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Existence, uniqueness, and stabilization results for parabolic
variational inequalities

Axel Kréner, Carlos N. Rautenberg, Sérgio S. Rodrigues

Abstract

In this paper we consider feedback stabilization for parabolic variational inequalities of obstacle
type with time and space depending reaction and convection coefficients and show exponential
stabilization to nonstationary trajectories. Based on a Moreau—Yosida approximation, a feedback
operator is established using a finite (and uniform in the approximation index) number of actuators
leading to exponential decay of given rate of the state variable. Several numerical examples are
presented addressing smooth and nonsmooth obstacle functions.

1 Introduction

Our goal is the stabilization to trajectories for parabolic variational inequalities, in particular towards
the solution ¥ to the obstacle problem
(Zy+(-A+1y+ay+b-Vy—fiov—y) >0, Vo<, t>0, (1.1a)
y<v, Gylp=x, t>0, y(-,0)=y,, (1.1b)
in a bounded domain €2 C R? with a regular enough boundary I' := 92, where d is a positive integer.
The obstacle 1) = v(x, t) and the functions a = a(z,t) € R, b = b(x,t) € RY, f = f(z,t) € R,
X = x(7,t) € Riv = v(x,t) € R, and y, = y(x), are assumed to be sufficiently regular,

for (z,7,t) € Q x I' x (0,+00); regularity details are specified later. The linear operator G is
determined by either Dirichlet or Neumann boundary conditions.

For some pairs (a, b), the solution w issued from a different initial condition w, # v,

(Bw+ (-A+1Lw+aw+b-Vw— fv—w) >0, Yo<y, t>0, (1.2a)
w < 7% gw|I‘ =X, > 07 ’LU(,O) = Wo, (1.2b)

may not converge to y as time increases. Our goal is to show that, by means of an feedback control
input u = K(w — y), we can track y exponentially fast with an arbitrary exponential rate —p < 0.
That is, we want to construct an input feedback operator K such that the solution of

(Bw+ (-A+1Lw+aw+b-Vw— f—Kw—y),v—w) >0, Yo<¢, t>0, (1.3a)
w<yY, Guwlp=x, t>0, w(-,0)=uw., (1.3b)

satisfies, for a suitable constant C' > 1,

[w(t) = y()] 2 < Ce " |w, — Yolr2(oy, forall (wo,yo) € L*(Q)xL*(Q2), t>0. (1.4)

We are interested in the case K: L*(Q) — U, where Uy, C L*(R2) is a finite-dimensional
subspace, given by the linear span of a finite set of actuators Uy, = {V; | 1 < i < m(M)} C
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L*(€2), where m(M) is a positive integer which will be appropriately chosen later on. It follows that
the control input will be of the form

Mm

u(t) = K(w(t) —y(t)) = Zui(t)\lfi € Uy

Further, motivated by real applications, we consider the case in which the actuators are determined
by indicator functions 1,,, of small subdomains w; C £2,

1, if i )
, Trew 1 <i< M,
0, ifxeQ\w,

Remark 1.1. Note that for simplicity we have taken the diffusion operator as —A + 1. One reason is
to facilitate the inclusion of Neumann boundary conditions in our investigation where, in particular, we
ask the operator to be injective. This is not a significant restriction, since we can always transform a
given dynamics 2y — vAy +ay +h = 0into 2z + (~A+ 1)z + (v 'a—1)z+ v 'h =0
simply by rescaling time, 7 = vt, (1) = y(v~17).

1.1 Main stabilizability result

Recall that for Dirichlet and Neumann boundary conditions, the operator G reads, respectively,

G=1 and G=2=n.V,

6_11:

where n = n(Z) is the unit outward normal vector to I" at 7 € T'. In either case we set L?({2) as a
pivot space, that is, we identify L?({2) with its own dual, L*(2)' = L*(Q).

Depending on the choice of G, we define the spaces

HY(Q), it G=2

and the symmetric isomorphism
AV — V/7 <Ay7 Z>V’,V = (Vy, VZ)LZ(Q)d + (y7 Z)LQ(Q)' (1.5)

Throughout the paper, we assume that the subset {2 is bounded, open, and connected, located on
one side of its boundary I' = 952. Furthermore, either I is a compact C2-manifold or {2 is a convex
polygonal domain. The domain of A is defined as D(A) = {z € L*(Q) | Az € L*(Q)}, and
since € is regular enough, we have the following characterizations

D(A) = {z € H2(Q) | G|, = 0}. (1.6)

It also follows that A has a compact inverse, and that L2(Q) = D(A°) and V = D(Az). Note that
A= (=A+1)[pa 1 D(A) = L(Q), is the restriction of —A + 1 to D(A).

We shall assume that V' and D(A) are endowed, respectively, with the scalar products

(y,2)v = (Ay,z)vv and  (y,2)pa) = (Ay, A2)2()
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Existence, uniqueness, and stabilization results for parabolic variational inequalities 3

and associated norms. Note that (y,2)y = (¥, 2)u1 (o) coincides with the usual scalar product
of Hl(Q). Finally, we denote the increasing sequence of eigenvalues of A by («;);en, and a complete
basis of eigenfunctions by (¢;);en,

Ae; = q4e;, e; € D(A), 0<a; <ajyp — +00.

Throughout this manuscript, for simplicity, we shall denote the Hilbert Sobolev spaces

H* = H*(Q) = W*(Q) for s>0, and L*:=L*(Q).

We consider sequences of sets of actuators and eigenfunctions E'; of the diffusion operator under
homogeneous boundary conditions as follows, for some nondecreasing functionm : N — N

(Un)men, Un={¥; |1 <i<m(M)} C L*(Q), (1.7a)
(Ex)men, Ex={e;i]i€Ey} CD(A) CL(Q), Ex={j"|1<k<m(M}CN,
(1.7b)

where N stands for the set of positive integers and the j,]y s are specified later. Further, we denote
Uy = span Uy, Ey = span By, (1.7¢)
and assume that
dimUy = My = dim &y, LA(Q) =Un + &7, and Uy N E37 = {0}. (1.7d)
Due to (1.7d), the oblique projection Pig in L2(Q) onto Uy, along £3;, is well defined as follows: we
can write an arbitrary 1 € L? in a unique way as h = hy,, + he with (hetyy s hg]i\;[) € Uy x &,
then we set Pjifh = hy,, -

Our results will follow under general conditions on the dynamics tuple (a, b, f, x,%) and under a
particular condition on the sequence (L{M, EM)MeN. Such conditions will be presented and specified
later on. Without entering into more details at this point our main result is the following, whose precise
statement shall be given in Theorem[4.1]

Main Result. Letr = r(t) := min(¢, 1) fort > 0. Under sufficient regularity of the data and some
assumptions which will be specified in Section[2.1 we have the following:

(i) For every T > 0, there exists a unique solution y € W ((0,T); H', V") of with ry €
W((0,T); H?, L?).

1 1
(i) For every p > 0, there are M and X large enough such that, with K3, = )\Pzi\”; AP?Ib o, the
solution of the system

(Zw+ (—vA+Nw+aw+b-Vw— f+Ky(w—y),v—w),, >0, Vo<, t>0,

(1.8a)
w<vy, w0)=w, Guw|p=x. (1.8b)
satisfies the inequality with C = 1. Furthermore,
A ~ £ir|?
K| 2y < Aam ’Pufj s 9 (1.9a)
A SO R-X b
(W = 9)| o, 2y < Aanap™" | Byt ) lwe — Yol2 (1.9b)

where ay; = sup{«; | e; € Ey and Ae; = aye;}.
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1.2 Previous literature

The use of oblique projections has been introduced in Kunisch and Rodrigues [KR19a], in the construc-
tion of explicit feedback operators for stabilization of linear parabolic-like systems under homogeneous
conditions (f, x) = 0. Precisely, the feedback in [KR192] is given by

Ku(t)(y) = Pt (A+ Awe(t) = M)y, (1.10)

where U, is the finite-dimensional actuators space and the auxiliary space &£, is spanned by a
suitable set of eigenfunctions of the diffusion-like operator A. Further A,. is a reaction-convection-
like operator. Appropriate variations of such feedback are used in Kunisch and Rodrigues [KR19b] to
stabilize coupled parabolic-ODE systems, and in Azmi and Rodrigues [AR20] to stabilize damped wave
equations. In Rodrigues [Rod20], the analogous feedback

Kar®)(y) = Bl (Ay + Aty + N (t,9) = M) (1.11)

is used to semiglobally stabilize parabolic equations, where the dynamics includes a given nonlinear
term N(t, -) and the number of actuators is large enough, depending on the norm |y0|v of the initial
state in a suitable Hilbert space V' C L?2.

In this paper we investigate the stabilizability of nonautonomous parabolic variational inequalities
through a limiting argument based on Moreau—Yosida approximations. The latter are semilinear parabolic
equations and by this reason we could try to use the feedback (1.11). However, the number of actua-
tors required by that feedback increases (or may increase) with the norm of the nonlinear term, that is,
the number of actuators is expected to increase with the Moreau—Yosida parameter. Roughly speak-
ing, the number of needed actuators could diverge to 400 as the Moreau—Yosida parameter does.
This would mean that, even in the case we can find a limit feedback operator, that operator could
have an infinite-dimensional range, that is, we would need an infinite number of actuators to be able
to implement the controller. This is of course unfeasible for real world applications. Therefore, we will
use a different feedback operator in (1.8), namely,
1 1

K = —ABM APEM. (1.12)
We shall make use of the monotonicity of the nonlinear term associated with the Moreau—Yosida
approximation. Without such monotonicity we do not know whether the feedback in is able to
stabilize parabolic systems for a general class of nonlinearities as in [Rod20]. Moreover, it is also such
monotonicity which will allow us to take the pair (A, M) in independently of the Moreau—Yosida
parameter, and this is why we will be able to take such feedback in the limit variational inequality.

This manuscript introduces the use of oblique projections in the construction of explicit feedback op-
erators which are able to stabilize parabolic variational inequalities. Moreover, to the best knowledge
of the authors, there are no results on stabilization of parabolic variational inequalities available in the
literature. In spite of this fact we would like to refer the reader to previous works on controlled parabolic
variational inequalities defined on a bounded time interval.

Feedback laws for optimal control of parabolic variational inequalities have been addressed in Popa
[Pop01] and robust feedback laws in Maksimov [MakQ5]. In the first reference the author shows that for
a certain class of parabolic variational inequalities the optimal control is given by a feedback law given
by the optimal value function. In the latter reference the author considers a robust control problem
for a parabolic variational inequality in the case of distributed control actions and disturbances, and
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establishes a feedback law using piecewise (in time) constant control functions being irrespective of
the unknown effective perturbation.

For stabilization we are often interested in closed-loop (feedback) controls. However, we would like
to refer the reader to several contributions concerning open-loop optimal control of parabolic varia-
tional inequalities (still, in a bounded time interval). Wang [Wan01] considers optimal control problems
for systems governed by a parabolic variational inequality coupled with a semilinear parabolic dif-
ferential equation, Ito and Kunisch [IK10|] consider strong and weak solution concepts for parabolic
variational inequalities and study existence. Furthermore the first order optimality system in a La-
grangian framework is derived. Sensitivity analysis is considered in Christof [Chr19]. For optimal con-
trol of elliptic-parabolic variational inequalities with time-dependent constraints see Hofmann, Kubo,
and Yamakaki [HKY06]. Wachsmuth [Wac16] studies optimal control of quasistatic plasticity with lin-
ear kinematic hardening and derives optimality conditions. Chen, Chu, and Tan [CCT07] analyze bilat-
eral obstacle control problem of parabolic variational inequalities. For time optimal control of parabolic
variational inequalities see Barbu [Bar84], where a variant of the maximum principle for time-optimal
trajectories of control systems governed by certain variational inequalities of parabolic type is derived.
Optimal control problems of parabolic variational inequalities of second kind have been addressed by
Boukrouche and Tarzia [BT11].

The rest of the paper is organized as follows. In Section[2)we analyze the Moreau—Yosida approxima-
tions. The stabilization of the Moreau—Yosida approximations is addressed in Section |3, Section |4|is
dedicated to the proof of the main stabilization result for the variational inequality. Finally, in Section 5]
several numerical examples are presented for the case of a regular obstacle fulfilling the theoretical
assumptions, and in Section E]a less regular obstacle 1) is considered for the sake of comparison.

Notation: For an open interval I C R and two Banach spaces X, Y, we write W (I; X, Y) =
{y € L*(I; X) | y € L*(1; Y)}, where § := Ly is taken in the sense of distributions. This space

is a Banach space when endowed with the natural norm [ylwr, x,v) = ([y[72( x) +19[72(.v9) 2

If the inclusions X C Z and Y C Z are continuous, where Z is a Hausdorff topological space, then
we can define the Banach spaces X NY, X X Y, and X + Y, endowed with the norms defined as,

1
(a, b)|xxy == (lalXx +[b3) 2, lalxny = [(a, a)lxxy,

la|x 4y = (al,ail)lefxwﬂ(al’ as)|xxy | a=a; + a2},

respectively. In case we know that X N'Y = {0}, we say that X + Y is a direct sum and we write
X @Y instead. If the inclusion X C Y is continuous, we write X — Y.

The space of continuous linear mappings from X into Y is denoted by £(X,Y"). Incase X = Y
we write £(X) = L(X, X). The continuous dual of X is denoted X’ := L(X,R). The space
of continuous functions from X into Y is denoted by C(X,Y"). Given a subset S C H of a Hilbert
space H, with scalar product (-, -), the orthogonal complement of S is denoted St o= {h €
H | (h,s)g = Oforall s € S}. Given two closed subspaces I C H and G C H of the Hilbert
space H = F' @ G, we denote by Pbg € L(H, F) the oblique projection in H onto F along G. That
is, writing h € H as h = hp + hg with (hg, hg) € F x G, we have PSh := hy. The orthogonal
projection in H onto F' is denoted by Pr € L(H, F'). Notice that Pr = PFFL. By 6[017~~->an] we
denote a nonnegative function that increases in each of its nonnegative arguments. Finally, C', C},
1 =20, 1, ..., stand for unessential positive constants.
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2 Existence, uniqueness, and approximation of the solution

We consider here a more general version of system (1.1)), which will allow us to work with the controlled
system (1.8) as well. Namely

(Zy+(—A+1)y+Qy—fiv—y),, >0, Yo<y, t>0, (2.1a)
Yy S ¢> gy’[‘ =X, t> Oa y(70) = Yo, (21b)

with Q = Q(x,t) == B(x,t) + b(x,t) - V where B(-,t) € L(L?) is a general linear bounded
mapping, from L?(Q) into itself.

We show that there exists a solution of (2:1), which can be approximated by the sequence (Y )xen;
where vy, is the solution of the system

Sy + (A + Dy + Que + k(ye — V)" =f, w(0)=v., Gulp=x, (22
with

for ve L2

2.1 Assumptions on the data

We assume the following regularity assumptions for the data. Hereafter, we will denote R, := (0, +00).
Assumption 2.1. The subset €2 is bounded, open, and connected, located on one side of its bounad-
ary I’ = OS). Furthermore, either I" is a compact C*-manifold or §) is a convex polygonal domain.
Under Assumption we have the characterizations (1.6), this follows from [Gri85, Thms. 2.2.2.3,
2.2.2.5,3.2.1.3 and 3.2.1.3].

Assumption 2.2. The operator () in 2.1) isasum Q) = B+ b -V with

Be L*(Ry; L(L*Y) and be L™(Q xR,

Assumption[2.2]is satisfied if, for example, B = al with a € L=(2 x R}).
Assumption 2.3. The external forces f and x, and initial condition vy, in (1.7)), satisfy

f € LIQOC(R-F;LQ)? X € T: Yo € L2a and Yo S ¢<a0)

See Section[2.2for the definition of T as the trace space of Wi,.(R; H2, L?). The condition y € T
specifically means that there exists a function in Wi, (R ; H?, L?) such that G/ is equal to  in the
trace sense.

Assumption 2.4. The obstacle satisfies 1) € Wi,.(Ry; H?, L?) and G| > x — 1 for a suitable
real function n(Z,t) = n(t) independent of T € T" where:

(i) for Dirichlet boundary conditions, n = 0,

(ii) for Neumann boundary conditions, 1 > 0 andn € W,-2(R,).

loc

Remark 2.5. Notice that for Dirichlet boundary conditions, since we will be looking for a solution
satisfying y|F = y and y < 1, then the requirement w|F > X is necessary. Instead, for Neumann
boundary conditions, we do not claim the necessity of the requirements in Assumption However,
the relaxation of those requirements will, probably, involve extra technical difficulties.
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Existence, uniqueness, and stabilization results for parabolic variational inequalities 7

2.2 Trace and lifting operators
For simplicity, we denote
W = Wie(Ry; H* L) and Wy = Wio(Ry; D(A), L?) C W.
Let us define the trace spaces on the boundary
T ={Gh|. | h e W}, To ={Gh|p | h e Wy}.
Recall that we have (cf. [LM72, Ch. 1, Thms. 3.2 and 9.6]) for the trace spaces at initial time,

W= = {y(0) |y € W} = H', W™= {y(0) [y W} =V,

Now for any finite time interval (¢1, t5), with 5 > t1, we define the Hilbert spaces
W(tl,t2) = W((tla t2)7 H27 Lz) (2.3)

and the corresponding traces are denoted by 7, 1,) = Wit 1) Ip-

Next for each positive integer j € N we define the time interval I; := (j — 1, j). Observe that for
any x € T we have that X|1j € T1,. We consider the extension (lifting) function defined, for x € Ty,
by

@j% € W[j, (QQSJS{) |F = %, and QSJ% € W[J;,’O, with W]].,O = W[j m Wo ’Ij ,

where the orthogonal space ij,o to Wi, o is taken with respect to the scalar product of ;.. This

defines the extension operator, &/ & E(ﬂj,WIj), which is a right inverse for the trace operator
(G())|p € LWy, T1,). We endow T, with the scalar product induced by the trace mapping

(X17X2>T1j = (&1, ijX2)W1j-
This allows to introduce the extension &: 7 — )V defined by concatenation
ex(t) = (x|, ).
where [t] is the positive integer satisfying [t] — 1 <t < [¢].

Remark 2.6. Note that for any h € W satisfying Gh|. = x we have that &x — h € Wj. In particular
we have that Ex(¢) — h(t) € V, forall t > 0.

Remark 2.7. Several existence results for parabolic variational inequalities can be found in the liter-
ature. However, though we borrow some ideas and arguments from classic references (e.g, [BL11,
BL84,|GLT81, Bre71]) we could not find in the literature, the existence results for obstacles as general
as in Assumption[2.4] For example in [BL11], Ch. 3, Sect. 2.2, Thm. 2.2], for Dirichlet boundary condi-
tions it is assumed that the boundary trace of the obstacle is static (independent of time). In [Bre71]
Sect. I1] the triple (a, b, 1)) is time-independent.
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2.3 On the Moreau-Yosida approximation

We present the main result concerning Moreau—Yosida approximations for parabolic variational in-
equalities. We start by denoting, for a given function ¢ € L2 (R, , L?), the convex sets

loc

CL={ve L*((0,T);H") |v < ¢}, for T >0, (2.4a)
and
C% ={ve L (Ry; HY) [ v < o} (2.4b)
We set
Z,={zeW({(0,T); H', V') | rz2 € W((0,T); H*, L*)},
where

r(t) = min{t,1}, ¢>0.

Theorem 2.8. Let Assumptions hold true, T > 0, and suppose (f.) < L*((0,T); L?)
converges weakly to some f in L*((0,T); L?). Then, for a given k € N. there exists one, and only
one, weak solution y,, € Z, for

D+ (A + D)y + Que + k(ye — V)" = fio  Guklr=x.  %(0) = yo. (2.5)
Moreover, the sequence (yy,) of solutions satisfy

— &y € Dl — ) ——— 2(y—¢ 26
e = EX o YT O e = ) e 5y — €, (2.6)

for some y € Z, with
yeCh  y0)=v, Gylr=x (27)
and, for an arbitrary v € Z,(\C%, withv —y € C((0,T); V), we have
(%y +(-A+1)y+Qy— f,v—y)vv >0, almosteverywherein (0,T). (2.8)

Furthermore, we have

0 9
L2(0.0):D(A)) r(y—€x), #(r(ye —€x)) o) S(r(y—€x)), (2.9

r(yr — €x)
and, for arbitraryv € L?((0,T); L?),
(%y +(-A+1)y+Qy— f,v— y)L2 >0, almost everywhere in (0,T). (2.10)
Finally, y is unique the only element in Z,. satisfying and (2.8), and we have

— and — &) —— r(y — Ex). 2.11
U Coma Y r(yr — €x) T r(y — €x) (2.11)

The proof of Theorem [2.8]is given in several steps, which we include in several lemmas.
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Existence, uniqueness, and stabilization results for parabolic variational inequalities 9

Lemma 2.9. Let Assumptions 2.4 hold true. Let us fix k € N. There exists one, and only one,
solution y, € W ((0,T); H*, V') for @2.5), furthermore ry, € W((0,T); H?, L?).

Proof. We sketch the proof which follows from standard arguments. By a lifting argument (cf. [Rod14]
Def. 3.1]) we can reduce the problem to the case of homogeneous boundary conditions, where we
can prove the existence of weak solutions, in W ((0,7),V, V'), as a weak limit of suitable Galerkin
approximations. Weak solutions are understood in the classical sense [Tem01, |Lio69]. Strong solutions
in W((0,T), H?, L*) can be proven for more regular initial conditions y, € V, see [Rod20, Sect.4.3].
For our initial conditions in y, € L2\V, we can use the smoothing property of parabolic-like equations
to conclude that ry, € W ((0,7), H?, L?), see [Tem01} Ch. 3, Thm. 3.10] and [PR18, Lem. 2.6].
Note that 7(0)yx(0) = 0 € V atinitial time. O

Note that by direct computations

(hyh*)pe = |h* 5., foral he L2 (2.12)

Let us denote

Lemma 2.10. Let Assumptions|2.142.4 hold true. Then, the solution y;, for (2.5) satisfies

2 2 2
2k | (yr. — ¢)+‘L2((07T)7L2) 1Yk Lo (0m),12) 1Ykl T2 07,81
2l 2 2 2 2
< Cleqal <|y°|L2 1w py + rlizom,es) + |¢|W((0,T),H1,v')) ’

with C independent of k.
[Ca.T]

Proof. Recall that ¢ € W ((0,T); H?, L*) by Assumption (2.4, Now we set

vi=Cx— (Ex—v)T, (2.14)
which implies v € W ((0,7T); H', L?). Also, ¢ — v > 0, because
w_U:Oa if GXZ%

Yp—v=1—Ex, it Ex <.

Furthermore under Dirichlet boundary conditions we also have that v |, = x, because (Ex—) " | =
0, due to x < 9| in Assumption|2.4] Hence, we have

pe=ye—v €W(O,T)V.LY), w4, (2.15)
and
P+ Apr + Qpr + k(yr — )" = ha,
with
hy = fr — %v — (A +1)v— Q. (2.16)
After testing the dynamics with 2p,, to obtain

o pel7e + 2 [Py + 2k((yk — )T o) 2 = 2(—Qp + i Pr)vry -

DOI 10.20347/WIAS.PREPRINT.2870 Berlin 2021
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Observe that, due to (2.15) we have p > y, — ¢ and
2
(e — )T o) e > | (e — )| s
and by using Assumption [2.2]and the Young inequality, and recalling (2.13), it follows that

2
L ipel7s + Iprly + 2k | (s — )|}, < 2C2 [pal7s + 2 [R5
=< Clog] (Ipelzz + [hely) - (2.17)

By the Gronwall Lemma it follows that
2 el 2 2
Pkl o0 ((0,7),12) < C[CQ,T] <’pk(0)’L2 + |hk‘L2((0,T),V')> ; (2.18a)
and by integration of (2.17), and using (2.18a)), we find
o + 2k (g — )" < Clega (1Pe(O)[Z2 + il (2.18b)
klL2((0,m),v) Yk r2(0,1),22) =~ [co.r] \IPE\P 12 T 1kl 2 (0,m),vr) ) - (&

Now, note that from (2.76), .15), (2.14), (2.16), and L?> — V', we have

2 al 2 2
|h"f|L2((0,T),V’) = C[CQ] <|fk|L2((0,T),v') + |U|W((O,T),H1,V/)> (2.19a)
ral 2 2 2
< C[CQ] (|fk|L2((O,T),V’) + ’€X|W(O,T) + |¢‘W((O,T),H1,V’)) , (2.19b)

(cf. (2.3)), and

2 2
|y/€|L°°((O,T),L2) + |yk|L2((o,T),H1)

2 2 2 2
< 2Pkl pec 0.7),22) T 21Vl 1ee0,7),22) T 2 1Pkl 20,009y T 2 101 20.7),00)

— 2 2 2 2
< C[CQ,T] <|pk(0)|H + |€X|W(07T) + |fk|L2((0,T),V') + |1/’|W((0,T),H1,V')) : (2.19c)

Notice also that

2
2k (0)3 = lyk(0) = v(0)[72 < 21yol> +2[€Ex(0) — (Ex(0) —(0))*],..  (2.19d)
Hence, the result follows from and (2.19). O

The following lemma establishes that we are able to identify a pseudo-distance function with an strictly
negative normal derivative.

Lemma 2.11. Let Assumption|2.1 hold true. Then, there exists ¢ € H?(2) (C*() N C'(Q2) and
constant c¢ < 0 satisfying

E(x) >0 forall x€Q, (2.20a)
2| () < ¢ foralmostall T €T. (2.20b)

Proof. In the case € is of class C?, we can choose £ = pdr as the product of the distance to
the boundary function, dr(x) = min.{|z — z|zs minz € T'}, and of a suitable cut-off function p.
From [GT98, Appendix, Lem. 1 and Eq. (A7)], see also [Kat19, Sect. 13.3.4], we know that dr €
C?(T';) for a suitable small enough § > 0 and I's := {z € Q | dr(z) < 6}, and also that 22 =
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Existence, uniqueness, and stabilization results for parabolic variational inequalities 11

For p we choose a smooth function satisfying 0 < p < 1, such that p(z) = Oforall z € Q\ F%,
and p(x) = lforallz € T's.
3

In the case (2 is a convex polygonal domain we can choose xg € {2 and
E(@) = = |z — wolga + max|z — zolza, €W,
zeQ)
It is clear that £ € C?(Q) and that £ > 0. It remains to prove that ¢ strictly decreases on I' in the
direction of the outward normal n. To this purpose let ¥ € I" and let I" be a face of I" contained in

the affine hyperplane H and such that € F'. Up to an affine change of variables (a translation and
a rotation) we can suppose that 0 € {2 and

o =0 and H:{(s,xQ,xg,...,:Bd)|(x2,$3,...,xd)€]Rd_1} with s > 0.

In this case, we find that

2 2
E(z) = — |x|ga + rileagc |2|ga, n=1(1,0,0,...,0) and %g\F = aixlflr = —2x;.
Therefore at an arbitrary point T € H we find that a%ﬂr () = —27; = —2s. Note that s is the

distance from 0 to H.

Therefore we can conclude that for every point & in the (boundary) interior of a face I’ we have that
2¢|1 (T) = —2sp where sp > 0 is the distance from z to the hiperplane H - containing F. Since
the number of faces is finite, ¢ |, < max{—2sp | Fisafaceof '} =: ¢ < 0, for all boundary
points living in one face only. Note that if T lives in the intersection of two faces then the normal
derivative is not well defined (not continuously, at least), however the set of such points has vanishing
(boundary) measure. That is, %gjr () < ¢¢ < 0 for almost every boundary point Z. O

Lemma 2.12. Letce < 0 and{ € H? be as in Lemma|2.11, and ) > x — G| be as in Assump-
tion[2.4. Then, for

~ ~ o, ifG =1,
Coi=ye—+né, with £=¢7 | o 2.21)
_Cg 57 Ifg - on’
where y, is the solution for (2.5), we have that
(€% e — (0 = n€,Gm < 2|0 —n€ 1G], Ge{lg)
Proof. Observe that
(28X Gz — (W = né ¢H)m
= (3 G 2y + (A = 1)(& = 08), 5z — (G5 (¥ — &), G 2y
= (on&X = on?¥ + M5 & G ey + (A = D)W = n8), (e (2.22)
Note that
Slp=0, if G=1, and Z&y=yx, if G=2. (2.23a)

Now, by using (2.20b) and (2.21),

DX~ 2t nE=x— Zule A nflly <X Zvl <0, i G=2 (223)

DOI 10.20347/WIAS.PREPRINT.2870 Berlin 2021



A. Kréner, C. N. Rautenberg, S. S. Rodrigues 12

and, by (2.23), we have that
(g €X = an¥ + 18 G2y <0, i G € {1,453, (2.24)

with an equality in the case G = 1. Thus, by (2.22) and (2.24) we obtain

(Zex, Gz — (0 — 1€, ¢ < [(A = 1)@ — né)

L6 <2 —ng] 16
(2.25)

which ends the proof. O

Lemma 2.13. Let Assumptions|2.1H2.4 hold true. Then, the solution y;, for (2.5) satisfies

2 +12 d 2
k |(yk - ¢) ‘LQ((()’T)’Lz(Q)) + ‘E(yk - QEX)|L2((0,T),V')

ral 2 2 2 2 2
< C[CQ,T] <|yo|L2 + |€X|W(0,T) + |fk|L2((O,T),L2) + |w|W(O,T) + |n|W172(0,T)> ,

with U[CQ 7] independent of k.

Proof. Let us choose ¢, < 0 and ¢ as in Lemma implying in particular that £ € H?2. We also
have 17 > x — G1|p., due to Assumption 2.4} Then, we set (;, as in 2.2).

Observe that both (; and ¢; are in H'. Furthermore, in the case of Dirichlet boundary conditions we
also have (;” € Hj as a corollary of Assumption 2.4} Therefore,

Grev, for Ge{Z 1} (2.26)

Let us denote now s, = 1y, — Ex. We find
s+ A+ Qg+ k(ye — V)" =gk, sa(0) =36, Gogelp =0, (2.27a)
with

Mo =Yo— Ex(0),  gp=fi— $EX — (A +1)Ex — QEx. (2.27b)

Testing the dynamics with C,j, gives us
0= G, G )z + Ga, GHv + E((ye — ), G )2 + (Qsa — g1, G ) 12
= (oo + SEx — ¥+ 08, ¢ )pz + Ga + Ex — ¥ + 08, )i + k((ye — ), G e
+(Qr = gp — FHEX+ ¥ — 06, ()2 + (= Cx + ¥ = 1€, )
which is equivalent to
0= (G Gz + (Gor G + (e — )F, G2
+ (Qstr — g1 — %@X+¢ — &, G )2+ (—Ex + ¢ —n& )

Then, using Stampacchia Lemma [Sta64, Lem. 1.1]) and Lions-Magenes Lemma [TemQ1, Ch. 3,
Sect. 1.4, Lem. 1.2], we arrive at

SIGHT + 2|6 + 2k (e — ), Gie
= 2(—Qs, + gp + S = +0E, G2 — 2(—Cx + ¥ — 1€, )
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Existence, uniqueness, and stabilization results for parabolic variational inequalities 13

Next, we use the relations in to obtain
i 168 15 + 2165+ 26w = 0)F. 6o
= 2(=Qui + fi = (A + 1)& — 0+, ()2 — 2=Ex + ¥ =0, ()
= 2(=Qux + fr — ¥+ 7€, G )2 — 201 — ne, Gm +2(2€x, ey (2:28)

and, using Lemma we find

NG+ 216 + 2k — ) G e (2.29)
<2A=Que+ fi = +iE G +4|v —nd] |G 2.30)
§2(]—Qwak—«bmﬂﬂw(zp—n{‘m) 1GH,e - (2.31)

Time integration of (2.31) gives us

2 2 2 —_
G e = 1G5 O g+ 2168 a0y vy + 2R = ) G 20 22) < 22|60 102y 12

with

(‘ Qui + fi =¥+ nam ((0,1),L2) 2 )1/1 B ng‘Lz((o,T),m)) ’

from which, together with the fact that, due to Assumption attime t = 0 we have (;/(0) =
(yo — 9(0))* = 0, we obtain

2k [((yr — )", ) 20,02 | g = 26k — )7, G 120m),22) < 28 ‘CI;F‘Lz(((]’T)’[ﬁ) ;

which, together with L*((0, T'), L?) = (L*((0,T), L?))', give us [(yx — ¥)* | 20y 12y < F7'E,
thus

k !(yk — ¢)+‘L2((O,T),L2)

S E S C[CQ] <‘yk‘L2((O,T),L2) + ‘fk"L2((0,T),L2) + ’w|W(O,T) + ‘né\lw(oa")) . (232)

Next, from we also find that
. 2
lsalyr = |Ase + Qaae + Ky — ) — g,

which together with (2.32), ¢, = v, — €Y, and L? < V’, give us

|%k|L2 )y < c <|yk|L2 0,T),H') |€X|W o)t |fk|L2 (0.1),L2) T |Q/’|W o T |71|W12 OT))

with C' = 5[ Finally, we can finish the proof by using Lemma(2.10 O

CQ’|§|H2].
Remark 2.14. We can see that the constant U[CQ T] in the statement of the Lemma |2.13| will also

depend on ‘g‘m as C’[C@T,

omit the dependence on ‘E‘ , in the statement of Lemma [2.13|and throughout the manuscript.
H

IR but since essentially gdepends only on the spatial domain €2, we
H2
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Lemma 2.15. Let Assumptions hold true, with in addition y, — €x(0) € V. Then the solu-
tion yy, for (2.9) satisfies

2 2
Yl T20.r),2) + 1Ykl oo 0.7),20)

= 2 2 2 2
<C <|?/0|H1 + |€X|W(0,T> + |fk|L2((O7T)7L2) + |¢|W<0’T)> 3 (2.33)

with a constantU[T Co] independent of k.

Proof. Testing the dynamics in with 2A ¢, where sz, = y, — €Y, it follows that
2 [seklpay + & 1kly = 29k — Qoa — k(ye — ¥)T, Asg) 2.
Then, the Young inequality gives us
el + 6 Al < loe — Qon = klu — ) )| ..
and from the Gronwall Lemma and integration over (0, 7") we obtain
‘%kliQ((O,T),D(A)) + ‘%If&w((o,T),V) < |55oly + |ge — Qoo — kyx — Wﬂ‘iz((oymp) -

Finally, we can conclude the proof by using Lemmas and [2.13] and recalling the identities
in (2.270). O

In Lemma [2.16] we require the extra regularity for the initial condition in order to have strong solutions
for the parabolic equation. This extra requirement is needed due to the compatibility conditions men-
tioned in Remark [2.6] However, due to the smoothing property of parabolic equations, it turns out that
for strictly positive time ¢t > 0 we will have that y;(¢) € V when y, € H. This fact is explored in the
following result.

Lemma 2.16. Lef Assumptions|2.142.4 hold true and let y;, solve (2.5). Then, it follows that
2 2 d 2
Ykl 120.m), 1) 1P UK Loe oy 1)+ 15 9| L2 0.y,12)
el 2 2 2 2
< T (Iol3s + r€xBy 5, + I feltaoiryny + 1B )

with a constantﬁ[T Co) independent of k.

Proof. Multiplying the dynamics in by 212 Az, it follows that
Slrsaly, — (52 [saly, + 21rsalbay = 20rgk — rQaa — rh(ye — ) *, 7 Asa) 2.
Then, the Young inequality together with max{|r| ez . || (e, )} = 1 give us
2 2
o + & ol < |on — Qo — Ky — 6)) 20 + Irsal?
and from the Gronwall Lemma and integration over (0, 7") we obtain
2 2 2
‘T%k|L2((O,T),D(A)) + ’r%k‘LOO((O,T),V) < |gk — Qe — k(yr — ¢)+)‘Lz((0,T),L2) :
Further we have that
2 NRE
|%(T%k)|L2 = ‘Ar%k + Qrog + k(e — )T —rgp — (T)%k|L2 )

We can conclude the proof by using 7y, = 734, + r&€y, (2.270), and Lemmas and O
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We are now ready to conclude the proof of Theorem 2.8

Proof of Theorem[2.8. Existence: From Lemmas and [2.16} there exists a subsequence Yy (k)
of yx, such that the following weak limits hold

— &y ——y— ¢ () — Sy ———— g — 4@ 2.34
Yn(k) X1 D) y— €y, Un(k) — 3 EX O Y— %X (2.34a)

2 (W) — €X)) z, (2.34b)

_¢
7(Ya(r) — €X) L2((0.7),2)

L2((0,T),D(A))

for suitable y € W((0,T), H, V') and z € W((0,T),D(A), L?). Necessarily we have z =
r(y — €y) and the strong limits

- ¢ —¢ 2.35
Yn(k) m Y, T (Yn(k) X) W r(y X); (2.35a)
7(Yn(k) — €X) W r(y — €x), (2.35b)

where we have used, in particular the Aubin-Lions-Simon Lemma [Sim87, Sect. 8, Cor. 4].

For the sake of simplicity, let us still denote the subsequence yux) by yx. By Lemma|2.10 it follows
that (k2 |(y — @D)*EQ((O,T),LQ))%N is bounded, thus

+2 — 1 +2 —
‘(y - ¢) ‘L2((O,T),L2) - hm }(yk - ¢) ’LQ((O,T),LZ) - 0

k—+o0

and, since y € L2((0,T); H'), we obtain that y € C4, see ([24). Now, for an arbitrary v € CY., we
find, for almost every t € (0, 7T),
<T (Zye+ (A +Dye + Qu — fir) ,7(v — yk)>
= —k (r(yk - w)Jr?T(U - yk))Lz
=k ((yk - ¢)+7T2(yk - 77/}))112 +k ((yk - ¢)+a 7’2(77[) - ?J))L2 )

L2

which gives us

<7” (Zyr+ (—A+ Vye + Que — fr) ,r(v — %))LQ >0, (2.36)

because 72k(y, — )" (ye — ) > 0 and r2k(y, — )T (¥ —v) > 0, due to v € CY.
Observe that, with g, == r(yx — €x) and q := r(y — €x), for the left-factor in (2.36), we find

r (%yk + (A + 1)y + Qur — fk)
=G+ Aqp + Qae — rfr + (5 + A+ Q)Ex — () (yr — €x),

and we have the weak limitin L2((0, T'), L?) given by
G+ A+ Qe —rf+r(H+A+ Qe — (Ny— &) =7 (Fy+ (-A+1)y+Qy— f)
and also the strong limit for the right-factor in as follows

— (.
@ L2((0,T),L?) 1
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These limits allow us to take the limit for the integrated product in (2.36), and obtain

T
|Gy asnyeQu-p)rto-y) d
0
T
= lim (r(%yk + (=A + Vyr + Qur. — fr),r(v — yk))H dt

k—+o0 0

>0, foral ve CY. (2.37)

Let us fix arbitrary v € CY, T € (0,T), 6 € (0,min{#,T — #}). Note that the integrand &, =

(r (Zy+(-A+1)y+Qy—f),r(v— y)> | is an integrable function, {, € L'(0,T). By the
L

Lebesgue differentiation theorem [Rud87, Ch. 7, Thm. 7.7], the set of Lebesgue points

1 t*+0
g, = {t* cO.7) &) =lmaz [ &) dt}7

has full measure. We define the functions

v, ifte(t—206,1t+9)
Vis ‘= _ _
P )y, itte (0,1—8)UE+6,T).

We have ’Ug’(g(t, x) € C?. From (2.37), it follows that

L2

1+6 T
[ edt= [ (r G+ A+ Dy Qu ) rtos - w) (Bde 0
i—6 0
and as a consequence we have

(r(Gy+ A+ Dy +Qy—f) rlw—y)) ()20, foral ¢ €L,

which implies the inequality in (2.7), because ? = min{¢?, 1} > 0 fortime ¢ > 0.

Uniqueness: Let us assume that w € CY W ((0,T), H', V"), with rw € W ((0,T), H?, L?)
also satisfies (2.7). In this case we find the relations

W+ (A+Dy+Qy—fiw—y) 20,  (W+(-A+Dw+Quw— f,y—w), =0,
which lead us to, with 2 == y — w,
(24+ A2+ Qz,2);. <0, foramostall te (0,7), =z(0)=0,
with z(t) € Vforall t € [0,T]. Thus
8132 + 2[2f% < 2Cq el [2lgs < [2f% + € [+l 2.38)

and the uniqueness follows from Gronwall’'s Lemma.

Convergence: Finally we show that the strong limits in (2.35) hold for the (entire) sequence y;. We
argue by contradiction. Let us denote S := {L?((0,T),V),C([0,T], L?)}.

Suppose that 7(y, — Ex) — r(y — €yx) does not hold, for some S € S. (2.39)
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Under assumption (2.39), there would exist € > 0 and a subsequence ys, (x) of ¥, such that

|7 (Yor k) — €X) — r(y — EX)| g > & (2.40)

However since {7, } = {s, ()} is a subsequence of {y;, } we would be able to follow the arguments
above and arrive to analogous limits as in (2.34) and (2.35), for a suitable subsequence {yﬁQ(k)}
of {7, } and a limit 7 in the place of y. In particular, we would arrive to

Ysa(s1 (k) —5 7 ¥>

where moreover 7 solves (2.7). By (2.40) we would have that 7 # ¥, which contradicts the uniqueness
of the solution proven above. That is, the assumption in (2.39) leads us to a contradiction. Therefore,
we can conclude that (2.11) holds true. The proof is finished. O

3 Stabilization of a sequence of parabolic equations

The solution of (T7) can be approximated by the sequence (yx)ren as stated in Theorem
where y;, solves

Sy —vAye + ayy + b Ve + k(y, — )" =, (3.1a)
Ue(0) = %o, Gyl = x- (3.1b)

This follows from Theorem2.8|with Q@ = al +b-V,and fr = f.

We investigate the stabilizability to trajectories for system (3.7). We consider the sequence (wy)xen,
where wy, solves

L L
Dy, — vAwy, + awg + bV + k(wy, — )t = f = AR AP (wy, — ), (3.2a)

wi(0) = wo, G|, = x, (3.2b)

1 1
where ng € L(L?) and ngf € L(L?) are suitable oblique projections in L?, which we shall

1 L
construct so that P;ﬁAPuM € L(L?). Then again from Theorem with Q = al +b-V +

Enm

1 1 1 1
)\Pzif\”j AP and fe=rf+ )\PZfMAng’ Yk, it follows that the solution of (1.3) can be approximated

Enm M
by the sequence (wy )ren- At this point, it is important to underline that the triple (A, Uy, Eyr) can be

chosen independently of k, as we shall show later on.

In this section we will see y;, as our target solution and consider the difference z, ‘= wy — Y from
the controlled solution wy, to the target. With initial condition 2z, = w, — Y., we find that z;, satisfies

1 1
D = vzt az, + -Vt k (2 +ye — )T — (e — 0)F) = —ABM APV 2, (3.33)

2(0) =2,  Gzlp = 0. (3.3b)

For a given 1 > 0, our goal here, see (1.4), is to find a scalar A > 0, a space of actuators U4,,, and
an auxiliary space &), such that

lwi(t) — ye(t)| ;2 < Ce™ Jwo — yo| 2, forall (wo,yo) € L> x L*, >0 (3.4)

for a suitable C' > 1.
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3.1 The oblique projections

We specify here how we can appropriately choose the spaces of actuators U/, and auxiliary eigen-
functions &/, so that the feedback operator —AP;J%AP(Z? is stabilizing for large enough A > 0.
Since the stabilization results will hold for large enough M, we will rather consider a sequence of
pairs of subspaces (Uns, Enr) aren as in (1-7).

In the one-dimensional case, ' = (0,L;) € R, Ly > 0, as actuators we take the indicator
functions 1wj1(x1),j € {1,2,..., M}, defined as follows,
1, ifx € Q'Nw! i
)b i 1. L L _ (25-1L
Luy(m1) = {0 fo oo, <@ mbata, o= "ar . @9
) ]7

As eigenfunctions we take the first M/ eigenfunctions e; of —vA+1: D(A) — L3(Y) (i.e., the first
eigenfunctions of A),

(—yA+1)e} :a;e}, Gell. =0, je{1,2,..., M}, (3.6)
where the ozjl»s are the ordered eigenvalues, repeated accordingly to their multiplicity,
0<l<aj<ay<---<oj<aj,<... jeN
d

In the higher-dimensional case, for nonempty rectangular domains Q* = [] (0, L,) C R%, L,, > 0
n=1

we take cartesian product actuators of the above actuators 1w? and eigenfunctions e? as follows. We
define M := {1,2,..., M} and take

Uy = span{lex |j €M} and &y = span{e; | j € M4}, (3.7)
d
and w;* = {(z1,72,...,74) € Q* | 1, € W] } and e (z1,72,...,24) = legln(xn). Notice
n—=
d
that we can also write 1« = [ lup (2n).
J n=1 "

In particular, by setting the eigenvalue
ayy = max{q; | thereis ¢ € &y such that Ap = a; ¢}, (3.8a)

and the Poincaré-like constant

By, = min { e eUsV, b o} , (3.80)

we have
L? = Uy ® &3, Mllrfoo Bar, = +00, (3.8c)

and also

= Cp < 0. (3.8)
L(L2)

sup Pgﬁ

M>1 Unm
See [Rod20, Sect. 2.2] and [Rod21], Sect. 5] for more details. For the one-dimensional case we refer
to [RS20, Thms. 4.4 and 5.2], for higher-dimensional rectangular domains see [KR19al, Sect. 4.8.1].

Remark 3.1. For nonrectangular domains  C R? with d > 2, we still not know whether we can
choose the actuators (as indicator functions) so that the properties in are satisfied. So we cannot
guarantee that an oblique projection based feedback will stabilize our system. In spite of this fact, we
refer the reader to [KR19al KR19b], where numerical simulations show the the stabilizing performance
of such a feedback for equations evolving in a spatial nonrectangular domain.

DOI 10.20347/WIAS.PREPRINT.2870 Berlin 2021



Existence, uniqueness, and stabilization results for parabolic variational inequalities 19

3.2 On the nonlinearity

We gather key properties of the nonlinear operator in (3.3).
Ni(z) €C(L* L), Nio(2) =k ((z+uye — )" — (g —0)F). (3.9)
Lemma 3.2. The nonlinear operator (3.9) is bounded, as

WNi(z1) = Ni(22)| 2 < k|21 — 22,0, forall (z1,20) € L? x L2

Proof. With (21, 22) € L* x L?, we find that

Ne(z1) = Ni(z2) =k ((z1 + e — )" — (2 +ye — ) 7). (3.10)

Note that & — h™ = max(h,0) is a globally Lipschitz continuous functions with unitary Lipschitz
constant, and thus |h{ — hy |12 < |hy — ho|p2 forall hy, ho € L2 Therefore,

WNi(z1) = Ni(z2)|r2 < Kl(21 + yp — ) — (22 + g — ¥)|12 = k|21 — 22|12,
which finishes the proof. O
Lemma 3.3. The nonlinear operator (3.9) is monotone,

(Nk(Zl) —Nk(Z'Q),Zl — ZQ)LQ > O, for all (21722) € L2 X L2.

Proof. Note that z — G(z) := 2T is monotone in L?(€2). Hence, 2 — G(z — (1) — (» is also
monotone for arbitrary ¢; and (s in L?(2), which finishes the proof. O

3.3 Stabilizability result

For simplicity, let us denote

Arc =al+b- V, Crc = ‘AI‘C|L°°(R+,£(V7L2)) ’
Eir

1
K = — AP M AP, (3.11)

Theorem 3.4. Let Assumptions|2.1H2.4 hold true, with B = al. Let the sequence (Upr, Enr) avren be
constructed as in Section Then, for every given p. > 0, there are large enough constants A > 0
and M € N such that, for every k € N, the system

S+ Az + Avezr + Ni(ze) = K2, 2k(0) = 2o, (3.12[k))
is exponentially stable with rate —yi. For all z, € L?, the solution satisfies
l26(t)] 2 < e P 2(8)] 2, >8> 0. (3.13)
Moreover, the feedback operator IC@ and control input IC?Q z, satisfy the estimate
1K < XayCh and  |K3,

zk‘LQ(R+7L2) < Napp 'O 20| 1o - (3.14)

‘L(LQ)
where oi); and Cp are as in (3.8). Furthermore, we can choose

A~ 6[#’@&] and M ~ U[M,Crc]. (3.15)
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Remark 3.5. Note that the feedback operator K3, in (3.17) is independent of (k, 1), because (A, M)
in can be chosen independently of (k, ). The upper bound in for the norm of the control
input Kﬁzk is also independent of (k, ¢). The monotonicity stated in Lemma plays a key role on
such independences on k.

Remark 3.6. Inequality implies that ¢ — |2;(t)|%, is strictly decreasing at time ¢t = s,
if |2.(s)[72 > 0. Of course, if |2¢(s)|7> = 0 then |2 (t)[7, = O forall t > 0, see [Rod21}, Sect. 4].

Proof of Theorem|3.4. Following the arguments in [Rod21, Sect. 4], we decompose the solution of
system (3.12[k|) into oblique components as

1
2k = 0k + @k, with Qk = Pgéyzk and @k — PgMZk.

1
MILI

Observe that form (3.12[k]), Lemma|[3.3] and the Young inequality, we obtain that

% |Zk|ig = -2 |Zk|%/ — 2<Arczk, Zk>V’,V -2 (./\fk(zk), Zk)L2 + 2 (/C?/[zk, Zk)LQ (3.16)
S —2 |Zk’%/ - 2<Arczk, Zk>V’,V — 2\ (A(?k, ekn)LQ (317)
< =2zl 4 71 lzly + 97 C 27 — 2216415
< =2 =) laly +71 1Ok 2l — 2M 0kl forall 41 > 0. (3.18)

Now we observe that, by the young inequality, we obtain for all 5 > 0

—|2kls = = Ok + Okl = — |6kl — |0k]} — 2(Ok, Oh)v

< — Okl = 10kls + 2 |Okl} + 92 10k]y = —(1 = 32) [k} — (1 —73") 6kl
(3.19)

Combining (3:178) and (3.79) we obtain, for all (y1,72) € (0,2) x R,

S lalie < =@ =)A= 72)16kly = @A+ 2= 1)1 =72 H) 16sly + 71" Ck |2l
< —2=7)1 =) 6]y — (2A = 2 =) (" = 1) l6kly + 291 CL(OL2 + [6xl72)

Now, we can choose 7; € (0,2) and 7, € (0, 1), and \ satisfying 2\ — (2 — 1) (75 — 1) > 0. For
such choices, using (3.8), we find

Lzl < =2 =) (1 = 72)Bu, O] — A= (2 —71) (32" — 1)) 647
+ 297 CL(|Ok] 72 + |04]72)

< —E1(M)|Okly; — Za(M) [6ly; (3:20)

where a; = min { % heV\ {0}} and
Eu(M) = (2= 71)(1 = 72) B, — 271 'Cr, (3.21a)
E2(N) = 2 =2 —7)(e' = 1) — 297 'CF, (3.21b)

Recall that, due to (3.8) we have that Mlim B, = +00. Let us be given an arbitrary given 1 > 0
—+00

and let us choose ; and ~y, as above, satisfying

7 € (0,2) and v, € (0,1). (3.22a)
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Then, subsequently we can choose A > (0 and M € N large enough satisfying

2A— (2—=m)(n ' —1) >0, Z(N)>4p, and E(M) > 4p. (3.22b)

Form (3.20), with the choices in (3.22), we arrive at
S lzelie < =4 (18kl72 + 10k]72) < —2p 1272, (3-23)

which implies (3.13).

It remains to show the boundedness of the feedback control, with (1, v, A, M) as in (3.22).
L 1 1

We see that P, = P}, Py, because P " h = P (Pg, h+ P h) = Py Pe, b, forall h €
L?. Here Pe,, = Pfj@“ stands for the orthogonal projection in L? onto &£;. Using (3.73) we obtain
that the feedback operator K3, satisfy

Ei Ei

K| = M| PEAPKS | = X | PSPy, AP, PHO

Migr2) — Unr Em £(L2) - Uy * Emr Emd En £(12)
<A|PS| P, AP Pl < oay || 3.24
=7 Un L(L2)| ex APeul oy | P ey = M ) (9242

and corresponding control K3, 2%

gL 2 +00
A ~ M —ut
’ICMZk’Lz(R_HLQ) < Aoy )PUM ) ]zo\Lz/O e M dt

. |20 2 » (3.24b)

’ Yo ngtf
Z < A\
[,(LQ)‘ k|L2(R+,L2) = M‘ Unr

2
PL
Un

= Nayp o

where iy, is as in (3.8). Finally, with C'p is as in (3.8), we also obtain the bounds

‘IC?J‘L(IQ) < )‘aJ\/ICIQD7 and "C?\V[Zk‘L2(R+,L2) < )\aM,Uzilclz:» |Zo‘L2 . (3.25)

The proof is finished. O

4 Stabilization of the variational inequality

Here we prove the main result, which we can write now in a more precise form as follows.

Theorem 4.1. Let Assumptions hold true, let . > 0, and let the pairs (Unr,Enr) be con-
structed as in Section[3.1} Furtherlety € Wige(R; HY, V') withry € Wioe(Ry; H?, L?) solve ({1).
Then for M and X\ large enough the solution w of system (1.8) satisfies

lw(t) —y(t)| 2 < e |we — yolp2, t>0. (4.1)
Furthermore, with aiyr and C'p as in the control satisfies
‘IC?AE(LQ) <AayCh o and |y (w—y

)|L2(R+7L2) S /\aM/jJ_IO]% ’U}o - yO|L2 ) (42)

Proof. Letus fix A\ > 0 and M € N so that Theorem [3.4] holds true. Note that A\ > O and M € N
are independent of &.
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Let yi and w;, be the solutions of the Moreau—Yosida approximations (3.1) and (3.2), respectively.
For the difference between the solution w of (1.8) and the solution y of (1.1) we find

w(t) = y(@)] 2 < Jw(t) = wi(t)] 2 + [wit) = ye(®)] 2 + [Yx(t) = y(8)] 12 (4.32)

Let us now be given arbitrary e > 0, 0 > 1,7 > 0,and ¢t € [0, 7.

Now for the pair (yy, y) we apply Theorem[2.8with (f;, Q) = (f,al+b-V), and for the pair (wg, w)
we apply Theorem [2.8|with ( fy., Q) = (f + K3yk, al +b-V + K3},). In this way we obtain that, for
large enough k = k(e, T'), we have

r(Ye — Wleqorrz <€ and  |r(we — w)|eqory 2y S € with 7(t) =min{t, 1}, (4.3b)
and, since zj, = wy, — yj, satisfies (3-3), that is (3.12[k]), by using Theorem 3.4} we obtain
lwi(t) — yr(t)] ;2 < e Jwo — Yo|,2, forevery k € N. (4.3¢)
Hence, by selecting £ large enough, from we obtain that, attime ¢t =T > 0,
[0(T) = y(T)] < 2max{E, e+ e w, — gl
Choosing now € := 1 min{7',1}(0 — 1)e " |ws — ys|;2, we arrive at
w(T) = y(T)l 2 < (0= Ve ™ Jwo — Yol p2 + €7 [wo — Yol 12 = 067" |wo — yolp2 -
Furthermore, since T’ > 0 and ¢ > 1 are arbitrary we arrive at

lw(t) —y(t)] 2 < e ™ |ws — yolp2, t>0.

Finally proceeding as in (3.24)), we find

A ~ £ 12 ~ 142
’KM(U} - p)lLQ(RJr’LQ) < Ao ‘PZ/{;Z £(12) |w _p|L2(R+,L2) < Aayp  Cp|lw, — yO’L2 )
with a7 and C'p as in (3.8), which finishes the proof. O

5 Numerical simulations

We consider Moreau—Yosida approximations of one-dimensional parabolic variational inequality in the
spatial open interval 2 = (0,1) C R, and impose homogeneous Neumann boundary conditions, for
simplicity.

%yk +(—vA+ Dy +ayr +0-Vy, — f+k(yp —)" =0, t>0, (5.1a)
Zyelr =0, y(-,0) = . (5.1b)

For the parameters, we have chosen

v=0.1, f(z,t) = —sin(t)z, (5.2a)
a(z,t) = =6+ + 2[sin(t + z)|p, b(x,t) = cos(t)r? (5.2b)
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and
Y(x,t) =2+ cos(t) + cos (10ma(z — 1) (z — § cos(5t))) . (5.2c)

Recall that by Theorem we have that y;, gives us an approximation of the solution y of the varia-
tional inequality with the same data parameters. See also Remark[1.1]

The targeted trajectory vy is the one issued, at initial time ¢ = 0, from the state

y(x,0) = yo(x) = 3cos(mx), (5.3)
and we want to target such trajectory starting, again at time ¢ = 0, from the state

w(x,0) = wo(z) = —1. (5.4)
Again by Theorem [2.8] we have that wj, solving

Jwe 4 (VA + Vw4 awg + b - Vg — f — Ky (wp — yi) + k(we — )t =0, >0,
(5.5a)
%wﬂr =0, wg(+,0) = w., (5.5b)
gives us an approximation of the solution w of the controlled variational inequality with the same data
parameters.
Initial states are plotted in Figure [{]
States at t = 0
4
. v\/
2 L
1+

totop = 0.0001

kyry = 1000
M, —5
Or A=4
g g
—_— (-, )
-2 y(-,t)
-==w(,t)
-3 w w w w
(0] 0.2 0.4 0.6 0.8 1

Figure 1: Initial states.

For a fixed M € N we take M, = M actuators as in [KR19a] which are indicator functions 1, of
J
the subdomains

w = - 2o 2 4 ) je{l,2,...,M}.

In particular, note that the total volume covered by the actuators is independent of M. It is given by 11—0,
which is 10% of the total volume of the spatial domain.

As auxiliary space of eigenfunctions we take the first eigenfunctions of the Laplace operator, under
the imposed Neumann boundary conditions, namely

eéw:cos((j—l)wx), je{1,2,...,M}.

The obstacle (-, t) satisfies 8%1/1 = 0 at every t > 0. Recall that our Assumption requires
that 8%1# > —n for a suitable positive function —n € Wl’Z(RQ > 0 hence it is satisfied.

loc
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Furthermore, we can see that Assumptions are satisfied. Therefore all the hypothesis of The-
orems [3.4] are satisfied. Hereafter we present the results of simulations illustrating the stability result
stated in the thesis of Theorem

As we have mentioned above, by solving systems and (5.5), by Theorem with a relatively
large Moreau—Yosida parameter £ = k,;y we expect to obtain a relatively good approximation of
the behavior of the limit solutions for the corresponding variational inequalities. Depending on the
simulation example, we have taken kjy in the interval [500, 20000).

For the discretization, we considered a finite element spatial approximation based on the classical
piecewise linear hat functions, where the closure [0, 1] of the spatial interval has been discretized with
a regular mesh with 2001 equidistant points. Subsequently the closure [0, +00) of the temporal inter-
val has been discretized with a uniform time-step ¢, > 0 and a Crank—Nicolson/Adams—Bashforth
scheme was used. Depending on the simulation we have taken g, € {10_4, 10_5}.

In the figures below we denote H := L?(Q).

5.1 Stabilizing performance of the feedback control

In Figurewe can see that with 5 actuators and A = 4 the explicit oblique projection feedback con-

log(lw(t) — y(t)|%) 10 log(|Kar(w(t) — (1)) z=(2))
0°r c
tatep — 0.0001
knry = 1000
20 M, =5 Or
A=4
-40 -10 +
-60 -20
-80 : : : ; -30 s ‘ ‘ ‘
0 1 2 3 4 0 1 2 3 4
time t time t

Figure 2: Norms of difference to target and control.

trol we propose in this manuscript is able to stabilize the solution w = wj of the Moreau—Yosida
approximation, with £ = kyry = 1000, to the corresponding targeted uncontrolled solution approxi-
mation y = yy.

Time snapshots of the corresponding trajectories and control are shown in Figures|3| It is interesting
to observe, at time ¢ = 0.05, the 5 bumps on the shape of the controlled solution, which are pointing
towards the targeted one. The spatial location of these bumps coincide with spatial location of the
actuators, and they show the action of the feedback control pushing the controlled solution towards
the targeted one.

5.2 On the Moreau-Yosida parameter &)y

The goal of this section is to show that it is very likely that the Moreau—Yosida approximation with
parameter kyry = 500 in the above simulation give us already a good approximation of the behavior
of the limit solution of the variational inequality. Indeed, in Figure [4] we can see that the norm of the
difference to the target presents an analogous evolution for the considered parameters kyry s.
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States at ¢t = 0.05 Control at ¢ = 0.05
4 2001
-___\/ 150 |
2 |
tstep = 0.0001 100 F
) kary = 1000
O[." . .~ M0 50 -
"""""""" e 0 — l
2 f [=—y () N ”
y(-, 1) -50
---w(,¥?)
-4 ‘ ‘ : : ‘ -100 &t w ‘ ‘ : o
(0] 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x € Q xr e
States at ¢t = 0.5 Control at t = 0.5
4 = 20 1
W 15
2+ - ~~\\\ 10t
\\\ 5t
0 R
S 0
ey S
ST -10
-4 : : : : : -15 : : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x e Q x e
States at t = 1.5 Control at t = 1.5
3.5 0.02
0.015
0.01
0.005 -
0 n s
-0.005 1 ”
: : : : : -0.01 : : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x € ) xr e

Figure 3: Time snapshots of trajectories and control. Larger time

In Figure we see that the obstacle constraint violation decreases as k\ry increases, as we expect,
since at the limit we must have a vanishing constraint violation. Furthermore, from Lemma [2.13 we
have that & [(yx — ¥) " | 2o (0.7)) < C for a suitable constant C' independent of k. Figureshows
that the violation decreases (at each instant of time) as k increases.

In Figure [6] we see a time snapshot of the controlled trajectories and control, where we see a small
difference between the controlled trajectories for the several k,;ys. A similar behavior was observed
for the corresponding targeted trajectories, for simplicity we plotted only the targeted trajectory y cor-
responding to ks = 500 (which, at that instant of time, is already almost indistinguishable form the
controlled states with the naked eye).
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log(Jw(t) — y(t)|%) log (|3, (w(t) — y(t))|~(0))
0 F~o 10 -
~——— totep = 0.0001
=~ M, =5
20 A=4
-40
-60 Fary = 500
e Ky = 1000
kary = 2000
-80 : : : ‘
0 1 2 3 4
time ¢
Figure 4: Norms of difference to target and control
max;co max{y(xz,t) — ¢¥(x,t),0 max;eco max{w(x,t) — Y (x,t),0
0.08. ve {y(z,t) —¥(x,1),0} 0.08 . e {w(z, 1) (x,1),0}
kary = 500 totep = 0.0001
e gy = 1000 M, =5
0.06 =~y = 2000 A=14 0.06 |
0.04 0.04
0.02 [ 0.02
0 : 0
0 1 2 3 4 0
time ¢ time ¢

Figure 5: Largest magnitude of obstacle constraint violation

5.3 Necessity of both large M/ and large A

From our result, for stability it is sufficient to take large M and large \. Here, we present simulations
showing that such condition is also necessary.

5.3.1 Necessity of large enough M

In Figure [7]we see that with a single actuator we cannot stabilize the system, even for the relatively
large A = 50. Furthermore, for small time we cannot see a considerable change in the norm of the
difference to the target for the several As. This allow us to extrapolate that one actuator is not enough
to stabilize the system.

In Figure [8| we present time snapshots of trajectories and control. We see that by taking a larger A
we cannot see a strong enough influence on the evolution of the trajectory to expect (or, hope for) a
stabilization effect for large values of \.

5.3.2 Necessity of large enough \

In Figure [9] we see that with A\ = 1 we cannot stabilize the system, even if we take 20 actuators.
Furthermore, for small time we cannot see a considerable change in the norm of the difference to the
target for the several M,s. This allow us to extrapolate that it is necessary to take A > 1 if we want to
stabilize the system.
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In Figure [T0] we present time snapshots of trajectories and control. We see that with 10 and 20 actua-
tors we cannot see a strong enough change on the evolution of the trajectory to expect (or, hope for)
a stabilization effect for large values of M, .

5.3.3 On the achievement of an arbitrarily small exponential decreasing rate —x < 0

From our result we can reach an arbitrarily small exponential decreasing rate —p, provided we take
both M, and A large enough. This is shown in Figure where we see that with (M,,\) =
(10,6) we obtain a smaller exponential rate than with (M,,\) = (4,3). We also observe that
with (M,, \) = (2,2) we are also able to stabilize the system, however this case does not fully
confirm our result, where we can also guarantee that the norm of the difference to the targeted tra-
jectory is strictly decreasing. In the zoomed subplot, in Figure we can see that for small time the
norm of the difference in not strictly decreasing, for (M,, \) = (2, 2).

The time snapshots in Figure also confirm that with a pair (M,, A) with larger coordinates, we
obtain a faster convergence of the controlled trajectory w to the targeted one .

5.4 The uncontrolled dynamics

Here we show that the uncontrolled dynamics is unstable. That is, a control is necessary to stabilize
the system to the targeted trajectory. In Figure[13|the symbol F'eedOn denotes the time interval where
the feedback control is switched on. Thus, outside this time interval the free (uncontrolled) dynamics
is followed. We see that the free dynamics is exponentially unstable, as the norm of the difference
to the target increases exponentially when the control is switched off. On the other hand, when the
control is switched on we see that such norm decreases exponential, confirming again our theoretical
stabilizability results.

Time snapshots in Figure show again that the trajectory w corresponding to the free dynam-
ics FeedOn = (0, 0) is not approaching the targeted one y as time increases (cf. Figure .

5.5 Evolution of the contact set and the Moreau-Yosida parameter

Here, we investigate the evolution of the contact (or, active) set. In Figure [T5|we see that the behavior
of the norm of the difference to target and of the control is similar for the several Moreau—Yosida

w(t) at t = 1.5 K (w(t) —y(t)) at t = 1.5
as. oo M (w(t) — y())
—_—) (-, 1)
= y(-5 1)
3 ——knmy = 500
o kenry = 1000 0.01F
2571 kany = 2000

-0.01 : : : : :
0 0.2 0.4 0.6 0.8 1
time ¢

Figure 6: Time snapshots of trajectories and controls
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parameters, with some differences for time ¢ > 1.5. So, the considered parameters give us already a
good picture of the qualitative behavior of the limit difference and control as kyry diverges to +oc.

The time snapshots in Figure show that the smallest value of kyy already captures a good picture
of the likely limit behavior for the parabolic variational inequality.

From Figure [17]we can conjecture also that the magnitude of the violation of the obstacle constraint
converges to zero as kyy — 0o. That is, at the limit such magnitude will vanish, as we expect due to
the theoretical results.

Finally, in Figures [23] and we can see the evolution of the obstacle constraint violation set. It
is interesting to observe that with the smallest value of kyy = 5000 considered, we can already
capture a good picture of the likely limit contact set evolution for the parabolic variational inequality.
The evolution is not simple, for example the number of contact connected components change with
time, this can simply be explained from the fact that the moving obstacle and its shape (cf. Figure
and other time snapshots) are not simple themselves.

6 Numerical simulations for a nonsmooth obstacle

Note that the stability result for the sequence of k\ry-Moreau—Yosida approximations hold true for
obstacles which live in L2 (€ x R, ), and in particular we have a weak limit for the pair z;, = yj, — wy,
Thus, we may ask ourselves if y;, and wy, also converge separately and if each of these limits satisfy (a
weaker formulation of) the variational inequality. Next, we present results of simulations which suggest
that this may be indeed the case for obstacles in C!([0, +00), L?(€2)). This means that our result
can probably be extended to less regular obstacles. Such extension is an interesting problem for
future investigation. Note that, if possible, such extension is nontrivial and thus will likely require a
considerably different proof.

The following simulations correspond to the setting as in (5.2) with the exception that we take a nons-
mooth obstacle. Namely, we modify the smooth obstacle in (5.2c), by changing it to constant functions
on the spatial set [0, 75] [, 1]. More precisely, we take the obstacle

o itz €0, 5];
P(x,t) = ¢ 2+ cos(t) + cos (10mz(z — 1) (z — L cos(5t))), ifz € (&, 5);
~% ifw €[5, 1].
. log(|w(t) — y(#)|%) o5 log (IK, (w(t) — y(£)) | 1)
4.5 6 :
4 5.5
3.5 st

Fary = 1000
27 M, =1
15 ‘ ‘ ‘ ‘ ‘
0.2 0.4 0.6 0.8 1

Figure 7: Norms of difference to targeted state and of control
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In Figure [20] we cannot see a considerable difference in the behavior of the norm of the difference
to target and of the control for the several Moreau—Yosida parameters. The same holds for the time
snapshots in Figure 21} So we can conjecture that the considered parameters give us already a good
picture of the behavior of the limit difference and control as ky;y diverges to -+oc.

From Figure 22| we can conjecture also that the magnitude of the violation of the obstacle constraint
converges to zero as kyry — o0.

All the above suggest that a variational inequality will be satisfied at a limit. But, this remains to be
proven for nonsmooth obstacles.

Finally, in Figures[23]and [24] we can see the evolution of the obstacle constraint violation sets. Again,
the smallest value of kyry provides us already with good picture of such evolutions. However, note
that by taking the largest value we are able to “sharpen” the picture, in particular it confirms that
locally the contact is made at the single (discontinuity) point + = 0.8 during a suitable interval of
time, where ¢ = 1.5 is included, as we see in the snapshot in Figure We also observe that the
discontinuity of the obstacle at the spatial points = € {0.1,0.8} is somehow reflected in Figures
and[24l
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Figure 23: Evolution of obstacle constraint violation set for targeted trajectory
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