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Differentiability properties for boundary control of fluid–structure
interactions of linear elasticity with Navier–Stokes equations

with mixed-boundary conditions in a channel
Michael Hintermüller, Axel Kröner

Abstract

In this paper we consider a fluid-structure interaction problem given by the steady Navier
Stokes equations coupled with linear elasticity taken from [Lasiecka, Szulc, and Zochoswki, Nonl.
Anal.: Real World Appl., 44, 2018]. An elastic body surrounded by a liquid in a rectangular do-
main is deformed by the flow which can be controlled by the Dirichlet boundary condition at the
inlet. On the walls along the channel homogeneous Dirichlet boundary conditions and on the out-
flow boundary do-nothing conditions are prescribed. We recall existence results for the nonlinear
system from that reference and analyze the control to state mapping generalizing the results of
[Wollner and Wick, J. Math. Fluid Mech., 21, 2019] to the setting of the nonlinear Navier-Stokes
equation for the fluid and the situation of mixed boundary conditions in a domain with corners.

1 Introduction

The paper deals with fluid-structure interaction (FSI) problems given by a fluid flow around an elastic
body in a rectangular channel with fixed walls in two space dimensions. The elastic body deforms
under the flow and is modelled by linear elasticity, for the fluid we consider the steady Navier-Stokes
equation with Dirichlet condition at the inlet, no-slip condition on the wall, and do-nothing condition
on the outlet. The configuration is taken from Lasiecka, Szulc, and Zochoswki [LSZ18] who analyze
existence of solutions to this FSI problem and existence of an optimal inflow profile, considered as
a boundary control, which minimizes the drag at the interface of the elastic body and the fluid. Let
g denote the Dirichlet inflow boundary values and (u,w, p) be the solution of the FSI problem af-
ter transforming the variables for the fluid to a reference domain, that means u solves the elasticity
equation, (w, p) is the solution of the Navier-Stokes equation and both equations are coupled via the
traction force at the interface and via coefficients in the Navier-Stokes equation. We show that the
control to state map of the FSI problem

Br(G3/2)→ Xp, g 7→ (u,w, p) (1.1)

with ball Br(G3/2) around zero with radius r > 0 in the space G3/2 defined in (2.23) and Xp, p > 2,
defined in (3.15) is continuously Fréchet differentiable for sufficiently small r. The differentiability is
a crucial property to derive first-order optimality conditions which are usually the starting point for
characterizing optimal controls and numerical schemes to solve such type of optimal control problems.
While the formal derivation of these optimality conditions for similar settings has been considered, see
below, we leave the rigorous derivation of optimality conditions for this specific case for future work.
Difficulties in the analysis to derive Fréchet differentiability arise from the fact that (i) we consider
the nonlinear Navier-Stokes equation, (ii) the problem is formulated in a polygonal domain, (iii) we
have mixed Dirichlet-Neumann boundary conditions, and (iv) the analysis is considered in a higher
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M. Hintermüller, A. Kröner 2

regularity setting. Differentiability of FSI problems with respect to data has been considered for the
Stokes equation with Dirichlet boundary conditions in smooth domains coupled with linear elasticity in
Wick and Wollner [WW19]. There the differentiability is obtained by the implicit function theorem which
we apply also here following their ideas. Therefore, the linearized Navier-Stokes operator needs to be
an isomorphism in suitable spaces; hence, main parts of the paper deal with the derivation of regularity
results for this equation. We proceed in three steps following the procedure in [LSZ18]: (i) Derivation of
a lower regularity result for the velocity pressure pair in W 1,2×L2 based on Lax-Milgram arguments,
(ii) derivation of a higher regularity result in W 2,2 ×W 1,2 which uses estimates from [LSZ18] which
relies on results from the Agmon, Douglis, and Nirenberg [ADN59] theory on ellitpic systems, (iii)
higher p-integrability, namely W 2,p ×W 1,p on compact subsets using commutator analysis. For the
analysis of linear elasticity we rely on classical theory.

We give an overview about related literature. On FSI problems: Galdi and Kyed [GK09] analyze
existence of steady FSI problems in smooth domains. Wick and Wollner [WW19] derived as mentioned
the differentiability of steady FSI problems with respect to the problem data in smooth domains. For
an introduction to evolutionary FSI problems we refer to Kaltenbacher et al [KKL+18]; moreover, see,
e.g., Gunzburger et al. [DGHL03, DGHL04], Grandmont and Maday [GM00], and Ignatova, Kukavica,
Lasiecka, and Tuffaha [IKLT17].

On optimal control and FSI: In [LSZ18] boundary control of a FSI problem with stationary Navier-
Stokes equation is considered. The authors show existence of a unqiue solution of the underlying
equation under a smallness condition as well as of an optimal control. This paper extends Grand-
mot [Gra02] in the sense that the problem is considered in a domain with corners and with mixed
boundary conditions are allowed. In the later reference an elastic body surrounds the fluid and an
additional volume constraint is imposed while in the former paper the elastic body is surrounded by
the fluid, furthermore, a radial unbounded cost is considered. Rigorously derived first order optimal-
ity conditions have been, to the best knowledge of the authors, not been stated yet for the problem
under consideration. Numerics including formally derived optimality conditions are considered, e.g., in
Richter and Wick [RW13] where optimal control and parameter estimation for stationary FSI problems
are considered.

For control of evolutionary FSI problems see, e.g. Feiler, Meidner, and Vexler [FMV16] who consider
linear FSI systems with coupled linear Stokes equation and wave equation and derive optimality con-
ditions and Moubachir and Zolesio [MZ06] who derive for an optimal control problem for nonlinear
time-dependent FSI problem necessary optimality conditions formally. Existence of optimal control for
the problem of minimizing flow turbulence in the case of a nonlinear fluid-structure interaction models
is considered in Bociu et al. [BCMT15].

Finally, we remark that differentiablity properties of shape optimization problems for fluid-structure
interation has been considered in Haubner, Ulbrich, and Ulbrich [HUU20].

Notation: Throughout the paper we use the usual notation for Lebesgue and Sobolev spaces. For
spaces of type W s,p(Ω)2 (W s,p(Ω)2×2 resp.) we often omit the dimension. We define the symbolic
expression

(w · ∇)w := (wi∂iw1, wi∂iw2) (1.2)

for w ∈ W 1,2(Ω2)2 using Leibniz summation convention, and we write divw := ∂1w1 + ∂2w2. We

denote ∇ · σ :=
(∑2

j=1
∂σij
∂xj

)
1≤i≤2

for σ ∈ W 1,2(Ω2)2×2. For matrices B1 and B2 in R2×2 we

denote the Frobenius product by A · B :=
∑2

i,j=1 AijBij . Sometimes we write 0 for the zero map.
The dependence of a function f on another function g is indicated by f [g] while the dependence on
the spatial variable x by f(x) = f [g](x). We use the following notation for the Jacobian of the flow
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Differentiability properties for boundary control of FSI problems 3

map Φ as a function of u

∇Φ := ∇Φ[u] := DΦ>[u] :=

(
∂1Φ1 ∂1Φ2

∂2Φ1 ∂2Φ2

)
[u] (1.3)

and for the cofactor matrix and determinant of the Jacobian

K := K[u] := K(DΦ[u]) := det(DΦ[u])DΦ[u]−> =: cof(DΦ[u]),

J := J [u] := J(DΦ[u]) := det(DΦ[u]).
(1.4)

Moreover, we set
A := A[u] := J [u]−1K[u]K[u]>. (1.5)

Further, we use the notation
∂A[u],nw := (A[u]∇w) · nx (1.6)

with outer normal nx to Ω2. With

c[u](v, w, z) := ((v ·K[u]>∇)w, z)L2(Ω) (1.7)

we simplify the notation for the case u equal zero to c(·, ·, ·) := c[0](·, ·, ·). We set for matrix K ∈
R2,2

divK> w := (K∇)>w. (1.8)

For functions f and e and operators D we write for the commutator [f,D]e := fDe + D(fe).
The space of linear bounded mappings from Banach space X1 to Banach space X2 we denote by
L(X1, X2).

The ball of radius r > 0 around zero in a Banach space W we denote by Br(W ). Finally, c > 0
denotes a generic constant and cε > 0 a constant depending on ε > 0. The Euclidean norm inRd is
denoted by ‖·‖.

Structure of the paper: In Section 2 we introduce the physical setting as well as the flow map and
transformation rules between the physical and reference domain, in Section 3 we introduce the Navier-
Stokes system, the elasticity system, and the fluid-structure interaction system and prove existence
of solutions, in Section 4 we show existence and a priori estimates for the linearized system in higher
Sobolev norms, and in Section 5 we show the differentiability of the control to state mapping for the FSI
system. In the appendix we recall the transformation of the Navier-Stokes equation and its linearization
to the reference domain.

2 The domain

We recall the problem setting from Lasiecka et al. [LSZ18]. Let D ⊂ Rn, n = 2, 3, be a bounded
domain with piecewise regular boundary ∂D and straight corners as shown in Figure 1. Further, let
Ω1 and Ω2 be subsets of D with Ω1 being a doughnut-like domain with boundary ∂Ω1 := Γint ∪ Γ1.
The exterior boundary of Ω2 is denoted by Γext := Γin ∪ Γwall ∪ Γout. In Ω1 we consider a problem of
linear elasticity for an elastic body with u denoting the displacement field. In the exterior subdomain
Ω2 we consider a Navier-Stokes problem for the motion of a fluid with velocity field denoted by w̃.

We consider a parallel fluid flow in the channelD containing the elastic body in Ω1 which deforms due
to the influence of surface forces by the fluid. The original boundary Γint = Γint[0] of Ω1 transforms
itself into Γint[u] with elastic displacement u on Γint, more precisely

Γint[u] : Γint → D, x 7→ x+ u(x). (2.1)
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Γwall

Γwall

Ω2Ω1

Γ1

Γint[u] ΓoutΓin

Figure 1: Domain.

Domains Variables

Original domain Ω1 Ω2

Physical domain Ω1[u] Ω2[u] (w̃, p̃)
Reference domain Ω1 Ω2 (w, p)

Table 1: Variables in physical and transformed domain.

This leads to a new domain Ω2[u] with boundaries Γin, Γout, Γwall, and Γint[u]. Variables in the physical
domain are denoted with a tilde, cf. Table 1. The outer normal to Ω2 is denoted by nx and the one to
Ω2[u] by ny. The outer normal to Ω1 is denoted by n1.

2.1 The flow map and some transformation rules

In this section we introduce the flow map and study the transformation between the physical and
reference domain. At first, we recall some standard operators. The trace operator (cf. [EG04, Thm.
B.54])

γ : W 2,p(Ω1)→ W 2−1/p,p(Γint), 2 ≤ p <∞, (2.2)

is surjective and satisfies for u ∈ W 2,p(Ω1)

‖γu‖W 2−1/p,p(Γint)
≤ c ‖u‖W 2,p(Ω1) . (2.3)

The corresponding trace operator for any open subset ω ⊂ Γin ∪ Γwall we denote by γω.

Proposition 2.1 (Dirichlet harmonic extension). For 2 ≤ p <∞ the harmonic extension

D : W 2−1/p,p(Γint)→ W 2,p(Ω2), ηi 7→ Dui =: φi[ηi], i = 1, 2 (2.4)

defined by
∆φi = 0 in Ω2, φi = ηi on Γint, φi = 0 on ∂Ω2 \ Γint (2.5)

is well-posed and satisfies the estimate

‖φi‖W s,p(Ω2[η]) ≤ C ‖γΓintηi‖W s−1/p,p(Γint)
, for i = 1, 2. (2.6)

Proof. We refer, e.g., to Casas, Mateos, and Raymond [CMR09, Lem. A.2].
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Differentiability properties for boundary control of FSI problems 5

In the following we set φ[η] := (φ1[η1], φ2[η2])> for φi defined in (2.4).

Throughout the paper let the integrability exponent p > 2.

Definition 2.2 (Flow map). For u ∈ W 2,p(Ω1), and φ defined in (2.5) the flow map is given by

Φ: W 2,p(Ω1)→ W 2,p(Ω2[u]), Φ[u] := id + φ(γΓintu). (2.7)

Here, Φ[u](x) lifts the boundary trace u|Γint = γΓintu ∈ W 1−1/p,p(Γint) from the interface Γint into
Ω2[u] = Φ(Ω2), in particular we have Ω2 = Ω2[0] = Φ−1(Ω2[u]).

We define Up := W 2,p(Ω1).

From Grandmont [Gra02] we recall the following properties stated there for a three dimensional spatial
setting.

Lemma 2.3. (i) The mapping K : W 2,p(Ω1)→ W 1,p(Ω2)

K[u] := cof(∇Φ[u]) (2.8)

is of class C∞ with cofactor defined in (1.4).

(ii) The mapping G : W 2,p(Ω1)→ W 1,p(Ω2)

G[u] := ∇Φ[u] (2.9)

is of class C∞. There exists a r1 > 0 such that for all u ∈ Br1(Up) we have

G[u] = ∇(id +D(γΓint(u)) = id +∇(D(γΓint(u))) (2.10)

is an invertible matrix in W 1,p(Ω2). Moreover, we have

(ii.a) Φ(u) = id +D(γΓint(u)) is injective on Ω2,

(ii.b) Φ(u) : Ω2 → Φ[u](Ω2) is a C1-diffeomorphism.

(iii) The mapping A : Br1(Up)→ W 1,p(Ω2), with

A[u] := (∇(φ[u]))−1 cof(∇(φ[u])) (2.11)

is of class C∞.

Moreover,A satisfies a condition of uniform ellipticity overBr1(Up), i.e. there exists a constant β > 0
such that

A(u)(x) ≥ βid, for all u ∈ Br1(Up), and all x ∈ Ω2. (2.12)

Proof. (i) The mapping K[u] belongs to W 1,p(Ω2) since W 1,p(Ω2) is an algebra for p > 2 (see
Lemma C.1 with p = q). As a composition of C∞ mappings it is smooth. (ii) For the first statement we
apply the same arguments as in (i). For the second, we use that

Φ(u) = id +D(γΓint(u)) ∈ W 2,p(Ω2), ∀u ∈ W 2,p(Ω1). (2.13)

Choosing r1 such that

‖u‖W 2,p(Ωs)
≤ r1 implies ‖∇(D(γΓintu))‖W 1,p(Ω2) <

1

c
, (2.14)
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where c is the constant in Lemma C.1, then id +∇(D(Γint(b))) in an invertible matrix in W 1,p(Ωs)
and we get the result.

For the proof of (ii.a) and (ii.b) we refer to Grandmont [Gra02, Lem. 2].

(iii) We recall the ideas from [Gra02, Lem. 3]. Let b ∈ Bp. That A[u] ∈ W 1,p(Ω2) follows from point
(ii). As for the regularity of A, it is sufficient to show that the mapping:

W 1,p(Ω2)→ W 1,p(Ω2), T 7→ T−1 (2.15)

is infinitely differentiable at any invertible matrix of W 1,p(Ω2). This can be proven by standard ar-
guments, see [Car67, Chap. I]. The condition of uniform ellipticity of A over Br1(Up) derives from
continuity and compactness arguments (W 1,p(Ω2) is compactly embedded in C(Ω̄2)).

For the estimate for the derivative we use the boundedness of A on the bounded set Br1(Up).

2.2 Transformation of integrals

We recall some properties on the transformation of integrals and derivatives under a reference map.

For function π̃ on the physical domain Ω2[u] we define the transformed function on the reference
domain Ω2 = Φ[u]−1(Ω2[u]) (for given u) by

π(x) := π̃(y), y = Φ[u](x) (2.16)

which is well-defined by Lemma 2.3 (ii). Moreover, we denote the determinant of the gradient of the
flow map by

J(·) := det(DΦ(·)). (2.17)

As a direct consequence we have A[u] = J [u]−1K[u]>K[u].

Lemma 2.4. Let u ∈ Br1(Up) and Φ be defined by Proposition 2.7. Then, the following relations
hold:

(i) Volume elements transform as ∫
Ω2[u]

1dy =

∫
Ω2

J(x)dx, (2.18)

(ii) Boundary elements transform with JΓ[u] := ‖K[u]nx‖ as∫
Γout[u]

1dsy =

∫
Γout

JΓ[u]dsx. (2.19)

(iii) The gradient transforms as

∇f̃(y) = DΦ>∇f(x) iff ∇ =
1

J
K∇. (2.20)

(iv) For the outer normal ny to Ω2[u] and nx to Ω2 we have

ny =
DΦ−>nx
‖DΦ−>nx‖

=
Knx
‖Knx‖

, (2.21)

∫
Γint[u]

p̃(y)nydsy =

∫
Γint

p(x)
cof(∇φ[u])nx
‖cof(∇φ[u])nx‖

‖cof(∇φ[u])nx‖ nxdsx. (2.22)

Proof. We refer to [LSZ18, Appendix A.1].
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2.3 Transformation of the Navier-Stokes equation

We consider the Navier-Stokes system in R2 with viscosity ν > 0. We define

Gµ :=
{
g ∈ W µ,2(Γin) : g|∂Γin = 0

}
, for µ ∈

{
1

2
,
3

2

}
. (2.23)

Let w̃ = (w̃1, w̃2)> the fluid velocity and p̃ the pressure in the physical domain Ω2[u] = Φ[u](Ω1)
satisfying 

−ν∆xw̃1 + w̃>∇w̃1 + (∇p̃)1 = 0 in Ω2[u],

−ν∆xw̃2 + w̃>∇w̃2 + (∇p̃)2 = 0 in Ω2[u],

∇>w̃ = 0 in Ω2[u],

w = g on Γin,

w̃ = 0 on Γwall ∪ Γint[u],

−νDw̃ · ny + p̃ · ny = 0 on Γout

(2.24)

and given data g ∈ G1/2. Let Γbd := Γin ∪ Γwall ∪ Γout, and we have by (2.5) Φ = idx on Γbd such

that for trial functions ψ̃1 and ψ̃2 vanishing on Γbd also the transformed ψ1 and ψ2 vanish on Γbd. The
transformed strong form of the Navier-Stokes system in Ω2 is given by (cf. [LSZ18, Appendix A.1]),
see also Appendix A,

−ν∇(A[u]∇w) + w(K[u]∇)w +K[u]∇p = 0 in Ω2,

(K[u]∇)>w = 0 in Ω2,

w = g on Γin,

w = 0 on Γwall ∪ Γint,

−ν(A[u]∇w) · nx + pK[u] · nx = 0 on Γout.

(2.25)

Since Φ = idx on Γext we have Knx = nx on Γout.

3 Existence of solutions for the considered systems

In this section we consider the nonlinear Navier-Stokes system, the linear elasticity system, as well as
the fluid-structure interaction model.

3.1 The Navier-Stokes system

For m = 0, 1, 2 we introduce

Ŵm,p(Ω2) := {v ∈ Wm,2(Ω2) : v ∈ Wm,p(Ω̂2) for Ω̂2 ⊂ Ω2 compact}, (3.1)

and further the spaces,

W p := Ŵ 2,p(Ω2)× Ŵ 1,p(Ω2), W := W 2,2(Ω2)×W 1,2(Ω2). (3.2)

For a given compact subset Ω̂2 ⊂ Ω2 we write

Ww,Ω̂2
:= W 2,p(Ω̂2) ∩W 2,2(Ω2), Wp,Ω̂2

:= W 1,p(Ω̂2) ∩W 1,2(Ω2);

W p

Ω̂2
:= Ww,Ω̂2

×Wp,Ω̂2
;

(3.3)

note the different meaning of p here as upper and lower index.
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Theorem 3.1. One can choose r > 0, r1 > 0, and r2 > 0 such that for all g ∈ Br(G3/2) and
u ∈ Br1(Up) there exists a unique solution (w, p) in Br2(W p) of (2.25). Moreover, for any compact
subset Ω̂2 ⊂ Ω2 the solution (w, p) ∈ Br2(W p

Ω̂2
) depends continuously on g.

Proof. We follow closely ideas from [LSZ18]. We consider the fixed point equation

Ng : Br1(W p

Ω̂2
)→ Br1(W p

Ω̂2
), (w, p) = Ng(w̄, p̄), (3.4)

whereNg maps for given g ∈ Br(G3/2) the point (w̄, p̄) to the solution (w, p) of

−ν∇(∇w) +∇p = −ν∇(∇(−A[u] + id)w̄)

− (w̄(K[u]− id)∇)w̄ − (K[u]− id)∇p̄ in Ω2,

divw = −((K[u]− id)∇)>w̄ in Ω2,

w = g on Γin,

w = 0 on Γwall ∪ Γint,

−ν∂nw + p · nx = ν(∂A[u],n − ∂n)w̄ − p̄(K[u]− id) · nx on Γout.

(3.5)

Existence follows by Banach’s fixed point theorem, see [LSZ18, (68),(85)], using smallness of the data
g.

The continuous dependence on the data follows by the contraction property ofNg and the continuous
dependence of the iterates on g.

Hypothesis 3.2. For given r2 > 0 let r > 0 and r1 > 0 be sufficiently small such that for all
g ∈ Br(G3/2) and u ∈ Br1(Up) the Navier-Stokes equation (2.25) has a unique solution (w, p) in
Br2(W p).

3.2 The elasticity system and the traction force

We set B := {ζ ∈ W 2,p(Ω1) : ζ|Γ1 = 0} and define the Neumann harmonic extension

N : W 1−1/p,p(Γint)→ B, v 7→ u =: Nv, (3.6)

with u be the solution of 
− div σ[u] = 0 in Ω1,

σ[u] = Aε[u] on Ω1,

u = 0 on Γ1,

σ[u] · n1 = v · n1 on Γint

(3.7)

with outer normal n1 to Ω1 strain tensor ε(u) := 1
2
(∇u + ∇u>), Piola Kirchhoff stress tensor

components σ = σij , i, j = 1, 2, 3, and the elasticity tensorA = aijkl, i, j, k, l = 1, 2, c0 > 0 with

aijklξklξij ≥ c0 ‖ξ‖2 , ∀ξij, ξij = ξji, (positive definiteness), (3.8)

aijkl = aklij = ajikl, aijkl ∈ L∞(Ω1) (symmetry), (3.9)

vector n1 is the unit outward normal along Γint pointing from Ω1 to Ω2. We call u the displacement
field and will also consider the system with inhomogeneous right hand side

− div σ[u] = f1 in Ω1,

σ[u] = Aε[u] on Ω1,

u = 0 on Γ1,

σ[u] · n1 = v · n1 on Γint.

(3.10)
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Differentiability properties for boundary control of FSI problems 9

Theorem 3.3. (i) For f1 ∈ Lp(Ω1) and v ∈ W 1−1/p,p(Γint) system (3.7) has a unique solution
u ∈ W 2,p(Ω1), i.e. the Neumann harmonic extension is well-defined and we have

‖Nv‖W 2,p(Ω1) ≤ c
(
‖v‖W 1−1/p,p(Γint)

+ ‖f1‖Lp(Ω1)

)
. (3.11)

(ii) Moreover,

S : Lp(Ω1)×W 1−1/p,p(Γint)→ W 2,p(Ω), (f1, v) 7→ u (3.12)

is continuously differentiable.

Proof. (i) We refer to Ciarlet [Cia88, Thm. 6.3-6 and p. 298], note that Γint has positive distance to
Γwall ∪ Γout ∪ Γin.

(ii) Follows from the linearity of the mapping.

Next, we define the traction force on the interface Γint.

Definition 3.4 (Traction map). Let u ∈ W 2,p(Ω1). The traction force is given by

t : W 2,p(Ω1)×W 1,2(Ω2)→ W 1/2,2(Γint),

(u, p) 7→ t[u, p] := p[u]K[u] · nx on Γint

(3.13)

with p[u] the pressure in the solution of the Navier-Stokes equation (2.25) and K[u] given by (1.4).

Since p ∈ W 1,p(Ω̂2) for compact subsets Ω̂2 ⊂ Ω2 and K[u] in W 1,p(Ω2) with p > 2, we have
pK[u] ∈ W 1,p(Ω̂2) and so (pK[u])|Γint ∈ W 1/2,2(Γint). Note that on the interface Γint we have
w = 0.

3.3 The fluid-structure interation system

For g ∈ Br(G3/2) and f1 = 0 we can state the fluid-structure interaction model given as{
(2.25) together with u = Nt(u, p) in Ω1

with N and t defined in (3.6) and (3.13).
(3.14)

For Ω̂2 ⊂ Ω2 compact we introduce for 2 < p <∞ the spaces

Xp
1 := Up ×W p

Ω̂2
, Xp

2 := Up ×W, Xp := Xp
1 ∩X

p
2 . (3.15)

Theorem 3.5. For any r̃ > 0 there exist an r > 0 such that for g ∈ Br(G3/2) problem (3.14) has a
unique solution (u,w, p) ∈ Br̃(X

p) which depends continuously on the data.

Proof. We refer to [LSZ18, Thm. 3.2]. The proof uses a fixed-point argument based on estimates
which we already cited in the proof of Theorem 3.1.
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4 The linearized equations

In this section we analyze the linearized Navier-Stokes equation in the domain Ω2 and derive regularity
results for its solution using techniques from [LSZ18] which are applied there for the Navier-Stokes
equation.

We introduce the spaces

H := {w ∈ W 1,2(Ω2)2 : w = 0 on Γin ∪ Γint ∪ Γwall} (4.1)

and recall the property that for p > 2 we have W 1,p(Ω2) ⊂ Lq(Ω2), 1 ≤ q ≤ ∞. Moreover, for
u ∈ Up and (v, w, y) ∈ Π3

i=1W
1,2(Ω2)2 we define

c[u](v, w, y) := ((v ·K[u])∇w, y)L2(Ω2). (4.2)

Lemma 4.1. Let u ∈ Up and (v, w, y) ∈ Π3
i=1W

1,2(Ω2)2, then (4.2) can be estimated as

|c[u](v, w, y)| ≤ c(u) ‖v‖W 1,2(Ω2)2×2 ‖w‖L4(Ω2)2 ‖y‖L4(Ω2)2 . (4.3)

Proof. By Sobolev’s embedding we have ∂jvi ∈ L2(Ω2) and the functions wj and yi belong to
L4(Ω2) and hence,∫

Ω2

|vj∂jwizi| dx ≤
∫

Ω2

|∂jvi|2 dx

∫
Ω2

|wj|4 dx

∫
Ω2

|zi|4 dx (4.4)

and we conclude.

In the following we write c(v, w, y) for c[0](v, w, y) with 0 denoting the zero map.

4.1 Linearized state equation: Coefficients equal to one

Let
f ∈ L2(Ω2), f2 ∈ L2(Ω2), f3 ∈ W−1/2,2(Γout), δg ∈ G1/2. (4.5)

Let (ŵ, p̂) ∈ W p solution of the Navier-Stokes equation (2.25) be given. We consider the linearized
Navier-Stokes system around this point with inhomogeneous right hand side given by

−ν∆zw + (ŵ∇)zw + (zw∇)ŵ +∇zp = f in Ω2,

−(∇y)
>zw = f2 in Ω2,

zw = δg on Γin,

zw = 0 on Γwall ∪ Γint,

−ν∂nzw + zp · nx = f3 on Γout.

(4.6)

Let F : W 1,2(Ω2)→ R be given by

F (v) :=

∫
Ω

(f + f2) · vdx+

∫
Γout

f3 · vdy, v ∈ W 1,2(Ω2), (4.7)

and for ŵ ∈ H we define bŵ : H×H → R, by

bŵ(w, v) := ν

∫
Ω

∇w · ∇vdx+ c(ŵ, w, v) + c(w, ŵ, v). (4.8)

To address the linearized terms a smallness condition on the velocity ŵ is made, see also de los
Reyes and Yousept [dlRY09].
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Lemma 4.2. For r2 > 0 sufficiently small we have

bŵ(v, v) ≥ c ‖v‖2
W 1,2(Ω2) for all v ∈ W 1,2(Ω2); (4.9)

moreover, the bilinear form bŵ(·, ·) is continuous.

Proof. By Lemma 4.1 there exists an ε > 0 such that

ν(∇v,∇v) + c(v, ŵ, w) + c(ŵ, v, v)

≥ ‖∇v‖2
L2(Ω2) − ε ‖v‖

2
L2(Ω4) − ε ‖∇v‖L2(Ω2) ‖v‖L2(Ω4)

≥ ν

2
‖v‖W 1,2(Ω2) .

(4.10)

The continuity follows again from Lemma 4.1 and Sobolev’s embedding.

The weak formulation for (4.6) is given as follows: Find zw ∈ H solution of bŵ(zw, v)−
∫

Ω2

zp∇vdx = F (v) for all v ∈ H,

div zw = f2 in Ω2, zw = δg on Γin.

(4.11)

Theorem 4.3. For ‖ŵ‖W 1,2(Ω2) sufficiently small system (4.6) (resp. (4.11)) has a unique solution

(zw, zp) ∈ W 1,2(Ω2)× L2(Ω2) with

‖zw‖W 1,2(Ω2) + ‖zp‖L2(Ω2) ≤ c ‖f‖W−1,2(Ω2) + c ‖f2‖L2(Ω2)

+ c ‖f3‖W−1/2,2(Γout)
+ c ‖δg‖W 1/2,2(Γin) .

(4.12)

Note, that this lower regularity existence and the estimate follows by classical Lax-Milgram arguments,
see [LSZ18, Step 1] and also [MR10, Theorem 11.1.2], together with Lemma 4.2.

Hypothesis 4.4. Let r2 > 0 be sufficiently small such that for ŵ ∈ Br2(Ŵ 2,p(Ω2)) equation (4.6)
has a unique solution (zw, zp) ∈ W 1,2(Ω2)× L2(Ω2).

Note, that here we consider a higher norm than necessary with respect to Theorem 4.3. This is due to
the fact that later we will also estimate higher norms of ŵ.

4.2 The linearized state equation

Let (ŵ, p̂) be given solution of the Navier-Stokes equation (2.25). We consider the in this point lin-
earized equation with inhomogeneous right hand sides chosen as in (4.5) given by

−ν∆(A[u]zw) + ŵ(K[u]∇)zw + zw(K[u]∇)ŵ +K[u]∇zp = f in Ω2,

(K[u]∇)>zw = f2 in Ω2,

zw = δg on Γin,

zw = 0 on Γwall ∪ Γint,

−ν∂A[u],nzw + zpK[u] · nx = f3 on Γout.

(4.13)

We follow the approach from [LSZ18] where the nonlinear Navier-Stokes equation is analyzed and
ideas from Grandmont [Gra02]. We recall a technical result which follows by a Taylor argument.
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Lemma 4.5. For ru and rw positive and ū ∈ Bru(Up) and w̄ ∈ Brw(Xp) and some s ≥ 1 the
following estimates hold:

(i) ‖A[ū]− id‖L∞(Ω2) ≤ crsu, (ii) ‖A(ū)− id‖W 1,p(Ω2) ≤ crsu,

(iii) ‖K(ū)‖L∞(Ω2) ≤ c(1 + rsw), (iv) ‖K(ū)− id‖L∞(Ω2) ≤ crsu,

as well as

(v) ‖∇((A(ū)− id)∇)w̄‖Lq(Ω2) ≤ crsu ‖w̄‖W 2,q(Ω2)

for some s ≥ 1 and q ≥ 2.

Proof. See [LSZ18, Lem. 4.1].

We follow ideas in [LSZ18, Prop. 4.2, Lem. 4.3, Lem 4.4, and Lem. 4.5] developed there for the Navier-
Stokes equation to analyze the linearized equation in (4.13). We start with a preliminary consideration
which is later used in (4.29).

Lemma 4.6. For v ∈ W 1,p(Ω2) and s ∈ L2(Γout) we have

‖vs‖W−1/2,2(Γout)
≤ ‖v‖L∞(Ω2) ‖s‖W−1/2,2(Γout)

. (4.14)

Proof. Since W 1,p ⊂ C(Ω) continuous the product of the trace of v on Γout with s is in L2(Γout) ⊂
W−1/2,2(Γout) and we have

‖vs‖W−1/2,2(Γout)
= sup
‖η‖

W1/2,2(Γout)
=1

(|v||s|, |η|)L2(Γout)

≤ ‖v‖L∞(Γout)
‖s‖W−1/2,2(Γout)

.
(4.15)

Again using that v is continuous up to the boundary we conclude.

For given u ∈ Br1(Up) we define a map

T = Tu : W p → W p, (z̄w, z̄p) 7→ (zw, zp) (4.16)

by rewriting (4.13) as

−ν∇(∇zw) + (ŵ∇)zw + (zw∇)ŵ +∇zp
= −ν∇(∇(−A[u] + id)z̄w)

− (ŵ(K[u]− id)∇)z̄w

− (z̄w(K[u]− id)∇)ŵ

− (K[u]− id)∇z̄p + f in Ω2,

div zw = −((K[u]− id)∇)>z̄w + f2 in Ω2,

zw = δg on Γin,

zw = 0 on Γwall ∪ Γint,

−ν∂nzw + zp · nx = ν∂A[u]−id,nz̄w − z̄p(K[u]− id) · nx + f3 on Γout;

(4.17)

this will allow to define a sequence ((zw,n, zp,n))n∈N with (zw,0, zp,0) equal to some (z̄w, z̄p) ∈ W p

which we further analyze in Section 4.5 to obtain existence of a solution for (4.13).
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Lemma 4.7. Let ru and rw positive. For u ∈ Bru(Up) and v ∈ Brw(W 1,p(Ω2)) we have

‖v(K(u)∇)zw‖Lp(Ω2) ≤ c(1 + rsu)rw ‖zw‖W 1,p(Ω2) . (4.18)

Proof. We have

‖v(K(u)∇zw)‖Lp(Ω2) ≤ ‖K(u)‖L∞(Ω2) ‖v‖L∞(Ω2) ‖∇zw‖Lp(Ω2)

≤ (1 + rsu)rw ‖zw‖W 1,p(Ω2)

(4.19)

and conclude with Lemma 4.5.

4.3 Lower regularity

We have the following a priori W 1,2 × L2-estimate without having to take into account the special
situation of mixed boundary conditions.

Lemma 4.8. Let Hypothesis 4.4 be satisfied. For the solution (zw, zp) of (4.17) we have the estimate

‖zw‖W 1,2(Ω2) + ‖zp‖L2(Ω2) ≤ c ‖f‖L2(Ω2) + c ‖f2‖L2(Ω2) + c ‖g‖W 1/2,2(Γin)

+ c ‖f3‖W−1/2,2(Ω2
+ crs1 ‖z̄w‖W 2,2(Ω2)

+ crs1 ‖z̄p‖W 1,2(Ω2)

(4.20)

with constant c depending on r2 and s ≥ 1 and p > 2.

Proof. By Theorem 4.3 we have existence of a unique solution and the following lower regularity result
for the solution (zw, zp) given by

‖zw‖W 1,2(Ω2) + ‖zp‖L2(Ω2) ≤ c

(
‖f‖L2(Ω2) + ‖f2‖W 1,2(Ω2) + ‖g‖W 1/2,2(Γin)

+ ‖f3‖W−1/2,2(Ω2) + ‖F (u, z̄w, z̄p)‖L2(Ω2) + ‖F2(z̄w, u)‖L2(Ω2)

+
∥∥∂A[u]−id,nz̄w

∥∥
W−1/2,2(Γout)

+ ‖z̄p(K[u]− id)‖W−1/2,2(Γout)

)
,

(4.21)

where

F (u, z̄w, z̄p) := −ν∇((−A[u] + id)∇zw)

− z̄w(K[u]− id)∇ŵ − ŵ(K[u]− id)∇z̄w − (K[u]− id)∇z̄p,
F2(u, z̄w) := div(id−K[u]>) z̄w = ((id−K[u])∇)> · z̄w.

(4.22)

We estimate each term separately. Differently to [LSZ18] we have to estimate the linearized convection
term

‖z̄w(−K[u]− id)∇ŵ‖L2(Ω2) ≤ c ‖−K[u]− id‖L∞(Ω2) ‖z̄w‖L∞(Ω2) ‖∇ŵ‖L2(Ω2)

≤ crs1r2 ‖z̄w‖L∞(Ω2)

(4.23)

and accordingly,

‖ŵ(−K[u]− id)∇z̄w‖L2(Ω2) ≤ crs1 ‖z̄w‖W 1,2(Ω2) ‖ŵ‖L∞(Ω2) . (4.24)
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The other terms are treated in the same way, for simplicity we recall here the main steps. For some
s ≥ 1 using Lemma 4.5 4. we have for the diffusion term

‖ν∇((A[u]− id)∇zw)‖L2(Ω2) ≤ crs1 ‖zw‖W 2,2(Ω2). (4.25)

Again by [LSZ18, Lem. 4.1] we obtain for the term involving the pressure

‖(K[u]− id)∇z̄p‖L2(Ω2) ≤ ‖K[u]− id‖L∞(Ω2) ‖∇z̄p‖L2(Ω2) ≤ crs1 ‖z̄p‖W 1,2(Ω2). (4.26)

By divid−K[u]> w = (id−K[u]>) · ∇w, cf. Appendix C, we have∥∥divid−K[u]> z̄w
∥∥
L2(Ω2)

≤
∥∥id−K[u]>

∥∥
L∞(Ω2)

‖z̄w‖W 1,2(Ω2) ≤ crs1 ‖z̄w‖W 1,2(Ω2) (4.27)

and for the boundary terms

‖∂A−id,nz̄w‖W 1/2,2(Γout)
≤ ‖A[u]− id‖L∞(Ω2) ‖∂nz̄w‖W 1/2,2(Γout)

+ ‖A[u]− id‖W 1,p(Ω2) ‖z̄w‖W 2,2(Ω2) ≤ crs1 ‖z̄w‖W 2,2(Ω2)

(4.28)

using for the latter estimate the Neumann trace estimate; note, that we estimate the trace in a higher
norm than necessary here. Moreover, with estimate (4.14)

‖z̄p(K[u]− id)‖W−1/2,2(Γout)
≤ ‖K[u]− id‖L∞(Ω2) ‖z̄p‖W−1/2,2(Γout)

≤ crs1 ‖z̄p‖W−1/2,2(Γout)
.

(4.29)

Consequently, with (4.25)–(4.28) we obtain the result.

4.4 Higher regularity

For F ∈ L2(Ω2), F2 ∈ W 1,2(Ω2), δg ∈ G3,2, and F3 ∈ W 1/2,2(Γout) we consider
−∆v +∇q = F, in Ω2,

div v = F2, in Ω2,

v = g, in Γin ∪ Γwall,

−∂nv + q · nx = F3, in Γout.

(4.30)

Let κ ∈ C∞(Ω) localize v away from the external boundary ∂Ω2 and set Ωκ := supp(κ). Here, we
rely on estimates provided in Lasiecka et al. [LSZ18, equation (44)] given by

‖(1− κ)v‖W 2,2(Ω2) + ‖(1− κ)q‖W 1,2(Ω2) ≤ c ‖(1− κ)F‖L2(Ω2)

+ ‖(1− κ)F2‖W 1,2(Ω2) + ‖g‖W 3/2,2(Γin) + ‖F3‖W 1/2,2(Γout)
.

(4.31)

Remark 4.9. The authors in [LSZ18] refer here to the notion of ellipticity for systems introduced in
Agmon, Douglis, and Nirenberg [ADN59], see also Maz’ya and Rossmann [MR10, Sec. 1.1.3], and
Bouchev and Gunzburger [BG09, Appendix D]. Following Beneš and Kučera [BK16, Appendix] the
regularity is established at first locally for boundary points on the Dirichlet boundary part, the Neumann
boundary part, and then for the two corners where the different types of boundary conditions meet (the
less standard result), see [LSZ18, Appendix A.3]. With cut-off functions the solutions are localized and
the estimates are derived using [BG09, Thm. D.1]. Using the compactness of Ω̄ global regularity is
achieved.

DOI 10.20347/WIAS.PREPRINT.2871 Berlin 2021



Differentiability properties for boundary control of FSI problems 15

We define

Sp′ := Ŵ 0,p′(Ω2) ∩ L2(Ω2)× Ŵ 1,p′(Ω2)× G3/2 ×W 1/2,2(Γout), p′ ≥ 2, (4.32)

and assume

(f, f2, g, f3) ∈ Sp′ . (4.33)

We introduce
zw,a := κzw, zw,b := (1− κ)zw,

zp,a := κzp, zp,b := (1− κ)zp
(4.34)

implying zw = zw,a + zw,b and zp = zp,a + zp,b and write the solution (zw, zp) of (4.17) as the sum
of (zw,a, zp,a) and (zw,b, zp,b) being solutions of the following two systems localized in the interior and
close to the boundary:

−ν∇(∇zw,a) +∇zp,a = −ν∇((−A[ū] + id)∇z̄w,a) + ν[∇((−A[u] + id)∇), κ]z̄w

−κ (z̄w((K[ū])∇)ŵ)− κŵ((K[ū])∇)z̄w

− κ(K[ū]− id)∇z̄p − [κ, ν∇2]zw + [κ,∇]zp + κf,

div zw,a = divid−K[ū] z̄w,a + [κ, div]zw,

+ [divid−K>[ū], κ]zw + κf2,

zw,a = 0 on ∂Ω2,

(4.35)

and 

−ν∇(∇zw,b) +∇zp,b = −(1− κ)

(
ν∇((−A[ū] + id)∇z̄w)

−z̄w(K[ū]∇)ŵ − ŵ(K[ū]∇)z̄w

− (K[ū]− id)∇z̄p
)

+ [1− κ, ν∇2]zw

− [1− κ,∇]zp + f,

div zw,b = (1− κ)(divid−K>[ū] z̄w) + [1− κ, div]zw + f2,

zw,b = (1− κ)δg = g on Γin,

zw,b = 0 on Γwall ∪ Γint,

−ν∂nzw,b + zp,b · nx = −∂A[ū]−id,nz̄w + z̄p(K[ū]− id) · nx + f3 on Γout.

(4.36)

Lemma 4.10. Let Hypothesis 4.4 be satisfied. For every ε > 0 we have for p′ = 2, and s ≥ 1 that

‖zw,b‖W 2,2(Ω2) + ‖zp,b‖W 1,2(Ω2) ≤ c‖(f, f2, g, f3)‖S2 + crs1 ‖z̄w,b‖W 2,2(Ω2)

+ cr1 ‖z̄p‖W 1,2(Ω2) + ε ‖zw‖W 2,2(Ω2) + cε ‖zw‖L2(Ω2)

+ c ‖zp‖L2(Ω2) + cr2 ‖z̄w‖W 2,2(Ω2).

(4.37)

Proof. In the following we omit the first term in the estimate on the right hand side, since its derivation
follows easily. By (4.31) we have for the solution of equation (4.36)

‖(1− κ)zw‖W 2,2(Ω2) + ‖(1− κ)zp‖W 1,2(Ω2) ≤ c
∥∥F b

∥∥
L2(Ω2)

+
∥∥F b

2

∥∥
W 1,2(Ω2)

+
∥∥F 1

3

∥∥
W 1/2,2(Γout)

+
∥∥F 2

3

∥∥
W 1/2,2(Γout)

,
(4.38)
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where

F b := (1− κ)

(
ν∇((−A[ū] + id)∇z̄w)+ŵ((−K[ū])∇)z̄w

+z̄w((−K[ū])∇)ŵ − (K[ū]− id)∇z̄p
)

+ [1− κ, ν∇2]zw − [1− κ,∇]zp =:
6∑
i=1

Ii,

F b
2 := (1− κ)(divid−K>[ū] z̄w) + [1− κ, div]w =: I7 + I8,

F 1
3 := z̄p(K[ū]− id) · nx,
F 2

3 := ∂A[ū]−id,nw̄.

(4.39)

Note, that in the following we consider general Lq, q ≥ 1, and not only L2 estimates to include
also estimates needed for the subsequential lemma in which instead of (zw, zp) ∈ W the pair
(zw,a, zw,b) ∈ W p will be considered implying that below higher regularity has to be assumed for
terms involving ‖zw‖W 2,p(Ω2). We have with q ≥ 2 for the linearized convection term using Sobolev

embedding W 2,2(Ω2) ⊂ W 1,q(Ω2)

‖I2 + I3‖Lq(Ω2) ≤ ‖K[u]‖W 1,q(Ω2) ‖ŵ‖L∞(Ω2) ‖z̄w‖W 2,2(Ω2)

+ ‖K[u]‖W 1,q(Ω2) ‖z̄w‖L∞(Ω2) ‖ŵ‖W 2,2(Ω2)

≤ cr2(‖z̄w‖W 2,2(Ω2) + ‖z̄w‖L∞(Ω2)).

(4.40)

Moreover, following [LSZ18], with Hölder’s inequality with suitable q1 ≥ 1 and q2 ≥ 1 satisfying
1/q = 1/q1 + 1/q2 and Lemma 4.7

‖I1‖Lq(Ω2) ≤ c ‖A[ū]− id‖L∞(Ω2) ‖z̄w‖W 2,q(Ω2)

+ c ‖A[ū]− id‖W 1,q1 (Ω2) ‖z̄w‖W 1,q2 (Ω2)

≤ crs1 ‖z̄w‖W 2,q(Ω2);

(4.41)

for the later estimate we used that for q2 = (qq1)/(q1 − q) the inclusion W 2,q(Ω2) ⊂ W 1,q1(Ω2) is
continuous. Using that the appearing commutator lose one order of differentiability we get

‖I5 + I6‖Lq(Ω2) ≤ c(‖zw‖W 1,q(Ω2) + ‖zp‖Lq(Ω2)) (4.42)

which can be further estimated in the case q = 2 by (4.20). Further, we have for q = 2 that

‖I4‖L2(Ω2) ≤ ‖K[ū]− id‖L∞(Ω2) ‖∇zp‖L2(Ω2) ≤ crs1 ‖∇zp‖L2(Ω2) . (4.43)

Note, that the boundary terms are not relevant for the system in the variables (zw,a, zp,a) considered in
the subsequential lemma, so we consider here only the case q = 2. We have with Hölder’s inequality∥∥F 1

3

∥∥
W 1/2,2(Γout)

≤ c ‖zp(K[u]− id) · nx‖W 1/2,2(Γout)

≤ c ‖zp‖W 1,2(Ω2) ‖K[u]− id‖L∞(Ω2)

+ ‖zp‖
L

2q
q−2 (Ω2)

‖K[u]− id‖W 1,q(Ω2) .

(4.44)

Now, using that the composition for q ≥ 2

∇ ◦ D ◦ γΓint : W
2,q(Ω1)→ W 1,q(Ω2), u 7→ ∇φ(u) (4.45)
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defines a continuous inclusion we have together with Lemma 4.5 that

‖K[u]− id‖W 1,q(Ω2) ≤ c ‖u‖sW 2,q(Ω2) (4.46)

and we can conclude∥∥F 1
3

∥∥
W 1/2,2(Γout)

≤ ‖zp‖W 1,2(Ω2)

(
‖K[u]− id‖L∞(Ω2) + ‖K[u]− id‖W 1,q(Ω2)

)
≤ crs1 ‖zp‖W 1,2(Ω2).

(4.47)

Next, we have as in (4.28) the estimate∥∥F 2
3

∥∥
W 1/2,2(Γout)

≤ crs1 ‖z̄w,b‖W 2,2(Ω2). (4.48)

For q ≥ 2 we have using Appendix C and (4.46) that

‖I7‖W 1,q(Ω2) ≤ c ‖ū‖W 2,q(Ω1) ‖z̄w,b‖W 2,q(Ω2)

+
∥∥id−K>(ū)

∥∥
L∞(Ω)

‖z̄w,b‖W 2,q(Ω2)

≤ cr1 ‖z̄w,b‖W 2,q(Ω2).

(4.49)

Moreover, we have

‖I8‖W 1,2(Ω2) ≤ ‖[1− κ, div]w‖W 1,2(Ω2) ≤ c ‖w‖W 1,2(Ω2) (4.50)

using that [(1−κ), div]w = ∇(1−κ) ·w. The norm on the right hand side can be further estimated
using again (4.20).

Now, setting q = 2 we conclude.

4.4.1 Interior estimates

For references on Lp–estimates for the Stokes equation we refer to Amrouche and Rejaiba [AR14],
Hieber and Saal [HS18], Solonnikov [Sol01]. We recall an interior estimate for the Stokes equation,
note that in this case there arises no difficulty from mixed boundary conditions. We set

F a := −ν∇((−A[ū] + id)∇z̄w,a)− ν[∇((−A[ū] + id)∇), κ]z̄w

− κ
(
z̄w((K[ū])∇)ŵ + ŵ((K[ū])∇)z̄w + (K[ū]− id)∇z̄p

)
+ [κ, ν∇2

x]zw + [κ,∇]zp + κf,

F a
2 := divid−K[ū]> z̄w,a + [κ, div]zw + [divid−K[ū], κ]zw + κf2.

(4.51)

Lemma 4.11. Choosing p = p′ > 2 we have

‖κzw‖W 2,p(Ω2) + ‖κzp‖W 1,p(Ω2) ≤ c ‖Fa‖Lp(Ω2) + ‖Da‖W 1,p(Ω2) . (4.52)

Proof. For a proof see [MR09, Thm 11.3.4]; we use the fact that κw ∈ W 1,2
0 (Ωκ).

Lemma 4.12. Let Hypothesis 4.4 be satisfied. Then, we have for solution (zw, zp) of (4.35) for ε > 0

‖zw,a‖W 2,p(Ω2) + ‖zp,a‖W 1,p(Ω2) ≤ c ‖(κf, κf2)‖Lp(Ωκ)×W 1,p(Ωκ)

+ c ‖(f, f2, g, f3)‖S2 + cr1 ‖z̄w,a‖W 2,p(Ω2) + cr2 ‖z̄w‖W 2,2(Ω2)

+ crs1

(
‖z̄p,a‖W 1,p(Ω2) + ‖z̄p‖W 1,2(Ω2)

)
+ ε

(
‖zw‖W 2,2(Ω2) + ‖zp‖W 1,2(Ω2)

)
+ cε

(
‖zw‖W 1,2(Ω2) + ‖zp‖L2(Ω2)

)
.

(4.53)
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Proof. (i) We start with (4.52). Recalling ideas from [LSZ18], to estimate ‖κ(K[u]− id)∇zp‖Lp(Ω2)

we cannot use an estimate as (4.43) in a higher Lp–norm, since we have no W 1,p(Ω2) regularity of
the pressure up to the boundary. Hence, we use the property of the communtator that

κ(K[u]− id)∇zp = (K[u]− id)∇zp,a + (K[u]− id)[∇, κ]zp (4.54)

and that the commutator looses one derivative

[∇, κ] zp= ∇(κzp)− κ∇zp = (∇κ)zp + κ∇zp − κ∇zp = zp∇κ (4.55)

implying that

‖κ(K[u]− id)∇zp‖Lp(Ω2) ≤ c ‖K(u)− id‖L∞(Ω2) ‖zp,a‖W 1,p(Ω2)

+ c(κ) ‖K[u]− id‖L∞(Ω2) ‖zp‖Lp(Ω2)

≤ c ‖K[u]− id‖L∞(Ω2) ‖zp,a‖W 1,p(Ω2)

+ c ‖K[u]− id‖L∞(Ω2) ‖zp‖W 1,2(Ω2) ,

(4.56)

using the continuous embedding W 1,2(Ω2) ⊂ Lp(Ω2), p < ∞. This term can then be estimated as
in (4.43).

(ii) Using estimates from the proof of Lemma 4.10, estimates for the commutator, and the consideration
from (i) we obtain

‖F a‖Lp(Ω2) ≤ crs1 ‖z̄w,a‖W 2,p(Ω2) + cr2‖z̄w‖W 2,2(Ω2)

+ crs1

(
‖z̄p,a‖W 1,p(Ω2) + ‖z̄p‖W 1,2(Ω2)

)
+ c ‖zw‖W 1,p(Ω2) + c ‖zp‖Lp(Ω2) + c ‖κf‖Lp(Ωκ) ,

‖F a
2 ‖W 1,p(Ω2) ≤ cr1 ‖z̄w,a‖W 2,p(Ω2) + c ‖z̄w‖Lp(Ω2) + c ‖κf2‖W 1,p(Ωκ) .

(4.57)

For the terms ‖zw‖W 1,p(Ω2) + c ‖zp‖Lp(Ω2) we cannot apply (4.20) directly for p > 2. Using Ehrling’s
lemma we have for ε > 0

‖zw‖W 1,p(Ω2) ≤ ε ‖zw‖W 2,2(Ω2) + cε ‖zw‖W 1,2(Ω2) (4.58)

which yields

‖zw‖W 1,p(Ω2) + c ‖zp‖Lp(Ω2) ≤ ε(‖zw‖W 2,2(Ω2) + ‖zp‖W 1,2(Ω2))

+ cε(‖zw‖W 1,2(Ω2) + ‖p‖L2(Ω2))
(4.59)

which allows to sublimate the higher order terms and gives, with ε arbitrarily small, the result.

4.5 Limit behaviour

The map (4.16) defines an iteration scheme generating a sequence of iterates

(zw,n, zp,n) = (zw,a, zp,a) + (zw,b, zp,b) ∈ W p (4.60)

We will verify that it converges for n → ∞ towards the unique solution (zw, zp) ∈ W p of (4.17). For
a η ∈]0, 1[ we will estimate

‖zw,n+1 − zw,n‖W
w,Ω̂2

+ ‖zp,n+1 − zp,n‖W
p,Ω̂2

≤ η

(
‖zw,n − zw,n−1‖W

w,Ω̂2

+ ‖zp,n − zp,n−1‖W
p,Ω̂2

) (4.61)

DOI 10.20347/WIAS.PREPRINT.2871 Berlin 2021



Differentiability properties for boundary control of FSI problems 19

for an arbitrary compact subset Ω̂2 ⊂ Ω2. Then, there exists (z̄w, z̄p) ∈ W p

Ω̂2
and sequence

((zw,n, zp,n))n∈N ⊂ W p

Ω̂2
such that

zw,n → z̄w in Ww,Ω̂2
as n→ +∞,

zp,n → z̄p in Wp,Ω̂2
as n→ +∞.

(4.62)

with (z̄w, z̄p) the unique solution of (4.17). This idea is taken from Grandmont [Gra02].

Next, we show the strategy in detail.

4.5.1 The linearized state equation: Contraction property

Let Y1 := (z1
w, z

1
p), Y2 = (z2

w, z
2
p), and Ȳi := (z̄iw, z̄

i
p), i = 1, 2, with

Y1 = T Ȳ1, Y2 = T Ȳ2. (4.63)

Our aim is to show that

‖Y1 − Y2‖W p

Ω̂2

=
∥∥T (Ȳ1 − Ȳ2)

∥∥
W p

Ω̂2

≤ η
∥∥Ȳ1 − Ȳ2

∥∥
W p

Ω̂2

(4.64)

where η < 1 uniform in Ω̂2. From the definition of the map T we write

−ν∇(∇ziw) +∇zip = −ν∇((−A[u] + id)∇z̄iw)

−ŵ((K[u])∇)z̄iw − z̄iw((K[u])∇)ŵ

− (K[u]− id)∇z̄ip + f =: D(Ȳi) in Ω2

div ziw = divid−K>(u) z̄
i
w + f2 =: B(Ȳi) in Ω2

ziw = g on Γin

−ν∂nziw + zipn = −∂A[u]−id,nz̄
i
w + z̄ip(K[u]− id) · n+ f3 on Γout

(4.65)

for i = 1, 2. Denoting Ȳ := Ȳ1 − Ȳ2 we obtain the equation for

Y := Y1 − Y2 =: (Zw, Zp) (4.66)

in terms of Ȳi ∈ Br(W
p):

−ν∇(∇Zw) +∇Zp = D(Ȳ1)−D(Ȳ2) in Ω2,

divZw = B(Ȳ1)−B(Ȳ2) = divid−K>(u) Z̄w in Ω2,

Zw = 0 on Γint ∪ Γin,

−ν∂nZw + Zpn = −∂A(u)−id,nZ̄w + Z̄p(K[u]− id) · nx on Γout.

(4.67)

Lemma 4.13. Let Hypothesis 4.4 be satisfied. For the solution of (4.67) we have

‖Zw‖W 2,2(Ω2) + ‖Zp‖W 1,2(Ω2) ≤ c(rs1 + r1 + r2)(
∥∥Z̄w∥∥W 2,2(Ω2)

+
∥∥Z̄p∥∥W 1,2(Ω2)

) (4.68)

where Z̄w := z̄1
w − z̄2

w and Z̄p := z̄1
p − z̄2

p .
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Proof. We proceed similarly as in Lemma 4.10 using also Theorem 4.8; we estimate

‖D(Y1)−D(Y2)‖L2(Ω2) =
∥∥ν∇((−A[u] + id)∇Z̄w

∥∥
L2(Ω2)

+
∥∥ŵ((−K[u])∇)Z̄w − Z̄w(K[u]∇)ŵ

∥∥
L2(Ω2)

+
∥∥(K[u]− id)∇Z̄p

∥∥
L2(Ω2)

≤ c(r1 + rs1 + r2)(
∥∥Z̄w∥∥W 2,2(Ω2)

+
∥∥Z̄p∥∥W 2,2(Ω2)

).

(4.69)

For the term B(Yi) we have by (4.46) that with 1/p1 + 1/p2 = 1/2, p1 > n,∥∥B(Ȳ1)−B(Ȳ2)
∥∥
W 1,2(Ω2)

=
∥∥divid−K[u]> Z̄w

∥∥
W 1,2(Ω2)

≤ ‖id−K[u]‖W 1,p1 (Ω2)

∥∥Z̄w∥∥W 1,p2 (Ω2)
+ ‖id−K[u]‖L∞(Ω2)

∥∥Z̄w∥∥W 2,2(Ω2)

≤ ‖id−K[u]‖W 1,p1 (Ω2)

∥∥Z̄w∥∥W 2,2(Ω2)
+ ‖id−K[u]‖L∞(Ω2)

∥∥Z̄w∥∥W 2,2(Ω2)

≤ crs1
∥∥Z̄w∥∥W 2,2(Ω2)

(4.70)

and on the boundary Γout

−ν∂nZw + Zp · nx = −∂A[u]−id,nZw + Z̄pK[u] · nx − Z̄p · nx. (4.71)

From Lemma 4.10 it follows that

‖Zw‖W 2,2(Ω2) + ‖Zp‖W 1,2(Ω2) ≤ c
∥∥D(Ȳ1)−D(Ȳ2)

∥∥
L2(Ω2)

+ c
∥∥B(Ȳ1)−B(Ȳ2)

∥∥
W 1,2(Ω2)

+ c
∥∥−∂A[u]−id,nZ̄w

∥∥
W 1/2,2(Γout)

+ c
∥∥Z̄pK[ū] · nx

∥∥
W 1/2,2(Γout)

+ c
∥∥Z̄p · nx∥∥W 1/2,2(Γout)

. (4.72)

Using estimates (4.28) and (4.29) for the boundary terms we conclude.

Lemma 4.14. Let Hypothesis 4.4 be satisfied and additionally, r1 > 0 and r2 > 0 be sufficiently
small. Then, the map T defined by (4.16) satisfies for some 0 < η < 1

‖T (Y1 − Y2)‖W p

Ω̂2

< η
∥∥Ȳ1 − Ȳ2

∥∥
W p

Ω̂2

(4.73)

for Ω̂2 ⊂ Ω2 compact.

Proof. As a consequence of the previous lemma it remains to prove the contraction property with
respect to higer p-integrability on compact subsets.

We recall the function κ. We remark that the commutator has for sufficiently smooth v the property
that

[κ,Dx]v = −Dx(κv) + κDxv, [κ,D2
x]v = −D2

x(κv) + κD2
xv. (4.74)

Hence, we have

−ν∇(∇Zw,a) +∇Zp,a = κ(D(Ȳ1)−D(Ȳ2)) + [κ, νD2
x]Zw

+ [κ,∇]Zp in Ω2,

divZw,a = κ(B(Ȳ1)−B(Ȳ2)) + [κ, div]Zw in Ω2

Zw,a = 0 on Γint ∪ Γin ∪ Γout.

(4.75)
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with Zw,a := z1
w,a−z2

w,a and Zp,a := z1
p,a−z2

p,a. Since the commutators loose one order of derivative
we can derive higher Lebesgue integrability, i.e. for (w, p) ∈ W 2,2(Ω2)×W 1,2(Ω2)∥∥[κ,D2

x]w
∥∥
Lp(Ω2)

≤ C ‖w‖W 1,p(Ω2) ≤ c ‖w‖W 2,2(Ω2) ,

‖[κ, div]w‖W 1,p(Ω2) ≤ C ‖w‖W 1,p(Ω2) ≤ c ‖w‖W 2,2(Ω2) ,

‖[κ,∇]p‖Lp(Ω2) ≤ C ‖p‖W 1,2(Ω2) .

(4.76)

Similar as in the proof of Lemma 4.12 we estimate the norms
∥∥κ(B(Ȳ1)−B(Ȳ2))

∥∥
W 1,p(Ω2)

and∥∥κ(D(Ȳ1)−D(Ȳ2))
∥∥
W 1,p(Ω2)

. Here we use the same trick as in that proof to obtain higher p-
integrability, namely we switched around the order of κ and the differential operators in the term with
coefficient A[u] as well as in the divergence term and introduce a commutator as correction term.

Applying further the estimate of Lemma 4.13 to the terms (4.76) we obtain finally

‖Zw,a‖W 2,p(Ω2) + ‖Zp,a‖W 1,p(Ω2) ≤ c(r1 + rs1 + r2)
∥∥Ȳ ∥∥

W p
Ωκ

. (4.77)

Thus, for r1 > 0 and r2 > 0 sufficiently small we obtain the result.

Theorem 4.15. Let Hypothesis 4.4 be satisifed and additionally r1 > 0 and r2 > 0 sufficiently small.
For data satisfying the regularity assumption in (4.33), ŵ ∈ Br2(Ŵ 2,p(Ω2)), and u ∈ Br1(Up) the
linearized equation (4.13) has a unique solution (zw, zp) ∈ W p. Moreover, the solution is bounded
by the data, we have

‖(zw, zp)‖W p

Ω̂2

≤ c ‖f‖Lp(Ω̂2)∩L2(Ω2) + c ‖f2‖W 1,p(Ω̂2)∩W 1,2(Ω2)

+ c ‖δg‖W 3/2,2(Γint)
+ c ‖f3‖W 1/2,2(Γint)

(4.78)

for compact subsets Ω̂2 ⊂ Ω2.

Proof. The existence follows by the procedure described at the beginning of Section 4.5 and the
contraction property given in Lemma 4.14. The estimate follows from the boundedness of the operator
T shown in Lemma 4.10 and 4.12 and sublimating the with powers of ri weighted terms by the left
hand side.

Hypothesis 4.16. Let r1 > 0 and r2 > 0 be sufficiently small, such that for ŵ ∈ Ŵ 2,p(Ω2) and
u ∈ Br1(Up) the linearized equation (4.13) has a unique solution in W p satsfying estimate (4.78).

5 Differentiability

In this section we show the main result, the differentiability of the mapping which maps the infow
profile g to the velocity-pressure-deformation triple (u,w, p) of the fluid-structure interation system.
We follow in parts ideas from [WW19] where linear elasticity is coupled with the Stokes equation with
Dirichlet boundary conditions in a smooth domain. In a first step we consider the differentiability of the
data-to-solution map g to (w, p) for the Navier-Stokes system and in particular of the traction operator
τ .
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We introduce two systems, which will appear to be the linearized systems with respect to inflow data
g and with respect to perturbation u, namely

−ν∇(A[u]∇δwg) + δwg(K[u]∇)ŵ + ŵ(K[u]∇)δwg

+K[u]∇δpg = 0 in Ω2,

divK[u]> δwg = 0 in Ω2,

δwg = δg on Γin,

δwg = 0 on Γwall ∪ Γint,

−ν∂A[u],nδwg + δpgK[u] · nx = 0 on Γout

(5.1)

and

−ν∇(A[û]∇δwu)+δwuK[û]∇ŵ + ŵK[û]∇δwu −K[û]∇δp
= −ŵK ′[û]δu∇ŵ + γν∇(A′(û)δu∇ŵ)

−K ′[û]δu∇p̂ in Ω2,

divK>(û) δwu = divK>(û)δu ŵ in Ω2,

w = 0 on Γin,

w = 0 on Γwall ∪ Γint,

−ν∂A[û]δwu + δpK[û] · nx = ν∂A′[û]δu,nw − pK ′[û]δu · nx on Γout.
(5.2)

For given (û, ĝ) ∈ Br1(Up)×Br(G3/2) we write the Navier-Stokes equation (3.5) as

e : Xp × G3/2 → Sp
′
, e(u,w, p, g) = 0, (5.3)

with

e(u,w, p, g) :=


−ν∇(A[u]∇w) + w(K[u]∇)w +K[u]∇p
(K[u]∇)>w
w|Γin − g
−ν(A[u]∇w) · nx + pK[u] · nx

 . (5.4)

Lemma 5.1. The function e defined in (5.3)–(5.4) is continuously differentiable.

Proof. The statement follows by the regularity of the appearing functions and the smoothness of A
and K , see Lemma 2.3.

To apply the implicit function theorem we show that the derivative of e with respect to (w, p) defines
an isomorphism in a solution (û, ŵ, p̂, ĝ) of (5.3).

Let û ∈ W 2,p(Ω1) and (ŵ, p̂) ∈ W p the corresponding solution of the Navier-Stokes equation
(2.25). Moreover, let (F, F2, g, F3) ∈ Sp′ . Recalling Hypothesis 3.2 and 4.4, we consider the solution
(zw, zp) ∈ W p of

D(w,p)e(û, ŵ, p̂, ĝ)(zw, zp) = (F, F 2, g, F 3)>. (5.5)

By Theorem 4.15 the solution is well-defined and we have

‖(zw, zp)‖W 2,p(Ω̂2)∩W 2,2(Ω2)×W 1,p(Ω̂2)∩W 1,2(Ω2) ≤ c ‖F‖Lp(Ω̂2)∩L2(Ω2)

+ c ‖F2‖W 1,p(Ω̂2)∩W 1,2(Ω2) + c ‖g‖W 3/2,2(Γint)
+ c ‖F3‖W 1/2,2(Γint)

.
(5.6)
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Lemma 5.2. Let Hypothesis 3.2 and 4.16 hold and Ω̂2 ⊂ Ω2 compact.

(ia) The mappingN : Br1(Up)×Br2(G3/2)→ W p

Ω̂2
with (u, g) 7→ (w[u, g], p[u, g]) is continuously

differentiable.

(ib) Let u ∈ Br1(Up) be fixed. The derivative (δwg, δpg) of

Br(G3/2)→ W p

Ω̂2
, g 7→ (w[g], p[g]) (5.7)

is given by (5.1).

(ic) Let g ∈ Br(G3/2) be fixed. The derivative (δwu, δpu) of

Br1(Up)→ W p

Ω̂2
, u 7→ (w[u], p[u]) (5.8)

is given by (5.2).

(ii) The mapping
F : Br1(Up)×Br(G3/2)→ W 1−1/p,p(Γint),

(u, g) 7→ t(u, p) = p[u]K[u] · nx
(5.9)

is continuously differentiable.

Proof. (ia) To show continuous differentiability of (w[·], p[·]), we employ the implicit function theorem.
We note that

D(w,p)e(u,w, p, g) : W p

Ω̂2
→ Sp′ , (5.10)

corresponds to the transformed Stokes operator on the left given by
−ν∇(A[u]∇δw) + δw(K[u]∇)ŵ + ŵ(K[u]∇)δw +K[u]∇δp
(K[u]∇)>δw
δw|Γin

−ν(A[u]∇δw) · nx + δpK[u] · nx

 . (5.11)

We observe that D(w,p)e(u,w, p, g) : W p

Ω̂2
→ Sp′ is an isomorphism by Theorem 4.15 and estimate

given there, cf. (5.6).

(ib) With Dge(u,w, p, g)δg given by (
0, 0, δg, 0

)>
(5.12)

the derivative (δwg, δpg) with respect to g is given as the solution of

D(w,p)e(u,w, p, g)(δwg, δpg) = −Dge(u,w, p, g)δg (5.13)

or equivalently by (5.1). A solution exists by Theorem 4.15 and is bounded by the data, the result
follows.

(ic) Analogously, the partial derivative Due(u,w, p, g)δu is given by
−ν∇(A′[u]δu∇w) + w(K ′[u]δu∇)w +K ′[u]δu∇p
(K ′[u]δu∇)>w
0
−ν(A′[u]δu∇w) · nx + pK ′[u]δu · nx

 (5.14)
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and (5.2) can be written as

D(w,p)e(u,w, p, g)(δwu, δpu) = −Due(u,w, p, g) (5.15)

or equivalently by (5.2). Since

−ν∇(A′(û)δu∇ŵ) + ŵK ′[û]δu∇ŵ +K ′[û]δu∇p̂ ∈ Ŵ 0,p(Ω2) ∩ L2(Ω2),

−ν(A′[u]δu∇w) · nx + pK ′[u]δ · nx ∈ W 1−1/p,2(Γint)
(5.16)

for p > 2, the right hand side in (5.15) has the suitable regularity and we conclude again with Theo-
rem 4.15.

(ii) Follows directly from (ia). Note, that here we use that in the interior we have higher p-integrability
and that Γint is bounded away from Γext.

Lemma 5.3. Let Hypothesis 3.2 and 4.16 be satisfied. For g ∈ Br(G3/2) and u ∈ Br1(Up) and F
given in (5.9) we have for any ε > 0 ∥∥∥∥ d

du
F(u, g)

∥∥∥∥
LF

≤ ε, (5.17)

with LF := L(W 2,p(Ω1),W 1−1/p,p(Γint)) provided that r and r1 are sufficiently small.

Proof. We write
F(u, g) = τ(u,N (g, u)). (5.18)

By Lemma 5.2 and applying the chain rule, we get for any direction δu ∈ W 2,p(Ω1) that

d

du
F(u, g)δu =

d

du
τ(u,N (g, u))δu. (5.19)

By Theorem 3.1 we can choose for δ > 0 the radii r > 0 and r1 > 0 sufficiently small such that
p ∈ Bδ(Wp). Using the smoothness of the outer normal on the interface taking into account that Γint

is bounded away from Γext and recalling that p > n we have∥∥∥∥ d

du
F(u, g)δu

∥∥∥∥
W 1−1/p,p(Γint)

≤ ‖zp,aK[u]‖W 1,p(Ω̂2) + ‖pa[u]K ′[u]δu‖W 1,p(Ω̂2)

≤ ‖zp,a‖W 1,p(Ω̂2) ‖K[u]‖W 1,p(Ω̂2)

+ ‖pa‖W 1,p(Ω̂2) ‖K
′[u]δu‖W 1,p(Ω̂2)

(5.20)

with Ω̂2 ⊂ Ω2 a compact subset containing Ω1. Note, that in (5.20) we use higher p-integrability of pa
whose support is bounded away from the boundary. Now, using the estimate in Theorem 4.15 applied
to (5.2), we have for any γ > 0 and data sufficiently small that∥∥∥∥ d

du
F(u, g)δu

∥∥∥∥
W 1−1/p,p(Γint)

≤ γ ‖δu‖W 2,p(Ω̂2) ≤ cγ ‖δu‖W 2−1/p,p(Γint)

≤ cγ ‖δu‖W 2,p(Ω1)

(5.21)

which shows the assertion.

We state the main differentiability result on the mapping of the data to the solution of the fluid-structure
interation problem.
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Theorem 5.4. Let r > 0 be sufficiently small. Then, the mapping

Π: Br(G3/2)→ Xp, g 7→ (u[g], w[g], p[g]) (5.22)

with (u[g], w[g], p[g]) solution of (3.14) is continuously differentiable.

Remark 5.5. Here, it is not necessary to assume Hypothesis 3.2, 4.4, or 4.16 explicitly, since by
Theorem 3.5 the existence of a solution of the FSI problem is in ball of radius r̃ which we can choose
arbitrary small if r > 0 is chosen accordingly sufficiently small. This guarantees implicitly the existence
of a solution to the Navier-Stokes equation making Hypothesis 3.2 redundant as well as a sufficiently
small bound on the velocity of the Navier-Stokes equation and the solution of the elasticity system
making Hypothesis 4.16 and so also Hypothesis 4.4 redundant.

Proof of Theorem 5.4 We follow ideas from [WW19]. Existence of a solution of the fluid-structure
interaction problem follows by Theorem 3.5. We have (u,w, p) = Π(g) and

u = S

(
f1,F(D(γΓintu), g)

)
(5.23)

with S defined in Theorem 3.3 and F given in (5.9). Since (w, p) depends continuously differentiable
on (u, g) by Lemma 5.2, it is sufficient to show differentiability of the mapping g 7→ u given by the
above fix point relation (5.23). We apply the implicit function theorem. We note that

D2S

(
f1,F(D(γΓintu), g)

)
: W 1−1/p,p(Ω2)→ W 2,p(Ω2) (5.24)

corresponds to the solution operator for the elasticity problem (3.7), see Theorem 3.3 and is hence,
bounded. For

DuF(D(γΓintu), g)(δu) : W 2,p(Ω1)→ W 1−1/p,p(Γint) (5.25)

we use that by Lemma 5.3 the norm ‖DuF‖LF can be made arbitrarily small choosing r sufficiently
small and taking the continuous dependence of the solution of the FSI problem on the data into ac-
count, see Theorem 3.5. Thus, id − D2S ◦ DuF is invertible. By the implicit function theorem we
obtain the continous differentiability of the mapping Π.

A Transformation of the Navier-Stokes equation

Following [LSZ18] we state the strong and weak formulation of the Navier-Stokes equation in the
physical and reference domain. We have for the velocity (w̃1, w̃2) and pressure p̃ in the physical
domain Ω2[u]

−ν∆xw̃1 + w̃>∇w̃1 + (∇p̃)1 = 0 in Ω2[u],

−ν∆xw̃2 + w̃>∇w̃2 + (∇p̃)2 = 0 in Ω2[u],

div w̃ = 0 in Ω2[u],

w̃ = δg on Γin,

w̃ = 0 on Γwall ∪ Γint,

−νDw̃ · ny + p̃ · ny = 0 on Γout.

(A.1)
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Transforming to a weak form by multiplying with a test function, integration over Ω2[u], and apply
integration by parts we obtain

−ν
∫

Γout

ψ̃1∇w̃1nydsy + ν

∫
Ω2[u]

(∇ψ̃1)>(∇w̃1)dy

+

∫
Ω2[u]

ψ̃1(w̃>∇)w̃1dy +

∫
Γout

ψ̃1p̃(ny)1dsy

−
∫

Ω2[u]

p̃(∇ψ̃1)1dy =: I1 + I2 + I3 + I4 + I5 = 0.

(A.2)

We have by (2.19), (2.20), and (2.21) on the do-nothing outflow boundary part

I1 := −ν
∫

Γout

ψ̃1∇w̃1nydsy

= −ν
∫

Γout

ψ1(G[u]−1∇w1)>
K[u]nx
‖K[u]nx‖

‖K[u]nx‖ dsx

= −ν
∫

Γout

ψ1(∇w1)>
(

1

J
K>K

)
nxdsx

= −ν
∫

Γout

ψ1(∇w1)>Anxdsx.

(A.3)

For the diffusion term we have using (2.20)

I2 := ν

∫
Ω2[u]

(∇ψ̃1)>(∇w̃1)dy

= ν

∫
Ω2

(
1

J
K∇ψ1)>(

1

J
K∇w1)Jdy

= ν

∫
Ω2

(∇ψ1)>A(∇w1)dx

= ν

∫
Γout

ψ1(n>xA∇w1)dsx − ν
∫

Ω2

ψ1∇>(A∇w1)dx.

(A.4)

The convection term transforms using (2.20) as follows

I3 :=

∫
Ω2[u]

ψ̃1(w̃>∇)w̃1dy =

∫
Ω2

ψ1w
> 1

J
K∇w1Jdx =

∫
Ω2

ψ1w
>K∇w1dx. (A.5)

For the boundary pressure term we have by (2.19) and (2.21)

I4 :=

∫
Γout

ψ̃1p̃(ny)1dsy

=

∫
Γout

ψ1

(
p
Knx
‖Knx‖

)
1

‖Knx‖ dsx

=

∫
Γout

ψ1p(Knx)1dsx.

(A.6)
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Finally, for the volume pressure term we have

I5 := −
∫

Ω2[u]

p̃(∇ψ̃1)1dy

= −
∫

Ω2

p(K∇ψ1)1dx

= −
∫

Γout

ψ1p(Knx)1dsx +

∫
Ω2

ψ1p divx(Kp)1dx,

(A.7)

where
divx(Kp)1 := ∂x1(k11p) + ∂x2(k12p). (A.8)

Summarizing we obtain the weak formulation

− ν
∫

Γout

ψ1(∇w1)>Anxdsx + ν

∫
Ω2

(∇ψ1)>A(∇w1)dx

+

∫
Ω2

ψ1w
>K∇w1dx+

∫
Γout

ψ1p(Knx)1dsx +

∫
Ω2

ψ1 divx(Kp)1dx = 0

(A.9)

ν

∫
Ω2

(∇ψ1)>A(∇w1)dx+

∫
Ω2

ψ1w
>K∇w1dx

+

∫
Ω2

ψ1 divx(Kp)1dx =

∫
Γout

f3vds+

∫
Ω2

fvdx (A.10)

and equivalently in strong form

−ν∇(A[u]∇w) + w(K[u]∇)w +K[u]∇p = 0 in Ω2,

divK>(u) w = 0 in Ω2,

w = δg on Γin,

w = 0 on Γwall ∪ Γint,

−ν∂A[u],nw + pK[u] · nx = 0 on Γout.

(A.11)

B Transformation of the linearized Navier-Stokes equation

For the velocity (w̃1, w̃2) and pressure p̃ in the physical domain Ω2[u] we have

−ν∆xz̃w1 + ŵ>∇z̃w1 + z̃>w∇ŵ1 + (∇z̃p)1 = 0 in Ω2[u],

−ν∆xz̃w2 + w̃>∇z̃w2 + z̃>w∇ŵ2 + (∇z̃p)2 = 0 in Ω2[u],

div z̃w = 0 in Ω2[u],

z̃w = δg on Γin,

z̃w = 0 on Γwall ∪ Γint,

−ν∂nz̃w + z̃p · ny = 0 on Γout.

(B.1)

All linear terms are transformed as for the Navier-Stokes equation. The first term of the linearized
convection term transforms using (2.20) as follows∫

Ω2[u]

ψ̃1(w̃>∇)zw̃1dy =

∫
Ω2

ψ1w
> 1

J
K∇zw1Jdx =

∫
Ω2

ψ1w
>K∇zw1dx (B.2)
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and the second one accordingly. That means we have for the transformed equation in strong form

−ν∇(A[u]∇zw) + zw(K[u]∇)ŵ + ŵ(K[u]∇)zw +K[u]∇zp = 0 in Ω2,

divK[u]> zw = 0 in Ω2,

zw = 0 on Γin,

zw = δg on Γwall ∪ Γint,

−ν∂A[u],nxzw + zpK[u] · nx = 0 on Γout.

(B.3)

C Some properties

Lemma C.1 (Algebra property). Let Ω ⊂ R2 be open and bounded. Furthermore, let p and q be real
with 2 < p <∞, p ≥ q ≥ 1. Then, for v ∈ W 1,p(Ω) and u ∈ W 1,q(Ω), the product uv belongs to
W 1,q(Ω), and we have

‖uv‖W 1,q(Ω) ≤ Ω ‖u‖W 1,p(Ω) ‖v‖W 1,q(Ω) . (C.1)

Proof Immediate.

With the embedding of Sobolev in Hölder spaces we have for p > 2

W 2,p(Ω2) ⊂ C1,β(Ω̄2) ⊂ C0,1(Ω̄2) for some β > 0 (C.2)

and so [Alt16, p. 338 and p. 325]

‖v‖W 1,∞(Ω2) = ‖v‖C0,1(Ω̄2) ≤ c ‖v‖W 2,p(Ω2) for v ∈ W 2,p(Ω2). (C.3)

For w ∈ W 1,2(Ω2)2 and recalling K[u] we have the following calculus rules:

div(K[u]) = 0 (Piola’s identity),

divid−K[u]> w = ((id−K[u])∇)>w = divw −K[u]> · ∇w = (id−K[u]>) · ∇w.
(C.4)
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