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A generalized Γ-convergence concept for a type of equilibrium
problems

Michael Hintermüller, Steven-Marian Stengl

Abstract

A novel generalization of Γ-convergence applicable to a class of equilibrium problems is stud-
ied. After the introduction of the latter, a variety of its applications is discussed. The existence
of equilibria with emphasis on Nash equilibrium problems is investigated. Subsequently, our Γ-
convergence notion for equilibrium problems, generalizing the existing one from optimization, is
introduced and discussed. The work ends with its application to a class of penalized generalized
Nash equilibrium problems and quasi-variational inequalities.

1 Introduction

Equilibrium problems form an umbrella of various problems relevant in applied mathematics (see
[KR18, Chapter 2] for an overview). Among them, especially optimization problems are a power-
ful tool for various applications. Thus, it is not surprising, that equilibrium problems such as Nash
equilibrium problems and (quasi-)variational inequalities (abbr.: (Q)VIs) enjoyed growing interest
in the recent literature (cf. [FK07], [PF05] for an overview, as well as the recent articles [HS13],
[HSK15], [KKSW19], [AHR19]). Many of these problems contain constraints or suffer from a lack
of smoothness and are often addressed via a sequence of more regular problems. Such a se-
quential approximation aims at approaching the original problem in the limit via a sequence of
more tractable approximating problems. A powerful concept in this context utilized in optimization
is Γ-convergence (cf. [Bra02], [DM12]).
Let a reflexive Banach spaceU be given. Consider a subsetUad ⊆ U and functionals (En)n∈N, E :

Uad → R∪{+∞}. The sequence (En)n∈N is called Γ-convergent to E , denoted by En
Γ−→ E ,

if the following two conditions are fulfilled:

(i) For all sequences un → u holds E(u) ≤ lim infn→∞ E(un).

(ii) For all v ∈ Uad exists a sequence vn → v with lim supn→∞ E(vn) ≤ E(v),

where the sequences are chosen in Uad.
The above displayed notion of Γ-convergence is tailored to optimization problems and in principle
not immediately applicable to broader problem classes like general (quasi-)variational inequalities
or Nash games. The main difficulty therein is the dependence of the constraint set on the solution,
respectively of the objective on the stategies of the other players. This article provides a general-
ization of Γ-convergence to equilibrium problems covering the aforementioned applications.
The rest of this work is organized as follows: In Section 2, we introduce and discuss the equi-
librium concept addressed in this work and provide applications embedding into our concept. In
Section 3, we derive an abstract existence result and apply it to Nash games. Eventually, in Sec-
tion 4, we derive our generalized Γ-convergence notion and apply it to a penalization technique
addressing the applications discussed in Section 2.
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2 Equilibrium Problems

First, we introduce the type of equilibrium problem under investigation in this article. For this sake
we denote for a given functional F : U → R ∪ {+∞} the domain by dom (F ) := {u ∈ U :
f(u) <∞}.

Definition 1. Consider a reflexive Banach spaceU and a subsetUad ⊆ U as well as a functional
E : Uad × Uad → R with dom (E( · , u)) 6= ∅ for all u ∈ Uad. A point u ∈ Uad is called an
equilibrium (of E ), if

E(u, u) ≤ E(v, u) holds for all v ∈ Uad.

Occasionally, the first component in E is referred to as control component and the second
component as feedback component. Evidently, optimization problems are a special instance of
equilibrium problems without feedback component. In [BO94] the term equilibrium problem has
been introduced as a problem of the following type:
Let a set C ⊆ U and a bifunction Ψ : C × C → R be given. Seek u ∈ C , such that

Ψ(u, v) ≤ 0 for all v ∈ C.

There is a generalization of this problem called quasi-equilibrium problem (cf. [NO94]) incorporat-
ing a dependence of the feasible set on one of the variables. In that setting, a set-valued operator
C : U ⇒ U is considered, leading to the problem of finding u ∈ C(u), such that

Ψ(u, v) ≤ 0 for all v ∈ C(u).

These problems have been extensively discussed in the literature with special emphasis on pro-
viding existence results. Here, we refer again to [KR18] and [ACI17]. Using the difference in Defi-
nition 1 we can introduce the Nikaido–Isoda functional (compare to [NI55]) reading for u, v ∈ Uad

with v ∈ dom (E( · , u)) as

Ψ(u, v) = E(u, u)− E(v, u). (1)

Comparing to the concept given [BO94] the Nikaido–Isoda functional provides the link between
(quasi)-equilibrium problems and the one given in Definition 1. Our approach addresses both
problem classes simultaneously, as the set-valued mapping can be hidden in the feedback de-
pendent domain. The Nikaido–Isoda functional allows another characterization related to opti-
mization, which is given in the next theorem.

Theorem 2 (compare to [NI55, Lemma 3.1]). Let a functional E as in Definition 1 be given. Then,
u is an equilibrium, if and only if V (u) = 0, where V : Uad → [0,+∞] denotes the value
function defined by

V (u) = sup
v∈dom(E(·,u))

Ψ(u, v)

for given u ∈ Uad with Ψ being the Nikaido–Isoda functional defined in (1).

Proof. Let u ∈ Uad be an equilibrium of E . By Definition 1 holds therefore E(u, u) ≤ E(v, u) for
all v ∈ Uad. Thus, as dom (E(·, u)) 6= ∅ also E(u, u) < +∞ respectively u ∈ dom (E(·, u))
holds true. Hence

0 = E(u, u)− E(u, u) = Ψ(u, u) ≤ V (u) = sup
v∈dom(E(·,u))

Ψ(u, v) ≤ 0,

which implies V (u) = 0.
For the other direction, assume V (u) = 0. Choosing an arbitrary v ∈ dom (E(·, u)) yields

E(u, u)− E(v, u) ≤ V (u) = 0,

implying u being an equilibrium.
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Generalized Γ-convergence for equilibrium problems 3

We note, that separating the equilibrium problem according to Definition 1 from the other
presented ones helps to emphasize the optimization related structure: For every u ∈ Uad we
are interested in the optimization problem min E( · , u) having a solution. This motivates the
formulation of the following set-valued operator.

Definition 3 (Best response operator). Consider a functional E : Uad × Uad → R ∪ {+∞} as
in Definition 1. The best response operator is the set-valued mapping B : Uad ⇒ Uad defined
by

B(u) := argminv∈Uad
E(v, u).

In principle, this operator is allowed to have empty values. Within the scope of this work how-
ever we are interested in functionals, where the associated minimization problem yields a solution.
By Definition 1, a point u ∈ Uad is an equilibrium of E , if and only if

u ∈ B(u)

holds true. Thus, the equilibrium problem proposed in Definition 1 can equivalently be interpreted
as the minimization of a merit functional as proposed in Theorem 2 or a fixed point problem
of a set-valued operator. Regarding existence especially the latter will be of importance for us.
But before addressing this issue, we draw our attention to a few examples to demonstrate the
applicability of the introduced concept.

2.1 Application to Partial Differential Equations

Consider for instance the following partial differential equation (abbr.: PDE) for a constant α > 0
related to a simplified Ginzburg–Landau model for superconductivity in absence of a magnetic
field, see [Tin04, Chapter 1,4]:
Seek u ∈ H1

0 (Ω), such that

−∆u+ u3 − αu = 0 in Ω,

u = 0 on ∂Ω,
(PDE)

where Ω ⊆ Rd denotes an open, bounded domain with ∂Ω its boundary. Besides its relation to
physics this example is of mathematical interest, since it contains a non-monotone operator. One
can indeed interpret it as the first order system of an optimization problem. However, (PDE) does
not need to be a sufficient optimality condition. Moreover, one can show (e.g. using the techniques
in [BS10, Section 2.3.2]), that for sufficiently large α this system has besides its trivial solution
as well another non-trivial one. As the operator is odd, (PDE) has at least three solutions. The
trivial solution might not be local minimizer and then, this equation cannot be approached using
optimization techniques only to obtain all solutions. Therefore, we seek to embed this equation
into the setting of Definition 1:
For this sake, consider for an arbitrary u ∈ H1

0 (Ω) the following equation:
Seek v ∈ H1

0 (Ω), such that
−∆v + v3 = αu in Ω,

v = 0 on ∂Ω.
(2)

Here, H1
0 (Ω) denotes the classical Sobolev space as defined, e.g., in [AF03, Definition 3.2].

Using standard arguments of calculus of variations and convex analysis it is straightforward to
see, that (2) can be interpreted as a first order system of a convex optimization problem in v
using U = Uad = H1

0 (Ω) and the functional E : H1
0 (Ω)×H1

0 (Ω)→ R ∪ {+∞} defined by

E(v, u) :=
1

2
‖∇v‖2L2(Ω;Rd) +

1

4
‖v‖4L4(Ω) − α(v, u)L2(Ω).
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Returning to (PDE) and using the best response operator B of the above defined E (cf. Definition
3) we can rewrite (2) as B(u) = v. Then, it is evident, that (PDE) is equivalent to u = B(u).
This leads to the assertion, that u is an equilibrium of E , if and only if u solves (PDE).
Alternatively, one could have associated the equation to the following one:
Seek v ∈ H1

0 (Ω), such that
−∆v = αu− u3 in Ω,

v = 0 on ∂Ω.

Then, one can relate the following functional

E(v, u) :=
1

2
‖∇v‖2L2(Ω;Rd) + (u3 − αu, v)L2(Ω)

instead. Returning again to Definition 1, we associate (PDE) to the equilibrium of the second func-
tional. Hence, we see that a given system can be put into our equilibrium framework in different
ways.

2.2 Nash Equilibrium Problems

Let a family of Banach spaces Ui for i = 1, . . . , N for N ≥ 1 be given. Define the space
U := U1 × · · · × UN as well as the strategy sets U iad ⊆ Ui and the joint strategy set Uad :=∏N
i=1 U

i
ad together with a family of real-valued functionals Ji : Uad → R for all i = 1, . . . , N .

The idea is, that every index is associated with a player seeking to minimize his objective choosing
an argument called strategy from a feasible set. With the index −i we denote strategies, where
the i-th component has been omitted. A joint strategy (u1, . . . , ui−1, vi, ui+1, . . . , uN ) ∈ U
is written as (vi, u−i) – with no change of the ordering. Consider the Nash equilibrium problem
(abbr.: NEP) (cf. [Nas90], [Nas50]) reading as follows:
Seek u ∈ Uad, such that for all indices i = 1, . . . , N the relation

Ji(ui, u−i) ≤ Ji(vi, u−i) for all vi ∈ U iad (NEP)

holds true. Now, we are dealing with a system of N coupled optimization problems instead of
only one. Note, however, that they are formulated in separate components, i.e.: only ui is used to
minimize Ji(·, u−i). In the sense of Definition 1 we formulate the following functional

ENEP(v, u) :=
N∑
i=1

Ji(vi, u−i).

By the product structure, it is straightforward to show that the equilibrium problem induced by
ENEP is equivalent to (NEP).
In a similar fashion we can as well treat generalized NEPs (abbr.: GNEPs), see [FK07]. Here, an
additional restriction is imposed via the strategy mapping of the i-th player Ci : U−iad ⇒ U iad.
Combining all theCi’s leads to the (joint) strategy mapping C : Uad ⇒ Uad defined by C(u) :=
C1(u−1) × · · · × CN (u−N ) and to the problem of finding u ∈ Uad with u ∈ C(u), such that
for all i = 1, . . . , N the relation

Ji(ui, u−i) ≤ Ji(vi, u−i) for all vi ∈ Ci(u−i) (GNEP)

holds true. Then, the functional ENEP can be modified by adding the indicator realizing the addi-
tional constraint yielding

EGNEP(v, u) :=
N∑
i=1

(
Ji(vi, u−i) + ICi(u−i)(vi)

)
.
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Generalized Γ-convergence for equilibrium problems 5

Here, as well as in the remainder of this article, the indicator function of a set M ⊆ U is defined
by

IM (u) =

{
0 if x ∈M,
∞ else.

A frequently encountered special case is the one of shared constraints or joint constraints, where
the set-valued mapping C can be characterized via a single set F ⊆ Uad by the relation vi ∈
Ci(u−i), if and only if (vi, u−i) ∈ F .
This motivates the formulation of a modified solution concept called variational equilibrium (also
known as normalized equilibrium) that has been introduced in [Ros65]. Here, the values of the
strategy mapping are replaced by the set F . This leads to the problem of finding u ∈ F , such
that

N∑
i=1

Ji(ui, u−i) ≤
N∑
i=1

Ji(vi, u−i) for all v ∈ F

and to the functional

EVEP(v, u) =
N∑
i=1

Ji(vi, u−i) + IF (v).

In conclusion, Nash equilibrium problems are covered by the framework discussed in this paper.

2.3 Quasi-Variational Inequalities

Consider the following type of quasi-variational inequality:
Seek u ∈ C(u), such that

f(u) ∈ Au+NC(u)(u) (QVI)

holds. Here, C : U ⇒ U is a set-valued mapping with non-empty, closed, convex values and a
single-valued operator f : U → U∗ where U denotes a Banach space and U∗ its topological
dual. Further, A ∈ L(U,U∗) is a bounded, linear operator and assumed to be coercive. Also,
NC(u)(·) denotes the normal cone mapping associated with C(u); see e.g. [AF90, Definition
4.4.2]. We rewrite (QVI) as follows: First, we decompose A = Asym + Aanti into its symmetric
and anti-symmetric part and formulate the corresponding variational inequality for given u ∈ U
as:
Seek v ∈ U , such that

f(u)−Aantiu ∈ Asymv +NC(u)(v) in U∗.

This can be interpreted as v being the best response of the functional

EQVI(v, u) :=
1

2
〈Asymv, v〉U∗,U + 〈Aantiu− f(u), v〉U∗,U + IC(u)(v).

In many cases, this can be transferred to non-linear, cyclically monotone operators A (cf. [BC17,
Theorem 22.18]). The above shows, that QVIs can formally be brought into the framework of
Definition 1.

2.4 Eigenvalue Problems

Consider a (real) Hilbert space H with inner product (·, ·)H and the dual space H∗ identified
with H and a linear, bounded operator A ∈ L(H,H). The associated eigenvalue problem
(EVP) reads as:
Seek λ ∈ R and u ∈ H , such that

Au = λu. (EVP)

DOI 10.20347/WIAS.PREPRINT.2879 Berlin 2021
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First, note that any eigenvalue of A fulfils the well-known inequality |λ| ≤ ‖A‖L(H,H). Hence,
we can take α = ‖A‖L(H,H) + 1 and rewrite (EVP) equivalently as

(A+ α · id)v = (λ+ α)v.

Thus, we obtain again an eigenvalue problem with a coercive operator with shifted eigenvalues.
Hence, we can without loss of generality assume A to be coercive with modulus ≥ 1. Then, we
formulate the following QVI:
Seek u ∈ C(u), such that

0 ∈ Au+NC(u)(u), (3)

with C(u) := {v ∈ H : (v, u)H = 1}. To show the equivalence of (EVP) and (3) we calculate
the normal cone of C(u) in u ∈ C(u):
For this sake, take v ∈ C(u) and decompose it as v = µu+u⊥ for µ ∈ R with (u⊥, u)H = 0.
To determine µ we calculate

1 = (v, u)H = µ‖u‖2H = µ

as v, u ∈ C(u). To obtain the other direction, it can easily be seen, that every v = u + u⊥

belongs to C(u). Thus, for u∗ ∈ NC(u)(u) it holds that

0 ≥ (u∗, v − u)H = (u∗, u⊥)H ,

and thus (u∗, u⊥)H = 0 for all u⊥ with (u⊥, u)H = 0. Hence, u∗ ∈ Ru.
The other directionRu ⊆ NC(u)(u) holds by the same calculation as well and yieldsNC(u)(u) =
Ru. Thus, the QVI in (3) is equivalent to (EVP). The reformulation into the form in Definition 1
follows the discussion in Subsection 2.3.

2.5 Existence

For the sake of self-containment, we want to draw the attention shortly to the existence of equilib-
ria. There are several approaches for equilibria based on bifunctions (cf. [KR18], [Yua99]). How-
ever, we seek to apply fixed point results involving the best response operator. One of the classical
results is the Kakutani fixed point theorem (cf. [Kak41]). As we aim at the infinite-dimensional situ-
ation, we cite here the Glicksberg fixed point theorem serving as the corresponding generalization
of Kakutani’s result.

Theorem 4 (cf. [Gli52]). Given a closed point-to-(non-void)-convex-set mapping Φ : Q ⇒ Q of
a convex compact subset Q of a convex Hausdorff linear topological space into itself, then there
exists a fixed point x ∈ Φ(x).

Next, we apply Theorem 4 to derive an existence result for an equilibrium problem of the type
presented in Definition 1. The existence discussion follows in close proximity the arguments used
for the existence of Nash equilibria. We just refer to [Dut13] for finite-dimensional Nash games.
The following result generalizes the aforementioned existence.

Theorem 5 (Existence). Consider a bounded, closed, convex, non-empty subset Uad ⊆ U of
a reflexive Banach space U and a functional E : Uad × Uad → R ∪ {+∞}. There exists an
equilibrium of E , if the following assumptions are fulfilled:

(i) For all u ∈ Uad the functional E( · , u) is quasi-convex and bounded from below.

(ii) The functional E is weakly lower semi-continuous and the following recovery condition is
fulfilled: For all sequences un ⇀ u and v ∈ Uad there exists vn ⇀ v such that

lim sup
n→∞

E(vn, un) ≤ E(v, u).
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Generalized Γ-convergence for equilibrium problems 7

(iii) The set-valued operator u 7→ dom (E( · , u)) has as effective domain the set Uad and
has a weakly closed graph.

Proof. To prove the existence of an equilibrium, we prove the existence of a fixed point of B :
Uad ⇒ Uad (cf. Definition 3). For this sake we use Theorem 4 and check the assumptions therein.
As a set we use Uad and equip it with the weak topology. Due to its closedness and convexity it
is weakly closed. Since Uad is as well bounded and U is reflexive, it is weakly compact as well.
As for given u ∈ Uad the functional E( · , u) is bounded from below we choose an infimizing
sequence (vn)n∈N. Since dom (E( · , u)) is non-empty and E( · , u) is quasi-convex, all sublevel
sets are convex and thus the domain is convex as well. As the graph of u 7→ dom (E( · , u)) is
closed, the domain is closed as well. Since Uad is weakly compact, we can extract a weakly
convergent subsequence with limit v ∈ Uad. Using the convexity of the domain, the Lemma of
Mazur yields v ∈ dom (E( · , u)) and the assumed lower semi-continuity implies

inf E( · , u) ≤ E(v, u) ≤ lim inf
n→∞

E(vn, u) = inf E( · , u).

Thus, B(u) is non-empty. By the quasi-convexity and the lower semi-continuity we obtain, that
B(u) is non-empty, closed and convex.
It is left to show the closedness of gph(B): Therefore, take a sequence (vn, un) ⊆ gph(B) with
(vn, un) ⇀ (v, u). Moreover, take without loss of generality an arbitrary w ∈ dom (E( · , u)).
By Assumption (ii) we can find for every sequence un ⇀ u a recovery sequence wn ⇀ w with
lim supn→∞ E(wn, un) ≤ E(w, u) and using vn being minimizers of E( · , un) we obtain

E(v, u) ≤ lim inf
n→∞

E(vn, un) ≤ lim inf
n→∞

E(wn, un) ≤ E(w, u).

Thus, v ∈ B(u) and B has a closed graph. Subsequently, we can use Theorem 4 and obtain the
existence of a fixed point of B, which is equivalent to the existence of an equilibrium of E .

It is worth noting, that the assumption on the existence of a recovery sequence implies the
domain to be a lower semi-continuous set-valued operator, i.e. for all v ∈ dom (E( · , u)) and all
sequences un ⇀ u there exists a sequence vn ⇀ v with vn ∈ dom (E( · , un)).
Next, we seek to utilize Theorem 5 and the arguments in its proof to derive the existence of an
equilibrium for (generalized) Nash equilibrium problems.

Theorem 6 (Existence for GNEPs). Let U iad ⊆ Ui be a family of non-empty, convex, closed and
bounded sets and consider the generalized Nash equilibrium problem:
Seek u ∈ Uad with u ∈ C(u), such that

Ji(ui, u−i) ≤ Ji(vi, u−i) for all vi ∈ Ci(u−i).

There exists a Nash equilibrium, if the following assumptions are fulfilled:

(i) The objectives vi 7→ Ji(vi, u−i) are quasi-convex and bounded from below for all i =
1, . . . , N and u−i ∈ U−iad .

(ii) The set-valued operator C : Uad ⇒ Uad has non-empty, bounded, closed and convex
values and has a weakly closed graph and its effective domain is the set Uad.

(iii) Let C be a completely lower semi-continuous mapping, i.e., for all sequences un ⇀ u
and all v ∈ C(u) there exists a sequence vn ∈ C(un), such that vn → v.

(iv) The functionals u 7→ Ji(u) are weakly lower semi-continuous on gph(C) and moreover
upper semi-continuous on gph(C) with respect to the strong topology on Ui and the
weak topology on U−i, i.e.: for all i = 1, . . . , N and all sequences uni → ui in Ui and
un−i ⇀ u−i in U−i it holds that Ji(u) ≥ lim supn→∞ Ji(un) (cf. [AF90, Definition
1.4.2]).
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Proof. Unfortunately, we cannot use the existence result derived in Theorem 5 directly, as the
quasi-convexity of each vi 7→ Ji(vi, u−i) does not imply the quasi-convexity of E( · , u). How-
ever, we can still guarantee the best response operator to have non-empty, closed, convex values:
For that sake, we exploit the product structure of the strategy mapping in the underlying minimiza-
tion problem and rewrite

B(u) = argminv∈C(u)

(
N∑
i=1

Ji(vi, u−i)

)

=
N∏
i=1

argminvi∈Ci(u−i)Ji(vi, u−i) =

N∏
i=1

Bi(u−i),

where the product is taken in the canonical ordering 1, . . . , N . However, the arguments used in
Theorem 5 can be used as well to prove non-emptyness, closedness and convexity of Bi(u−i)
and thus also of B(u).
The remaining assumptions translate using the example given in Subsection 2.2. As Ji, i =
1, . . . , N , are defined on Uad we obtain dom (E( · , u)) = C(u). Thus, the remaining require-
ments on C are translated accordingly. The continuity requirements on E are translated via the
continuity requirements on the functionals Ji. To check the continuity condition on (v, u) 7→
IC(u)(v) take first a sequence (vn, un) ⇀ (v, u). There are two cases:
(i): There are infinitely many indices with vn ∈ C(un). Then, along this subsequence we obtain
lim infn→∞ IC(un)(v

n) = 0 and by the assumed weak closedness of the graph v ∈ C(u).
Thus, IC(u)(v) = 0 and the desired weak lower semi-continuity is proven.
(ii): Otherwise, if for almost all indices vn /∈ C(un) holds true, then
limn→∞ IC(un)(v

n) =∞ and the desired lower semi-continuity is proven as well.
For the recovery condition, take without loss of generality, w ∈ C(u) and a sequence un ⇀ u.
Then, there exists a sequence wn → w with wn ∈ C(un). By the upper semi-continuity condi-
tion on Ji for i = 1, . . . , N we obtain

lim sup
n→∞

E(wn, un) = lim sup
n→∞

N∑
i=1

Ji(wni , un−i) ≤
N∑
i=1

Ji(wi, u−i) = E(w, u).

Thus, by the remaining arguments in Theorem 5, we obtain the existence of a Nash equilibrium.

In comparison to Theorem 5 we demanded a strongly convergent recovery sequence, but
only combined it with an upper semi-continuity condition, that used strong continuity in the control
component. Alternatively, one could have used weak convergence for both instead. This choice
however might depend on the application in mind.
Analogously, we proceed with the existence of variational equilibria.

Theorem 7 (Existence for VEPs). Let U iad ⊆ Ui be a family of non-empty, convex, closed and
bounded sets and consider the following variational equilibrium problem: Seek u ∈ F , such that

N∑
i=1

Ji(ui, u−i) ≤
N∑
i=1

Ji(vi, u−i) for all v ∈ F .

There exists a variational equilibrium, if the following assumptions are fulfilled:

(i) The objective v 7→
∑N

i=1 Ji(vi, u−i) is quasi-convex and bounded from below for all
u ∈ Uad.

(ii) The set of shared constraints F ⊆ Uad is non-empty, closed and convex.
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Generalized Γ-convergence for equilibrium problems 9

(iii) The functional (v, u) 7→
∑N

i=1 Ji(vi, u−i) is weakly lower semi-continuous onF . More-
over, assume, that for every weakly convergent sequence un ⇀ u in F and v ∈ F there
exists a sequence (vn)n∈N ⊆ F with vn → v, such that

lim sup
n→∞

N∑
i=1

Ji(vni , un−i) ≤
N∑
i=1

Ji(vi, u−i).

Proof. The proof uses Theorem 5 and the arguments in the proof of Theorem 6 and is omitted
for brevity.

Here, we decided again to use a strongly convergent recovery sequence.
With these results at hand, we close our existence discussion. It is worth noting, that the afore-
mentioned approach via a bifunction can alternatively be used. Moreover, especially in the context
of QVIs other fixed point results can be used (cf. [AHR19], [Bir73]).

3 Γ-Convergence of Equilibrium Problems

Having a constraint in the optimization problem, which induces the equilibrium problem, leads to
analytical and as a consequence to numerical difficulties. To address these difficulties one group
of techniques in use is formed by penalization and regularization schemes, see e.g.: [HK06],
[HR15], [AHS18]. Therein, the addressed functional is substituted by a sequence of more regular
objects, that are easier to handle. Then, in the limit one hopes to recover the originally formulated
problem. A successful concept to provide such a convergence statement for optimization prob-
lems is Γ-convergence.
For our purpose, we want to generalize that concept to equilibrium problems as introduced in
Definition 1.

Definition 8 (Γ-convergence). LetUad be a subset of a reflexive Banach spaceU . A sequence of
functionals (En)n∈N : Uad×Uad → R∪{+∞} is called (weakly) Γ-convergent to a functional

E : Uad × Uad → R ∪ {+∞}, denoted by En
Γ−→ E (resp. En

Γ
⇀ E ), if the following two

conditions hold:

(i) For all sequences un → u (un ⇀ u) it holds that

E(u, u) ≤ lim inf
n→∞

En(un, un).

(ii) For all v ∈ U and all sequences un → u (un ⇀ u) there exists a sequence vn → v
(vn ⇀ v), such that

E(v, u) ≥ lim sup
n→∞

En(vn, un).

However, a similar concept for Nash equilibrium problems has been proposed in [GP09, First
Definition on p.226] called multi epi-convergence, which in fact can be interpreted as a special
case of Definition 8.
A strengthened concept addressing the differences between strong and weak convergence in the
infinite dimensional case is Mosco-convergence, which we generalize next.

Definition 9 (Mosco-convergence). Let Uad be a subset of a reflexive Banach space U . A se-
quence of functionals (En)n∈N : Uad × Uad → R ∪ {+∞} is called Mosco-convergent to a

functional E : Uad × Uad → R ∪ {+∞}, denoted by En
M−→ E , if the following two conditions

hold:
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(i) For all sequences un ⇀ u it holds that

E(u, u) ≤ lim inf
n→∞

En(un, un).

(ii) For all v ∈ U and all sequences un ⇀ u there exists a sequence vn → v, such that

E(v, u) ≥ lim sup
n→∞

En(vn, un).

The direct comparison between Γ-convergence with respect to weak topology and Mosco-
convergence yields a strong convergence for the recovery sequence with a weak convergent
sequence in the feedback component. It is worth noting, that the above definitions do only require
the first condition to hold true on the diagonal.
Alternatively, one can for a given sequence un ⇀ u consider the sequence E( · , un) and use
the usual Γ-, Mosco-convergence known from optimization, which we refer to as ‘feedbackwise’
convergence.

Definition 10 (Feedbackwise Γ- and Mosco-convergence). Let Uad be a subset of a reflex-
ive Banach space U . A sequence of functionals (En)n∈N : Uad × Uad → R ∪ {+∞} is
called feedbackwise (weakly) Γ-convergent, resp. feedbackwise Mosco-convergent to a functional

E : Uad × Uad → R ∪ {+∞}, if for all un ⇀ u the convergence En( · , un)
Γ−→ E( · , u)

(En( · , un)
Γ
⇀ E( · , u)), respectively En( · , un)

M−→ E( · , u) holds true.

It is straightforward to see, that feedbackwise convergence implies Γ- resp. Mosco-convergence,
as the first requirement in Definition 8 resp. Definition 9 is placed on the whole product set and
not only on the diagonal. In fact, considering the sequence E(v, u) = En(v, u) := (v, u)U
with U being a real Hilbert space yields the Mosco-convergence, but not feedbackwise Mosco-
convergence, as for two weakly convergent sequences vn ⇀ v and un ⇀ u the relation
(v, u)U ≤ lim infn→∞(vn, un)U does not need to hold. Moreover, Mosco-convergence of
convex sets (cf. [Mos69]) as used in the existence discussion of solutions of QVIs can be inter-
preted as a case of feedbackwise Mosco-convergence for the indicator sets IC(u) of a set-valued
mapping C : U ⇒ U . However, it is straightforward to show, that (quasi-)convexity in the control
component is preserved by the stronger notion of feedbackwise convergence. This is not so clear
to the authors for the convergence concept introduced in Definition 8 and Definition 9. As we are
solving a sequence of equilibrium problems we wish them to cluster around an equilibrium of the
original problem. Indeed, this holds true, as presented in the following result.

Theorem 11. Let (En)n∈N be a (weakly) Γ-convergent sequence of functionals with limit E like
in Definition 8. Then, every (weak) accumulation point of a sequence of corresponding equilibria
(un)n∈N is an equilibrium of the limit.

Proof. Let u be a (weak) accumulation point of (un)n∈N along a (not relabeled) subsequence.
Let v ∈ Uad be arbitrary. Then, there exists a recovery sequence vn → v (vn ⇀ v) by the
second property for un. We deduce, that

E(u, u) ≤ lim inf
n→∞

En(un, un) ≤ lim sup
n→∞

En(vn, un) ≤ E(v, u),

which proves the assertion.

Next, we return to the aforementioned penalization technique and apply it to a selection of
equilibrium problems for Nash games as well as quasi-variational inequalities.
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3.1 Application to Penalized Nash Equilibrium Problems

For a given set-valued mapping C : Uad ⇒ Uad we associate to it a penalty functional πC :
Uad × Uad → [0,∞) with the property πC(v, u) = 0, if and only if v ∈ C(u). In the same
fashion, we associate to a given set F ⊆ Uad a penalty functional πF : Uad → [0,∞) with
πF (v) = 0, if and only if v ∈ F . A fairly general example of such penalty functionals is given by

πC(v, u) : = dist(v, C(u)) and πF (v) := dist(v,F) with

dist(v,M) : = inf{‖v − v′‖U : v′ ∈M} for a subset M ⊆ U,
(4)

where we assume the sets C(u) and F to be closed as the closedness of a set M guaran-
tees u ∈ M if and only if dist(u,M) = 0. Next, we establish a Γ-convergence result for the
penalized version of (GNEP).

Theorem 12 (Convergence of penalized GNEPs). Let a sequence of positive penalty parameters
γn →∞ be given. Moreover, assume the following conditions to be fulfilled:

(i) The set-valued operator C : Uad ⇒ Uad has the set Uad as its domain and has a weakly
closed graph.

(ii) Moreover, let C be a completely lower semi-continuous mapping, i.e., for all sequences
un ⇀ u and all v ∈ C(u) there exists a sequence vn ∈ C(un), such that vn → v.

(iii) The functionals Uad 3 u 7→ Ji(u) ∈ R are bounded from below and weakly lower semi-
continuous on Uad as well as upper semi-continuous on Uad with respect to the strong
topology onUi and the weak topology onU−i, i.e.: for all i = 1, . . . , N and all sequences
uni → ui in Ui and un−i ⇀ u−i in U−i holds Ji(u) ≥ lim supn→∞ Ji(un).

(iv) Let the penalty functional πC : Uad × Uad → [0,∞) be weakly lower semi-continuous.

Then, the sequence of functionals Eγ : Uad × Uad → R defined by

Eγ(v, u) :=
N∑
i=1

Ji(vi, u−i) + γπC(v, u) (5)

is Mosco-convergent to

E(v, u) :=
N∑
i=1

(
Ji(vi, u−i) + ICi(u−i)(vi)

)
.

Proof. Take a sequence (γn)n∈N with γn > 0, γn → ∞. To check Condition (i) in Definition
8 take an arbitrary sequence (un)n∈N ⊆ Uad with un ⇀ u in U . Since Uad is assumed to be
a non-empty, closed, convex set we have u ∈ Uad. First, consider the case u ∈ C(u). By the
lower semi-continuity of the functionals Ji : U → R one obtains

E(u, u) =
N∑
i=1

Ji(ui, u−i) ≤ lim inf
n→∞

(
N∑
i=1

Ji(uni , un−i)

)

≤ lim inf
n→∞

(
N∑
i=1

Ji(uni , un−i) + γnπC(un, un)

)
= lim inf

n→∞
Eγn(un, un).

In the case of u /∈ C(u) it holds that πC(u, u) > 0. Using the assumed weak lower semi-
continuity of πC yields

0 < πC(u, u) ≤ lim inf
n→∞

πC(un, un).
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Hence πC(un, un) ≥ 1
2πC(u, u) holds for almost all indices n and therefore

lim
n→∞

γnπC(un, un) =∞.

In combination with the boundedness of Ji from below we obtain

lim
n→∞

(
N∑
i=1

Ji(uni , un−i) + γnπC(un, un)

)
=∞ = E(u, u)

and hence Condition (i) in Definition 8.
Checking Condition (ii) in Definition 8, choose again an arbitrary sequence un ⇀ u in U with
un ∈ Uad. Moreover, take an arbitrary v ∈ C(u), then πC(v, u) = 0 holds. Taking by assump-
tion a sequence (vn)n∈N ⊂ U with vn ∈ C(un) and vn → v yields

E(v, u) =
N∑
i=1

Ji(vi, u−i) = lim
n→∞

N∑
i=1

Ji(vni , un−i) = lim
n→∞

N∑
i=1

Ji(vni , un−i)

= lim
n→∞

(
N∑
i=1

Ji(vni , un−i) + γnπC(vn, un)

)
= lim

n→∞
En(vn, un).

As in the existence results Theorem 6 and Theorem 7 the treatment of the weak convergence
in infinite dimensions was of significant importance. Analogously, the corresponding result for
variational equilibrium is derived in the following theorem.

Theorem 13 (Convergence of penalized VEPs). Let a sequence of penalty parameters γn →∞
be given and let the following assumptions be fulfilled:

(i) The set of shared constraints F ⊆ Uad is non-empty, bounded, closed and convex.

(ii) The functional (v, u) 7→
∑

i=1 Ji(vi, u−i) is weakly lower semi-continuous onF . More-
over, assume, that for every weakly convergent sequence un ⇀ u and v ∈ F there exists
a sequence (vn)n∈N ⊆ F with vn → v, such that

lim sup
n→∞

N∑
i=1

Ji(vni , un−i) ≤
N∑
i=1

Ji(vi, u−i).

(iii) The penalty functional πF : Uad → [0,∞) is weakly lower semi-continuous.

Then, the sequence of functionals Eγ : Uad × Uad → R defined by

Eγ(v, u) :=

N∑
i=1

Ji(vi, u−i) + γπF (v) (6)

Mosco-convergent to

E(v, u) :=

N∑
i=1

Ji(vi, u−i) + IF (v).

Proof. The proof is analogous to the one of Theorem 12.

Returning to the penalty functionals in (4) we would like to discuss the interplay between the
conditions listed in Theorem 12 and Theorem 13. Let us first consider the latter setting. If F is
convex, closed and non-empty, also v 7→ dist(v,F) is continuous and convex and thus weakly
lower semi-continuous. Thus, the condition on the feasible setF induces the requested properties
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of the penalty functional.
The reasoning for πC requires more effort: Take weakly convergent sequences un ⇀ u and
vn ⇀ v. Then, take the subsequence (not relabeled) realizing lim infn→∞ dist(vn, C(un)).
Then, for an arbitrary sequence εn ↘ 0, exists a sequence (wn)n∈N, w

n ∈ C(un) such that
‖vn − wn‖U ≤ dist(vn, C(un)) + εn. For showing its boundedness we take an arbitrary
w ∈ C(u). By the complete lower semi-continuity of C there exists a sequence w̃n → w with
w̃n ∈ C(un). Then, a direct estimate yields

‖wn‖U ≤ ‖vn − wn‖U + ‖vn‖U ≤ dist(vn, C(un)) + ‖vn‖U + εn

≤ ‖vn − w̃n‖U + ‖vn‖U + εn ≤ 2‖vn‖U + ‖w̃n‖U + εn

implying the boundedness of (wn)n∈N by the boundedness of (vn)n∈N and (w̃n)n∈N. As U is
reflexive we can extract a weakly convergent subsequence (not relabeled) converging towards
w∗ ∈ U . By the assumed weak closedness of the graph of C we deduce using w̃n ∈ C(un)
that w∗ ∈ C(u). Then, we obtain using the weak convergence along the previously constructed
subsequence the estimate

dist(v, C(u)) ≤ ‖v − w∗‖U ≤ lim inf
n→∞

‖vn − wn‖U

≤ lim
n→∞

(dist(vn, C(un)) + εn) = lim inf
n→∞

dist(vn, C(un)),

or in other words the weak lower semi-continuity of πC on Uad × Uad.

3.2 Application to Penalized Quasi-Variational Inequalities

In principle, the arguments in the proofs of Theorem 12 and Theorem 13 can be used to de-
rive an analogous result for penalized quasi-variational inequalities, which we provide in the next
theorem.

Theorem 14 (Convergence of penalized QVIs). Let a sequence of penalty parameters γn →∞
be given and let the following assumptions be fulfilled:

(i) The set-valued operator C : U ⇒ U has the set U as its domain and has a weakly
closed graph.

(ii) Moreover, let C be a completely lower semi-continuous mapping, i.e., for all sequences
un ⇀ u and all v ∈ C(u) there exists a sequence vn ∈ C(un), such that vn → v.

(iii) The operator f : U → U is weakly continuous, i.e., un ⇀ u implies f(un) → f(u),
and for every un ⇀ u it holds that

lim sup
n→∞

〈f(un), un〉 ≤ 〈f(u), u〉.

(iv) Let the penalty functional πC : Uad × Uad → [0,∞) be weakly lower semi-continuous.

Then, the functionals Eγ : U × U → R, γ > 0, defined by

Eγ(v, u) :=
1

2
〈Asymv, v〉+ 〈Aantiu, v〉 − 〈f(u), v〉+ γπC(v, u) (7)

are Mosco-convergent to

E(v, u) :=
1

2
〈Asymv, v〉+ 〈Aantiu, v〉 − 〈f(u), v〉+ IC(u)(v)

as γ →∞.

DOI 10.20347/WIAS.PREPRINT.2879 Berlin 2021



M. Hintermüller, S.-M. Stengl 14

Proof. Take a sequence (γn)n∈N with γn > 0, γn → ∞ and another sequence un ⇀ u
and consider the case u ∈ C(u). Then we obtain by the anti-symmetry 〈Aantiu

n, un〉 =
〈Aantiu, u〉 = 0. By the coercivity of Asym the functional v 7→ 1

2〈Asymv, v〉 is continuous
and convex and thus weakly lower semi-continuous. Thus, we obtain

E(u, u) =
1

2
〈Asymu, u〉 − 〈f(u), u〉 ≤ lim inf

n→∞

(
1

2
〈Asymu

n, un〉 − 〈f(un), un〉
)

≤ En(un, un).

In the case of u /∈ C(u) it holds that πC(u, u) > 0. Using the assumed weak lower semi-
continuity of πC yields

0 < πC(u, u) ≤ lim inf
n→∞

πC(un, un).

Hence πC(un, un) ≥ 1
2πC(u, u) holds for almost all indices n and therefore

lim
n→∞

γnπC(un, un) =∞.

The rest of the functional is bounded, as 1
2〈Asymu

n, un〉 ≥ 0 by coercivity and by the weak
continuity of f we obtain the boundedness of ‖f(un)‖U∗ leading to

En(un, un) ≥ −‖f(un)‖U∗ · ‖un‖U + γnπC(un, un)→∞ as n→∞,

and thus E(u, u) ≤ lim infn→∞ En(un, un).
Let now again a sequence un ⇀ u and v ∈ U be given and assume without loss of gener-
ality v ∈ C(u). Choose as recovery sequence the one for the operator C , such that vn → v
and vn ∈ C(un). Then, we obtain by the weak continuity of f and the strong convergence of
(vn)n∈N the convergence

lim
n→∞

En(vn, un) = lim
n→∞

(
1

2
〈Asymv

n, vn〉+ 〈Aantiv
n, un〉 − 〈f(un), vn〉

)
=

1

2
〈Asymv, v〉+ 〈Aantiv, u〉 − 〈f(u), v〉 = E(v, u).

Thus, we obtain the requested Mosco-convergence.

4 Conclusion

Within the scope of this text, we discussed a type of equilibrium problem, formulated equiva-
lent characterizations of equilibria and derived existence results in the abstract case as well as
for Nash-type equilibrium problems. The generalized Γ-convergence concept has been analyzed
and applied to a penalization technique for Nash games and QVIs. We expect, that the presented
results are as well suitable for other approximation techniques in the context of equilibrium prob-
lems and serve as a strong theoretical foundation of a convergence analysis and its numerical
realization.
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