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Introduction

One of the remarkable results obtained by the inverse scattering transform method [10]

is that for any localized initial data (i.e. rapidly decreasing with x ! �1) the solution

of the Korteweg-de Vries (KdV) equation

ut � 6uux + uxxx = 0:

splits into a �nite number n (0 � n < 1) of solitons as time tends to in�nity (t ! 1)
[9]. Other integrable nonlinear evolution equations exhibit similar splitting, though the

authors do not know the exact references. This e�ect is an additional argument in favor
of the physical interpretation of solitons as stable "long-living" particles.

The Cauchy problem for the KdV equation with non-localized initial data u0(x), namely,

in the "step-like" form u0(x) �
c
2

2
(�1 � 1) as x ! �1, was solved in 1975 in [3].

It was proved, that
�
N + 1

2

�
soliton-like objects appear in some neighbourhoods G+

N (t)

(N = 1; 2; :::) of the leading edge (the front of the solution). At large times these domains

are G
+
N (t) =

�
x 2 R; x > 4c2t� N + 1

2c
ln t

�
. The form of these objects is similar to

ordinary solitons, but their velocities depend on t. In contrast to ordinary solitons, they
are not exact solutions of the KdV equation, however they satisfy it with increasing
accuracy when t! +1. For this reason such objects are called asymptotic solitons. The

number of these asymptotic solitons in�nitely increases when t! +1, if the observation
domain in the neighbourhood of the solution front is extended correspondingly. In a

more general form the same phenomenon is observed also for other non-localized initial

data, as well as for other KdV-like equations ([4]). Physicaly, one can consider this
phenomenon as a manifestation of the fact that any non-localized initial data consists of
an in�nite number of solitons, which are gradually ejected at the front. The existence of a
su�ciently wide living space for solitons is a natural (but not the unique) condition for this

phenomenon. As usual, a beam (T (t);1) belonging to the positive half-axis x is taken
as the domain, where the solution vanishes or tends to a constant (if there exist solitons
on the background for the corresponding equation). As it was shown in [4], the existence
of a continuous spectrum of multiplicity one of the L-operator of the corresponding Lax

pair is a su�cient (nearly necessary) condition of the splitting. Moreover, the structure of

the simple continuous spectrum of the operator L depends only on the behaviour of the

initial data as x! �1. Thus, a wide class of initial data generate the same asymptotic
formulae.

In this paper we study one non-localized solution of the KdV equation, which vanishes
as x ! +1. Its behaviour at x ! �1 is not well understood yet. This solution

belongs to the closure of the class of reectionless potentials, which was introduced by

V.A.Marchenko and D.S.Lundina in [6, 7] and H. Stephan in [8]. We derive a determinant
asymptotic formula (1.5), which describes the oscillation structure of the solution in the

neighbourhood of the front, and prove that as t! 1 the solution splits into an in�nite

series of solitons moving along the x{axis to the right. Our method to �nd and prove
asympotic formulae, being close conceptually to the method proposed in [3], is based
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on the reduction of the problem to the solution of an integral equation with a suitable

degenerate kernel. However, as distinct from [3], where the well-known Marchenko in-
tegral equation is utilized, in the present paper we consider an integral operators acting

on functions depending on the spectral parameter ([5] and [8]). To implement the idea

mentioned above new techniques were developed which can be applied also to the solu-

tion of other nonlinear evolution equations within the framework of the Riemann-Hilbert

problem ([10]).

The proposed method allows one also to investigate the asymptotic behaviour of the
solution in the neighbourhood of the trailing edge (back of solution): GN (t) as t! �1,

and to show that

�
N + 1

2

�
solitons are selected from the solution in this domain. These

solitons move along the x{axis to the left as t! �1 and have smaller amplitudes than

those of the solitons at the front.

1 Formulation of the problem and main results

Let '(�) be an arbitrary positive function de�ned on the interval ]a; b[ (b > a > 0) of the
form:

'(�) = (�� a)�(b� �)�'0(�);

where '0(�) 2 C1[a; b]; '0(a) > 0; '0(b) > 0

�
�; � > �1

2

�
:

Consider a Fredholm integral equation with respect to the unknown function g(�;x; t) of
the variable � 2]a; b[:

g(�;x; t) + e
��(x�4�2t)

bZ
a

e
��(x�4�2t)

� + �
'(�)g(�;x; t)d� = e

��(x�4�2t) (a < � < b): (1:1)

Here, the variables x; t 2 R are considered to be parameters. This equation has an unique

solution g(�;x; t) 2 C
1(a; b), smoothly depending on x 2 R and t 2 R. The methods

developed in [5] and [8] allow us to show that the function

u(x; t) = 2
d

dx

bZ
a

e
��(x�4�2t)

'(�)g(�;x; t)d�; (1:2)

which is a functional of the solution g of (1.1), satis�es the KdV equation

ut � 6uux + uxxx = 0:

It is easy to see the solution (1.2) tends exponentially to zero as x ! +1, however its

behaviour is unknown as x!�1.

Remark. Taking into account results of [1], one can suppose that in the case of '(�) =q
(b� �)(� � a)'0(�), (i.e. the special case � = � = 1=2), the solution, de�ned by (1.2)

asymptotically tends to the periodic one-gap solution of the KdV equation as x! �1.
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The principal goal of the present paper is to investigate the asymptotic behaviour of

the solution u(x; t) which is determined by (1.1) and (1.2), in the neighbourhood of the
leading edge when t!1. We de�ne the front leading edge as the domain


+
N (t) =

�
x 2 R : x > 4b2t� 1

2b
ln t[N+�+1]

�
; (1:3)

where N is an arbitrary positive integer and t > 1.

Let us introduce the notations:

Cij =
(i+ j)!

i!j!(2b)i+j+1
(i; j = 0; 1; :::); (1:4)

C
(N) = fCijgNi;j=0 is the matrix of order N + 1 with the entries Cij;

Ik(x; t) =

bZ
a

e
�2�(x�4�2t)(b� �)k'(�)d�;

I
(N)(x; t) = fIi+j(x; t)gNi;j=0 and A

(N)(x; t) = C
(N)

I
(N)(x; t) are the matrix-functions of

order N + 1 with the entries Ii+j(x; t) and Aij(x; t) =
NP
k=0

CikIk+j(x; t), respectively.

For �xed parameter b, the numbers Cik are �xed too, but in Theorem 1 we consider C00

to be a freely varying parameter.

THEOREM 1. The solution u(x; t), which is determined by (1.1) and (1.2) everywhere

in R2, is represented in the form

u(x; t) = 2
@
2

@x@C00

log det
h
E

(N) +A
(N)(x; t)

i
+�(N)(x; t) (1:5)

in the domain G
+
N =

S
t>1


+
N (t) � R

2, where E(N) is the identity matrix of order N , and

the function �(N)(x; t) satis�es the inequalities

����(N)(x; t)
��� �

�

8>>>><
>>>>:

KN

t
; as � [N+�+1]

2b
ln
q

b

b�a > x� 4b2t � � [N+�+1]

2b
ln t; t > 1

min

(
KN

t
;K

�
b�a
b

�N+1
2

N

)
; as x� 4b2t � � [N+�+1]

2b
ln
q

b

b�a ; t > 1:

The constants KN and K depend on the parameters a; b; �; � and the function '0(�).
Taking into account inequalities obtained in section 2, it is easy to carry out upper esti-

mates for KN and K, however they are rather combersome. What is only important for

us is that lim
N!1

�(N)(x; t) = 0 uniformly with respect to x � 4b2t� [N+�+1]

2b
ln
q

b

b�a ; t > 1,

and lim
t!+1

�(N)(x; t) = 0 uniformly with respect to x 2 
+
N (t) for any �xed N .

The �gure on the following page shows the solution of the KdV equation calculated by a

numerical approximation of the integral equation (1.2) with a special '(�).
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The asymptotic analysis of (1.5) allows us to prove, that solution u(x; t) splits into�
N + 1

2

�
solitons in the domain 
+

N (t) as t! +1. The following theorem holds.

THEOREM 2. The solution u(x; t) can be represented in the form

u(x; t) = �
[N+1

2 ]X
k=1

2b2

cosh2
h
b

�
x� 4b2t+ 1

2b
ln t2k�1+� + x

0
k

�i +O

 
1p
t

!

in the domain 
+
N (t) as t! +1. The numbers x0k are constant phases, which are given

by

x
0
k =

1

2b
ln
[(k � 1)!]2�

(k�1)
1 �

(k�1)
2 b

6k�3+2�210k�5+4�

'0(b)(b� a)��
(k)
1 �

(k)
2

;

where �n
1 and �n

2 are the determinants of the matricies with the entries (i + k)! and
�(i+ k + 1 + �) (i; k = 0; 1; :::; n� 1) respectively.

2 Proof of Theorem 1

Let us introduce the Hilbert space L2'[a; b] of the real functions g(�) on the interval (a; b)

with the norm

jjgjj =
8<
:

bZ
a

g
2(�)'(�)d�

9=
;

1=2

;

where a; b > 0. The function '(�) > 0 was intruduced in section 1. In this space let us

consider the operator A, that depends on parameters x; t 2 R

[Ag] (�) =

bZ
a

e
�(�+�)x+4(�3+�3)t

�+ �
'(�)g(�)d�; � 2 (a; b): (2:1)

LEMMA 1. The operator (E +A)�1 exists, and satis�es the relation

jj(E +A)�1jj � 1

for all x; t 2 R (E is the identity operator in L2'[a; b]).

Proof. Since a and b > 0, A is a completely continuous operator in L2'[a; b]. Let

g 2 L2'[a; b] be the solution of the equation

(E +A)g = f (2:2)

where f 2 L2'[a; b]. After scalar multiplication of (2.2) by g, and application of (2.1) and
equality

1

� + �
=

1Z
0

e
�(�+�)s

ds;
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we obtain

bZ
a

g
2(�)'(�)d� +

1Z
0

ds

0
@ bZ
a

e
��s��(x�4�2 t)

'(�)g(�)d�

1
A

2

=

bZ
a

f(�)g(�)'(�)d�: (2:3)

Hence, the homogeneous equation, which corresponds to (2.2), has only the trivial so-
lution, and, consequently, equation (2.2) is uniquely solvable for any f 2 L2'[a; b]. In

addition, (2.3) yields

jjgjj � jjf jj:
Thus the Lemma is proved.�
Using the expansion

1

� + �
=

1X
i;j=0

(i+ j)!

i!j!(2b)i+j+1
(b� �)i(b� �)j ;

let us write the operator A as a sum of the two operators

[ANg](�) =

bZ
a

e
�(�+�)x+4(�3+�3)t

NX
i;j=0

Cij(b� �)i(b� �)j'(�)g(�)d�;

(2.4)and

[BNg](�) =

bZ
a

e
�(�+�)x+4(�3+�3)t

X
(i;j)2R(N)

Cij(b� �)i(b� �)j'(�)g(�)d�;

where the numbers Cij are de�ned by (1.4) and R(N) is the following set of the couples
(i; j):

R
(N) = f(i; j) : 0 � i <1; 0 � j <1g n f(i; j) : 0 � i � N; 0 � j � N)g :

Since 0 < a � �; � � b; Cij > 0 and R(N) �
1S

k=N+1

f(i; j) : i+ j = kg the following

inequalities hold

0 <
X

(i;j)2R(N)

Cij(b� �)i(b� �)j �
1X

i+j=N+1

Cij(b� �)i(b� �)j =

=
1X

k=N+1

kX
i=0

k!

i!(k � i)!(2b)k+1
(b� �)i(b� �)k�i =

1

2b

1X
k=N+1

"
(b� �) + (b� �)

2b

#k
�

� 1

2b

"
(b� �) + (b� �)

2b

#N+1
1

1� b�a
b

� 1

2a

 
b� a

b

!N+1

: (2:5)

These inequalities allow us to estimate the norm of the operator BN at t > 0:

jjBN jj2 �
bZ

a

bZ
a

e
�2(�+�)x+8(�3+�3)t 1

(2a)2

 
b� a

b

!2(N+1)

'(�)'(�)d�d� �
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� '̂
2
0

(2a)2

 
b� a

b

!2(N+1)
0
@ bZ
a

e
�2���8�(b2��2)t(b� �)�(�� a)�d�

1
A

2

�

� '̂
2
0

(2a)2

 
b� a

b

!2(N+1)

(b� a)2(1+�+�)e�2p(�);

where

'̂0 = max
[a;b]

'0(�); � = x� 4b2t; p(�) = �(b+ a)� j�j(b� a):

It follows from this that

jjBN jj �
 
b� a

b

!N+1
2 b

�(b+ a)1+�

2a
'̂0; (2:6)

at t � 0 and � � � [N+1+�]

2b
ln
q

b

b�a .
Let us estimate the norm of BN when

� [N + 1 + �]

2b
ln

s
b

b� a
> � > � [N + 1 + �]

2b
ln t; t > 1; � = x� 4b2t:

Using the inequalities (2.5), we can write

jjBN jj2 �
bZ

a

bZ
a

e
�2(�+�)x+8(�3+�3)t 1

(2a)2

"
(b� �) + (b� �)

2b

#2(N+1)

'(�)'(�)d�d� =

=
1

(2a)2

X
k+j=2(N+1)

CkjIk(x; t)Ij(x; t); (2:7)

where

Ik(x; t) =

bZ
a

e
�2�(x�4�2t)(b� �)k'(�)d�: (2:8)

LEMMA 2. The integrals Ik(x; t) have the following asymptotic representation

Ik(x; t) =
'1�

k+�+1
1 �(k + � + 1)

tk+�+1
e
�2b� + �k(t; �);

at t!1 and � = x� 4b2t > �t1=2.
Here '1 = '0(b)(b�a)�, �1 =

�
1
4b

�2
and �(z) is Euler's �-function. The functions �k(t; �)

can be estimated by

j�k(t; �)j �
�(k + � + 2)

tk+�+3=2
D

k+�+2
e
�p(�)

;

where the constant D depends on parameters of the problem, and p(�) = �(b+a)�j�j(b�a).
Proof. Changing variables x = 4b2t+ � and � = b� �, we �nd
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Ik(x; t) = e
�2b�

b�aZ
0

e
2���8�(b��)(2b��)t

�
k
'(b� �)d�: (2:9)

Let us consider the function � = �(�) = 8�(b � �)(2b � �). It can be shown, that there

exists the inverse function � = �(�) with �(0) = 0, and the series

� = �(�) = �1�+ �2�
2 + :::;

 
�1 =

�
1

4b

�2
!

d�

d�
= �1 + 2�2�+ :::; (2:10)

(b� a� �(�))�'0(b� �(�)) = '1 + '2� + ::: ('1 = (b� a)�'0(b))

converge absolutely and uniformly at j�j � ~� < 16b3

3
p
3
. Let us choose such a number �1, that

0 < �1 < min
n
16b3

3
p
3
; �(b� a)

o
(�(b � a) = a(b2 � a

2) > 0), and set � = �(�1) (� < b� a).

Then, taking into account the equality '(b� �) = �
�(b� a� �)�'0(b� �) and (2.9), we

write

Ik(x; t) = e
�2b�

�Z
0

e
2��

e
��(�)t

�
k+�(b� a� �)�'0(b� �)d�+

+e�2b�
b�aZ
�

e
2��
e
��(�)t

�
k+�(b� a� �)�'0(b� �)d� = I

0
k(x; t) + I

00
k (x; t)

It's easy to see, that

I
00
k (x; t) � '̂0e

�p(�)
e
��1t (b� a)k+1+�+�

k + 1 + �
; (2:11)

where

'̂0 = max
�2[a;b]

'0(�); p(�) = �(b+ a)� j�j(b� a):

Let us estimate the integral I 0k(x; t). Using (2.10), we obtain

�
k+�(�)(b� a� �(�))�'0(b� �(�))

d�

d�
= '1�

k+�+1
1 �

k+� + �
k+�+1�k(�);

(2.12)

e
2�(�)� = 1 + �E(�; �);

at j�j < �1. The functions �k(�) and E(�; �) can be estimated as follows:

jE(�; �)j � Aj�je�(j�j+�);

(2.13)
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�k(�) � (k + � + 1)Bk+�+1
'1:

The constants A and B depend only on a; b and '0(�), and are determined by

A = max
�<�1

�����2�(�)�

����� ;

B = max
�<�1

max

(������(�)�
����� ;
�����
 
�(�)

�

!0����� ; jG(�)j; jG0(�)j
)
;

where

G(�) = �
0(�)

'0(b� �(�))

'0(b)

(b� a� �(�))�

(b� a)�
:

According to (2.12), the integral I 0k(�; k) can be represented in the form

I
0
k(�; t) = e

�2b�
�1Z
0

e
2�(�)�

e
��t

�
k+�(�)(b� a� �(�))�'0(b� �(�))

d�

d�
d� =

= '1�
k+�+1
1 e

�2b�
1Z
0

e
��t

�
k+�

d� � '1�
k+�+1
1 e

�2b�
1Z
�1

e
��t

�
k+�

d�+

+e�2b�
�1Z
0

e
��t

�
k+�+1(E(�; �) + �k(�))d�+

+e�2b�
�1Z
0

e
��t

�
k+�+2

E(�; �)�k(�)d� =
3X

j=0

I
(j)

k (�; t):

It is evident that

I
(0)

k (�; t) = '1�
k+�+1
1 �(k + � + 1)

e
�2b�

tk+�+1
:

Taking into account (2.13), we obtain estimates for the other summands:

jI(1)k (�; t)j � '1(2�1)
k+�+1�(k + � + 1)e�

�1
2
t e

�2b�

tk+�+1
;

jI(2)k (�; t)j <
�
Aj�je�(j�j+�) + (k + � + 1)'1B

k+�+1
�
�(k + � + 2)

e
�2b�

tk+�+2
;

jI(3)k (�; t)j < (k + � + 1)'1j�jABk+�+1�(k + � + 3)
e
�2b�+�(j�j+�)

tk+�+3
:

Hence

I
0
k(�; t) = '1�

k+�+1
1 �(k + � + 1)

e
�2b�

tk+�+1
+ �

0
k(�; t);
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where it is implied that the function �
0
k(�; t) obeyes the estimation

j�0k(�; t)j �
�(k + � + 2)

tk+�+3=2
D

k+�+2
1 e

�p(�)

at � > �t1=2. The constant D1 depends on A;B;'1; �1 and �1, i.e. on parameters of the

problem. The last statements and inequality (2.11) conclude the proof. �
Inserting the asymptotic expressions for the integrals In(x; t) obtained in Lemma 2 into

(2.7), we get

jjBN jj2 �
B

2(N+2+�)�(2(N + 2 + �))

t2(N+2+�)
e
�2p(�)

;

and, consequently,

jjBN jj � ~KN t
�1 (2:14)

at � � � [N+1+�]

2b
ln t, where ~KN is a constant depending on N , '0(�), and the problem

parameters a; b; � and �. The inequalities (2.6) and (2.14) give us a necessary estimations
of the norm of BN .
Now let us return to the equation (1.1) and rewrite it in the form

g +ANg +BNg = f (2:15)

in L2'[a; b], where the operators AN and BN are determined by (2.4). Here AN is the
operator with the degenerate kernel. According to (2.6) and (2.14), the norm of the

operator BN becomes small if N ! 1 or t ! 1 in the corresponding range of x. The
solution of (2.15) is represented in the form

g = gN + �N ; (2:16)

where gN is the solution of the equation

gN +ANgN = f: (2:17)

Therefore
�N = �(E +A)�1BNgN : (2:18)

According to (1.2)

u(x; t) = 2
d

dx
(f; g); (2:19)

where f = f(�) = e
��(x�4�2t). The parentheses denote the scalar product in L2'[a; b].

The self-adjointness of A in L2'[a; b], (2.16) and (2.18) allow us to write

(f; g) = (f; gN ) + (f; �N); (2:20)

(f; �N) =
�
f; (E +A)�1BNgN

�
=
�
(E +A)�1f;BNgN

�
=

= (gN + �N ; BNgN ) = (gN ; BNgN )�
�
(E +A)�1BNgN ; BNgN

�
: (2:21)

In section 3 we will show, that

j(f; gN )j < CN (2:22)
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for � � � [N+1+�]

2b
ln t; t > 1, where the constant C does not depend on N; � and t.

Therefore, by the virtue of the positiveness of AN , from equation (2.17) follows that

jjgN jj2 < CN: (2:23)

Applicating this inequality, (2.6), (2.14) and Lemma 1 to (2.21), we obtain

j(f; �N)j �

8>><
>>:
min

(
K0

N

t
; NK

0
�
b�a
b

�N+1
2

)
; as � � � [N+1+�]

2b
ln
q

b

b�a

K0

N

t
; as � [N+1+�]

2b
ln
q

b

b�a > � � � [N+1+�]

2b
ln t; t > 1;

(2:24)

where the constantsK 0
N and K 0 depend on the function '0(�) and the problem parameters

a; b; � and �. Taking into account (2.18) and Lemma 1, it is easy to show that the function

F (x) = (f; �N) can be continuated up to a function F (z) of exponential type 3b from the

real axis into the complex plane C. In a similar way one can prove that the estimates
(2.24) hold for the function F (z) when z belongs to any beam z = �+i�; � � � [N+1+�]

2b
ln t.

Hence, due to the Cauchy theorem we conclude that estimates of the type given by (2.17)
are valid for the function

�(N)(x; t) = 2
d

dx
(f; �N); (2:25)

i.e. the last conclusion of Theorem 1 concerning the residual �(N)(x; t) is proved.
According to (2.19) and (2.20), we have to show that

(f; gN) =
@

@C00

ln det
h
E

(N) +A
(N)(x; t)

i
: (2:26)

Let us �nd the solution gN (�;x; t) of the integral equation (2.17) with the degenerate

kernel

AN(�; �;x; t) = e
�(�+�)x+4(�3+�3)t

NX
i;j=0

Cij(b� �)i(b� �)j'(�);

which corresponds to the operator AN (2.4). Taking into account the speci�c form of the

kernel, we seek for the solution in the form

gN (�;x; t) =
NX
k=0

g
(N)

k (x; t)(b� �)ke��(x�4�
2t)
: (2:27)

Substituting (2.27) into (2.17) we obtain a system of linear algebraic equations for the

functions g
(N)

k = g
(N)

k (x; t):

g
(N)

k +
NX
j=0

A
(N)

kj g
(N)
j = �k0; k = 0; :::; N;

where �00 = 1 and �k0 = 0 for k = 1; :::; N ,

A
(N)

kj = A
(N)

kj (x; t) =
NX
i=0

CkiIi+j(x; t):
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The integrals Ik(x; t) were de�ned by (2.8).

The solution of this system is given by

g
(N)

k (x; t) =
D

(N)

k (x; t)

D(N)(x; t)
; (2:28)

whereD(N)(x; t) = det
h
E

(N) +A
(N)(x; t)

i
is the determinant of the matrixE(N)+A(N)(x; t)

with the entries �ij + A
(N)
ij (x; t) (i; j = 0; :::; N), and D

(N)

k (x; t) is the determinant of the

matrix obtained by replacing the k-th column of the matrix E
(N) + A

(N)(x; t) by the

column (1; 0; :::; 0)?.

It follows from (2.26) and (2.28) that

(f; gN) =
G

(N)(x; t)

D(N)(x; t)
;

where G(N)(x; t) is the determinant of the matrix obtained by replacing the �rst line of
the matrix E(N) +A

(N)(x; t) by the line fI0(x; y); I1(x; y); :::; IN(x; y)g. Therefore,taking
into account that A(N)(x; t) = C

(N)
I
(N)(x; t) and setting C00 as a varying parameter, we

obtain (2.18). Thus, Theorem 1 is proved. �.

3 Proof of Theorem 2.

Let us denote via ~D(N)(x; t;�0; :::; �N) the determinant of the matrix �(N) + A
(N)(x; t),

where �(N) = diag(�0; :::; �N) is the diagonal matrix depending on N + 1 parameters

�0; :::; �N . It is evident, that ~D(N)(x; t; 1; :::; 1) = D
(N)(x; t) = det

h
E

(N) +A
(N)(x; t)

i
.

This determinant is a polynom with respect to �k:

~D(N)(x; t;�0; :::; �N) = �0:::�N + �̂0�1:::�ND
(1)
0 (x; t) + �0�̂1�2:::�ND

(1)
1 (x; t)+

+:::+ �0:::�N�1�̂ND
(1)

N (x; t) + �̂0�̂1�2:::�ND
(2)
01 (x; t) + :::+ (3:1)

+�0:::�̂i1:::�̂ik�kD
(k)
i1:::ik

(x; t) +D
(N)

0:::N(x; t);

whereD
(k)
i1:::ik

(x; t) is the determinant of the matrix of the order k with the entriesAirip(x; t)

(r; p = 1; :::; k); the hat means that the corresponding parameter is absent. Taking into

account, that Aik =
NP
j=0

CijIj+k(x; t), we obtain from Lemma 2 that

D
(k)
i1:::ik

(x; t) = detC(k) det I(k)(x; t) + d
(k)(x; t) = detC(k) det �(k) e

�2bk�

tk(k+�)
+ d

(k)
1 (x; t)

when i1 = 0; i2 = 1; :::; ik = k � 1, i.e. as i1 + i2 + :::+ ik =
k(k�1)

2
, and

���D(k)
i1:::ik

(x; t)
��� < Ck

e
�kp(�)

tk(k+�)+1
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when i1 + i2 + :::+ ik >
k(k�1)

2
. Here � = x� 4b2t, p(�) = �(b + a)� j�j(b � a), C(k) and

�(k) are matricies of order k with the elements Cij and �
(k)
ij = '1�

i+j+�+1
1 �(i+ j + � + 1)

(i; j = 0; :::; k�1) respectively, �(z) is Euler's �-function, and the functions d(k)(x; t) and

d
(k)
1 (x; t) satisfy the estimates

���d(k)(x; t)��� ; ���d(k)1 (x; t)
��� � Ck

e
�kp(�)

tk(k+�)+1=2
:

Setting �i = 1 (i = 0; :::; N) in (3.1), it follows that

det
h
E

(N) +A
(N)(x; t)

i
= 1 +

NX
k=1

detC(k) det �(k) e
�2bk�

tk(k+�)
(1 + �k(x; t)); (3:2)

where the functions �k(x; t) satisfy the estimats

j�k(x; t)j <
Ckp
t
: (3:3)

A more detailed analysis of the determinants D
(k)
i1:::ik

shows, that the derivatives of these
functions with respect to x and the parameter C00 obey the same estimates:

����� @�k@C00

����� ;
�����@�k@x

����� ;
�����@

2
�k

@2x

����� < Cp
t
: (3:4)

Remark. The last estimates follow also from the possibility to continue analytically the

functions �k = �k(x; t; C00) into the strips jImC00j < C and jImxj < C with respect to x

and C00. The estimates (3.3) remain valid there.

Let us take the advantage of the following equality, which is proved, for example, in [2]:

k detC
(k)
0 = detC

(k�1)
1 ;

where C
(k)
0 is the matrix of the order k with the elements (i+j)!

i!j!
(i; j = 0; :::; k � 1), and

C
(k�1)
1 is the matrix of the order k � 1 with the elements (i+j)!

i!j!
(i; j = 1; :::; k � 1).

From this we obtain the relation

@

@C00

detC(k) = 2bk detC(k) j
C00=(2b)�1 : (3:5)

Now, taking into account Theorem 1 and (3.2)-(3.5), we obtain asymptotic formula for

the solution:

u(x; t) = �2 d
2

d�2
ln

"
1 +

NX
k=1

detC(k) det �(k) e
�2bk�

tk(k+�)

#
�=x�4b2t

+O

 
1p
t

!
(3:6)

in the domain 
+
N (t) =

n
x > 4b2t� 1

2b
ln t[N+1+�]

o
as t!1.
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Introduce the notations:

�N(�; t) = 1 +
NX
k=1

Pk

e
�2bk�

tk(k+�)
; (3:7)

Pk = detC(k) det �(k) =
'
k
0(b)(b� a)2��

(k)
1 �

(k)
2

k�1Q
i=0

(i!)2bk(3k+2�)2k(5k+4�)

; (3:8)

where �
(k)
1 > 0 and �

(k)
2 > 0 are the determinants of the matricies of the order k with

the entries (i+ j)! and �(i+ j+1+�) (i; j = 0; :::; k� 1) respectively. (They are positive

since both are Gramm's determinants.)
Then from (3.6) and (3.7) follows that

u(x; t) � uN(x; t) = �2 d
2

d�2
ln�N(�; t)

�����
�=x�4b2t

= ��00
N�N � (�0

N)
2

�2
N

(3:9)

and

�00
N�N � (�0

N )
2 = 4b2

NX
i;k=0

(i� k)2PiPke
�2(i+k)b�

ti(i+�)+k(k+�)
: (3:10)

Let us cover the domain � > �(2b)�1 ln t[N+1+�] by the intervals

a1(t) = f�(2b)�1 ln t2+�+" < � <1g;

an(t) = f�(2b)�1 ln t2n+�+" < � < �(2b)�1 ln t2(n�1)+��"g;
: : : ;

a[N+1
2 ](t) =

�
�(2b)�1 ln t[N+�+1]

< � < �(2b)�1 ln t2[N�1
2 ]+��"

�
:

Taking into account (3.7) and (3.10), we obtain

�2
N =

"
Pn�1e

�2(n�1)b�

t(n�1)(n�1+�)
+
Pne

�2nb�

tn(n+�)

# �
1 +O

�
t
�1=2

��
;

and

�00
N�N � (�0

N)
2 = 4b2

2PnPn�1e
�2(2n�1)b�

tn(n+�)+(n�1)(n�1+�)

�
1 +O

�
t
�1=2

��
;

when � 2 an(t) and t! +1. Hence, by virtue of (3.6) and (3.9) follows that

u(x; t) = �
[N+1

2 ]X
n=1

2b2

cosh2
h
b

�
x� 4b2t+ 1

2b
ln t2n�1+� + x0n

�i +O

�
t
�1=2

�

uniformly with respect to � = x�4b2t 2 an(t), where x
0
n =

1
2b
ln Pn

Pn�1
. Thus, together with

(3.8) we obtain the required asymptotics of the solution in the domain 
N (t). Since
h
N+1
2

i
solitons are con�ned in 
N (t), and the integral of each of them convergs, we simultaneously

obtain the inequality (2.22). This concludes the proof.�
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4 Asymptotic behaviour of solutions as t! �1.

The method developed in the previous sections allows us to study the asymptotic be-
haviour of the solution u(x; t) (determined everywhere in R2 by (1.1) and (1.2)) in the

domains


�N (t) =

(
x 2 R1 : x > 4a2t� [N + 1 + �]

2a
ln jtj

)
; t < �1

as t ! �1. We call these domains neighbourhoods of the trailing edge (back of the
solution), since u(x; t) exponentially vanish as x! +1 and the graph of u(x; t) is moving

to the left as t! �1. It turns out, that u(x; t) also splits into
h
N+1
2

i
asymptotic solitons

in the domain 
�N as t! �1. These solitons have the amplitude 2a2 < 2b2 and move to

the left. The exact result is contained in the following

THEOREM 3. The solution u(x; t) of the KdV equation has the following asymptotic

representation

u(x; t) = �
[N+1

2 ]X
k=1

2a2 cosh2
�
a

�
x� 4a2t+

1

2a
ln t2n�1+� + x

0
n

��

in the domains 
�N (t) as t ! �1. Here, x0n are constant phases, which are determined

by

x
0
n =

1

2a
ln
[(n � 1)!]2�

(n�1)
1 �

(n�1)
2 a

6n�3+2�210n�5+4�

'0(a)(b� a)��
(n)
1 �

(n)
2

;

where �
(n)
1 > 0 and �

(n)
2 > 0 are the same determinants as in Theorem 2.

Let us outline the key points of the proof. For simplicity we set a < b < 2a. Using
expansion into a series

1

�+ �
=

1X
i;j=0

(i+ j)!(�1)i+j
i!j!(2a)i+j+1

(�� a)i(�� a)j;

which convergs absolutely and uniformly as a � �, � � b, we approximate the operator

A (see (2.1)) by an integral operator AN with a degenerate kernel. We obtain estimates
for the norm of the operator BN = A�AN , which are similar to those given by (2.6) and

(2.7):

jjBN jj �
 
b� a

a

![N+1
2 ] (b� a)�b

2a(2a� b)
'̂0; at � > � [N + 1 + �]

2a
ln

s
a

b� a
; t < �1;

and

jjBN jj �
1

2a(2a� b)

X
k+j=2(N+1)

CkjIk(x; t)Ij(x; t) � Ct
�1
;
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at � [N + 1 + �]

2a
ln

s
a

b� a
> � > � [N + 1 + �]

2a
ln t; t < �1; � = x� 4a2t;

where Ik(x; t) =
bR
a

e
�2�(x�4�2t)(� � a)k'(�)d�.

To estimate the integrals Ik(x; t), we prove an analogue of Lemma 2:

LEMMA 3. The integrals Ik(x; t) have the following asymptotic representation

Ik(x; t) =
'1�

k+�+1
1 �(k + �+ 1)

jtjk+�+1
e
�2��

 
1 +O

 
1p
t

!!

as t! �1 and � = x� 4a2t > �
p
t, where '1 = '0(a)(b� a)� and �1 =

�
1
4a

�2
.

Thus the problem is reduced to the solution of an integral equation with the degenerate
kernel

AN(�; �;x; t) =
NX

i;j=0

C
0
ije

�(�+�)x+4(�3+�3)t(�� a)i(�� a)j'(�);

where

C
0
ij =

(i+ j)!(�1)i+j
i!j!(2a)i+j+1

:

After solving this equation the asymptotic behaviour of the solution at t ! �1 can be
investigated in a same way as in the previous case. As the result we obtain the asymptotic

formula of Theorem 3.
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