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GENERIC for dissipative solids with bulk-interface interaction
Martin Heida, Marita Thomas

Abstract

The modeling framework of GENERIC was originally introduced by Grmela and Öttinger for
thermodynamically closed systems. It is phrased with the aid of the energy and entropy as driving
functionals for reversible and dissipative processes and suitable geometric structures. Based on
the definition functional derivatives we propose a GENERIC framework for systems with bulk-
interface interaction and apply it to discuss the GENERIC structure of models for delamination
processes.

1 Introduction

GENERIC, the acronym for General Equation of Non-Equilibrium Reversible Irreverslible Coupling, is a
thermodynamical modeling framework originally introduced by Grmela and Öttinger in [GÖ97, ÖG97]
for thermodynamically closed systems with applications in fluid dynamics. In recent years its versatility
has been proved also for many other applications such as dissipative solids [Mie11a, HS12, Mie16],
complex and reactive fluids [MBZ18, PTA+19, ZPT21, VPE21], semiconductors and electro-chemistry
[GM13, MPRT, MM20], quantum mechanics [MM17], and thermodynamical multiscale processes
[PKG18]. A GENERIC system is characterized by a quintuple (Q, E ,S, J,K) consisting of a state
space Q, the two driving potentials: E the total energy and S the entropy, and two geometric struc-
tures: J a Poisson operator and K an Onsager operator. Herein, the triple (Q, E , J) forms a Hamilto-
nian system characterizing the reversible contributions to the dynamics and the triple (Q,S,K) forms
an Onsager system accounting for the irreversible, dissipative contributions to dynamics. These two
triples are coupled in a GENERIC system under an additional constraint, the so-called noninteraction
condition NIC, stating that KDE ≡ 0 ≡ JDS . In thermodynamically closed systems the NIC au-
tomatically ensures conservation of energy and entropy production. The dynamics of the GENERIC
system is then described by the evolution equation

q̇ = JDE(q) + KDS(q) ,

which clearly displays the coupled evolution with reversible and dissipative contributions. The thermo-
dynamical driving forces are the functional derivatives DE(q) for reversible dynamics and DS(q) for
dissipative dynamics. In Section 2 we review the GENERIC framework for thermodynamically closed
systems. It is the central aim of this work to extend the GENERIC framework to systems with bulk-
interface interaction. These are systems composed of two (or more) subsystems Ω± ⊂ Rd coupled
with each other along a joint interface Γ ⊂ Rd−1 through which they exchange quantities like heat,
stresses, mass, etc.. Along Γ also additional processes may take place that are modeled by additional
state variables solely defined on Γ with individual evolution laws on Γ, but also driven by the interac-
tion with the quantities from the bulk subdomains Ω±. While the compound Ω = int

(
Ω+ ∪ Ω−

)
can

be assumed to form a thermodynamically closed system, none of the two individual subsystems Ω±
nor the interface Γ do so. Each of these components alone is an open system. A first approach to the
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GENERIC framework for thermodynamically open systems was made in [Ött06] using driving function-
als and geometric structures for the bulk and the boundary components. Here we follow this idea and,
based on the definition of functional derivatives for functionals with bulk and interfacial contributions
given in Section 3.1, we propose in Section 3.3 to regard the GENERIC formulation for bulk-interface
processes in terms of a weak formulation. We also study the properties of geometric structures for
systems with bulk-interface interaction in Section 3.2. In order to ensure the NIC for GENERIC sys-
tems of dissipative solids it was developed in [Mie11a] for closed systems that this can be achieved
with the aid of certain thermodynamic transformation maps. In Section 3.4 we show that this approach
can also be applied to systems with bulk-interface interaction, again by exploiting the definition and
structure of the funtional derivatives involved in this transformation. We subsequently demonstrate the
versatility of the weak formulation of GENERIC in Section 4 for thermo-viscoelastic materials experi-
encing delamination processes along Γ. It is shown that the weak formulation of GENERIC leads to
well-known bulk equations and naturally provides interfacial coupling conditions along Γ.

2 The GENERIC formalism for closed systems

Let Q be a Banach space and V a Hilbert space such that Q ↪→ V = V∗ ↪→ Q∗ are dense.
We denote for q ∈ Q and q∗ ∈ Q∗ the duality pairing by 〈q∗, q〉Q and say that a linear operator
A : Q∗ → Q is symmetric, resp. antisymmetric if for every q∗1, q

∗
2 ∈ Q∗ it holds

〈q∗1,Aq∗2〉Q = 〈q∗2,Aq∗1〉Q , resp. 〈q∗1,Aq∗2〉Q = −〈q∗2,Aq∗1〉Q .

In most parts of the computations below, the reader may think of the Hilbert caseQ = V . In this case,
the above definitions coincide with the classical definitions A = A∗ resp. A = −A∗. For a functional
Φ : Q → R we denote the

Gâteaux derivative: δΦ : Q → Q∗, i.e., the first variation, (1a)

Fréchet derivative: DΦ : Q → Q∗ , (1b)

if they exist and we recall that DΦ(q) = δΦ(q) if DΦ(q) exists. We finally define

δΦ(q)[q̃] := 〈δΦ(q), q̃〉Q , DΦ(q)[q̃] := 〈DΦ(q), q̃〉Q .

2.1 Hamiltonian systems (Q, E , J)(Q, E , J)(Q, E , J)

In the spirit of Hamiltonian mechanics, a general Hamiltonian system accounts for reversible dynamics,
only. The equations of motion are given by

q̇ = JDE(q) ∈ Q . (2)

The driving potential of reversible dynamics is the total energy functional of the system E : Q → R,
which may comprise kinetic, mechanical, chemical, electric and thermal energy. The defining property
for a Hamiltonian system is that the associated geometric structure J is a Poisson structure, i.e.

J : Q∗ → Q is antisymmetric, and satisfies Jacobi’s identity. (3)

More precisely, (3) ensures that the Poisson bracket {·, ·} defined by {Φ1,Φ2} := 〈DΦ1, JDΦ2〉Q
for all Φj : Q → R is an

antisymmetric bilinear form and satisfies Jacobi’s identity, i.e. (4)

∀Φ1,Φ2,Φ3 : Q → R : {Φ1, {Φ2,Φ3}}+ {Φ3, {Φ1,Φ2}}+ {Φ2, {Φ3,Φ1}} = 0 .
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Moreover, the Poisson bracket fulfills the Leibniz rule:

{Φ1Φ2,Φ3} = Φ1{Φ2,Φ3}+ {Φ1,Φ3}Φ2 for all Φ1,Φ2,Φ3 : Q → R . (5)

Conditions (4) and (5) are the defining properties of a symplectic structure, which is the geometric
structure underlying Hamiltonian mechanics, see e.g. [AKN06, Sect. 1.3]. Let us also mention that the
requirement of Jacobi’s identity provides a generalization of the commutativity of derivatives. Indeed,

for Q = Q1 × Q2 and J in canonical form, i.e.,

(
0 I
−I 0

)
, it can be checked that fulfilling Jacobi’s

identity amounts to validity of Dq1Dq2Φi = Dq2Dq1Φi. See e.g. [ZPT21, D’A15, Mor98] for further
discussion of Jacobi’s identity.

The antisymmetry of J implies 〈q′, Jq′〉Q = −〈q′, Jq′〉Q = 0 for any q′ ∈ Q∗ and conservation of
energy along solutions of (2) follows immediately:

d

dt
E(q(t)) = 〈DE(q), q̇〉Q = 〈DE(q), JDE(q)〉Q = 0 . (6)

2.2 Onsager systems (Q,S,K)(Q,S,K)(Q,S,K) (gradient systems)

An Onsager system is related to the dynamics of irreversible, dissipative effects. The evolution equa-
tions read

q̇ = K(q)DS(q) ∈ Q . (7)

The driving functional is the total entropy S and the associated geometric structure is imposed by the
so-called Onsager operator K with the properties:

K is symmetric and positive semidefinite, i.e. 〈ξ,Kξ〉Q ≥ 0 . (8)

The symmetry of K reflects the Onsager principle, which states that the rate equals the symmetric,
positively semidefinite operator K applied to the thermodynamically conjugate force. The positive
semidefiniteness is a manifestation of the second law of thermodynamics, i.e. we have an increase of
entropy via

d

dt
S(q(t)) = 〈DS(q), q̇〉Q = 〈DS(q),KDS〉Q ≥ 0. (9)

The properties ofK are equivalent to the existence of a nonnegative, quadratic dual entropy-production
(or dissipation) potential Ψ∗ = Ψ∗(q; ξ) = 1

2
〈ξ,K(q)ξ〉Q, see [Mie11b]. This can be generalized to

non-quadratic potentials as follows:

For all q ∈ Q, Ψ∗(q; ·) is nonnegative, convex, and Ψ∗(q; 0) = 0. (10)

In particular, for all q ∈ Q the potential Ψ∗ is the convex conjugate of a nonnegative, convex dissipa-
tion potential Ψ(q; ·) : Q → [0,∞] with the property Ψ∗(q; 0) = 0. The convex conjugate is defined
by

Ψ∗(q; ξ) := sup
q̃∈Q

(
〈ξ, q̃〉Q −Ψ(q; q̃)

)
for all (q, ξ) ∈ Q×Q∗ . (11)

In this generalized setting, the evolution reads

q̇ ∈ ∂ξΨ∗(q; DS(q)) inQ
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with ∂ξΨ∗(q, ξ) the (multivalued) subdifferential of Ψ∗(q, ·) in ξ ∈ Q∗, i.e.,

∂ξΨ
∗(q; ξ) = {q̃ ∈ Q, Ψ∗(q; ξ̃)−Ψ∗(q; ξ) ≥ 〈ξ̃ − ξ, q̃〉Q for all ξ̃ ∈ Q∗} . (12)

We point to Section 3.2, where we discuss further implications of (10). Non-quadratic dual dissipation
potentials arise, e.g., for generalized standard materials with a rate-independent evolution of the inter-
nal variable: Here, Ψ∗(q, ·) is positively 1-homogeneous. For further details we refer to Section 4 as
well as to [Mie11a].

2.3 GENERIC systems (Q, E ,S, J,K)(Q, E ,S, J,K)(Q, E ,S, J,K)

A GENERIC system is a quintuple (Q, E ,S, J,K), which couples a Hamiltonian system (Q, E , J)
with an Onsager system (Q,S,K). The combined evolution equations have the form

q̇ = J(q)DE(q) + K(q)DS(q), (13)

displaying the reversible and the irreversible part of the dynamics. Appart from the structural relations
(3) and (8) of Hamiltonian and Onsager systems, a GENERIC system additionally has to satisfy the
following crucial and nontrivial

noninteraction condition, NIC: KDE ≡ 0 and JDS ≡ 0 . (14)

If K arises from a (subdifferential of a) non-quadratic dual dissipation potential Ψ∗(q; ·) as introduced
in (10), then the NIC KDE = 0 needs to be replaced by

Ψ∗(q; ξ + λDE(q)) = Ψ∗(q; ξ) for all q ∈ Q, ξ ∈ Q∗, and λ ∈ R . (15)

We refer to Sec. 3.2 and to [Mie11a, Sec. 2.5] for more details.

Remark 2.1 (Direct consequences of NIC). The NIC (14) ensures that the energy functional does not
contribute to dissipative mechanisms and that the entropy functional does not contribute to reversible
dynamics, i.e. every solution q of (13) satisfies:

d

dt
E(q(t)) = 〈DE(q), q̇〉 = 〈DE(q), JDE + KDS〉 = 0 + 0 = 0 , (16)

d

dt
S(q(t)) = 〈DS(q), q̇〉 = 〈DS(q), JDE + KDS〉 = 0 + 〈DS,KDS〉 ≥ 0 , (17)

Moreover, the NIC (14) guarantee the validity of the principle of maximum-entropy production. See
e.g. [ZPT21, ÖG97, GÖ97, Mie11a] for more details. ?

3 GENERIC formalism for bulk-interface systems

Our investigations will be based on the following specific geometric setting:

Definition 3.1 (Geometric setup and notation). Let Ω+,Ω− ⊂ Rd be the reference domains of two
bodies with Ω+ ∩ Ω− = ∅, let ∂Ω± their boundaries with outer unit normal n± and joint interface
Γ := ∂Ω+ ∩ ∂Ω−. For better clarification we further introduce the notation Γ± := Γ ∩ ∂Ω±, B :=
Ω+ ∪ Ω− and Ω := int(Ω+ ∪ Ω−).

The geometric setup is described by one of the following two scenarios:
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1 The two subdomains Ω+ and Ω− are connected with each other along Γ 6= ∅. The domain
Ω := int(Ω+ ∪ Ω−) is again thermodynamically closed. Hence, the only exchange that Ω±
has with its surroundings is that with Ω∓ along Γ.

2 As a special case of 1., the subdomain Ω+ is surrounded by Ω− so that Γ = ∂Ω+ and ∂Ω =
∂Ω−\Γ.

For a function φ : Ω\Γ → R we denote by φ± = φ|Ω± its restriction to Ω±, by γ±φ± its trace from
Ω± onto ∂Ω±, and by [[φ]] := (γ+φ+ − γ−φ−) its jump across Γ. Moreover, we use the short-hand
notation φγ := (γ+φ+, γ−φ−) and if no confusion is possible, we abbreviate

γ±φ± = γφ± = φ± and φγ = (φ+, φ−) on Γ . (18)

A similar notation is adopted for vector- and tensor-valued functions and has to be understood com-
ponentwise.

3.1 Functional calculus for bulk-interface systems: Notation, differentials, and
∗-multiplication in the setup of Def. 3.1

States and spaces. In the setup of Def. 3.1 consider the function spaces QB := Q+ × Q− and
Q = QB × QΓ with Q± being a Banach space (e.g. a Sobolev space) defined on Ω± and with
QΓ being a Banach space defined on Γ with dual spaces Q∗±,QB,Q∗Γ, and the dual pairings by
〈·, ·〉Q± , resp. 〈·, ·〉QB

, 〈·, ·〉QΓ
. The states q = (qB, qΓ) are composed of bulk states qB ∈ QB with

q± := qB|Ω± and surface states qΓ ∈ QΓ. Here, a surface state qΓ is supposed to have an own
evolution equation on Γ so that its evolution is not solely governed from the bulk. For shorter notation
we also introduce the vector

qΓγ := (γ+q+, γ−q−, qΓ) ∈ γQ
B
×QΓ , (19)

where γQ
B

denotes the trace space corresponding toQ
B

. More precisely, let the state q = (qB, qΓ) =
(qB1 , . . . , qBl , qΓ1 , . . . , qΓm) ∈ Q. If the state variable q

Bk|Ω± has a well-defined trace on Γ, then
the kth component of γ±q± in (19) is given by the trace γ±qk±. Instead, if the trace of this state vari-
able does not exist, then we set the kth component of γ±q± equal to zero in qΓγ . In this latter case,
γ±Qk± = {0}.

Example 3.2 (Notation (19)). Consider a system with bulk states

q
B

= (q
B1
, q

B2
) = (q1+, q2+, q1−, q2−)

and with one single interface state qΓ1. Assume q1± have well-defined traces on Γ, whereas q2± don’t.
Accordingly, qΓγ = (γ+q1+, 0, γ−q1−, 0, qΓ1), where the entries 0 substitute the (non-existing) traces
of q2±. ?

Functionals and their derivatives. Let Φ = ΦB + ΦΓ : Q → R denote an integral functional with
density φ = (φB, φΓ), which contains a bulk contribution φB and a surface contribution φΓ on Γ, i.e.,
for all states q ∈ Q it is

Φ(q) =

ˆ
Ω\Γ

φB(qB,∇qB) dx+

ˆ
Γ

φΓ(γ+q+, γ−q−, qΓ) dHd−1 . (20)
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Let again q = (qB, qΓ) = (qB1 , . . . , qBl , qΓ1 , . . . , qΓm) = (qj)
l+m
j=1 ∈ Q = Πl+m

j=1Qj, and qk the kth
component in this vector. Restricting Φ to the affine space Qk, with qk ∈ Qk, we use the following
notation for the

first variation wrt. qk: δqkΦ : Q → Q∗k, (21a)

functional derivative wrt. qk: DqkΦ : Q → Q∗k, (21b)

partial derivative of a density φ = φ(q) wrt. qk: ∂qkφ(q) . (21c)

For Φ from (20) and a bulk state qk it is

δqkΦ(q)[q̃k] =δqkΦB
(q

B
)[q̃k] + δqkΦΓ(q)[q̃k]

=

ˆ
Ω\Γ

(
∂qkφB(qB,∇qB)q̃k + ∂∇qkφB(qB,∇qB) · ∇q̃k

)
dx

+
∑

i∈{+,−}

ˆ
Γ

∂qkiφΓ(γ+q+, γ−q−, qΓ)γki q̃ki dHd−1 , (21d)

and DqkΦ(q)[q̃k] =DqkΦB
(q

B
)[q̃k] + DqkΦΓ(q)[q̃k]

=

ˆ
Ω\Γ

(
∂qkφB(qB,∇qB)− div ∂∇qkφB(qB,∇qB)

)
q̃k dx (21e)

+
∑

i∈{+,−}

ˆ
Γ

(
∂∇qkφB(qi,∇qi)·ni + ∂qkiφΓ(q+, q−, qΓ)

)
q̃ki dHd−1.

i.e., by integration by parts we have the equivalence

δqkΦ(q)[q̃k] = DqkΦ(q)[q̃k] . (21f)

Similarly, for Φ from (20) and a surface state qk it is

δqkΦ(q)[q̃k] =

ˆ
Γ

(
∂qkφΓ(γ+q+, γ−q−, qΓ)q̃k + ∂qk−φΓ(q+, q−, qΓ)q̃k−

)
dHd−1

= DqkΦ(q)[q̃k] . (21g)

Given a sufficiently smooth function α : Ω\Γ → R we introduce the multiplication operation ∗ as
follows

α∗DqkΦ(q)[q̃k] =

ˆ
Ω\Γ

(
α∂qkφB(qB,∇qB)− div

(
α∂∇qkφB(qB,∇qB)

))
q̃k dx

+
∑

i∈{+,−}

ˆ
Γ

(
α∂qkiφΓ(q+, q−, qΓ) + α∂∇qkφB(qi,∇qi) · ni

)
q̃k+ dHd−1 . (22)

We will use the above notation for differentials and ∗ multiplication also for densities φ themselves.
Exemplarily we indicate this here for a bulk state qk :

δqkφ(q)[�] = [∂qkφB(qB,∇qB)� + ∂∇qkφB(qB,∇qB) · ∇�]Ω\Γ

+
∑

i∈{+,−}

[
∂qkiφΓ(q+, q−, qΓ)�

]
Γ
, (23a)

Dqkφ(q)[�] =
[(
∂qkφB(qB,∇qB)− div ∂∇qkφB(qB,∇qB)

)
�
]

Ω\Γ

+
∑

i∈{+,−}

[(
∂qkiφΓ(q+, q−, qΓ) + ∂∇qkφB(qi,∇qi) · ni

)
�
]

Γ
, (23b)
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α ∗Dqkφ(q)[�] =
[(
α∂qkφB(qB,∇qB)− div

(
α∂∇qkφB(qB,∇qB)

))
�
]

Ω\Γ

+
∑

i∈{+,−}

[(
α∂qkiφΓ(q+, q−, qΓ) + α∂∇qkφB(qi,∇qi) · ni

)
�
]

Γ
. (23c)

In general there is the following equivalence in a weak sense

α ∗Dqkφ(q)[q̃k] = αδqkφ(q)[q̃k] . (24)

Dual dissipation potentials. In the same manner, the notation introduced in (20)–(23) is also applied
for dual dissipation potentials Ψ∗ = Ψ∗B+Ψ∗Γ : Q×Q∗ → [0,∞] and the dual states ξ := (ξB, ξΓ) ∈
Q∗ with ξB ∈ Q∗B and ξΓ ∈ Q∗Γ. In particular, we will see that the corresponding Onsager operator is
thus given by

K(q; ξ) := Dξ
B

Ψ∗
B
(q

B
; ξ

B
) + DξΨ

∗
Γ(q; ξ) . (25)

Geometric structures. Also state-dependent geometric structures J = J
B

+J
Γ

: Q×Q∗ → Q, and
K = K

B
+K

Γ
: Q×Q∗ → Q are composed of bulk and interfacial contributions withQ = Q

B
×Q

Γ
.

3.2 Direct implications for geometric structures

Next, we discuss the defining properties of the geometric structures with bulk-interface interaction in
more detail. In particular, we have:

Lemma 3.3 (Properties of dual dissipation potentials). Let the setup of Def. 3.1 and Section 3.1 be
satisfied. Consider a dual dissipation potential Ψ∗ = Ψ∗

B
+ Ψ∗Γ : Q×Q∗ → [0,∞] of the form

Ψ∗(q; ξ) =

ˆ
Ω\Γ

ψ∗
B
(q

B
; ξ

B
,∇ξ

B
) dx+

ˆ
Γ

ψ∗Γ(qΓγ; ξΓγ)dHd−1 . (26)

1 Assume that Ψ∗(q; ·) : Q∗ → [0,∞] is convex for all q ∈ Q. Hence, both Ψ∗
B
(q

B
; ·) : Q∗

B
→

[0,∞] and Ψ∗Γ(q; ·) : Q∗ → [0,∞] are convex for all q = (q
B
, qΓ) ∈ Q.

2 Assume that Ψ∗(q; ·) : Q∗ → [0,∞] is convex for all q ∈ Q and in addition also that
Ψ∗(q; 0) = 0 for all q ∈ Q. Then there holds

〈ξ, q̃〉Q ≥ 0 for all (q, ξ) ∈ Q×Q∗ and for all q̃ ∈ ∂ξΨ∗(q; ξ) . (27a)

Moreover, also Ψ∗
B
(q

B
; ·) and Ψ∗Γ(q; ·) satisfy

Ψ∗
B
(q

B
; 0) = 0 for all q

B
∈ Q

B
, Ψ∗Γ(q; 0) = 0 for all q ∈ Q (27b)

〈ξ
B
, q̃

B
〉Q

B
≥ 0 for all ξ

B
∈ Q∗

B
, q̃

B
∈ ∂ξ

B
Ψ∗

B
(q

B
; ξ

B
) , (27c)

〈ξ, q̃〉Q ≥ 0 for all ξ ∈ Q∗, q̃ ∈ ∂ξΨ∗Γ(q; ξ) . (27d)

Furthermore, if Ψ∗(q; ·) is Gâteaux-differentiable for all q ∈ Q, then also Ψ∗
B
(q

B
; ·) and

Ψ∗Γ(q; ·) are so, and vice versa.

3 In addition to the prerequisites of 2. assume that for all q ∈ Q the potential Ψ∗(q; ·) : Q∗ →
[0,∞] is quadratic and Gâteaux-differentiable. Then K(q) = DξΨ

∗(q; ·) : Q∗ → Q is
a linear, symmetric and positively semidefinite operator, and so are its bulk part K

B
(q

B
) =

Dξ
B

Ψ∗
B
(q

B
; ·) and its boundary part KΓ(q) = DξΨ

∗
Γ(q; ·).
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Proof. To 1.: Convexity of Ψ∗
B
(q

B
; ·) and Ψ∗Γ(q; ·) is equivalent to the convexity of the densities

ψ∗
B
(q

B
; ·, ·), ψ∗Γ(qΓγ; ·). Since these two densities have different supports, the assertion follows.

To 2.: By the definition of the subdifferential for convex potentials (12) we deduce that Ψ∗(q; 0) −
Ψ∗(q; ξ) ≥ 〈q̃,−ξ〉Q for all ξ ∈ Q∗, q̃ ∈ ∂ξΨ

∗(q; ξ). Using that Ψ∗(q; 0) = 0 and rearranging
terms results in (27a). Moreover, since the densities ψ∗

B
and ψ∗Γ have different supports, the first

statement of (27c) and (27d) follows. Furthermore, by 1., both potentials Ψ∗
B
(q

B
; ·) and Ψ∗Γ(q; ·) are

convex. Thus the second statement of (27c) and (27d) is obtained by repeating the argument for (27a).
Again, since the densities ψ∗

B
and ψ∗Γ have different supports, the Gâteaux-differentiability of Ψ∗(q; ·)

is equivalent to the Gâteaux-differentiability of Ψ∗
B
(q

B
; ·) and Ψ∗Γ(q; ·).

To 3.: The potential Ψ∗(q; ·) is quadratic and Gâteaux-differentiable if and only if Ψ∗
B
(q

B
; ·) and

Ψ∗Γ(q; ·) are so. Hence their derivatives are linear, symmetric operators. Positive semidefiniteness
follows from (27c), resp. (27d).

At this point we also address canonical Poisson structures for bulk-interface interaction with an immedi-
ate statement. With the aid of transformation maps, this finding will be transferred to the non-canonical
case in Sec. 3.4, see Lemma 3.8.

Lemma 3.4 (Properties of canonical Poisson structures). Let the setup of Def. 3.1 and Section 3.7 be
satisfied.Further let J

B
: Q∗

B
→ Q

B
and JΓ : Q∗

B
× Q∗Γ → QB

× QΓ be both in canonical form.
Hence J

B
and JΓ are antisymmetric, satisfy the Leibniz rule as well as Jacobi’s identity. Moreover,

also J = J
B

+ JΓ is in canonical form, thus antisymmetric and satisfies the Leibniz rule as well as
Jacobi’s identity.

In addition, also the NIC 14 can be shown to hold true for geometric structures and functionals with
bulk-interface interaction of the type introduced in Sec. 3.1. This also results in the validity of energy
conservation and entropy production and is consistent with the fact that the coupled bulk-interface
system is assumed to be thermodynamically closed, cf. Def. 3.1.

Lemma 3.5 (NIC for GENERIC bulk-interface systems). Under the prerequisites of Lemma 3.3 con-
sider energy and entropy functionals of the form (20). Further assume that Ψ∗ and E satisfy the
generalized NIC (15). Then

〈DE(q), q̃〉Q = 0 for all q ∈ Q, ξ ∈ Q∗, and all q̃ ∈ ∂ξΨ∗(q; ξ) , (28)

and thus, for solutions q ∈ L2(0, T ;Q)∩H1(0, T ;Q∗) of (13) the energy conservation and entropy
production hold true, i.e.,

d

dt
E(q(t)) = 0 and

d

dt
S(q(t)) ≥ 0 for all t ∈ [0,T]. (29)

Moreover the generalized NIC (15) as well as properties (29) hold true even separately for the bulk
and boundary contributions of E = E

B
+ EΓ, S = S

B
+ SΓ, and Ψ∗ = Ψ∗

B
+ Ψ∗Γ.

Proof. By the generalized NIC (15) we have for all q ∈ Q, for all ξ ∈ Q∗, for all q̃ ∈ ∂ξΨ∗(q; ξ), and
for all λ ∈ R

0 = Ψ∗(q; ξ + λDE(q))−Ψ∗(q; ξ) ≥ 〈λDE(q), q̃〉Q .

Choosing λ = 1 and λ = −1 gives (28). Now energy conservation follows by direct calculation

d

dt
E(q(t)) = 〈DE(q), q̇〉Q = 〈DE(q), JDE(q) + q̃〉Q = 0 + 0 = 0
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GENERIC for bulk-interface interaction 9

using the chain rule, the antisymmetry of J, cf. (3), and (28). With similar arguments also the entropy
production of the system is verified:

d

dt
S(q(t)) = 〈DS(q), q̇〉Q = 〈DS(q), JDE(q) + q̃〉Q ≥ 0 + 0 ,

where the first 0 arises by the antisymmetry of J together with the NIC JDS(q) = 0 and the inequality
is due to (27a). This finishes the proof of (29).

Since the densities ψ∗
B

and ψ∗Γ as well asE
B

andEΓ have different supports, the generalized NIC (15)
has to be satisfied separately for Ψ∗(q

B
; D

B
E

B
(q

B
) and Ψ∗Γ(q; DqEΓ(q)) in order to hold true for Ψ∗

and E . Accordingly also the relations d
dt
E

B
(q

B
(t)) = 0 and d

dt
EΓ(q(t)) = 0 as well as d

dt
S

B
(q

B
(t)) ≥

0 and d
dt
SΓ(q(t)) ≥ 0 are obtained separately for the bulk and boundary contributions.

Remark 3.6 (Comparison with [Ött06]). Lemmata 3.3 and 3.4 show that with the setup of Def. 3.1 and
Sec. 3.1 the characteristic properties of GENERIC systems (Q, E ,S, J,K) are satisfied separately
by the bulk system (Q

B
, E

B
,S

B
, J

B
,K

B
) and by the surface system (Q, EΓ,SΓ, JΓ,KΓ). This finding

essentially rests on our definition of the derivatives and operations (21)–(24) for functionals with bulk
and boundary contributions, i.e. considering the derivatives as distributions rather than classical func-
tions. When starting from the abstract definition of variations and functional derivatives (21a)–(21c) of
functionals defined on Banach spaces, relations (21d)–(24) arise as a natural consequence. We refer
to [Ött06], where the boundary terms arising from the bulk contributions by integration by parts, are
attributed to the boundary part of the system. Consequently, neither the bulk nor the boundary system
satisfies the characteristic properties of a GENERIC system, but the sum of the two does. We stress
that our approach and [Ött06] lead to the same bulk-interface systems. ?

3.3 Weak form of GENERIC as a formalism for bulk-interface systems

Based on the definitions given in Def. 3.1 and Sec. 3.1 we now introduce a GENERIC formalism
for systems with bulk-interface interaction and open systems in terms of a weak formulation. In this
way, the bulk equations have to hold in a weak sense and the coupling conditions along Γ naturally
appear also in a weak sense. Let (Q, E ,S, J,K) be a system with bulk and surface contributions
as described in Def. 3.1 and Sec. 3.1, with the mapping properties E = E

B
+ E

Γ
: Q → R,

S = S
B

+ S
Γ

: Q → R, J = J
B

+ J
Γ

: Q∗ → Q, and K = K
B

+ K
Γ

: Q∗ → Q with
Q = Q

B
×Q

Γ
. A weak formulation for (Q, E ,S, J,K) is given by:

〈ξ̃, q̇〉Q = 〈ξ̃
B
, q̇

B
〉Q

B
+ 〈ξ̃

Γ
, q̇

Γ
〉Q

Γ
= 〈ξ̃, JDE(q) + KDS(q)〉Q

= 〈ξ̃
B
, J

B
(q

B
)Dq

B
E

B
(q

B
) + K

B
(q

B
)Dq

B
S

B
(q

B
)〉Q

B

+ 〈ξ̃Γγ, JΓ
(qΓγ)DqΓγEΓ

(qΓγ) + KΓ(qΓγ)DqΓγSΓ(qΓγ)〉QΓγ

(30)

for all ξ̃ = (ξ̃
B
, ξ̃

Γ
) ∈ Q̃ ⊂ Q∗ for with Q̃ = Q̃

B
×Q̃

Γ
a suitable space of test functions. Here, qΓγ is

defined as in (19) and ξ̃Γγ = (ξ̃+γ , ξ̃−γ , ξ̃Γ) ∈ (γQ)∗ ×Q∗Γ. At the example of heat conduction we
now illustrate how the weak form of GENERIC arises from the definition of functional derivatives for
functionals with bulk-interface interaction and how the interfacial coupling naturally emerge from this
weak form.

Example 3.7 (Heat transfer for bulk-interface and open systems). In the following we discuss the
Onsager structure for heat conduction taking into account different interfacial Osager operators along
Γ thus resulting in different coupling conditions.
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Heat conduction in the bulk Ω\Γ = Ω+∪Ω−: The dual dissipation potential in the bulk is defined as

Ψ∗B(θ; ·) : Q∗ → R, Ψ∗B(θ; ξ) :=
∑

i∈{+,−}

ˆ
Ωi

θ2κ(θ)
2

∣∣∇( ξ
DθE

)∣∣2 dx . (31)

Hence, the first variation in ξ reads

δξΨ
∗
B(θ; ξ)[ξ̃] : =

∑
i∈{+,−}

ˆ
Ωi

θ2κ(θ)∇
(

ξ
DθE

)
· ∇
(

ξ̃
DθE

)
dx . (32)

We formally distinguish it from the functional derivative DξΨ
∗
B(θ; ξ), which is obtained from δξΨ

∗
B by

an integration by parts, i.e.,

DξΨ
∗
B(θ; ξ)[ξ̃] =

∑
i∈{+,−}

ˆ
Ωi

− div θ2κ(θ)∇
(

ξ
DθE

)
ξ̃

DθE
dx

+
∑

i∈{+,−}

ˆ
Γi

γi

(
θ2
i κ(θi)∇

(
ξi

DθEi

))
· ni γi

(
ξ̃i

DθEi

)
dHd−1

=:〈KB(θ) ξ, ξ̃〉Q ,

and we introduce the Onsager operator

KB(θ) =
∑

i∈{+,−}

[
−1

DθE
div
(
θ2κ(θ)∇

(
�

DθE

))]
Ωi

+
[
γi

(
θ2
i κi(θi)

DθEi
∇
(

�
DθE

))
· ni
]

Γi
. (33)

Ideal heat transfer across the perfectly conducting interface Γ: At the perfectly conducting interface Γ
all quantities are continuous, which implies

γ+ξ̃+ = γ−ξ̃− for all ξ̃ ∈ Q∗, (34a)

γ+

(
θ2
+κ+(θ+)

DθE+
∇
(

ξ+
DθE+

))
· n+ = −γ−

(
θ2
−κ−(θ−)

DθE−
∇
(

ξ−
DθE−

))
· n− . (34b)

Furthermore, KB satisfies properties (8) as well as NIC (14).

Heat transfer across the imperfect interface Γ: We assume that the heat transfer through Γ is reg-
ulated by the heat transfer coefficient κ̂Γ(γ+θ+, γ−θ−). In this spirit we introduce the quadratic dual
dissipation potential along Γ, for every ξγ ∈ dom(ΨΓ(θγ; ·))

Ψ∗Γ(θγ; ξγ) :=

ˆ
Γ

κ̂Γ(γ+θ+,γ−θ−)
2

∣∣∣γ+

(
ξ+

DθE+

)
− γ−

(
ξ−

DθE−

)∣∣∣2 dHd−1 (35)

and we find for all ξγ, ξ̃γ ∈ dom(ΨΓ(θγ; ·)) that

DξγΨ
∗
Γ(θγ; ξγ)

[
ξ̃γ
]

=

ˆ
Γ

κ̂Γ(θ+, θ−)
((

ξ+
DθE+

)
−
(

ξ−
DθE−

))((
ξ̃+

DθE+

)
−
(

ξ̃−
DθE−

))
dHd−1

= 〈KΓ(θγ)ξγ, ξ̃γ〉dom(ΨΓ(θγ ;·)) . (36)

Clearly, KΓ(θγ) is symmetric and positively semidefinite provided that κ̂Γ(θΓ) ≥ 0. Also NIC (14)
holds true since for all ξ̃γ = (ξ̃+, ξ̃−)> we have

〈KΓ(θγ)(DθE)Γ, ξ̃γ〉dom(ΨΓ(θγ ;·))

=

ˆ
Γ

κ̂Γ(θ+, θ−)
(

DθE+

DθE+
− DθE−

DθE−

)(
ξ̃+

DθE+
− ξ̃−

DθE−

)
dHd−1 = 0 .

(37)
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GENERIC for bulk-interface interaction 11

Thus, in view of (33) and (37), the Onsager operator of the full coupled system is

K(θ) = KB(θ) + KΓ(θγ) (38)

and K(θ) is symmetric, positively semidefinite, and satisfies the NIC (14).

Now the evolution equation (7) can be understood in a weak form such that for a.a. t ∈ (0,T) and for
all ξ̃ ∈ Q̃ = H1(Ω\Γ) there holds

〈θ̇, ξ̃〉Q̃ = 〈K(θ)DθS(θ), ξ̃〉Q̃
= 〈KB(θ)DθS(θ), ξ̃〉H1(Ω\Γ) + 〈KΓ(θΓ)DθSΓ(θ), ξ̃Γ〉H1/2(Γ) . (39)

For a closed system, the heat flux through the boundary is 0 pointwise, i.e.

θ2κ(θ)∇
(

ξ
DθE

)
1

DθE
· ν∂Ω = 0 on ∂Ω .

Hence, choosing test functions ξ̃ = DθE ξ̂ with ξ̂ ∈ Q̃ and using the Gibbs relation, for a.a. t ∈
(0,T), it holds in a weak sense inQ = Q̃∗ it holds

DθE θ̇ = − div
(
θ2κ(θ)∇1

θ

)
, in Ω\Γ , (40a)

together with the following transmission conditions along Γ

γ+

(
θ2
+κ+(θ+)

DθE+
∇
(

1
θ+

))
· n+ = −γ−

(
θ2
−κ−(θ−)

DθE−
∇
(

1
θ−

))
· n− , (40b)

γ+

(
θ2
+κ+(θ+)

DθE+
∇
(

1
θ+

))
· n+ = −κ̂Γ(θγ)

(
1
θ+
− 1

θ−

)
= κ̂Γ(θγ)

θ+θ−

[[
θ
]]
, (40c)

complemented by homogeneous boundary conditions along ∂Ω and by an initial condition.We point
out that the transmission conditions (40b) & (40c) are also obtained e.g. in [GB13, RCC+16] for inter-
faces in local equilibrium.

Ideal heat transfer across the external boundary ∂Ω+ = Γ: In the setting of scenario 2 from Def. 3.1,
above considerations help to formulate proper boundary conditions for non-closed systems. In this
case, Ω+ is a bounded domain which is connected to a reservoir Ω−. Evolution equation (40) then
has to be satisfied only in Ω+ whereas the part of the system on Ω− is not of interest. For a perfectly
conducting boundary Γ and for a given function h we thus set

−γ−
(
θ2
−κ−(θ−)

DθE−
∇
(

ξ−
DθE−

))
· n− := h. (41)

In other words, the inhomogeneous Neumann boundary condition h is implemented in the above de-
duced GENERIC system by appropriately adjusting the functions κ− on Ω−, E−(θ−) and by making
an appropriate choice for ξ−.

In case of an imperfectly conducting boundary we are free to choose θ− and the coefficient functions
κ−(θ−), E−(θ−), and κ̂Γ(θΓ) for a given function h such that

− θ2
−κ−(θ−)

DθE−
∇
(

1
θ−

)
· n− = h and κ̂Γ(θΓ)

θ+θ−

[[
θ
]]

= h . (42)

Again, the inhomogeneous Neumann boundary condition is implemented in the above GENERIC sys-
tem by appropriately adjusting the coefficient functions on Ω− and Γ and by making an appropriate
choice for ξ−.

In both cases (perfect or imperfect), this neither interferes with the symmetry of K nor with the validity
of NIC (14), but to ensure positive semidefiniteness of K may require to restrict the choices of h. ?

We refer to Section 4 to see (30) in application for specific examples of bulk-interface systems related
to delamination processes.
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3.4 Tools for dissipative solids with bulk-interface interaction

In [Mie11a, Sec. 2.4] and [ZPT21, Sec. 3.4] it was established that the GENERIC structure of thermo-
dynamically closed systems is preserved under similarity transformations. In particular, this approach
can be used to facilitate the verification of the structural properties of the system, such as the NIC (14).
For this, first consider a thermodynamically closed system described by the states qτ = (w, τ) ∈ Qτ ,
where τ ∈ {E,U, S, θ} represents the thermodynamic variable and w ∈ RN collects the remaining
state variables. For an integral functional H : Qτ → R with density H (and H as a placeholder for
E,U, S) we introduce the map

Tτ→H : Qτ → QH , qτ := (w, τ) 7→ qH := (w,H) (43)

and its inverse TH→τ = T−1
τ→H . Calculation of the Fréchet derivative of TH→τ thus gives

LH := DTH→τ (qH) = DTτ→H(qτ )
−1 =

(
I 0

δwH(qτ ) ∂τH(qτ )

)−1

(44)

and leads to the relations

LH =

(
I 0

− 1
∂τH

δwH
1

∂τH

)
and L∗H =

(
I − �

∂τH
∗DwH

0 1
∂τH

)
.

More generally, for some linear operator AH : Q∗w → Q∗w with adjoint A∗H we set

LH =

(
AH 0

− δwH◦AH
∂τH

1
∂τH

)
and L∗H =

(
A∗H A∗H ◦ (− �

∂τH
∗DwH)

0 1
∂τH

)
. (45)

In this way there clearly holds
L∗HDH ≡ L∗HDH = (0, 1)> (46)

and the NIC (14) is ensured by assuming that the Poisson and the Onsager operator of a GENERIC
system in the variables qτ can be composed as

J(qτ ) := LSJ0L∗S and K(qτ ) := LEK0L∗E with J0

(
0
1

)
= 0 = K0

(
0
1

)
. (47)

Here, J0 : Q∗S → QS is a Poisson structure and K0 : Q∗E → QE is an Onsager operator on the
state spacesQS,QE with homogeneous boundary conditions.

We observe now that similar relations can also be established for systems with bulk-interface interac-
tion: Following the notation of Sec. 3.1 we assume that the bulk energy and entropy densities are given
through E

B
(w

B
,∇w

B
, τ

B
) = E+(w+,∇w+, τ+) + E−(w−,∇w−, τ−) and S

B
(w

B
,∇w

B
, τ

B
) =

S+(w+,∇w+, τ+)+S−(w−,∇w−, τ−). For simplicity, we assume that all variables, particularly τ±,
have well defined traces on Γ. Since Ω+ and Ω− are disjoint, we can follow (47) and find the bulk
operators

J
B
(qτ

B
) := LS+J0

+L∗S+
+ LS−J0

−L∗S− with J0
±

(
0
1

)
= 0 and (48a)

K
B
(qτ

B
) := LE+K0

+L∗E+
+ LE−K0

−L∗E− with K0
±

(
0
1

)
= 0 . (48b)

Now J0
± : Q∗S± → QS± is a Poisson structure and K0

± : Q∗E± → QE± is an Onsager operator on the
state spaces Q∗S± → QS± and Q∗E± → QE± that allows for inhomogeneous boundary conditions
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along Γ for the state variables w±. In a similar spirit also attention has to be paid for the entries of
LH± and L∗H± : the operator A∗H : Q∗w → Q∗H,w acts on the dual of the state space Qw which can

accomodate inhomogeneous boundary conditions. Elements δw±H±,Dw±H±, or 1
∂τ±H±

∗ Dw±H±

represent functionals from the dual space Q∗w and are thus characterized by bulk and trace terms by
explicitly making use of relations (21e) and (22). In this way the bulk operators also generate a trace
contribution on Γ

J±(qτ±) :=
[
LS±J0

±L∗S±
]

Ω±
+
[
LS±J0

±L∗S±
]

Γ±
, (49a)

K±(qτ±) :=
[
LE±K0

±L∗E±
]

Ω±
+
[
LE±K0

±L∗E±
]

Γ±
. (49b)

On Γ the interfacial energy and entropy densities EΓ, SΓ depend on the traces of the bulk states
γ±q± := (γ±w±, γ±τ±) which we write with (18) as q± as well as on additional surface states
qΓ := (wΓ, τΓ), collected in qΓγ := (q+, q−, qΓ)>, cf. (19). In analogy to (43)–(47), using the surface
density HΓ ∈ {EΓ, SΓ}, we introduce for i ∈ {+,−,Γ} with operators Awi

LHΓ,i =

(
Awi 0

− δwiHΓ◦Awi
∂τiHΓ

1
∂τiHΓ

)
, L∗HΓ,i

=

(
A∗wi A∗wi(−

�
∂τiHΓ

∗DwiHΓ)

0 1
∂τiHΓ

)
, (50)

where we typically choose Awi = I the identity and define the following matrices as a cartesian
product:

LHΓ
= diag (LHΓ,+, LHΓ,−, LHΓ,Γ) , (51a)

L∗HΓ
= diag

(
L∗HΓ,+

, L∗HΓ,−, L
∗
HΓ,Γ

)
. (51b)

Similar to (46) this construction provides

L∗HΓ
DHΓ ≡ L∗HΓ

DHΓ = (0, 1, 0, 1, 0, 1)> , (52)

so that the NIC (14) for the interfacial geometric operators

J(qΓγ) := LSΓ
J0

ΓL∗SΓ
and K(qΓγ) := LEΓ

K0
ΓL∗EΓ

(53)

can be ensured for interfacial Poisson and Onsager operators J0
Γ,K0

Γ : (γQ)∗ ×Q∗Γ → (γQ)×QΓ

with the property
J0

Γ(0, 1, 0, 1, 0, 1)> = 0 = K0
Γ(0, 1, 0, 1, 0, 1)> . (54)

We further observe that above strategy can be extended to more general dissipative mechanisms
modelled by (non-quadratic) convex dual dissipation potentials as discussed in Lemma 3.3. In this
setting, NIC (14) is ensured if

∂q
B

Ψ0∗
B

(q
B
; (0, 1)>) 3 0 and ∂qΓγΨ

0∗
Γ (qΓγ; (0, 1, 0, 1, 0, 1)>) 3 0 (55)

for some dual dissipation potentials Ψ0∗
B

and Ψ0∗
Γ with the properties established in Lemma 3.3. More-

over, it should be mentioned that also gradients of surface states can be taken into account in interfacial
densities EΓ, SΓ. This is addressed in Sec. 4.

In view of [ZPT21, Sec. 3.4] and [Mie11a] and based on the afore discussion as well as on the results
obtained in Sec. 3.2 the following statements can be concluded.

Lemma 3.8 (Properties of geometric structures under transformations). Let the prerequisites of Lem-
mata 3.3 and 3.4 be satisfied and consider transformation operators LH± and LHΓ

of the type (45)–
(48) and (51). Then the following statements hold true:
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1 Let J0 = J0
B

+ J0
Γ be a Poisson operator in canonical form. Then the transformed operators

J
B
(qτ

B
) = LS

B
J0

B
L∗S

B
and JΓ(qτΓγ ) = LSΓ

J0
ΓL∗SΓ

are also Poisson operators. If J0
B

and

J0
Γ have properties (48a) and (54), then J

B
(qτ

B
) and JΓ(qτΓγ ) satisfy the NIC (14) for S =

S
B

+ SΓ.

2 Let Ψ0∗ = Ψ0∗
B

+ Ψ0∗
Γ be a dual dissipation potential with the properties of L. 3.3, Items 1 & 2.

Then the transformed potentials

Ψ∗
B
(qτ

B
; ξ

B
) = Ψ0∗

B
(L∗E

B
qτ

B
;L∗E

B
ξ

B
) , Ψ∗Γ(LEΓ

qτΓγ ;LEΓ
ξΓγ) = Ψ0∗

Γ (L∗EΓ
qτΓγ ;L

∗
EΓ
ξΓγ)

also have properties of L. 3.3, Items 1 & 2. If Ψ0∗
B

and Ψ0∗
Γ have properties (55), then the trans-

formed Ψ∗
B
(qτ

B
) and Ψ∗Γ(qτΓγ ) satisfy the NIC (14) for E = E

B
+ EΓ.

Remark 3.9 (The Gibbs’ relation). Due to the expressions L∗SDE and L∗EDS arising in the above
GENERIC formalism, we will deal with expressions of the form ∂τE

∂τS
. In case τ = θ these expressions

are covered by the so-called

Gibbs’ relation:
∂θS
∂θE

=
1

θ
. (56)

Mielke [Mie11a] demonstrates the generalization ∂τS
∂τE = 1

θ
, which we will frequently use in Section 4

and see Example 3.10 below. ?

Example 3.10 (Specific choice of driving functionals in thermoelasticity). In case of τ = θ a specific
choice for the bulk and surface functionals matching with Gibbs’ relation (56) is given by

U
B
(e, θ) = W (e)− φ0(θ) + θφ′0(θ), S

B
(e, θ) = φ′0(θ)− B : e, (57a)

UΓ(γ+θ+, γ−θ−) = 1
4
(γ+θ

2
+ + γ−θ

2
−), SΓ(γ+θ+, γ−θ−) = 1

2
(γ+θ+ + γ−θ−), (57b)

e.g., with φ′0(θ) = cV ln θ and a matrix B ∈ Rd×d. Clearly, both the bulk functionals in (57a) and the
surface functionals obtained by (59) satisfy Gibbs’ relation (56).

For the transformation Tθ→S we have for the bulk terms θ̃
B

= T−1
θ→S(S

B
) = (φ′0)−1(S

B
+B : e) and

Ũ
B
(e, S

B
) = W (e)− φ0

(
(φ′0)−1(S

B
+ B : e)

)
+
(
(φ′0)−1(S

B
+ B : e)

)
(S

B
+ B : e),

which again results in the Gibbs’ relation ∂S
B
Ũ

B
(e, S

B
) = (φ′0)−1(S

B
+ B : e) = θ̃

B
. We further

deduce that γ±θ̃± = 2γ±S± and ŨΓ(γ±S+, γ±S−) = S2
+ + S2

−. This also provides the interfacial

Gibbs’ relation ∂γ±S±UΓ = 2γ±S± = γ±θ̃±.

Similarly, for the transformation Tθ→U it is θ̂
B

= T−1
θ→U(U

B
) = h−1(U

B
−W (e)), where we have

set h(θ
B
) := −φ0(θ) + θφ′0(θ), and Ŝ

B
(e, U

B
) = φ′0(h−1(Ũ

B
−W (e))). Direct calculation again

gives the Gibbs’ relation for the bulk, since ∂U
B
Ŝ

B
(e, U

B
) = φ′′0(θ̂

B
)∂U

B
θ̂

B
and ∂U

B
θ̂

B
= 1/h′ =

1/(θ̂
B
φ′′0(θ̂

B
)). Along Γ we now have γ±θ̂± = 2

√
γ±U± and SΓ(γ+U+, γ−U−) =

√
γ+U+ +√

γ−U−, so that indeed ∂γ±U±SΓ + 1/(2
√
γ±U±) = 1/(γ±θ̂±), which confirms the interfacial

Gibbs’ relation also for the choice τ = U . Since E = Ekin + U the same calculations also verify
Gibbs’ relation for τ = E. ?

4 Delamination processes in thermoviscoelastic materials

We now consider a composite consisting of two thermo-viscoelastic bodies glued together along the
interface Γ by an elastic adhesive. This adhesive can experience damage, in other words, delamination
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may evolve along Γ. In the spirit of generalized standard materials [HN75] this process is modeled with
the aid of an internal variable, the delamination variable z : [0,T] × Γ → [0, 1] solely defined on Γ
to account for the degradation state of the glue. In particular, z(t, x) = 1 means that the glue is fully
intact in the interfacial point x ∈ Γ at time t ∈ [0,T], whereas z(t, x) = 0 means that the glue is
completely broken in (t, x) ∈ [0,T]×Γ. In this way z indicates the degradation state of the glue and
in particular the set C(t) := {x ∈ Γ, z(t, x) = 0} describes the crack set. This meaning of z is
connected to adhesive delamination and brittle fracture processes in the sense of Griffith [Gri21], see
e.g. also [Fré02], rather than to so-called cohesive zone models in the sense of Barenblatt [Bar62]. For
the latter type of models the internal variable has a different meaning as it is introduced to keep track of
the history of displacement jumps across Γ, for example in the form z(t, x) := maxs∈[0,t][[u(s, x)]]·n.
We refer to [Tho17, TZ17] for a comparison of these different types of modeling approaches and to the
references therein for an analytical treatment of cohesive zone models in absence of thermal effects.

The state vector. The vector of bulk state variables is given by q
B

:= (u, p, τ) the displacements
u : Ω\Γ → Rd, the momentum p = %u̇ : Ω\Γ → Rd with given mass density % > 0, and a
thermodynamic state variable τ : Ω\Γ → R with τ ∈ {E, S, U, θ}, where we omit the index B on
the individual variables. Along Γ we have the traces u±, p±, and τ± and the surface state variables,
the delamination variable z and the interfacial thermodynamic variable τΓ. Hence, writingw := (u, p),
the vector of interfacial variables is composed by

qΓγ = γq
B

= (w+, τ+, w−, τ−, z, τΓ)> = (u+, p+, τ+, u−, p−, τ−, z, τΓ)> , (58)

Prototypic driving functionals. This choice of variables is complemented by an ansatz for the po-
tentials of the form

E
B
(q

B
) := 1

2%
|p|2 + U

B
(e(u), τ)− f · u in Ω\Γ, (59a)

U
B
(e(u), τ) := U el

B
(e(u)) + U th

B
(τ) in Ω\Γ, (59b)

S
B
(q

B
) := Sth

B
(e(u), τ) in Ω\Γ, (59c)

EΓ(γq
B
) := 1

2

(
γ+U

th
B

(τ) + γ−U
th
B

(τ)
)

+ U el
Γ (z,

[[
u
]]

) + U th
Γ (τΓ) on Γ , (59d)

SΓ(γq
B
) := 1

2

(
γ+S

th
B

(τ) + γ−S
th
B

(τ)) + Sth
Γ (τΓ

)
on Γ , (59e)

where e(u) := 1
2
(∇u + ∇u>) is the linearized strain tensor and [[u]] is the displacement jump as

introduced in Def. 3.1. We assume that the Gibbs’ relation is satisfied both in the bulk and on the
interface, i.e.,

∂τEB

∂τSB

= θ
B
,

∂τΓEΓ

∂τΓSΓ

= θΓ and
∂τ±EΓ

∂τ±SΓ

= γ±θ± , (60)

see also Example 3.10 below for a specific choice matching with (60).

Underlying Poisson and Onsager structures. We introduce the bulk Poisson operator and bulk
dual dissipation potential

J0
B

:=

 0 I 0
−I 0 0
0 0 0

 and Ψ0∗
B

(q
B
; ξ

B
) := Ψ0∗

V (q
B
; ξp) + Ψ0∗

H (q
B
; ξτ ) . (61a)

Here, J0
B

features the reversible contribution to the evolution of the pair (u, p), whereas the bulk
thermodynamic variable τ evolves solely dissipative and thus has no non-zero entries in J0

B
. In this

way, there clearly holds J0
B
(0, 0, 1)> = 0, as a prerequisite to satisfy NIC according to (48). In turn,
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the dissipative evolution of τ is ruled by the dual dissipation potential Ψ∗H(q
B
; ξτ ) with density ψ∗H of

the form

Ψ0∗
H (θ; ξτ ) :=

ˆ
Ω\Γ

θ2κ(θ)
2

∣∣∇ξτ ∣∣2 dx , (61b)

resulting in the bulk Onsager operator for heat transport

K0
HB

(θ)ξτ
B

=
∑

i∈{+,−}

[
− div

(
θ2κ(θ)∇ξτ

)]
Ωi

+
[
γi
(
θ2κ(θ)∇ξτ

)
ni

]
Γi
. (61c)

This operator satisfies K0
HB

(θ)1 = 0, a prerequisite to satisfy the NIC (48). In addition, the bulk dual
dissipation potential features Kelvin-Voigt viscosity of the form

Ψ0∗
V (q

B
; ξp) :=

ˆ
Ω\Γ

1

2
D(q

B
)ξp : ξp dx (61d)

with K0
V(q

B
)ξp :=

∑
i∈{+,−}

[
D(q

B
)ξp

]
Ωi
, (61e)

the viscous Onsager operator. The full bulk Onsager operator is thus given as

K0
B
(q

B
) = diag

(
0, K0

V(q
B
), K0

HB
(θ)
)
. (61f)

On the interface Γ dissipation occurs due to heat exchange between Ω± and Γ. Writing ξγτ =
(ξτ+, ξτ−, ξτΓ) the dissipation for imperfect heat transfer has the general form

Ψ0∗
HΓ(θγ; ξγτ ) :=

ˆ
Γ

1
2
ξγτ · κ̂Γ(θ+, θ−, θΓ) ξγτ dHd−1 ,

where κ̂Γ :=

 κΓ,++ κΓ,+− κΓ,+Γ

κΓ,−+ κΓ,−− κΓ,−Γ

κΓ,Γ+ κΓ,Γ− κΓ,ΓΓ

 such that κ̂Γ

 1
1
1

 = 0 ,

(62)

and κ̂Γ is positive semidefinite. We additionally account for dissipation due to processes involving z
on the interface by the dual dissipation potential

R∗z(qΓ, ξz) :=

ˆ
Γ

R∗D(qΓ, ξz) dHd−1 , (63)

where for fixed qΓ the function ξz 7→ R∗D(qΓ, ξz) is convex and lower semicontinuous, see Sec. 4.2 for
more details. Writing η(·) := η(qΓ, ·) = ∂ξzR

∗
D(qΓ, ·) we find the following form of K0

Γ with entries
κΓ,ij from (62) for i, j ∈ {+,−,Γ}

K0
Γ :=


0 0 0 0 0 0
0 κΓ,++ 0 κΓ,+− 0 κΓ,+Γ

0 0 0 0 0 0
0 κΓ,−+ 0 κΓ,−− 0 κΓ,−Γ

0 0 0 0 η(�) 0
0 κΓ,Γ+ 0 κΓ,Γ− 0 κΓ,ΓΓ

 , (64)

where the first and the third line collect the entries for ξw± with w = (u, p). Again, we confirm that
K0

Γ(0, 1, 0, 1, 0, 1)> = 0 as a prerequisite for NIC by (54).
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Since the interface functionals in (59) account for a mutual interaction of the traces of w (i.e. of u),
there is a conservative contribution to the evolution along Γ and hence we set

J0
HDΓ

:=


0 0 1 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (65)

Noninteraction conditions (14). In order to ensure the NIC (14) we follow the approach of Sec. 3.4
to find the Poisson structures J

B
, JΓ and the Onsager operators K

B
, KΓ. In particular, we introduce

the bulk Poisson structure according to (49) and (45) in the specific form

J
B
(qτ ) = LS

B
J0

B
L∗S

B
, where L∗S

B
=

I 0 − �
∂τSB

∗DuSB

0 I − �
∂τSB

∗DpSB

0 0 1
∂τSB

 (66a)

with δpSB
= (0, . . . , 0), and DpSB

= (0, . . . , 0)> ∈ Rd

and − �
∂τSB

∗DuSB
=

∑
i∈{+,−}

[
div
(

�
∂τSB

∂eSB

)]
Ωi
−
[
γi
(

�
∂τSB

∂eSB

)
ni
]

Γi
, (66b)

so that this entry in L∗S
B

also generates a non-zero trace contribution on Γ±. It can be readily checked

that L∗S
B

DS
B

= (0, 0, 1)>, which ensures the NIC (14) J
B
(qτ

B
)DS

B
= LS

B
J0

B
L∗S

B
DS

B
= 0 by the

form of J0
B

from (61a).

For the bulk Onsager contribution we also follow (47) and (45), i.e.,

K
B
(qτ ) = LE

B
K0

B
L∗E

B
, where L∗E

B
=


I 0 − �

∂τEB
∗DuEB

0 e(�) e ◦
(
− �
∂τEB

∗DpEB

)
0 0 1

∂τEB

 (66c)

with δpEB
= ∂pE

>
B

= p/%,

− �
∂τEB

∗DuEB
=

∑
i∈{+,−}

[
div
(

�
∂τEB

∂eEB

)]
Ωi
−
[(

�
∂τEB

∂eEB

)
ni
]

Γi
,

and e∗(ξp) =
∑

i∈{+,−}

[
− div ξp

]
Ωi

+
[
γiξp · ni

]
Γi
.

(66d)

Comparing with (45) this means that here AH = e∗. The operators e, e∗ together with the viscous
Onsager operator K0

V generate the dissipative contributions for Kelvin-Voigt viscoelasticity.

Similarly, the interfacial geometric structures JΓ and KΓ are deduced according to (48) by transforming
K0

Γ and J0
Γ using the transformation maps LEΓ

, L∗EΓ
as well as LSΓ

, L∗SΓ
obtained by (51).

Elimination of surface thermodynamic variable τΓ by local equilibrium. We specify κ̂Γ from (62)
as

κ̂Γ(θγ) = κΓ(θγ)

 1+ 1
4ε

−1+ 1
4ε
− 1

2ε

−1+ 1
4ε

1+ 1
4ε

− 1
2ε

− 1
2ε

− 1
2ε

1
ε

 ,

i.e. ξ · κ̂Γξ = κΓ(ξτ+ − ξτ−)2 + ε−1(ξτΓ − 1
2
(ξτ+ + ξτ−))2
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and consider KΓ = LSΓ
K0

ΓL∗SΓ
with K0

Γ from (64). Using the Gibbs’ relation ∂τiSΓ

∂τiEΓ
= θ−1

i for i ∈
{+,−,Γ} we calculate the entries of KΓDSΓ as follows

(KΓDSΓ)w+ = (KΓDSΓ)w− = 0 ,

(KΓDSΓ)τ± = κΓ
1

∂τ±EΓ

(
(θ−1
± − θ−1

∓ )− 1

2ε

(
θ−1

Γ − 1
2
(θ−1

+ + θ−1
− )
))

(KΓDSΓ)z = η
(
∂zSΓ − θ−1

Γ ∗ ∂zEΓ

)
(KΓDSΓ)τΓ = − 1

∂τΓEΓ
η
(
∂zSΓ − θ−1

Γ ∗ ∂zEΓ

)
+ 1

∂τΓEΓ

κΓ

ε

(
θ−1

Γ − 1
2
(θ−1

+ + θ−1
− )
)

Under the assumption that the system is quasi-stationary with respect to τΓ we have (KΓDSΓ)τΓ = 0
and hence in the second row:

(KΓDSΓ)τ± = κΓ
1

∂τ±EΓ

(
(θ−1
± − θ−1

∓ )
)
− 1

2 ∂τ±EΓ
η
(
∂zSΓ − θ−1

Γ ∗ ∂zEΓ

)
.

The last expression cannot yet be rephrased in terms of a gradient flow. However, the limit ε → 0
formally enforces that 1

θΓ
≈ 1

2
( 1
θ+

+ 1
θ−

). Then we find the new GENERIC system by eliminating the

row for τΓ in K0
Γ and J0

Γ in (64) and (65) by and modifying LEΓ
and L∗EΓ

in the following way

LEΓ
=


Iw+ 0 0 0 0

− 1
∂τ+EΓ

δw+EΓ
1

∂τ+EΓ
0 0 − 1

2 ∂τ+EΓ
δzEΓ

0 0 Iw− 0 0
0 0 − 1

∂τ−EΓ
δw−EΓ

1
∂τ−EΓ

− 1
2 ∂τ−EΓ

δzEΓ

0 0 0 0 Iz

 , (67a)

L∗EΓ
=



Iw+ − �
∂τ+EΓ

∗Dw+EΓ 0 0 0

0 1
∂τ+EΓ

0 0 0

0 0 Iw− − �
∂τ−EΓ

∗Dw−EΓ 0

0 0 0 1
∂τ−EΓ

0

0 − �
2 ∂τ+EΓ

∗DzEΓ 0 − �
2 ∂τ−EΓ

∗DzEΓ Iz

 . (67b)

and similarly for LSΓ
and L∗SΓ

Weak formulation of the GENERIC system with bulk-interface coupling. Altogether, the weak
formulation of the GENERIC evolution system

〈ξ̃, q̇〉Q = 〈ξ̃, J
B
DE

B
+ K

B
DS

B
〉Q

B
+ 〈ξ̃Γγ, JΓDEΓ + KΓDSΓ〉QΓ

(68)

for all admissible test functions ξ̃ = (ξ̃
B
, ξ̃z) = (ξ̃u, ξ̃p, ξ̃τ , ξ̃z) ∈ Q∗ and the interfacial test functions

ξ̃Γγ = (γ+ξ̃B
, γ−ξ̃B

, ξ̃z) ∈ Q∗Γγ can be written as follows when collecting terms that use the same
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test function

〈ξ̃u, u̇〉Qu = 〈ξ̃u, p/%〉Qu , (69a)

〈ξ̃p, ṗ〉Qp = 〈ξ̃p, div(∂eW (e(u)) + De(u̇)− ∂τEB

∂τSB
∂eSB) + f〉Ω\Γ

+
∑

i∈{+,−}

−〈γiξ̃p, γi
(
∂eWB

(e(u))+De(u̇)−∂τEB

∂τSB
∂eSB

)
ni〉Γi

+〈γiξ̃p, ∂γiuU el
Γ (z, [[u]])〉Γ , (69b)

〈ξ̃z, ż〉Qz = 〈ξ̃z, ηz〉Qz and ηz ∈ ∂ξzR∗D
(
qΓγ;−1

2

(
1
θ+

+ 1
θ−

)
∗DzU

el
Γ (z, [[u]])

)
, (69c)

〈ξ̃τ , τ̇〉Qτ = 〈 ξ̃τ
∂τEB

,− div
(
κ(θ)∇ ∂τSB

∂τEB

)
− ∂τEB

∂τSB
∂eSB

:e(u̇) + e(u̇) : De(u̇)〉Ω\Γ

+
∑

i∈{+,−}

〈γi
(

ξ̃τ
∂τEB

)
, γi
(
κ(θ)∇ ∂τSB

∂τEB

)
ni〉Γi + 〈γiξ̃τ ,− 1

2∂γiτEΓ
δzU

el
Γ · ηz〉Γ

+〈
(

γ+ξ̃τ
∂γ+τEΓ

− γ−ξ̃τ
∂γ−τEΓ

)
, κΓ([[u]], z)[[θ]]〉Γ , (69d)

where ηz = ż ∈ ∂ξzR∗D
(
qΓγ;−1

2

(
1
θ+

+ 1
θ−

)
∗ DzU

el
Γ

)
by (69c). Using for the test functions in (69d)

the ansatz ξ̃τ = ∂τEB
ξ̂τ for any suitable ξ̂τ and exploiting the Gibbs’ relation, equation (69d) can be

rewritten as

〈∂τEB
ξ̂τ , τ̇〉Qτ = 〈ξ̂τ ,− div

(
κ(θ)∇1

θ

)
− θ∂eSB

:e(u̇) + e(u̇) : De(u̇)〉Ω\Γ
+
∑

i∈{+,−}

〈γiξ̂τ , γi
(
κ(θ)∇1

θ

)
ni〉Γi + 〈γiξ̂τ ,−1

2
δzU

el
Γ · ż〉Γ + 〈

[[
ξ̂τ
]]
, κΓ

[[
θ
]]
〉Γ

for all suitable test functions ξ̂τ . This entails the condition∑
i∈{+,−}

〈γiξ̂τ , γi
(
κ(θ)∇1

θ

)
ni〉Γi + 〈γiξ̂τ ,−1

2
δzU

el
Γ · ż〉Γ + 〈

[[
ξ̂τ
]]
, κΓ

[[
θ
]]
〉Γ = 0 . (70)

Derivation of interfacial coupling conditions. From this we are now going to derive interfacial
coupling conditions in strong form. For shorter notation we here set J := κ(θ)∇1

θ
and with the

relation n− = −n+ we calculate∑
i∈{+,−}

〈γiξ̂τ ,γi
(
κ(θ)∇1

θ

)
ni〉Γi = 〈γ+ξ̂τ , γ+Jn+〉Γ − 〈γ−ξ̂τ , γ−Jn+〉Γ

= 〈
[[
ξ̂τ
]]
, 1

2
(γ+J + γ−J) · n+〉Γ + 〈1

2
(γ+ξ̂τ + γ−ξ̂τ ),

[[
J
]]
· n+〉Γ .

Comparison with the remaining terms in in (70) results in the interfacial coupling conditions (72g) and
(72h) below.

Similar arguments also allow it to deduce interfacial coupling conditions from the weak momentum
balance (69b): Noting that 〈γ±ξ̃p, ∂γ+u+U

el
Γ 〉Γ = 〈−γ±ξ̃p, ∂γ−u−U el

Γ 〉Γ, we may rewrite the terms
stemming from the interfacial energy in (69b) as follows

〈γ+ξ̃p, ∂γ+uU
el
Γ 〉Γ + 〈γ−ξ̃p, ∂γ−uU el

Γ 〉Γ = 〈
[[
ξ̃p
]]
, ∂[[u]]U

el
Γ 〉Γ .

Further using the abbreviation σ± :=
[
∂eWB

(e(u))+De(u̇)−∂τEB

∂τSB
∂eSB

]
Ω±

we now read from (69b)

that the terms on Γ have to satisfy the condition

0 = 〈
[[
ξ̃p
]]
, γ+σ+n+ + ∂[[u]]U

el
Γ 〉Γ + 〈γ−ξ̃p, γ+σ+n+ + γ−σ−n−〉Γ (71)
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for all test functions ξ̃p ∈ Q∗p with traces γiξ̃p, i ∈ {+,−}, and jump [[ξ̃p]] across Γ. This provides
the interfacial coupling conditions (72e) and (72f) below.

Strong form of the GENERIC system with bulk-interface coupling. From above considerations
we conclude that (69) corresponds to the following strong formulation

u̇ = p/% in Ω± , (72a)

ṗ = div(∂eUB
+ De(u̇)− θ∂eSB

) + f in Ω± , (72b)

τ̇ = 1
∂τEB

(
div(κ(θ)∇θ)− θ∂eSB

: e(u̇) + e(u̇) : De(u̇)
)

in Ω± , (72c)

ż ∈ ∂ξzR
∗
D

(
qΓγ;−1

2
( 1
θ+

+ 1
θ−

) ∗DzU
el
Γ (z,

[[
u
]]

)
)

on Γ , (72d)

complemented by the following interfacial coupling conditions along Γ

γ+σ+n+ + γ−σ−n− = 0 , (72e)

γ+σ+n+ + ∂[[u]]U
el
Γ (z,

[[
u
]]

) = 0 , (72f)

[[κ(θ)∇1
θ
]] · n+ − δzU el

Γ · ż = 0 , (72g)
1
2

(
γ+(κ(θ)∇1

θ
) + γ−(κ(θ)∇1

θ
)
)
·n++κΓ([[u]], z)[[θ]] = 0 , (72h)

and by homogeneous boundary conditions on ∂Ω, and suitable initial conditions.

In the next sections we introduce typical choices used in mathematical literature for the dissipation
potential for delamination RD and its conjugate R∗D in (63) and for the interfacial mechanical energy
U el

Γ from (59d). For these choices we discuss the resulting form of the interfacial coupling conditions
(72g), (72h) and thus reveal the GENERIC structure of the models previously studied in literature with
analytical methods.

4.1 Typical choices for interfacial mechanical energies for delamination

Interfacial mechanical energies for delamination are typically of the type

U el
Γ (z,

[[
u
]]

) = WΓ(z,
[[
u
]]

) + I[0,1](z) + IK(
[[
u
]]

) . (73)

Here, I[0,1] is the indicator function of the set [0, 1] to feature the constraint z ∈ [0, 1], i.e., I[0,1](z) =
0 if z ∈ [0, 1] and I[0,1](z) = ∞ otherwise. Moreover, the indicator function IK of the convex
cone K := {v, [[v]] · n+ ≥ 0} ensures non-penetration of the material along the interface. Most
importantly, the term WΓ(z, [[u]]) takes into account that displacement discontinuities along Γ are
energetically more costly as long as the glue is effective, i.e., for z(t, x) > 0. If displacement jumps
are only penalised but not excluded one speaks of adhesive contact and a typical energy density takes
the form

W k
Γ (z,

[[
u
]]

) :=
k

2
z|
[[
u
]]
|2 (74a)

with a constant k > 0. Displacement jumps are excluded in points where the glue active in case of
brittle delamination with the energy density

W∞
Γ (z,

[[
u
]]

) := ICb
(z,
[[
u
]]

) with Cb := {(z̃,
[[
ũ
]]

), z̃|
[[
ũ
]]
| = 0 a.e. on Γ} (74b)

the set accounting for the non-smooth, brittle constraint. In combination with a unidirectional, rate-
independent dissipation potential, cf. (76) below with r = 1, this provides a model for fracture in the
spirit of Griffith [Gri21].
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For analytical reasons some works additionally consider in U el
Γ (z, [[u]]) a gradient term for the delam-

ination variable. For example, [BBR09, BBR15a, BBR15b] consider the gradient term

G(∇z) := 1
2
|∇z|2 (75)

and [RT15] uses a Modica-Mortola type gradient term GM(∇z) := 1
2M
|∇z|2 + M

2
z2(1 − z)2 to

approximate as M → ∞ a model which only accounts for the fully intact z(t, x) = 1 and the fully
broken state z(t, x) = 0. In this limit, the interfacial gradient term is given by the relative perimeter of
the set Z(t) := {x ∈ Γ, z(t, x) = 1} in Γ.

4.2 Typical choices of dissipation potentials for delamination

Delamination in non-living materials is a unidirectional process, i.e., once the glue has weakened in an
interfacial point it cannot heal and will ultimately break. This property can be modeled by a dissipation
potential of the form

RD(q; v) :=

ˆ
Γ

RD(q; v) dHd−1

with RD(q; v) := a(q)Rr(v) + I(−∞,0](v) and Rr(v) :=
1

r
|v|r ,

(76)

for some strictly positive, state-dependent function a(q) > 0 for all q, the integrability exponent r ∈
[1,∞), and I(−∞,0] the indicator function of the set (−∞, 0], i.e., I(−∞,0](v) = 0 if v ∈ (−∞, 0]
and I(−∞,0](v) =∞ otherwise. Rate-independent delamination corresponds to the case r = 1, see
e.g. [RR11, RR13, RT15, RT17], while r > 1 describes rate-dependent delamination and is most
commonly treaded in literature with the exponent r = 2, cf. e.g. [BBR15a]. When choosing v = ż
we note that the indicator function I(−∞,0] in (76) entails the constraint ż ≤ 0, which ensures that
delamination cannot heal, as z = 1 is the intact state and z = 0 denotes the broken state. The dual
dissipation potentialR∗D, resp. its density R∗D, is the convex conjugate ofRD obtained by (11). In the
case r = 1 this is

R∗D(q; ξz) =

{
0 if ξz ∈ [−a(q),∞),
∞ otherwise,

(77a)

i.e., R∗D(q; ·) = I∂vRD(q;0) is given by the indicator function of the convex set ∂vRD(q; 0). For r ∈
(1,∞) the convex conjugate is given by

R∗D(q; ξz) =

{
0 if ξz > 0,

a(q)Rr′
(

ξ
a(q)

)
otherwise,

where 1
r

+ 1
r′

= 1 . (77b)

We now discuss (formally) equivalent formulations for the flow rule (72d) and their implication on the
coupling conditions (72g)–(72h). For this, let us first assume that U el

Γ (z, [[u]]) is smooth and does not
feature the gradient ∇z. Then 1

2

(
1
θ+

+ 1
θ−

)
∗ DzU

el
Γ (z, [[u]]) = 1

2

(
1
θ+

+ 1
θ−

)
∂zU

el
Γ (z, [[u]]) in (72d).

By convex duality, the flow rule (72d) is equivalent to the force balance

−1
2
( 1
θ+

+ 1
θ−

)∂zU
el
Γ (z,

[[
u
]]

) ∈ ∂żRD(qΓγ; ż) on Γ , (78)

and to the Fenchel equality

RD(qΓγ; ż) +R∗D
(
qΓγ;−1

2
( 1
θ+

+ 1
θ−

)∂zU
el
Γ (z,

[[
u
]]

)
)

= 〈−1
2
( 1
θ+

+ 1
θ−

)∂zU
el
Γ (z,

[[
u
]]

), ż〉Γ . (79)

Comparing (78) with (76) we make the choice

a(q) := 1
2
( 1
θ+

+ 1
θ−

), (80)
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so that (78) results in the state-independent force balance

−∂zU el
Γ (z,

[[
u
]]

) ∈ ∂ż
(
Rr(ż) + I(−∞,0](ż)

)
. (81)

This type of force balance featuring a dissipation potential independent of θ is e.g. considered in
[RR11, RT15] for r = 1 and in [BBR09, BBR15a, BBR15b] for r = 2. Of course, the choice (80) also
specifies a(q) = 1

2
( 1
θ+

+ 1
θ−

) in (77b). With this ansatz, by formally dividing (79) by a(q), coupling
condition (72g) can be further rewritten as[[

κ(θ)∇1
θ

]]
+Rr(ż) + 1

a(q)
R∗D
(
q;−1

2
( 1
θ+

+ 1
θ−

)∂zU
el
Γ (z,

[[
u
]]

)
)

= 0 . (82)

In the rate-independent case r = 1, when taking into account that

R∗D(q;−1
2
( 1
θ+

+ 1
θ−

)∂zU
el
Γ (z,

[[
u
]]

)) = 0

by (77a) and (72d), we find for (82) in particular[[
κ(θ)∇1

θ

]]
+R1(ż) + I(−∞,0](ż) = 0 . (83a)

Moreover, in the rate-dependent case r > 1 it is R∗D
(
q;−1

2
( 1
θ+

+ 1
θ−

)∂zU
el
Γ (z, [[u]])

)
= a(q)Rr′

(
−

∂zU
el
Γ (z, [[u]])

)
by (77b) given that ∂zU el

Γ (z, [[u]]) ≥ 0, and hence (82) provides[[
κ(θ)∇1

θ

]]
+Rr(ż) + I(−∞,0](ż) +Rr′

(
− ∂zU el

Γ (z,
[[
u
]]

)
)

= 0 . (83b)

In (73)–(74) it was discussed that mechanical energies for adhesive contact and brittle delamination for
modeling reasons in general feature non-smooth but convex terms. Thus, ∂zU el

Γ (z, [[u]]) in (78)–(83)
indeed is the subdifferential of a convex function.

Now we turn to the case that U el
Γ from (73) additionally also contains a quadratic gradient term G as

in (75). Then

a(q) ∗Dz

(
U el

Γ (z,
[[
u
]]

) +G(∇z)
)

= a(q)ζz + div a(q)∇z with ζz ∈ ∂zU el
Γ (z,

[[
u
]]

) (84)

in (72d). Thus the ansatz (76) and repeating above calculations does not help to remove a(q) from
the divergence-term. In order to find for the delamination variable a force balance that is independent
of a(q), one rather has to modify the ansatz used to ensure the NIC for z in LEΓ

and L∗EΓ
, see (67).

More precisely, in the fifth line of L∗EΓ
we replace

− �
2∂τ±EΓ

∗DzEΓ by − �
2∂τ±EΓ

DzEΓ , (85)

which is
− �

2∂τ±EΓ
DzEΓ = − �

2∂τ±EΓ

(
ζz −∆Γz

)
with ζz ∈ ∂zU el

Γ (z,
[[
u
]]

)
)

and where ∆Γ denotes the Laplace-Beltrami operator on Γ. This choice gives (78) with ∂zU el
Γ replaced

by Dz

(
U el

Γ +G
)

and thus also results in a force balance alike (81)

0 ∈ Dz

(
U el

Γ (z,
[[
u
]]

) +G(∇z)
)

+ ∂ż
(
Rr(ż) + I(−∞,0](ż)

)
(86)

Moreover, we find for the fifth column in LEΓ
that

− 1
2∂τ±EΓ

δzEΓ is replaced by − δzEΓ

[
�

2∂τ±EΓ

]
, (87)
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where we have assumed homogeneous Neumann boundary conditions to hold along ∂Γ, here ∇z ·
nΓ = 0 on ∂Γ. This gives

−δzEΓ

[
ż

2∂τ±EΓ

]
= −

(
ζz · ż

2∂τ±EΓ
+∇Γz · ∇Γ

(
ż

2∂τ±EΓ

))
(88)

to appear in (69d). To further process this expression we now assume that∇z ·∇
(

ż
2∂τ±EΓ

)
is formally

equivalent to −∆Γz
(

ż
2∂τ±EΓ

)
thanks to the homogeneous Neumann boundary conditions. Hence,

−δzEΓ

[
ż

2∂τ±EΓ

]
is formally replaced by − 1

2∂τ±EΓ
DzEΓ · ż in (69d). By repeating the arguments

subsequent to (69d), we arrive at (72g) with δzEΓ · ż replaced by DzEΓ · ż. In this way we can again
arrive at the interfacial coupling conditions (83) by exploiting the Fenchel equality, which now reads

RD(qΓγ; ż) +R∗D

(
qΓγ;−1

2
( 1
θ+

+ 1
θ−

)Dz

(
U el

Γ (z,
[[
u
]]

) +G(∇z)
))

= 〈−1
2
( 1
θ+

+ 1
θ−

)Dz

(
U el

Γ (z,
[[
u
]]

) +G(∇z)
)
, ż〉Γ .

Remark 4.1. We have shown at the example of delamination processes that the GENERIC structure
of bulk-interface systems can be given in a weak sense based on thermodynamic functionals and
geometric operators with bulk and interfacial contributions. The interfacial coupling conditions arise
naturally from this weak form of GENERIC. The delamination models studied for their well-posedness,
e.g., in the works [RR11, RT15] with r = 1 and in [BBR15a] with r = 2 are obtained from thermody-
namic functionals as discussed in Sec.s 4.1 and 4.2. Hence above derivation confirms the GENERIC
structure of these models. Yet, it has to be stressed that coupling conditions (72e)–(72h) and the re-
formulations made in Sec. 4.2 to arrive at (83) hold true on a formal level, only, since they require
additional regularity of the terms involved, for example, for the term δzU

el
Γ , ż appearing e.g. in (69d).

However, for r = 1 this cannot be guaranteed, since ż is a Radon measure, only, and to have good
duality would thus require δzU el

Γ to be continuous, which clearly is not to be expected. To circumvent
this problem [RR11, RT15] derive a weak formulation directly based on (83).

Finally, we remark that also sensitivity with respect to the fracture mode can be added to the model
by decomposing the displacement jump [[u]] = [[u]] · n+ + [[u]] · t into its normal and tangential
components and by considering the a(q) in (76) not only to depend on θ± but also on a function
α([[u]] · n+, [[u]] · t). In [RR13] the analysis of such a mode-sensitive adhesive contact model with
thermal effects requires the use of higher order gradients of u̇. ?
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