality, we consider the case that

spec(A�) = f�g for some eigenvalue � on the imaginary axis. Otherwise, apply the results

below for each eigenvalue, which is possible since generalized eigenspaces are H-invariant.

It follows that there exists an H-invariant decomposition of V� =
Ll

i=1 V
i
�
such that

N(A� � � id)j =

jM
i=1

V
i
�

for any j � l, and A� maps
Lj

i=1 V
i
�
into itself. We write any vector v 2 V� as v = (v1; :::; vl)

with vi 2 V
i
�
. In these coordinates, the matrix A� acts according to

A�v = (�v1 +A2v2; �v2+ A3v3; :::; �vl);

where the matrices Ai have norm less than K. We de�ne the H-invariant neighborhood Û

by

Û =
n
v 2 V� =

lM
i=1

V
i
�
; jvij < �

�
�

2K

�i�1

; i = 1; :::; l
o
;(3.4)

for any � > 0 small.

Finally, de�ne the function

F̂ (v) := �

�
�

� jv1j
�

�
v1; �

�2Kjv2j
��

�
v2; :::; �

�(2K)l�1jvlj

�l�1�

�
vl

��
;(3.5)

where the cut-o� function � has been de�ned above. Notice that F̂ is H-equivariant and

smooth since the norm induced by the H-invariant scalar product is smooth. Moreover, as

before,

kDF̂ (v)k � � (1 + kD�k); v 2 Û ;(3.6)

uniformly in (�; �). It is straightforward to verify that any solution v(t) of

_v = A�v + F̂ (v);

with v(0) 2 @Û leaves Û immediately. Indeed, F̂ (v) = �v for any v 2 @Û by construction,

and the eigenvalues of A� have non-negative real part. Therefore, (A� + � id)v points

outwards of @Û for v 2 @Û .

3.2 Normal hyperbolicity

In this paragraph, we de�ne a global parametrization of a neighborhood of the group orbit

Gu� which is adapted to the spectral decomposition assumed in Hypothesis 2.
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Lemma 3.2 The complementary projections

QG(�gu�) := �g(id�Q�)P��g�1 ; QV (�gu�) := �gQ�P��g�1 ; QS(�gu�) := �g(id�P�)�g�1

are Ck+1 in g 2 G and depend only on u = �gu� 2 Gu�. They satisfy

R(QG(�gu�)) = Tgu�(Gu�); R(QV (�gu�)) = �gV�; R(QS(�gu�)) = �gW� := �gN(P�):

In particular, the sets f�gu� + w; w 2 �gW�g and f�g(u� + v); v 2 V�g are Ck+1-bundles

over Gu�, to which we refer as the stable and center bundle.

Proof. The assertions are consequences of Hypothesis 3(iv).

We obtain the following parametrization of a neighborhood of the group orbit Gu�. There

exists an � > 0 such that, if jy � Gu�j < �, then y = u(y) + v(y) + w(y). Here,

u(y) = �g(y)u� 2 Gu�, v(y) 2 �g(y)V�, and w(y) 2 �g(y)W� are Ck+1 in y. Since G=H

is di�eomorphic to Gu�, we may choose g(y) locally as a Ck+1-function. Indeed, since H is

a submanifold of G, we �nd a submanifold � of G transverse to H at g = id such that the

map �! Gu�, g 7! gu� is a di�eomorphism locally near g = id. Thus, there exist smooth

local charts near any point u 2 Gu�. These charts may not �t together globally, though

they do if the isotropy group H is compact, see [5].

Using the set Û , see (3.4), we de�ne the G-invariant set

N
cu := f�g(u� + v); g 2 G; v 2 Û � V�g;(3.7)

for any �; � 2 (0; �). Note that N cu is well-de�ned since Û is H-invariant. Thus, for �xed

u in Gu�, it is not important which g 2 G with gu� = u we choose. It is a consequence of

Lemma 3.2 and the discussion above that N cu is a Ck+1-manifold. Finally, let

~U := f�g(u� + v) + w; �g(u� + v) 2 N
cu
; w 2 �gW�; jwj < �g(3.8)

be an adapted neighborhood of N cu.

On account of the spectral hypothesis 2 and G-equivariance, there exist constants C > 0,

l 2 N, and s > 0 such that

kD�t(�gu�)j�gW�k < Ce
�

s
t
; kD��t(�gu�)jTgu�(Gu�)��gV�k < C(1 + t

l);(3.9)

for t > 0 uniformly in g 2 G. Indeed, Hypothesis 2 and equation (2.6) show that we have

D�t(�gu�)jTgu�(Gu�)��gV� = �g�g�(t)e
B�t�g�1

for some matrix B� with Re spec(B�) � 0, and, by Lemma 3.1, k�gk = 1 for all g. Thus,

normal hyperbolicity is established.
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3.3 Overowing of N cu

In this paragraph, we extend the nonlinear perturbation F̂ as de�ned in (3.5) to the man-

ifold N
cu, and show that N cu is overowing.

Lemma 3.3 For y 2 ~U , let

~F (y) := �g(y)F̂ (�g(y)�1v(y));(3.10)

then ~F is well-de�ned, smooth, and G-equivariant.

Proof. We start by verifying that ~F is well-de�ned. Without loss of generality, we may

again restrict to the case of a single Jordan block since, using the notation of section 3.1,

the isotropy group H and the function F̂ de�ned in (3.5) map each subspace V i
�
into itself.

For the proof that ~F is well-de�ned, assume that

~F (�gj(u� + vj) + w�) = �gj�

� jvjj
�

�
vj

for j = 1; 2 such that �g�1
1

�g2 2 H and �g1v1 = �g2v2. Using that � is a scalar function

and the norm is H-invariant, it is straightforward to show that ~F does not depend on the

choice of g1 and g2. Equivariance follows in a similar fashion. It is also clear that ~F is

smooth since the charts g(y) are.

By (3.6), we have

kD ~F (y)k � C�; y 2 ~U;(3.11)

for some constant C > 0 uniformly in �. Moreover, by de�nition of F̂ ,

~F (y) = �v(y);(3.12)

for any y = �g(y)u� + v(y) + w(y) with �g(y)u� + v(y) 2 @N
cu.

Finally, we modify the vector �eld in ~U to achieve overowing of the boundary of N cu.

Consider the equation

yt = �Ay + F (y) + ~F (y); y 2 ~U:(3.13)

Solving this equation with y0 = y(0) 2 ~U , yields a G-equivariant semiow denoted by

~�t(y).

Lemma 3.4 Take any point y = �gu� + v + w 2 clos ~U with �gu� + v 2 @N
cu, then

~�t(y) =2 clos ~U for any t > 0 small.
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Proof. Without loss of generality, by equivariance, we may consider y0 = u� + v� + w�

with v� 2 V� and w� 2 W�. Denote the corresponding solution of (3.13) by y(t) = ~�t(y0),

and let u(t) = �t(u�) be the solution of the original equation (2.1)

yt = �Ay + F (y)

with u(0) = u�. Let 	(t; �) denote the evolution of the linearized equation

yt = �Ay +DF (u(t))y:

It is useful to introduce the di�erence

x(t) = y(t)� u(t) = ~�t(y0)� �t(u�);

then x(t) satis�es the integral equation

x(t) = 	(t; 0)x0+

Z t

0

	(t; �)
�
G(�; x(�))+ ~F (u(�) + x(�))

�
d�

with x0 = v� + w� and

G(t; x) := F (u(t) + x)� F (u(t))�DF (u(t))x = O(jxj2):

Since t is small and jx(0)j � � by assumption, we may write

x(t) = 	(t; 0)(v� + w�) +
R t
0
	(t; �) ~F (u(�) + x(�)) d� + O(�2)

= 	(t; 0)(v� + w�) + O(t) + O(�2)
(3.14)

uniformly for t 2 [0; �] for some �xed � > 0. Indeed, the values of the nonlinearity ~F are

in D(A). We will compare the solution x(t) with the function

z(t) = 	(t; 0)(v� + w�) +

Z t

0

	(t; �)�	(�; 0)v�d� = 	(t; 0)((1 + �t)v� + w�):

Substituting the expansion (3.14) of x(t) into ~F (u(t)+x(t)) and using the de�nition (3.10)

of ~F , it is straightforward to calculate that jx(t)� z(t)j = O(�2 + t
2). Therefore,

x(t) = 	(t; 0)((1+ �t)v� + w�) + O(�2 + t
2)

= �exp(��t)e
B�t(1 + �t)v� +	(t; 0)w� + O(�2 + t

2)

and the claim follows from section 3.1 and the de�nition (3.8) of ~U .

Summarizing, the modi�ed vector �eld (3.13) has been constructed such that N cu is over-

owing. In addition, the estimates

k~�T(y)� �T (y)k � CT��; kD~�T(y)�D�T (y)k � CT�;(3.15)

are true for all T > 0. Indeed, the derivative of the term ~F (y) is of order �, see (3.11) and

an application of the Gronwall lemma proves (3.15).
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3.4 The graph transform

The graph transform works as follows. We consider the closed metric space �# of Lipschitz

continuous sections of the stable bundle de�ned by

�# := f� 2 C
0;1(N cu

; Y ); �(u+ v) 2 �g(u)W�; j�(u+ v)j < �; Lip(�) � 1g;

equipped with the metric j�� �̂j := supy2Ncu j�(y)� �̂(y)j. The time-T map ~�T will induce

a contraction �# on �# for any su�ciently large T by mapping � to ~� where the latter is

de�ned by

y + ~�(y) 2 f~�T (x+ �(x)); x 2 N
cu
g(3.16)

for all y 2 N
cu.

Normal hyperbolicity and overowing of ~�T have been obtained in equations (3.9), (3.15)

and in Lemma 3.4, respectively. Therefore, we may apply the general results described,

for instance, in [4, 9, 19, 21] to conclude that �# is well-de�ned and a contraction on �#.

We can also infer the existence of a unique Ck+1-manifold M
cu
�

which is locally invariant

and attracting under ~�T , and tangent to N cu at the group orbit Gu�, see the articles listed

above for the details.

It remains to prove thatM cu
�

is G-invariant and invariant under ~�t for any t � 0. The �rst

claim follows since �gM
cu
�

is also invariant under ~�T . Indeed, by construction, ~�T is G-

equivariant. By uniqueness of M cu
�
, we have �gM

cu
�

=M
cu
�
. By a similar token, we obtain

M
cu
�
� ~�tM

cu
�

for any t � 0. Since �t and ~�t coincide in a small neighborhood of Gu�,

we see thatM cu
�

is actually locally invariant under �t. Finally, we prove that the G-action

restricted to M cu
�

is Ck+1. Any point in M
cu
�

is given by u+ v + �#(u+ v) with u = �gu�

and v 2 �gV�. Here, �# denotes the �xed point of �#. Since, by the above discussion,

�# is G-equivariant and the group acts smoothly on the center bundle, the claim follows

immediately.

This completes the proof of Theorem 1.

4 SE(N)-equivariant reaction-di�usion equations

Isotropic and excitable media are described by reaction-di�usion systems (1.1)

ut = D�u+ f(u; �); x 2 R
N
; N = 2; 3(4.1)

where D = diag(dj) is diagonal with non-negative entries dj � 0, u 2 RM, and f : RM �

Rp! RM is a Ck+2-function for some k � 1, see section 1. We consider (4.1) on the space

Y = C
0
unif(R

N
;R

M) or Y = L
2(RN

;R
M). Recall that (4.1) generates a smooth semiow

�t(u; �) on both spaces. More precisely, we require growth conditions on the nonlinearity
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if the di�usion matrix D is singular and Y = L
2, see [8]. Equation (4.1) is equivariant with

respect to the action of SE(N) stated in the introduction.

4.1 Isotropy subgroups of relative equilibria

The next lemma classi�es the possible isotropy subgroups of relative equilibria u� and shows

that group orbits are embedded provided SE(N) acts smoothly on u�.

Lemma 4.1 Suppose that u� satis�es Hypothesis 3(i), that is, (R; S)u� is C
k+2 in (R; S) 2

SE(N). Under this condition, Hypothesis 3(ii) is met. In particular, the group orbit of u�

is embedded. In addition, for N = 2, the isotropy subgroup H of u� is SE(2), S1, or Z̀.

Similarly, for N = 3, the isotropy of u� is either SE(3) or a compact subgroup of SO(3).

Proof. We prove the lemma forN = 2 and Y = C
0
unif since the proofs for N = 3 or Y = L

2

are similar. We start with the �rst assertion and argue by contradiction. Throughout, we

use the notation ('; a) 2 S
1 _+R2 = SO(2) _+R2 = SE(2). The action of ('; a) on u is

then denoted �(';a)u. The generator of the rotations is
@

@'
with functions written in polar

coordinates. Observe that u� 2 D( @

@'
) by assumption.

Using compactness of SN�1 and the SO(N)-component of SE(N), it su�ces to consider

the following: suppose that there exists a sequence an 2 R with an ! 1 and some � > 0

such that dist((0; (an; 0)); H) � � and �(0;(an;0))u� ! u� as n ! 1. In other words,

u�(x1 � an; x2) ! u�(x1; x2) uniformly in (x1; x2) 2 R
2. We will infer a contradiction to

u� 2 D( @

@'
). Note that either there exist numbers y1, y2 and ~y2 such that u�(y1; y2) 6=

u�(y1; ~y2), or else the function u�(x1; x2) is independent of x2.

Suppose the former is true, that is, u�(y1; y2) 6= u�(y1; ~y2) for some y1, y2 and ~y2. Using

�(0;(an;0))u� ! u�, there exist � > 0 and numbers y
(n)
2 2 [y2; ~y2] such that

���� @

@x2

u�

�
(y1 � an; y

(n)
2 )

��� � � > 0

for any n 2 N. The derivative of u� with respect to ' evaluated at (y1; y
(n)
2 ) is given by

�
@

@'
u�

�
(y1 � an; y

(n)
2 ) = (y1 � an)

�
@

@x2

u�

�
(y1 � an; y

(n)
2 )� y

(n)
2

�
@

@x1

u�

�
(y1 � an; y

(n)
2 ):

Since an ! 1, we obtain a contradiction to boundedness of @

@'
u� as

@

@x1
u�(x) is bounded

uniformly in x 2 R2.

Next, suppose that the function u�(x1; x2) = u�(x2) is independent of x2. Using the above

arguments in the x1-direction for x2 !1, we conclude that u� is in fact a constant function

reaching a contradiction to dist((0; (an; 0)); H) � �. Thus the �rst assertion of the lemma

is proved.
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If the isotropy subgroup were to contain a translation, we could apply the above results.

They show that u� is in fact a constant function. Otherwise we would reach a contradiction

to u� 2 D( @

@'
).

Remark 4.2 In passing, we note that, since SE(N), N = 2; 3, has no �nite-dimensional

representations on C0
unif , the isotropy subgroup H of u� must be compact once the spectral

hypothesis 2 is satis�ed. Unless, of course, u� is a constant function and E
cu
�

= f0g is

trivial.

4.2 Satisfaction of Hypothesis 3

In this section, we show that Hypotheses 3(iii) and (iv) are satis�ed provided the relative

equilibrium meets Hypothesis 2, and SE(N) acts smoothly on u�.

Theorem 3 Assume that u� is a relative equilibrium of (4.1) for N = 2; 3 on C
0
unif or L

2,

and satis�es Hypotheses 2 and 3(i). If some of the entries of the di�usion matrix D vanish,

assume in addition that u� is a rotating wave, that is, the generator (r�; s�) = (r�; 0) is a

pure rotation. Under these conditions, Hypotheses 3(iii) and (iv) are also satis�ed.

Thus, we have to prove that (R; S)v is Ck+1 in (R; S) 2 SE(N) for any v 2 E
cu
�
, and that

the spectral projections are Ck+1. We start with the latter.

Lemma 4.3 Under the assumptions of Theorem 3, Hypothesis 3(iv) is obeyed.

Proof. Since u� is a relative equilibrium, it satis�es �t(u�; ��) = exp((r�; s�)t)u� for some

element (r�; s�) 2 so(N)�RN. Without loss of generality, we may therefore assume that

�1(u�; ��) = (id; S�)u�, see (1.3). Note that it is here where we use that N = 2; 3, since

the subgroup SO(N) contains non-trivial tori for N > 3. Hence, by (1.2),

(R; S) (id; S�) (R; S)
�1 = (id; RS�)(4.2)

is a pure translation which depends smoothly on the rotational component R. We claim

that the operator

L(R;S) := (R; S) (id; S�) (R; S)
�1
D�1((R; S)u�; ��)(4.3)

depends smoothly on (R; S) 2 SE(N) as a map from C
0
unif or L

2 into itself. Assume for

the moment that the claim is true. Using Dunford-Taylor calculus, we see that the spectral

projections associated with L(R;S) are smooth in (R; S). Moreover, by equivariance, they

coincide with the projections (R; S)P� (R; S)
�1 appearing in Hypothesis 3(iv). Therefore,

it su�ces to prove the above claim in order to verify Hypothesis 3(iv).
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First, we consider the case that the di�usion matrix D is singular. Then, by assumption,

S� = 0 and therefore L(R;S) = D�1((R; S)u�; ��), see (4.2) and (4.3). In particular, L(R;S)

is smooth in (R; S) and the arguments given above go through.

Next, consider non-singular di�usion matrices D. We argue for the space C0
unif . As ex-

plained above, the operator L(R;S) is the composition of a translation and the operator

D�1((R; S)u�; ��). Since the di�usion matrix is non-singular, D�1((R; S)u�; ��) depends

smoothly on (R; S) as a map from C
0
unif(R

N
;R

M) into Ck+2
unif (R

N
;R

M), see [8]. Finally, the

translations (id; R�1
S�) are C

k+1 in R considered as maps from C
k+2
unif into C

0
unif . Therefore,

L(R;S) 2 L(C0
unif) is C

k+1 in (R; S). This proves the claim for the space C0
unif . Since the

proof for L2 is similar, we will omit it.

It remains to prove that (R; S)v is Ck+1 in (R; S) 2 SE(N) for any v 2 E
cu
�
.

Lemma 4.4 Under the assumptions of Theorem 3, Hypothesis 3(iii) is obeyed.

Proof. Throughout the proof, the action of SE(N) on functions u is denoted by either

(R; S) or �g with g = (R; S) 2 SE(N). Note that Hypothesis 3(iv) is met by the previous

lemma. Therefore, by Hypotheses 3(i) and (iv), the set

N
cu
�

:= f�gu� + �g P��g�1 v; g 2 SE(N); v 2 V�g

is a Ck+1-manifold locally near u�. Here, V� has been de�ned in section 2 as a complement

of the tangent space Tu�SE(N)u� in the eigenspace Ecu
�
= R(P�), where P� is the spectral

projection appearing in Hypothesis 2. We claim that SE(N) acts continuously on N
cu
�
.

Suppose the claim is true. Since SE(N) operates continuously on the �nite-dimensional

smooth manifold N
cu
�
, the action is in fact smooth, see, for instance, [13, Theorem 5.3],

and the assertion of the Lemma follows.

Thus, it remains to prove the claim. Since SE(N) acts smoothly on the group orbit of u�,

it su�ces to show that �gv is continuous in g 2 SE(N) for any v 2 V�.

For v 2 Ecu = R(P�) and g 2 SE(N),

j(1� P�)(�gv � v)j = j(1� P�)�gvj � j(1� P�)�gP��g�1 j j�gvj;

because (�gP��g�1)�gv = �gv. Since k(1 � P�)(�gP��g�1)k ! 0 as g ! id, we infer that

(1� P�)(�gv � v) is continuous at g = id.

It remains to show that P��gnv converges to P�v for any sequence gn ! id in SE(N)

as n ! 1. We argue by contradiction: suppose that there is some � > 0 such that

jP��gnv � vj � � for all n. Since P��gnv is bounded and E
cu
�

is �nite-dimensional, there

exists a convergent subsequence, which we again denote by gn, such that P��gnv ! ~v for

some ~v 2 E
cu
�
. This, however, implies v = ~v and a contradiction is obtained. Indeed, for
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the representation of SE(N) on C
0
unif or L

2, if (Rn; Sn) ! (id; 0) and (Rn; Sn)v ! ~v as

n!1 then v = ~v.

Remark 4.5 Note that no use has been made in the proof of Lemma 4.4 of particular

features of equation (4.1) or the function spaces involved except for the property: if gn ! id

and �gnv ! ~v as n!1, then v = ~v.

Theorem 3 is a consequence of Lemmata 4.3 and 4.4.

5 Spiral waves in two-dimensional excitable media

Consider the set-up of section 4 with N = 2. We will use a slightly di�erent notation for

the group action, namely

(�(';a)u)(x) := u(R�'(x� a));

where ('; a) 2 S
1 _+R2 = SO(2) _+R2 = SE(2). The matrix R' denotes the rotation by the

angle ' around zero in R2.

5.1 Center manifolds near spiral waves

For the sake of clarity, we formulate the results for the space C0
unif though they are also

true for L2, then with Hk replacing Ck.

We assume that u� 2 C
0
unif is a rotating wave of (4.1) for � = �� satisfying Hypothesis 1,

that is,

�t(u�; ��) = �(!�t;0)u�

for some !�. First, it is shown that Hypothesis 3(i) is satis�ed.

Lemma 5.1 Assume that u� is a rotating wave. If the di�usion matrix D is singular,

assume in addition that u� 2 C
k+2
unif (R

2
;RM). Under these conditions, Hypothesis 3(i) is

satis�ed.

Proof. If D is positive, we observe that u� is of class Ck+2 by regularity properties of

(4.1), see [8]. Therefore, the translations �(0;a) : u�(�) 7! u�(� � a) act smoothly on u�. The

one-parameter family of rotations �(';0) act smoothly on u� since, by de�nition, the action

coincides with the time evolution of the rotating wave u� provided !� 6= 0. If !� = 0, the

steady state is a rotating wave for any frequency !� > 0, and thus also smooth.

We have then the following application of Theorem 1.
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Theorem 4 Let u� be a rotating wave of (4.1). Suppose that the spectral hypothesis 2 is

met. If the di�usion matrix D is singular, assume in addition that u� 2 C
k+2
unif (R

2
;R

M).

Then, for any � with j� � ��j su�ciently small, there exists an SE(2)-invariant, locally

ow-invariant manifold M cu
� contained in C0

unif . The manifold M
cu
� and the action of SE(2)

on M
cu
� are of class Ck+1 and depend C

k+1-smoothly on the parameter �. Furthermore,

M
cu
� contains all solutions which stay close to the group orbit of u� for all negative times.

Finally, M cu
� is locally exponentially attracting.

Proof. We have to show that the assumptions of Theorem 1 are obeyed. Hypothesis 3(i)

is met by Lemma 5.1. Therefore, we may apply Lemma 4.1 and Theorem 3 to conclude

that Hypotheses 3(ii), (iii) and (iv) are satis�ed. This completes the proof.

Remark 5.2 Assume that the di�usion matrix D is singular. Using the results of [22],

it is possible to prove that �(';a)u� is Ck+2 in �(';a) 2 SE(2) whenever the group acts

continuously on u�. Therefore, the assumption u� 2 C
k+2
unif (R

2
;RM) appearing in Theorem 4

can be replaced by the following weaker one: SE(2) acts continuously on u�.

We also remark that Theorem 4 remains true for more general relative equilibria provided

Hypothesis 3(i) is met.

Under the assumptions of Theorem 4, the isotropyH of u� is either Z̀ or S1, see Lemma 4.1

and Remark 4.2. Thus, we can apply the results of [5], see Theorem 2, and obtain the fol-

lowing theorem. As in section 2, we choose an H-invariant complement V� of Tu�(SE(2)u�)

in the generalized eigenspace Ecu
�
.

Theorem 5 Suppose that the assumptions of Theorem 4 are met. The isotropy subgroup

H of u� is then either Z̀ or S1. The manifold M
cu
� is di�eomorphic to (SE(2)� V�)=�,

where the equivalence relation on SE(2) � V� = S
1 � C � V� is de�ned by ('; a; v) �

('+ '̂; a; �(�'̂;0)v) for any ('̂; 0) in the isotropy H of u�. Furthermore, the pull-back of the

vector �eld on M
cu
� to SE(2)� V� as de�ned in Theorem 2 is of skew-product form

_' = f1(v; �)

_a = e
i'
f2(v; �)

_v = fN(v; �);

(5.1)

and H-equivariant:

(f1; f2; fN)(�('̂;0)v; �) = (f1; e
i'̂
f2; �('̂;0)fN)(v; �):

Finally, (f1; f2; fN)(0; ��) = (!�; 0; 0).
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Proof. The theorem follows from Theorem 2 and 4 once the adjoint representation has

been computed. Identifying SE(2) with S
1 _+C , and its Lie algebra se(2) with R� C , the

group structure on SE(2) is given by

( ~'; ~a)('; a) = ('+ ~'; ei ~'a+ ~a):

In particular, the inverse of ('; a) is

('; a)�1 = (�';�e�i'
a):

Thus, the adjoint action Ad(';a) of SE(2) on the Lie algebra se(2) is given by

Ad(';a)(r; s) = ('; a) (r; s) ('; a)�1 = (r; ei's� ira)

and, in particular,

Ad( ~';0)(r; s) = (r; ei ~'s):(5.2)

Any element in the isotropy group H is of the form ( ~'; 0). Thus the theorem is proved.

5.2 The spectral hypothesis 2

We remark that Lemma 2.1 relates the spectral assumption 2 to the spectrum of the

linearization of (5.1) at the rotating wave u�. It is possible to make this relation more

explicit. For that purpose, we have to work in either L2(R2
;RM) or else the subspace

C
0
eucl(R

2
;R

M) of C0
unif(R

2
;R

M) which is de�ned as the closure of D( @

@'
) in C0

unif , see [22]. On

L
2 and C0

eucl, the one-parameter family of rotations acts as a strongly continuous semigroup.

It is then possible to write Hypothesis 2 in terms of the spectrum of the operator

L := D�� !�
@

@'
+Duf(u�; ��);(5.3)

that is, the linearization of the spiral wave in a rotating frame. Note that L generates

a C
0-semigroup on either C0

eucl(R
2
;RM) or L2(R2

;RM), see [22], but not necessarily on

C
0
unif (R

2
;R

M).

Lemma 5.3 Consider equation (4.1) on either C0
eucl(R

2
;R

M) or L2(R2
;R

M). Furthermore,

assume that u� is a rotating wave solution. Suppose that spec(L)\ f� 2 C ; Re� � 0g is a

spectral set with spectral projection P�. If dimP�(E
cu
�
) <1 and the semigroup eLt satis�es

keLtj(1�P�)Ecu� k � Ce
��t

for some � > 0, then Hypothesis 2 is true. In that case, we have spec(DfN(0; ��)) =

spec(Q�LjV�), where V� = R(Q�) is an H-invariant complement of Tu�(SE(2)u�) = N(Q�)

in E
cu
�

with associated projection Q�.
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Proof. Since the operator L generates a C
0-semigroup on either space, we have

D�t(u�; ��) = �(!�t;0)e
Lt, see [22, Lemma 3.7]. In particular, D�2�=!�(u�; ��) = e

2�=!�L.

The remaining assertions follow from Lemma 2.1.

Finally, consider the operator L on L2.

Hypothesis 4 Assume that the spectrum of the operator A1 := D� + Duf(0; ��) on

L
2(R2

;R
M) satis�es spec(A1) < �� < 0.

Lemma 5.4 Consider equation (4.1) on L
2(R2

;R
M). Let the di�usion matrix D be non-

singular. We assume that u� 2 L
2(R2

;R
M) is a rotating wave such that u�(x)! 0 uniformly

in jxj ! 1. Suppose that Hypothesis 4 is met. Under these conditions, Hypothesis 3 is

obeyed. In fact,

spec(eL) \ f� 2 C ; j�j � 1g = exp
�
spec(L) \ f� 2 C ; Re � � 0g

�

is a spectral set and dimE
cu
�
< 1 is true for the associated generalized eigenspace. More-

over, spec(DfN(0; ��)) and spec(L) are related as in Lemma 5.3.

Proof. The proof is motivated by [3, Chapter 4]. Note that �A1 is sectorial with domain

H
2(R2

;RM) since the di�usion matrix D is positive. Therefore, spec(eA1) lies inside the

circle of radius e��, see [8], and

ke
A1t

k � Ce
��t(5.4)

for some positive C and all t > 0. The operator

L1 = D�� !�
@

@'
+Duf(0; ��)

generates a strongly semigroup given by eL1t = �(�!�t;0)e
A1t. Since the rotations �(�!�t;0)

have norm one, spec(eL1) is also contained inside the circle of radius e��. Indeed, use

the estimate (5.4), and the relation between spectral radius and the norm of powers of the

operator. We claim that eLt� e
L1t is compact for any t > 0. Suppose for the moment that

the claim is true. Then, by [11, Theorem IV.5.35], the essential spectra

specess(e
L) = specess(e

L1) � spec(eA1) � f� 2 C ; j�j < e
��
g

coincide. Here, the essential spectrum specess denotes the complement (in the spectrum) of

the set of isolated eigenvalues with �nite multiplicity. Therefore, Hypothesis 3 is satis�ed.

Also, the relation between the point spectra of L and eL outside the circle of radius e�� is

a consequence of [16, Theorem 2.2.4, p. 46]. It remains to prove that

e
Lt
� e

L1t =

Z t

0

e
L(t��)

Ke
L1�

d�(5.5)
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is compact for positive t. Here, the bounded operator K is given by K = Duf(u�; ��) �

Duf(0; ��). Note that K is compact from H
2(R2

;R
M) to L2 since u�(x)! 0 uniformly as

jxj ! 1, see [3, pp. 27{28]. Therefore,

Ke
L1� = K�(�!��;0)e

A1� 2 L(L2)

is compact for � > 0 since eA1� maps L2 into H2 and �(�!��;0) 2 L(H2). By the arguments

given in [3, p. 28], the integrand appearing on the right hand side of (5.5) is norm-continuous

in � 2 (0; t]. Thus,
R t
�
e
L(t��)

Ke
L1�

d� is compact for any � > 0. Since the set of compact

operators is closed in the norm-topology, and k
R �
0
e
L(t��)

Ke
L1�

d�k � C� in norm, the

integral in (5.5) is compact. This proves the claim and thus the lemma.

5.3 Bifurcations of spiral waves

Summarizing, a center-manifold reduction to a smooth and SE(2)-equivariant manifold

near `-armed spiral waves has been obtained. The skew-product structure of the vector

�eld on the center manifold has been proved in [5]. Finally, at least on C
0
eucl(R

2
;R

M) and

L
2(R2

;RM), the spectrum of the reduced vector �eld (5.1) has been explicitly related to

the spectrum of the linearization of (4.1). Thus, we may investigate bifurcations of the

H-equivariant normal component

_v = fN(v; �)

of (5.1) and study the drift along the group orbit using the H-equivariant equation0
@ _'

_a

1
A =

0
@ f1(v; �)

e
i'
f2(v; �)

1
A :

For Hopf bifurcations from rigidly-rotating `-armed spiral waves to meandering or drifting

waves, this program has been carried out in [6] and [5] to which we refer for more details.

In [6], the consequences of Takens-Bogdanov bifurcations for one-armed spirals have been

discussed. By Theorem 5, similar statements hold for `-armed waves. Note that the

formal reduction given in [6] requires that the center bundle is trivial. Takens-Bogdanov

bifurcations near `-armed spiral waves may result in non-trivial bundles. However, the

center-manifold theorem 4 and the associated reduction described in [5], see Theorem 5, do

not su�er from this drawback. Therefore, our results cover Takens-Bogdanov bifurcations

near `-armed spiral waves.

6 Twisted scroll rings in SE(3)-equivariant systems

In numerical simulations of reaction-di�usion systems on R3, twisted scroll rings have been

observed in [15]. These are relative equilibria with �nite isotropy group Z̀ which rotate
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around the x3-axis, say, and additionally drift along the same axis with constant speed.

We may think of a one-parameter family of `-armed spirals with a core aligned along the

unit circle parallel to the (x1; x2)-plane. The spiral patterns occur, locally, in the bundle of

normal planes to the core circle. Such patterns are called scroll waves. Hopf bifurcations

of scroll waves can be analyzed using Theorem 1.

Consider the reaction-di�usion system (4.1) with N = 3 and for positive di�usion matrix

D. In mathematical terms, a twisted scroll ring u� satis�es

�t(u�) = exp(��t)u�;

where �� = (r�; s�) 2 so(3)�R3 = se(3) in the Lie algebra of SE(3) has the special form

r� =

0
BBB@

0 �!� 0

!� 0 0

0 0 0

1
CCCA ; s� =

0
BBB@

0

0

c�

1
CCCA :(6.1)

The temporal evolution of the twisted scroll ring is then given by

�t(u�)(x) = u�(R�(�!�t)x� s�t);

where R�(') denotes the rotation by the angle ' around the x3-axis in R
3.

We assume that the group orbit SE(3)u� is smooth which is clearly satis�ed for the scroll

waves observed in numerical simulations.

Theorem 6 Assume that the relative equilibrium u� meets Hypotheses 2 and 3(i). The

conclusions of Theorem 4 are then valid with SE(3) replacing SE(2).

Proof. By assumption, Hypothesis 3(i) is met. Thus, Theorem 3 applies, and Hypothe-

ses 3(iii) and (iv) are obeyed. Similarly, by Lemma 4.1, Hypothesis 3(ii) is satis�ed. Finally,

Theorem 1 proves the assertion of the theorem.

Remark 6.1 Using an extension of the results of [22], we can prove that Hypothesis 3(i)

is satis�ed whenever SE(3) acts continuously on u�. Therefore, the assertion of Theorem 6

is true provided SE(3) acts continuously on the scroll wave u� and Hypothesis 2 is met.

The proof will appear elsewhere. We should also emphasize that the relation (6.1) on the

generator �� has not been assumed in Theorem 6.

Using the reduced di�erential equations (2.3), the dynamics near Hopf bifurcations from

twisted scroll waves can be analyzed. It turns out that bifurcating solutions drift approxi-

mately in the x3-direction. In a plane perpendicular to the vertical propagation direction,

the bifurcating scroll rings perform a planar meandering or drifting motion. We refer to

[5, Section 6] for the details.
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