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Markovian approximations of stochastic Volterra equations with the fractional
kernel

Christian Bayer, Simon Breneis

Abstract

We consider rough stochastic volatility models where the variance process satisfies a stochastic Volterra
equation with the fractional kernel, as in the rough Bergomi and the rough Heston model. In particular, the
variance process is therefore not a Markov process or semimartingale, and has quite low Hölder-regularity.
In practice, simulating such rough processes thus often results in high computational cost. To remedy this,
we study approximations of stochastic Volterra equations using an N -dimensional diffusion process de-
fined as solution to a system of ordinary stochastic differential equation. If the coefficients of the stochastic
Volterra equation are Lipschitz continuous, we show that these approximations converge strongly with su-
perpolynomial rate in N . Finally, we apply this approximation to compute the implied volatility smile of a
European call option under the rough Bergomi and the rough Heston model.

1 Introduction

Suppose we are given a stochastic Volterra equation of the form

Xt = x0 +

∫ t

0
G(t− s)b(Xs)ds+

∫ t

0
G(t− s)σ(Xs)dWs, (1.1)

where x0 ∈ Rd, b : Rd → Rd and σ : Rd×d → Rd×d are Lipschitz continuous, W is a d-dimensional
Brownian motion. G denotes a – for simplicity – one-dimensional kernel assumed to be completely monotone.
The kernel G is often a power law kernel, G(t) ≃ tH−1/2. In analogy to fractional Brownian motion (fBm), we

call the parameter 0 < H < 1 Hurst parameter. Indeed, the special case W̃t :=
√
2H
∫ t
0 (t − s)H−1/2ds

defines the so-called Riemann–Liouville fBm.

Models of this type are used in different applications – we refer to [21] and [10] for applications in biology and
turbulence, respectively. We are mostly motivated by the recent framework of rough stochastic volatility models
in finance. In this context, we typically consider an asset price process

dSt =
√
VtStdZt

defined in terms a a Brownian motion (Bm) Z and the stochastic variance process v – we consider dynamics
under a risk neutral measure and assume interest rate r = 0 for simplicity. As observed in [17] (for time series
of stock prices) and [4] (for option prices), stochastic volatility models can provide excellent fits to market data
when the stochastic variance follows a dynamic of stochastic Volterra type with fractional kernel an smallH ≈ 0
– suggesting the name “rough stochastic volatility”. A popular example of a rough stochastic volatility model is
the rough Heston model, see [15], given by the dynamics

Vt = V0 +

∫ t

0
G(t− s)

(
θ − λVs

)
ds+

∫ t

0
G(t− s)ν

√
VsdBs.

Another important example is the rough Bergomi model, see [4],

Vt := ξ(t) exp

(
η
√
2H

∫ t

0
(t− s)H−1/2dBs −

η2

2
t2H
)
.
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In both cases, the Bm B driving the variance dynamics is correlated with the Bm Z driving S.

While very useful from a modeling point of view, the fact that rough stochastic volatility processes – or, more
generally, stochastic Volterra processes – are no Markov processes leads to serious theoretical and numerical
challenges. This motivates the use of Markovian approximations to the stochastic Volterra processes. A simple
and flexible approach goes back to [9]. It is well-known that any completely monotone kernel G allows for a
representation in terms of a Laplace transform, i.e., there is a measure µ on the positive half-line such that

G(t) =

∫ ∞

0
e−txµ(dx), t > 0.

Hence, the stochastic Fubini theorem implies that

W̃t :=

∫ t

0
G(t− s)dWs =

∫ ∞

0

∫ t

0
e−(t−s)xdWs µ(dx) =

∫ t

0
Y x
t µ(dx), Y x

t :=

∫ t

0
e−(t−s)xdWs,

where Y x is an Ornstein–Uhlenbeck process, and, hence, a Markov process. Indeed, the infinite-dimensional
process Yt := (Y x

t )x>0 is a Markov process with state space L1(R>0, µ), see [9].

In what follows, we will mostly restrict ourselves to the fractional kernel given by

G(t) :=
tH−1/2

Γ(H + 1/2)
, (1.2)

where we will assume that H ∈ (0, 1/2). In this case, we have

G(t) = cH

∫ ∞

0
e−xtx−H−1/2dx, cH :=

1

Γ(H + 1/2)Γ(1/2−H)
, (1.3)

i.e., µ(dx) = w(x)dx with w(x) := cHx
−H−1/2, x > 0. Approximating this integral by a finite sum, i.e.,

G ≈ Ĝ with

Ĝ(t) :=
N∑
i=1

wie
−xit, (1.4)

we get

X̂t = x0 +

∫ t

0
Ĝ(t− s)b(X̂s)ds+

∫ t

0
Ĝ(t− s)σ(X̂s)dWs. (1.5)

Such approximations were already considered by, e.g., Abi Jaber and El Euch [2], Alfonsi and Kebaier [3], and,
for the particular case of fractional Brownian motion, by Harms [18]. Indeed, we have the following proposition,
which shows that (1.5) reduces to an N -dimensional ordinary stochastic differential equation, instead of a
stochastic Volterra equation.

Proposition 1.1. [3, Proposition 2.1]. Let x10, . . . , x
N
0 ∈ Rd be such that

∑N
i=1wix

i
0 = x0. Then the solution

to (1.5) is given by
∑N

i=1wiX
i
t , where (X1

t , . . . , X
N
t ) is the solution to the (N×d)-dimensional SDE defined

by

Xi
t = xi0 −

∫ t

0
xi(X

i
t − xi0)ds+

∫ t

0
b

( N∑
j=1

wjX
j
s

)
ds+

∫ t

0
σ

( N∑
j=1

wjX
j
s

)
dWs. (1.6)

Perhaps unsurprisingly, the approximation error between X and the Markovian approximation X̂ is controlled
by the error betweenG and Ĝ, more precisely by the L2-error. The following bound is a slight modification of [3,
Proposition 3.2].

Proposition 1.2. [3, Proposition 3.2]. For every T > 0, there exists a constant C (depending on T , |x0|, b, σ),
such that

E
∣∣X̂T −XT

∣∣2 ≤ C

∫ T

0

∣∣G(t)− Ĝ(t)
∣∣2dt.
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Using this bound, Alfonsi and Kebaier in [3, Corollary 3.1] constructed a point set (xi)i=1,...,N with weights
(wi)i=1,...,N by cutting off the integral in (1.3) at some large value K , and then using the midpoint rule on
linearly spaced intervals on [0,K]. They were able to prove a strong rate of convergence of N−2H/3. In the
same paper, they were able to improve the rate of convergence to almostN−H using some more sophisticated
constructions. This is a very slow convergence rate, in particular asH is often found to be close to 0 in empirical
studies, see [4]. For instance, if H = 0.1, increasing the accuracy of the computation by one more significant
digit would require increasing N by a factor 1010. The aim of this paper is to considerably improve the rate of
convergence by using point sets adapted to the problem at hand.

In this we are motivated by Harms [18]. Rather than linearly spaced intervals, Harms used a geometric spac-
ing. Additionally, he used Gaussian quadrature rules of arbitrary level m instead of the midpoint rule for the
approximation of the integral in (1.3). Using this approach, Harms managed to prove a rate of convergence of
almost n−2Hm/3, where n = N/m is the number of intervals used (see [18, Theorem 1]). While this yields
a convergence of arbitrary order, it is still apparent that m has to be chosen quite large to get a suitably large
order if H is small. This can of course pose additional problems, as the constants in his bound likely grow in
m. It should also be noted that Harms did not give a suggestion on which m to use given a choice of N , and
also, that he chose a quite different approach and only proved this rate of convergence for the particular case of
fractional Brownian motion.

We will combine the ideas of these papers by using the estimate of Proposition 1.2 by Alfonsi and Kebaier,

and a modified version of the point set used by Harms. We obtain an error bound of the form exp
(
−c

√
N
)

.

For more details on the rate of convergence together with an explicit choice of the points xi and weights wi

see Theorem 2.1. A further improvement (in terms of constants) is given in Theorem 2.14. These results are
then applied to the rough Bergomi model in Section 3.2 – in the context of simulation methods – and the rough
Heston model in Section 3.3 – regarding the characteristic function and Fourier pricing methods.

Further improvements in the choices of points xi and weights wi are discussed in Section 4.2 based on empir-
ical optimizations of constants.

Numerical experiments using the various suggested point sets for the simulation of fractional Brownian motion
are conducted in Section 4. Here, these approximations are also compared to the point sets suggested by [3]
and [18]. Finally, the point set suggested in Section 4.2 is applied for the approximation of the implied volatility
smile under the rough Bergomi model in Section 4.3 and for the implied volatility smile under the rough Heston
model in Section 4.4. For both models, we also compare our approximation to already existing ones.

It should be noted that similar results can be obtained for other completely monotone kernels G corresponding
to other weight functions w. Indeed, the rates of convergence observed in this paper are determined by the rate
of explosion of w at 0 as well as the rate of decay at ∞, as well as its regularity on the full domain. An abstract
result of this form is provided in Theorem 2.10 below. However, for the delicate task of finding good point sets
and weights, we prefer to work with the specific class of fractional kernel.

2 Main results

In this paper, we will write a ≈ b for a ∈ N and b ∈ R if |a− b| < 1, i.e., if a can be obtained from b by
rounding to one of the two nearest integers. This notation will be used in various error estimation or optimization
procedures, when integer-valued variables will be relaxed to real ones for simplification.

2.1 Superpolynomial rate of convergence

We now describe the nodes and weights used in our approximation of the kernel G. They essentially follow a
Gaussian quadrature rule. A reminder of Gaussian quadrature is given in Appendix A.

Let N ∈ N the total number of nodes and α, β, a, b ∈ (0,∞) be parameters of the scheme. Together with
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A = AH :=
(

1
H + 1

3/2−H

)1/2
, where 0 < H < 1/2 denotes the Hurst index of the kernel G, we define

m :≈ β

A

√
N, n :≈ A

β

√
N (≈ N/m),

ξ0 := a exp

(
− α

(3/2−H)A

√
N

)
, ξn := b exp

(
α

HA

√
N

)
,

ξi := ξ0

(
ξn
ξ0

)i/n

, i = 0, . . . , n.

Then, we define the Gaussian rule of type (H,N,α, β, a, b) to be the set of nodes (xi)
nm
i=1 with weights

(wi)
nm
i=1 of the Gaussian quadrature rule of level m applied to the intervals [ξi, ξi+1] for i = 0, . . . , n− 1 with

the weight function

w(x) := cHx
−H−1/2, cH :=

1

Γ(H + 1/2)Γ(1/2−H)
. (2.1)

In addition, we set x0 := 0 and

w0 := cH

∫ ξ0

0
x−H−1/2dx =

cH
1/2−H

ξ
1/2−H
0 .

Whether in practice we round up or down in the definition ofm depends on the context and will always be stated
explicity. The value of n is then chosen such that nm is as close as possible to N . The approximation of G is
then given by

Ĝ(t) :=
nm∑
i=0

wie
−xit. (2.2)

Theorem 2.1. Let x0 ∈ Rd, and let b : Rd → R and σ : Rd×d → Rd×d be globally Lipschitz continuous
functions. Let X be the solution of (1.1), and let X̂ be the solution of (1.5), where we use the Gaussian rule of
type (H,N,α, β, 1, 1) with α := 1.06418 and β := 0.4275. Then,

E
∣∣XT − X̂T

∣∣2 ≤ Cc2H

(
T 3

(3/2−H)2
+

3

2H2
+

5π3

48

(
eαβ −1

)2A2−2HT 2H

β2−2HH
N1−H

)
exp

(
− 2α

A

√
N

)
,

where C is the constant from Proposition 1.2.

Note that we have α/A ∼ α
√
H as H → 0. For H = 0.1, α/A ≈ 0.3251.

Remark 2.2. Theorem 2.1 is not only true for the specific values of α and β given above, but for an entire
set Γ ⊂ R2

+ of pairs (α, β). The theorem thus tells us that in particular, (1.06418, 0.4275) ∈ Γ. While this
parameter choice is the best for which we were able to show the theorem, we will observe in Section 4.2 that in
practice we may achieve even better results with a different choice of (α, β).

Remark 2.3. While we apply Gaussian quadrature rules of level m on the intervals [ξi, ξi+1], we only use a
Riemann-type approximation on [0, ξ0]. This has a couple of reasons. First, it simplifies the proof. Second, we
are interested in rough volatility models, where one usually needs to jointly simulate the Volterra process and the
underlying Brownian motion (for the stock price). As taking x0 = 0 corresponds to no mean reversion, adding
this node often does not increase the computational cost at all. Third, while using a Gaussian quadrature rule
on [0, ξ0] could potentially improve the error up to

exp

(
− α

√
H
√
N

)
,

this is really only a minor asymptotic speedup. Indeed, for H = 0.1, we have α
√
H ≈ 0.3365, which is

only insignificantly larger than α/A ≈ 0.3251. At the same time, this would add m additional nodes that are
(compared to the node x0 = 0) non-trivial, increasing the computational cost especially for smallN . Numerical
experiments indicate that using a Gaussian quadrature rule on [0, ξ0] only becomes worthwile for sufficiently
large N , say N > 100.
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Remark 2.4. The bound in Theorem 2.1 is completely non-asymptotic. For simplicity, we assume that m and n
are real-valued, rather than integer-valued. One can still take the suggested point set of the theorem by simply
rounding m and n. As the theorem seems to overestimate the quadrature error (see Section 4.1), resulting in
artificially small intervals [ξ0, ξn], we recommend always rounding m up to the next integer. (Note that we do
not make the same recommendation for the point set suggested in Section 4.2.)

Remark 2.5. We are not sure whether the geometric choice of the quadrature intervals [ξi, ξi+1] is optimal.
While with this choice of intervals some expressions simplify nicely in the proof of the upcoming Lemma 2.8, it
might be possible to achieve a better rate of convergence with a smarter choice of intervals.

Remark 2.6. In practice, we actually propose using a weight w0 different from the one stated in Theorem 2.1,
see Remark 2.13. The weight w0 suggested above is only used to simplify the proof of the theorem.

Before proceeding to the proof of Theorem 2.1, we prove some auxiliary lemmas on the errors of Gaussian
quadrature. In these proofs, we will make use of results in Appendix A.

Lemma 2.7. Let w̃i be the weights and x̃i be the nodes of the Gaussian quadrature rule for i = 1, . . . ,m on
the interval [a, b] with respect to the weight function w(x) = cHx

−H−1/2. Then,∣∣∣∣∣cH
∫ b

a
e−txx−H−1/2dx−

m∑
i=1

w̃ie
−tx̃i

∣∣∣∣∣ ≤
√

5π3

18

cH
22m+1mH

t−1/2+H

(
b

a
− 1

)2m+1

.

Proof. By Lemma A.1 and Lemma A.2,∣∣∣∣∣cH
∫ b

a
e−txx−H−1/2dx−

m∑
i=1

w̃ie
−tx̃i

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a
∂2mx e−txK2m(x)dx

∣∣∣∣∣
≤ t2m

∫ b

a
e−tx|K2m(x)|dx

≤ t2m
∫ b

a
e−ta (2π)

2m

(2m)!

(
b− a

2

)2m

sup
y∈[−1,1]

|B2m(y)| sup
y∈[a,b]

|w(y)|dx.

Note that for even s, Bs is an even function, implying that supy∈[−1,1] |Bs(y)| = supy∈[0,1] |Bs(y)|. Hence,
we can apply Lemma A.3 to get

∣∣∣∣∣cH
∫ b

a
e−txx−H−1/2dx−

m∑
i=1

w̃ie
−tx̃i

∣∣∣∣∣ ≤
t2m

∫ b

a
e−ta (2π)

2m

(2m)!

(
b− a

2

)2m 2ζ(2m)

(2π)2m
cHa

−H−1/2dx.

Using that ζ(2m) ≤ ζ(2) = π2/6 yields

∣∣∣∣∣cH
∫ b

a
e−txx−H−1/2dx−

m∑
i=1

w̃ie
−tx̃i

∣∣∣∣∣ ≤ t2me−ta 1

(2m)!

(b− a)2m+1

22m
π2

3
cHa

−H−1/2

=
π2cH

3 · 22m(2m)!
t2me−taa2m+1/2−H

(
b

a
− 1

)2m+1

.
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Stirling’s formula k! ≥
√
2πk

(
k
e

)k
and the estimate e−x ≤

(η
e

)η
x−η , x, η ≥ 0 for η = 2m+1/2−H yield∣∣∣∣∣cH

∫ b

a
e−txx−H−1/2dx−

m∑
i=1

w̃ie
−tx̃i

∣∣∣∣∣
≤ π2cH

3 · 22m2
√
πm

(
e

2m

)2m

t2m
(
2m+ 1/2−H

e

)2m+1/2−H

×

× (ta)−2m−1/2+Ha2m+1/2−H

(
b

a
− 1

)2m+1

=
π2cH

3 · 22m+1
√
πm

(
2m+ 1/2−H

2m

)2m(2m+ 1/2−H

e

)1/2−H

t−1/2+H

(
b

a
− 1

)2m+1

≤ π2cH
3 · 22m+1

√
πm

e1/2−H

(
2m+ 1/2−H

e

)1/2−H

t−1/2+H

(
b

a
− 1

)2m+1

≤ π2cH
3 · 22m+1mH

(
5/2

π

)1/2

t−1/2+H

(
b

a
− 1

)2m+1

≤
√

5π3

18

cH
22m+1mH

t−1/2+H

(
b

a
− 1

)2m+1

.

The previous lemma is an error estimate of our integration error on an interval [ξi, ξi+1]. We will now combine
the errors over all such intervals.

Lemma 2.8. In the setting of Theorem 2.1, we have∫ T

0

∣∣∣∣cH ∫ ξn

ξ0

e−txx−H−1/2dx−
N∑
i=1

wie
−txi

∣∣∣∣2dt ≤ 5π3

36

c2HT
2H

H

n2

m2H

(
1

2

(
eαβ − 1

))4m+2

.

Proof. Since we split up the interval [ξ0, ξn] into n subintervals and apply a Gaussian quadrature rule on each
of them, we have with the triangle inequality and Lemma 2.7∫ T

0

∣∣∣∣cH ∫ ξn

ξ0

e−txx−H−1/2dx−
N∑
i=1

wie
−txi

∣∣∣∣2dt
≤
∫ T

0

( n−1∑
i=0

√
5π3

18

cH
22m+1mH

t−1/2+H

(
ξi+1

ξi
− 1

)2m+1)2

dt.

Recall that

ξi+1

ξi
=

(
ξn
ξ0

)1/n

= exp

(
α
√
N

An

(
1

H
+

1

3/2−H

))
= exp

(
αA

√
N

n

)
= exp

(
αβA

√
N

A
√
N

)
= eαβ.

Thus, ∫ T

0

∣∣∣∣cH ∫ ξn

ξ0

e−txx−H−1/2dx−
N∑
i=1

wie
−txi

∣∣∣∣2dt
≤
∫ T

0

( n−1∑
i=0

√
5π3

18

cH
22m+1mH

t−1/2+H
(
eαβ − 1

)2m+1
)2

dt

=

∫ T

0

(
n

√
5π3

18

cH
22m+1mH

t−1/2+H
(
eαβ − 1

)2m+1
)2

dt

=
5π3

36

c2HT
2H

H

n2

m2H

(
1

2

(
eαβ − 1

))4m+2

.
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We now move to the proof of Theorem 2.1.

Proof of Theorem 2.1. By Proposition 1.2, we have

E
∣∣XT − X̂T

∣∣2 ≤ C

∫ T

0

∣∣G(t)− Ĝ(t)
∣∣2dt.

Hence,

E
∣∣XT − X̂T

∣∣2 ≤ C

∫ T

0

∣∣∣∣cH ∫ ∞

0
e−txx−H−1/2dx−

N∑
i=0

wie
−txi

∣∣∣∣2dt
≤ 3C

∫ T

0

(∣∣∣∣cH ∫ ξ0

0
e−txx−H−1/2dx− w0

∣∣∣∣2
+

∣∣∣∣cH ∫ ξn

ξ0

e−txx−H−1/2dx−
N∑
i=1

wie
−txi

∣∣∣∣2
+

∣∣∣∣cH ∫ ∞

ξn

e−txx−H−1/2dx

∣∣∣∣2
)
dt.

Let us consider the first summand first. By the choice of w0, we have∣∣∣∣cH ∫ ξ0

0
e−txx−H−1/2dx− w0

∣∣∣∣ = cH

∫ ξ0

0

(
1− e−tx

)
x−H−1/2dx.

Since ey ≥ 1 + y, we have

cH

∫ ξ0

0

(
1− e−tx

)
x−H−1/2dx ≤ cH

∫ ξ0

0
txx−H−1/2dx

=
cH

3/2−H
tξ

3/2−H
0

=
cH

3/2−H
t exp

(
− α

A

√
N

)
.

Squaring and integrating gives∫ T

0

∣∣∣∣cH ∫ ξ0

0
e−txx−H−1/2dx− w0

∣∣∣∣2dt ≤ c2HT
3

3(3/2−H)2
exp

(
− 2α

A

√
N

)
.

Now, consider the last summand. We have∫ T

0

(
cH

∫ ∞

ξn

e−txx−H−1/2dx

)2

dt = c2H

∫ T

0

∫ ∞

ξn

∫ ∞

ξn

e−t(x+y)x−H−1/2y−H−1/2dydxdt

≤ c2H

∫ ∞

ξn

∫ ∞

ξn

∫ ∞

0
e−t(x+y)dtx−H−1/2y−H−1/2dydx

= c2H

∫ ∞

ξn

∫ ∞

ξn

x−H−1/2y−H−1/2

x+ y
dydx

≤
c2H
2

∫ ∞

ξn

∫ ∞

ξn

x−H−1/2y−H−1/2

√
xy

dydx

=
c2H
2H2

ξ−2H
n

=
c2H
2H2

exp

(
− 2α

A

√
N

)
.

DOI 10.20347/WIAS.PREPRINT.2868 Berlin 2021



Ch. Bayer, S. Breneis 8

Putting these estimates and Lemma 2.8 together, we get

E
∣∣XT − X̂T

∣∣2 ≤ 3C

(
c2HT

3

3(3/2−H)2
exp

(
− 2α

A

√
N

)
+

5π3

36

c2HT
2H

H

n2

m2H

(
1

2

(
eαβ − 1

))4m+2

+
c2H
2H2

exp

(
− 2α

A

√
N

))

= Cc2H

((
T 3

(3/2−H)2
+

3

2H2

)
exp

(
− 2α

A

√
N

)
(2.3)

+
5π3

12

A2−2HT 2H

β2−2HH
N1−H

(
1

2

(
eαβ − 1

))4m+2
)
.

Notice that (
1

2

(
eαβ − 1

))4m

= exp

(
log

(
1

2

(
eαβ − 1

))4β

A

√
N

)
. (2.4)

Our next goal is to choose α and β in such a way as to maximize the rate of convergence in N . The rate of
convergence in the first term of (2.3) is of course larger the larger α is, indicating that we would like to choose α
as large as possible. However, larger α at the same time leads to slower rate of convergence in the second term
of (2.3), which is equivalent to the right-hand side of (2.4). Hence, to maximize the overall rate, we first set the
rates of the first term in (2.3) equal to the rate of the second term in (2.3), and afterwards, we maximize over α.
In all that, we ignore the factorN1−H in the second term of (2.3), as it is comparatively negligible. We therefore
have to solve the optimization problem

α→ max!, subject to − 2α

A

√
N = log

(
1

2

(
eαβ − 1

))4β

A

√
N, (2.5)

where we maximize over α, β > 0.

As one can see, this optimization problem is completely “dimensionless”, so the solutions α, β are actually
numbers independent of any parameters, and are given as in the statement of the theorem. For these values,
we have

E
∣∣XT − X̂T

∣∣2 ≤
Cc2H

(
T 3

(3/2−H)2
+

3

2H2
+

5π3

48

(
eαβ − 1

)2A2−2HT 2H

β2−2HH
N1−H

)
exp

(
− 2α

A

√
N

)
.

This proves the theorem.

2.2 Markovian approximation for general completely monotone kernels

We remark that a proof similar to the one of Theorem 2.1 can be done for more general completely monotone
kernels. In Theorem 2.10 we give one such generalization. A rough sketch of the proof and the precise choice
of nodes is given in Appendix B. We consider the following class of kernels.

Definition 2.9. A completely monotone kernel G is said to be of type (γ, δ) if

G(t) =

∫ ∞

0
e−xtw(x)dx

for some non-negative weight function w that is continuous on (0,∞) and satisfies w(x) = O(x−γ), x→ 0,

and w(x) = O(x−δ), x→ ∞. Furthermore, we define Aγ,δ :=
(

1
δ−1/2 + 1

2−γ

)1/2
.
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Markovian approximations 9

Theorem 2.10. Let x0 ∈ Rd, and let b : Rd → R and σ : Rd×d → Rd×d be globally Lipschitz continuous
functions. LetG be of type (γ, δ) with 1/2 < δ < 3/2. LetX be the solution of (1.1), and let X̂ be the solution
of (1.5) for the choice of nodes and weights in Appendix B. Then,

E
∣∣XT − X̂T

∣∣2 ≤ CN3/2−(γ∧δ) exp

(
− 2α

Aγ,δ

√
N

)
,

where C does not depend on N , and α is chosen as in Theorem 2.1.

2.3 Optimizing over constants

As mentioned in Remark 2.6, we recommend choosing a weightw0 different from the one stated in Theorem 2.1.
We will now analyse what the optimal choice of w0 is. For this, we need the following exact error representation,
which follows immediately by expanding the square.

Proposition 2.11. Consider Ĝ(t) =
∑N

i=0wie
−xit, where x0 = 0 and xi > 0 for i = 1, . . . , N . Then,

∫ T

0

∣∣G(t)− Ĝ(t)
∣∣2dt = T 2H

2HΓ(H + 1/2)2
+ w2

0T + 2w0

N∑
i=1

wi

xi

(
1− e−xiT

)
+

N∑
i,j=1

wiwj

xi + xj

(
1− e−(xi+xj)T

)
(2.6)

− 2w0T
H+1/2

Γ(H + 3/2)
− 2

Γ(H + 1/2)

N∑
i=1

wi

x
H+1/2
i

∫ xiT

0
tH−1/2e−tdt.

Remark 2.12. The expression in (2.6) is almost explicit, except for the integral on the right hand side. This is
however an incomplete gamma function, which can be computed efficiently.

Remark 2.13. Note that the right hand side of (2.6) is a quadratic polynomial in w0. This polynomial can easily
be minimized in closed form. Indeed, we propose using the w0 minimizing equation (2.6) instead of the w0

chosen in Theorem 2.1 or Theorem 2.14.

In Theorem 2.1 we have chosen Gaussian rules of type (H,N,α, β, a, b), where we have set a = b = 1.
Our goal is now to choose different a and b that improve the constants and the polynomial rate in Theorem
2.1. We get Theorem 2.14 below. The values of a and b in this theorem are chosen as the solution to some
optimization problem. Since the proof of this theorem is somewhat technical and not very enlightening, we defer
it to Appendix C.

Theorem 2.14. Let x0 ∈ Rd, and let b : Rd → R and σ : Rd×d → Rd×d be globally Lipschitz continuous
functions. Let X be the solution of (1.1), and let X̂ be the solution of (1.5), where we use the Gaussian rule of
type (H,N,α, β, a, b) with α := 1.06418 and β := 0.4275,

a = T−1

((9− 6H

2H

) eαβ

8(eαβ−1)
(5π3
768

eαβ
(
eαβ − 1

)A2−2H(3− 2H)

β2−2HH
N1−H

)2H)γ

,

b = T−1

((9− 6H

2H

) eαβ

8(eαβ−1)
( 5π3

1152
eαβ
(
eαβ − 1

)A2−2H

β2−2H
N1−H

)2H−3
)γ

,

where γ :=
(

3eαβ

8(eαβ−1)
+ 6H − 4H2

)−1
and we assume that N ≥ 2. Then,

E
∣∣XT − X̂T

∣∣2 ≤ C(N) exp

(
− 2α

A

√
N

)
,
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and C(N) can be given explicitly as

C(N) = Cc2HT
2H

(
1

2H
+ 8

eαβ − 1

eαβ
+

1

3− 2H

)
×

×
(( 3

H

) eαβ(3−2H)

8(eαβ−1)
(5π3
384

eαβ
(
eαβ − 1

) A2−2H

β2−2HH
N1−H

)6H−4H2( 1

3/2−H

) eαβH

4(eαβ−1)

)γ

,

where C is the constant from Proposition 1.2.

Remark 2.15. The polynomial order of C(N) in N is rather intransparent. Taking the maximum over H ∈
(0, 1/2), we get that for any H in this interval,

C(N) = O(N0.42).

3 Examples

We apply the kernel approximation to three different use cases: fractional Brownian motion of Riemann–Liouville
type, the rough Bergomi model, and finally, the rough Heston model.

3.1 The case of fractional Brownian motion

Suppose we want to simulate a modified Riemann–Liouville fBm, i.e., Xt =
1

Γ(H+1/2)

∫ t
0 (t − s)H−1/2dWs.

It is not hard to see that the constant C appearing in Proposition 1.2 can be chosen as C = 1. Hence,
Theorem 2.14 holds with C = 1. To get a better feeling for the resulting constants and rates, let us specialize
to H = 0.1 and T = 1. Then we get the following result.

Corollary 3.1. Consider the approximation with N +1 nodes, one of them being at x0 = 0, suggested above.
WriteN = nm, wherem is the level of the Gaussian quadrature rule and n is the number of intervals. Choose

m ≈ 0.1306
√
N, n = N/m ≈ 7.6568

√
N,

and
ξ0 = 4.3679N0.1135e−0.2322

√
N , ξn = 0.1421N−1.5889e3.2511

√
N .

Then, we have
E
∣∣XT − X̂T

∣∣2 ≤ 33.6483N0.3178e−0.6502
√
N .

3.2 The case of the rough Bergomi model

The following presentation of the rough Bergomi model is largely inspired by [4]. The rough Bergomi model is
given by the system

St = S0 exp

(∫ t

0

√
Vs
(
ρdWs +

√
1− ρ2dBs

)
− 1

2

∫ t

0
Vsds

)
, (3.1)

Vt = V0 exp

(
η
√
2H

∫ t

0
(t− s)H−1/2dWs −

η2

2
t2H
)
.

The rough Bergomi model was first studied by Bayer, Friz and Gatheral in [4], and can be seen as a rough, non-
Markovian generalization of the Bergomi model by Bergomi [6]. Here, the Hurst parameterH controls the decay
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Markovian approximations 11

of the term structure of volatility skew for very short expirations and is usually around 0.1, ρ is the correlation
between the Brownian motion driving the volatility process V and the stock price S, and is usually negative, and
the product ρη sets the level of the ATM skew for longer expirations. More information on how to choose these
parameters can be found in [4].

We can apply the above Markovian approximation of stochastic Volterra processes to the process V , or, more
precisely, log V . What we really care about, however, is the simulation of the stock price S. Assuming w.l.o.g.
that S0 = 1, we can rewrite (3.1) as follows.

St = 1 +

∫ t

0
Ss exp(Xs)dWs, (3.2)

dXt = d

(
1

2
log(Vt)

)
=
η
√
H√
2

∫ t

0
(t− s)H−1/2dŴs.

Now it is apparent that X is the solution of a stochastic Volterra process with b ≡ 0 and σ ≡ η
√
H/2.

We recall the following Lemma by Harms [18].

Lemma 3.2. [18, Lemma 3]. Let X, X̂, S, Ŝ : [0, T ] × Ω → R be continuous stochastic processes with
X0 = X̂0 = 0 and

St = 1 +

∫ t

0
Ss exp(Xs)dWs, Ŝt = 1 +

∫ t

0
Ŝs exp(X̂s)dWs,

and let f : (0,∞) → R be a measurable function such that f ◦ exp ∈ Lip(R), the set of Lipschitz continuous
functions on R. Then,∣∣Ef(ST )− Ef(ŜT )

∣∣ ≤ ∥f ◦ exp ∥Lip(R)(
√
T + 6)

×
∥∥ exp(2|X|) + exp(2|X̂|)

∥∥
L2(Ω,C([0,T ]))

∥X − X̂∥L2([0,T ]×Ω).

The following corollary is immediate.

Corollary 3.3. Let f : (0,∞) → R be a measurable function such that f ◦ exp ∈ Lip(R). Let (S,X) be the
solution of the stochastic Volterra equation (3.2), and let (Ŝ, X̂) be the solution to the Markovian approximation
using the point sets proposed in Theorem 2.14 with N + 1 points. Then, for some C that can be chosen
independent of N , we have ∣∣Ef(ST )− Ef(ŜT )

∣∣ ≤ CN0.21 exp

(
− α

A

√
N

)
,

with α and A as in Theorem 2.14.

Proof. Note that X is, essentially, fractional Brownian motion, and that X̂ is an Ornstein-Uhlenbeck process.
Hence, exponential moments of supt |Xt| and supt |X̂t| exist, and we have by Lemma 3.2 that∣∣Ef(ST )− Ef(ŜT )

∣∣ ≤ C1∥X − X̂∥L2([0,T ]×Ω).

Now, by Theorem 2.14, (where we note that the constant C(N) in the bound of the theorem can be chosen
independent of t),

∥X − X̂∥2L2([0,T ]×Ω) =

∫ T

0
E
∣∣Xt − X̂t

∣∣2dt
≤
∫ T

0
C(N) exp

(
− 2α

A

√
N

)
dt

≤ C2N
0.42 exp

(
− 2α

A

√
N

)
.
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In the last step, we used Remark 2.15. Combining these estimates and taking the square root gives the result.

Remark 3.4. It should be noted that neither S nor Ŝ can be simulated exactly, both require time discretization
of the SDE (3.2) defining S or Ŝ, respectively. So far, a proper weak error analysis of the Euler scheme for S is
missing – but see [5] for partial results, indicating weak rate 1/2+H . On the other hand, (Ŝ, X̂) is a standard
diffusion process. Hence, an Euler discretization of Ŝ – obviously, X̂ does not need to be discretized further –
converges with weak rate 1, for any fixed N . This does not contradict the weak rate 1/2 +H reported in [5],
as the constant for the weak error will depend on N as well as H , and might explode as N → ∞.

3.3 The case of the rough Heston model

The following presentation of the rough Heston model is largely inspired by [2]. The rough Heston model is given
by

dSt = St
√
VtdWt, (3.3)

Vt = V0 +

∫ t

0
G(t− s)

(
θ(s)− λVs

)
ds+

∫ t

0
G(t− s)ν

√
VsdBs, (3.4)

where (W,B) is a two-dimensional correlated Brownian motion with correlation ρ ∈ [−1, 1], and G is the
usual rough kernel for some H ∈ (0, 1/2). Moreover, θ(s) is a deterministic, continuous function satisfying
some conditions, as explained in [15, Definition 2.1]. This time-dependent mean-reversion level is used to fit the
forward variance curve (EVt)t≤T , as explained in [2, Section 2]. Also in [2, Section 2], the existence of a weak
non-negative solution to a generalization of (3.4) with Hölder-regularity H − ε for all ε > 0 is shown.

Note that due to the square root in (3.4), the rough Heston model does not satisfy the Lipschitz assumptions
of our framework. However, (S, V ) turns out to be an affine process. More precisely, as was shown in [1, 14,
15, 16], the characteristic function of log(St/S0) can be given in terms of the solution of a fractional Riccati
equation, i.e.

E exp
(
z log(St/S0)

)
= exp

(∫ t

0
F (z, ψ(t− s, z))g(s)ds

)
.

Here,

g(t) = V0 +

∫ t

0
G(t− s)θ(s)ds,

and ψ(., z) is the unique continuous solution to the fractional Riccati equation

ψ(t, z) =

∫ t

0
G(t− s)F (z, ψ(s, z))ds, t ∈ [0, T ], (3.5)

where

F (z, x) :=
1

2
(z2 − z) + (ρνz − λ)x+

ν2

2
x.

While equation (3.5) cannot be solved explicitly, it can be solved numerically using the Adams scheme developed
in [11, 12, 13, 16].

Now, we again replace the kernel G by an approximation Ĝ of the type (1.4). We denote the solution of the
corresponding ordinary stochastic differential equations similar to equations (3.3) and (3.4) by (Ŝ, V̂ ). As was
noted in [2, Section 4.1], we again have

E exp
(
z log(Ŝt/S0)

)
= exp

(∫ t

0
F (z, ψ̂(t− s, z))ĝ(s)ds

)
.

Here,

ĝ(t) = V0 +

∫ t

0
Ĝ(t− s)θ(s)ds,
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Markovian approximations 13

and ψ̂(., z) is the unique continuous solution to the Riccati equation

ψ̂(t, z) =

∫ t

0
Ĝ(t− s)F (z, ψ̂(s, z))ds, t ∈ [0, T ].

Also in [2, Section 4.1], it is illustrated that ψ̂ is given as the solution of an N -dimensional system of ordinary
Riccati equations, which can be solved numerically by usual numerical integrators for ODEs. Abi Jaber and El
Euch were able to show the following two results in [2].

Proposition 3.5. [2, Theorem 4.1] There exists a constant C > 0 such that for all a ∈ [0, 1], b ∈ R and
N ≥ 1, we have

sup
t∈[0,T ]

∣∣ψ̂(t, a+ ib)− ψ(t, a+ ib)
∣∣ ≤ C(1 + b4)

∫ T

0
|Ĝ(s)−G(s)|ds.

Proposition 3.6. [2, Proposition 4.3] Let C(k, T ) denote the price of the call option in the rough Heston
model with maturity T > 0 and log-moneyness k ∈ R. We denote by Ĉ(k, T ) the price in the Markovian
approximation of the rough Heston model. If |ρ| < 1, then there exists a constant c > 0 such that∣∣C(k, T )− Ĉ(k, T )

∣∣ ≤ c

∫ T

0

∣∣G(t)− Ĝ(t)
∣∣dt.

The following two corollaries are immediate. We only prove the first one, as the proof for the second corollary is
completely analogous.

Corollary 3.7. Assume that we take the point set proposed in Theorem 2.14 with N + 1 points. Then, there
exists a constant C > 0 such that for all a ∈ [0, 1], b ∈ R and N ≥ 0, we have

sup
t∈[0,T ]

∣∣ψ̂(t, a+ ib)− ψ(t, a+ ib)
∣∣ ≤ C(1 + b4)N0.21 exp

(
− α

A

√
N

)
.

Proof. Using Proposition 3.5, Jensen’s inequality, Theorem 2.14 and Remark 2.15, we get

sup
t∈[0,T ]

∣∣ψ̂(t, a+ ib)− ψ(t, a+ ib)
∣∣ ≤ C1(1 + b4)

∫ T

0
|Ĝ(s)−G(s)|ds

≤ C1

√
T (1 + b4)

(∫ T

0
|Ĝ(s)−G(s)|2ds

)1/2

≤ C1

√
T (1 + b4)

(
C(N) exp

(
− 2α

A

√
N

))1/2

≤ C(1 + b4)N0.21 exp

(
− α

A

√
N

)
.

Corollary 3.8. Let C(k, T ) denote the price of the call option in the rough Heston model with maturity T > 0
and log-moneyness k ∈ R. We denote by Ĉ(k, T ) the price in the Markovian approximation of the rough
Heston model, where we used N + 1 points as suggested by Theorem 2.14. If |ρ| < 1, then there exists a
constant c > 0 that can be chosen independent of N , such that∣∣C(k, T )− Ĉ(k, T )

∣∣ ≤ cN0.21 exp

(
− α

A

√
N

)
.

The main advantage of using the Markovian approximations above instead of the actual rough Heston model
is of course that we have to solve an ordinary (multidimensional) Riccati equation instead of a fractional Riccati
equation, which can usually be done faster. But using an ordinary Riccati equation instead of a fractional one
has the additional advantage that the rate of convergence of the discretization of the Riccati equation is higher.
Indeed, it was proved in [20] that the rate of convergence of the Adams scheme that is usually used for solving
the fractional Riccati equation isO(∆t), where ∆t is the step size. At the same time, we can solve the ordinary
Riccati equation with a simple predictor corrector method, for example, which has rate of convergenceO(∆t2).
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4 Numerics

4.1 Optimal choices of m, ξ0 and ξn for H = 0.1

Suppose we take the approach as before to choose N + 1 points, one of them at x0 = 0 with the optimal
weight given by Remark 2.13, and the other N points are chosen by applying Gaussian quadrature of level m
on n intervals that are geometrically spaced on [ξ0, ξn], and such that mn ≈ N . Theorems 2.1 and 2.14 give
us possible choices of m, ξ0 and ξn, but what are the optimal choices? Using the exact error representation
given by Proposition 2.11, we can minimize this error over ξ0 and ξn for each m. We do not claim that the
errors we obtained are absolutely best possible, and maybe, with some care, they could be improved slightly.
Nonetheless, we expect them to be very close to the optimum. Figure 1 illustrates the optimized L2-errors (i.e.
where we have taken the square root of the expression in Proposition 2.11) for the choiceH = 0.1 and T = 1.
We can see how, the larger N gets, we should also choose larger m to get the best results.

101 102 103

Number of nodes N

10 7

10 5

10 3

10 1

Er
ro

r m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9
m=10

Figure 1: L2-error for the approximation of fractional Brownian motion with H = 0.1 and T = 1 for different
quadrature levels m as a function of the number of nodes N , using the optimal values for ξ0 and ξn

In Table 1 we compare the results of Corollary 3.1 with using the same m but optimal ξ0 and ξn, and with using
the optimal m and the optimal ξ0 and ξn.

Note that the optimal choices of − log ξ0 and log ξn are larger than the choices made in the theorem. This
indicates that the theorem is overestimating the quadrature errors, which leads to artificially small intervals
[ξi, ξi+1]. Hence, as indicated in Remark 2.4, we recommend always rounding m up when applying Theorem
2.1 or Theorem 2.14, to slightly improve the results. Also, a comparison of the columns “Optimal ξ0, ξn” and
“Optimal m, ξ0, ξn” shows that the correct choice of m is not extremely crucial, as long as it is of the right order
of magnitude.

Figure 2 illustrates the errors reported in Table 1.

4.2 Learning a better rate of convergence

While Theorem 2.14 produced decent results, Figure 2 illustrates further potential improvements. Using opti-
mization to get the optimal values of m, ξ0 and ξn for any N and H , and then applying regression, we get the
following approximations of the optimal parameter values as a function of N .
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Markovian approximations 15

Theorem Optimal ξ0, ξn Optimal m, ξ0, ξn
N m n − log ξ0 log ξn Error Bound − log ξ0 log ξn Error m n − log ξ0 log ξn Error
1 1 1 -1.2421 1.2999 0.996490 4.190757 83.372 4.8778 0.683687 1 1 83.372 4.8778 0.683687
2 1 2 -1.2246 1.5452 0.975001 4.089250 1.4621 9.1800 0.528237 1 2 1.4621 9.1800 0.528237
4 1 4 -1.1672 2.3483 0.899764 3.773728 0.7776 14.455 0.346109 1 4 0.7776 14.455 0.346109
8 1 8 -1.0535 3.9403 0.757286 3.218395 0.5037 21.394 0.199291 1 8 0.5037 21.394 0.199291
16 1 16 -0.8602 6.6478 0.571030 2.455046 1.6463 28.971 0.098625 1 16 1.6463 28.971 0.098625
32 1 32 -0.5541 10.933 0.372303 1.599424 2.3096 37.865 0.043699 2 16 1.8629 36.893 0.039571
64 2 32 -0.0887 17.450 0.195570 0.833625 2.7007 51.739 0.010167 2 32 2.7007 51.739 0.010167

128 2 64 0.6021 27.121 0.075222 0.316916 4.4629 68.195 0.002037 3 43 3.9939 70.067 0.001559
256 3 85 1.6115 41.256 0.018481 0.077112 6.5970 93.266 0.000158 4 64 6.2656 95.048 0.000123
512 3 171 3.0718 61.701 0.002405 0.009982 8.2385 120.50 1.14e-05 6 85 9.4066 130.22 3.50e-06

1024 5 205 5.1694 91.071 0.000128 0.000529 12.162 172.37 6.03e-08 9 114 13.029 180.30 1.98e-08

Table 1: L2-approximation errors of fractional Brownian motion with H = 0.1 and T = 1 for various choices of
N ,m, n, ξ0 and ξn. The column labeled “Theorem” denotes the values ofm, n, − log ξ0 and log ξn suggested
by Corollary 3.1. The error column denotes the actual error for these choices, computed using Proposition 2.11.
The bound column gives the error bound in Corollary 3.1. The column labelled “Optimal ξ0, ξn” uses the same
values form and n as suggested by Corollary 3.1, but takes the corresponding optimal values for ξ0 and ξn that
can be found using an optimization algorithm. The error column again shows the errors for these choices. The
column labelled “Optimal m, ξ0, ξn” takes the optimal value for m and the corresponding value for n given N ,
and then also the optimal ξ0 and ξn as calculated by optimization. Finally, again the error is given in the error
column.
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Figure 2: L2-approximation errors for fractional Brownian with H = 0.1 and T = 1. “Theorem” is the true
error using the values of m, n, ξ0 and ξn specified in Corollary 3.1, while “Bound” is the corresponding error
bound of Corollary 3.1. “Optimal ξ, same m” uses the same m as the one suggested in Corollary 3.1, but the
corresponding optimized values for ξ0 and ξn. “Optimal ξ and m” uses both the optimal values for m and for ξ0
and ξn.
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ξ0 = 0.65T−1e3.1H exp

(
− 1.8

(3/2−H)A

√
N

)
,

ξn = T−1e3H
−0.4

exp

(
1.8

HA

√
N

)
,

m =
0.9

A

√
N.

We even get a corresponding error estimate, given by(∫ T

0

∣∣G(t)− Ĝ(t)
∣∣2)1/2

≈ THe0.065H
−1.1

exp

(
− 1.8

A

√
N

)
where “≈” has the usual meaning of “is approximately equal to”. Some further explanation on how we achieved
these results can be found in Appendix D.

Note that when applying the values of ξ0, ξn and m suggested above, we do not recommend always rounding
m up, in contrast to Remark 2.4. Instead, we recommend rounding m to the closest positive integer.

For the case H = 0.1 and T = 1, we compare the different approximations and estimates in Table 2. The
method of Alfonsi and Kebaier is the one taken from [3, Corollary 3.1], while Harms 1 and Harms 10 are the
methods by Harms from [18] with Gaussian quadrature level 1 and 10, respectively. Theorem refers to the point
set given in Corollary 3.1, Numerical estimates refers to the numerically inferred point set above, and Optimum
is the optimized error we achieved before.

Alfonsi, Kebaier Harms 1 Harms 10 Theorem Numerical estimates Optimum
N Error Error Error Error Bound Error Bound Error
1 1.093956 0.996490 4.190757 0.917761 1.307860 0.683687
2 1.038641 1.408506 0.975001 4.089250 0.697745 1.041449 0.528237
4 0.987654 1.318878 0.899764 3.773728 0.389907 0.754638 0.346109
8 0.940801 1.235692 0.757286 3.218395 0.211681 0.478511 0.199291

16 0.897258 1.160442 0.836713 0.571030 2.455046 0.098789 0.251243 0.098625
32 0.856277 1.092909 0.632356 0.372303 1.599424 0.041534 0.101018 0.039571
64 0.817406 1.032075 0.398268 0.195570 0.833625 0.010345 0.027849 0.010167
128 0.780402 0.976870 0.238136 0.075222 0.316916 0.001611 0.004502 0.001559
256 0.745117 0.926378 0.150077 0.018481 0.077112 0.000124 0.000342 0.000123
512 0.711447 0.879856 0.095788 0.002405 0.009982 3.72e-06 8.94e-06 3.50e-06

1024 0.679308 0.836708 0.060342 0.000128 0.000529 2.24e-08 5.16e-08 1.98e-08

Table 2: L2 errors for the approximation of fractional Brownian motion with H = 0.1 and T = 1 using different
point sets. Since the point sets of Harms are only well-defined if n ≥ 2, there are some gaps in the table. Also,
the number N of nodes is only approximate. For example, Harms’ point set with n = 2 and m = 10 has 20
points, but is in the row N = 16, as this the value closest to 20.

Figure 3 plots the errors reported in Table 2. Notice how close the errors of using the numerical estimates of the
optimal choices of m, ξ0 and ξn that we got in this section are to the optimal errors.

4.3 Implied volatility smile of the rough Bergomi model

We now apply our approximation to the rough Bergomi model, see Section 3.2. We simulate the Markovian
approximation of the rough Bergomi model exactly as described in [3, Section 5.3].

Using the parameters T = 0.9, H = 0.07, η = 1.9, ρ = −0.9, S0 = 1, V0 = 0.2352, and using 2000
time steps and 106 samples for the Monte Carlo estimates, we get the implied volatility smiles shown in Figure
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Figure 3: L2 errors for the approximation of fractional Brownian motion withH = 0.1 and T = 1 using different
point sets. “Estimates” refers to the point sets obtained in this section.

4a. Here, the dashed black lines are the 95% confidence interval of the volatility smile where the differential
equations were only discretized in time, as suggested by Bayer, Friz and Gatheral in [4]. The confidence intervals
of the approximations have similar sizes and shapes, but were not drawn for better interpretability. Note how the
smile generated for N = 16 is already almost indistinguishable to the human eye from the true smile. We
remark that the parameter choice we used was the one suggested in Section 4.2.
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(a) Approximations based on Theorem 2.14 for different N .
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(b) Comparison with other methods from the literature,N =
16.

Figure 4: Implied volatility smiles on the rough Bergomi model for the approximation given in [4] and the Marko-
vian approximations.

The time in seconds it took to generate these smiles is given in Table 3. Here, N = ∞ is the non-Markovian
method described in [4], which can also be formally attained by taking N → ∞.

We can see in Figure 4a that the choice N = 16 already produced good results. We can now compare
our approximation with 16 nodes to the approximations given in [3] and [18] with an equal number of nodes.
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N 1 2 4 8 16 32 ∞
Time 78 123 230 490 1318 5563 2579

Table 3: Time in seconds to generate the implied volatility smiles for different values of N . Here, N = ∞ refers
to the method in [4].

Since the approximations are all of the same nature, and only the choice of nodes and weights differs, keeping
the number of nodes constant means keeping the computational cost constant. Hence, in the plot below we
see again the volatility smile generated using the non-Markovian approximation from [4] including the 95%
confidence intervals, as well as the volatility smiles generated using our point set, the point set in [3, Corollary
3.1], and the point set in [18] with Gaussian quadrature levels 1 and 8.

4.4 Implied volatility smile of the rough Heston model

Finally, we apply our approximation to the rough Heston model, see Section 3.3. We choose the same parame-
ters as in [2, Section 4.2], i.e.

λ = 0.3, ρ = −0.7, ν = 0.3, H = 0.1, V0 = 0.02, θ = 0.02, T = 1, S0 = 1.

The implied volatility smiles are computed using Fourier inversion, in the spirit of Section 3.3. As described
above, we need to solve (fractional or ordinary multidimensional) Riccati equations. For the fractional Riccati
equation we use the Adams scheme, which is well explained in [16, Section 5.1]. Essentially, this scheme is a
predictor-corrector method.

We now explain how we solve the ordinary multidimensional Riccati equations. As explained in [2, Section 4.1],
we have to solve the system

ψ̂(t, z) =
n∑

i=1

wiψ
xi(t, z),

∂tψ
xi(t, z) = −xiψxi(t, z) + F (z, ψ̂(t, z)), ψxi(0, z) = 0, (4.1)

where

F (z, x) =
1

2
(−z2 − iz) + λ(ρνiz − 1)x+

(λν)2

2
x2.

For comparability, we would also like to solve this system using a predictor-corrector method. However, the
usual Euler method with the trapezoidal rule will not work here. The reason is that the mean reversions xi can
be absurdly large, making any Euler approximation completely intractable. Hence, we only discretize the second
summand in the right-hand side of (4.1) and keep the first summand as it is.

More precisely, choose a step size ∆ and set tk = k∆. Then approximate

∂tψ
x(t, z) = −xψx(t, z) + F (z, ψ̂(t, z))

on the interval [tk, tk+1] by
∂tψ̂

x(t, z) = xψ̂x(t, z) + F (z, ψ̂(tk, z)).

This is now an ordinary, one-dimensional differential equation of the form

d

dt
y(t) = ay(t) + b.

The solution to this ODE is

y(tk+1) =
b

a

(
ea∆ − 1

)
+ y(tk)e

a∆.
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Using this, we apply the following predictor-corrector method. Given ψ̂(tk, z) and ψ̂x(tk, z), we set

ψ̂x,P =
F (z, ψ̂(tk, z))

x

(
1− e−x∆

)
+ ψ̂x(tk, z)e

−x∆,

ψ̂P =
1

2

(
ψ̂(tk, z) +

N∑
i=0

wiψ̂
xi,P

)
,

ψ̂x(tk+1, z) =
F (z, ψ̂P )

x

(
1− e−x∆

)
+ ψ̂x(tk, z)e

−x∆,

ψ̂(tk+1, z) =
N∑
i=0

wiψ̂
xi .

Having described our schemes for the solutions of the Riccati equations, we now describe our approximations
of the Fourier inversion. To that end, recall the Fourier inversion formula

Ef(X) =
1

2π

∫
R
φX(u+ iR)f̂(u+ iR)du (4.2)

for suitable functions f and random variables X . Here, φX(u) = EeiuX is the characteristic function of X ,
and f̂ is the Fourier transform of f . Furthermore,R ∈ R is a parameter that has to be chosen suitably to ensure
existence of φX(u+ iR) and some integrability conditions on f and f̂ . We use this inversion formula with

X = log(ST )/ log(S0), and f(x) = (ex −K)+.

Moreover, we choose the parameter R = 2. We then need to approximate the integral in (4.2). To this end,
we somewhat arbitrarily truncate the integral and restrict ourselves to [−50, 50]. On this interval, we then use
the trapeziodal rule on an equidistant grid with 10000 points. Finally, for both the fractional and the ordinary
multidimensional Riccati equations we use 3000 time steps.

Figure 5a shows the implied volatility smile of the rough Heston model under the above mentioned parameters.
The black line is the non-Markovian scheme as described in [16], while the other lines use our Markovian
approximation for different numbers N of nodes with the parameters given Section 4.2. Note how, even for
N = 6, our approximation is barely distinguishable from the exact model as approximated by the Adam scheme.
We further compare our approximation with N = 16 to the approximation given in [2] with a varying numbers
of nodes, see Figure 5b.
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(a) Approximations based on Theorem 2.14 for different N .

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
log-moneyness

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

im
pl

ie
d 

vo
la

til
ity

Non-Markovian approximation
N=6, our method
N=1, Abi Jaber, El Euch
N=4, Abi Jaber, El Euch
N=16, Abi Jaber, El Euch
N=64, Abi Jaber, El Euch
N=256, Abi Jaber, El Euch
N=1024, Abi Jaber, El Euch

(b) Comparison with other methods from the literature.

Figure 5: Implied volatility smiles for the rough Heston model using different approximations.

Since the approximations are all already quite accurate, the lines are barely distinguishable. However, it turns
out that our approximation with N = 6 (that is, using 7 nodes if one counts the free node at 0) is better than
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Figure 6: Comparison of the approximations errors of the implied volatility smile using our point set and the point
set in [2].

N 1 2 4 8 16 32 64 128 256 512 1024 ∞
Time 3105 3119 3102 3135 3241 3393 3592 3866 4387 5458 7384 18567

Table 4: Time in seconds to generate the implied volatility smiles for different values of N . Here, N = ∞ refers
to the method in [16].

the approximation in [2] with 1024 points. Since we were able to prove a superpolynomial rate of convergence
in Corollary 3.8, and the point set in [2] has only a convergence rate of N−4H/5, we expect our point set to do
comparatively even better for larger N .

Since the smiles are barely distinguishable, we also plot the errors of our method and the one used in [2]. Here,
we simply use the error functional

err =

(∫ 0.3

−0.5
|σ(k, T )− σ̂(k, T )|2dk

)1/2

,

where σ and σ̂ are the implied volatility for the European option with the above mentioned parameters under
the rough Heston model and its approximation, respectively. The parameter k refers to the log-moneyness. The
errors are shown in Figure 6.

The time in seconds it took to generate these smiles for different values of N is given in Table 4. Here N = ∞
refers to the non-Markovian model. This notation is reasonable, as the Markovian approximations converge to
the non-Markovian model as N → ∞. The times for our approximation and the approximation by Abi Jaber
and El Euch were essentially indistinguishable.

A Gaussian quadrature

In this section, we recall some basic facts about Gaussian quadrature. A more extensive treatment can be found
in many books on numerical integration, e.g. in [8].

Let [a, b] be a finite, non-degenerate interval, let w : [a, b] → R be a continuous weight function, and let
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f : [a, b] → R be a function that we wish to integrate. Then, we consider the approximation

m∑
i=1

wif(xi) ≈
∫ b

a
f(x)w(x)dx, (A.1)

using a quadrature rule with nodes (xi)
m
i=1 that lie in [a, b], and weights (wi)

m
i=1, where “≈” has the usual

meaning of “is approximately equal to”. Note that we have 2m degrees of freedom in the choice of our nodes
and weights. The Gaussian quadrature rule of levelm is the unique choice of nodes and weights that integrates
all polynomials of degree at most 2m−1 exactly. This means that for all polynomials of degree at most 2m−1,
we have equality in (A.1).

The Gaussian quadrature rule exists for all continuous weight functions w. We now give a rough sketch how
the nodes and weights can be computed. First, one needs to find orthogonal polynomials pn of degree n.
Orthogonality is meant with respect to the scalar product

⟨f, g⟩ =
∫ b

a
f(x)g(x)w(x)dx.

Such orthogonal polynomials can be found using a recurrence relation, e.g.

pr+1(x) =

(
x− ⟨xpr, pr⟩

⟨pr, pr⟩

)
pr(x)−

r−1∑
j=0

⟨xpr, pj⟩
⟨pj , pj⟩

pj(x),

where p0(x) = 1. The nodes for the level m quadrature rule are then the m roots of pm. It can be shown that
these roots are all real and lie in [a, b]. The weight wi corresponding to the node xi can then be computed as

wi =
⟨pm−1, pm−1⟩
p′m(xi)pm−1(xi)

.

An efficient algorithm for the computation of these nodes and weights is, for example, the Golub-Welsch algo-
rithm with a complexity of O(m2).

Of course, good error bounds for numerical integration in general, and Gaussian quadrature in particular, are of
central importance. Below we give such an error bound. The idea is essentially, that if the function f we wish
to integrate is (2m)-times continuously differentiable, then we can approximate f by its Taylor expansion of
order 2m, and the corresponding Taylor polynomial of order 2m− 1 will be integrated exactly by the definition
of Gaussian quadrature. In the results below, this is illustrated by the use of the Peano kernel, which, loosely
speaking, is the error of the Gaussian quadrature rule in approximating the integral of x 7→ x2m.

Lemma A.1. [8, Theorem 4.2.3]. Let f : [a, b] → R be a (2m)-times continuously differentiable function, and
let w̃i be the weights and x̃i be the nodes of the Gaussian quadrature rule for i = 1, . . . ,m. Then,

cH

∫ b

a
f(x)x−H−1/2dx−

m∑
i=1

w̃if(x̃i) =

∫ b

a
f (2m)(x)K2m(x)dx,

where K2m is the Peano kernel (corresponding to the weight function w).

Lemma A.2. [7, Theorem 2]. The above Peano kernel K2m : [a, b] → R satisfies

sup
x∈[a,b]

|K2m(x)| ≤ (2π)2m

(2m)!

(
b− a

2

)2m

sup
x∈[−1,1]

|B2m(x)| sup
x∈[a,b]

|w(x)|,

where B2m is the Bernoulli function given by

Bs(x) = −2
∞∑
k=1

cos
(
2πkx− πs

2

)
(2πk)s

.
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Using the fact that the Bernoulli functions agree with the Bernoulli polynomials on [0, 1], we have the following
lemma.

Lemma A.3. [19, Theorem 1]. For even s, we have

sup
x∈[0,1]

|Bs(x)| =
2ζ(s)

(2π)s
,

where ζ is the Riemann zeta function.

B Proof of Theorem 2.10

First, we give the choice of the point set in Theorem 2.10. It is of the same type as the point set in Theorem 2.1,
except that we now choose

A := Aγ,δ :=

(
1

δ − 1/2
+

1

2− γ

)1/2

, ξ0 := exp

(
− α

(2− γ)A

√
N

)
, ξn := b exp

(
α

(δ − 1/2)A

√
N

)
.

Furthermore, α and β are as in Theorem 2.1. Note that this agrees with the choice in Theorem 2.1 in the case
γ = δ = H + 1/2.

The proof of Theorem 2.10 is now essentially analogous to the proof of Theorem 2.1, except that we slightly
modify Lemma 2.7 and Lemma 2.8. First, Lemma 2.7 is replaced by the following lemma.

Lemma B.1. Let w̃i be the weights and x̃i be the nodes of the Gaussian quadrature rule for i = 1, . . . ,m on
the interval [a, b] with respect to the weight function w of type (γ, δ). Then we have the following error bounds.

1 If b ≤ eαβ , then∣∣∣∣ ∫ b

a
e−txw(x)dx−

m∑
i=1

w̃ie
−tx̃i

∣∣∣∣ ≤ Ctγ−1m
1/2−γ

22m

(
b

a
− 1

)2m+1

.

2 If a ≥ e−αβ , then∣∣∣∣ ∫ b

a
e−txw(x)dx−

m∑
i=1

w̃ie
−tx̃i

∣∣∣∣ ≤ Ctδ−1m
1/2−δ

22m

(
b

a
− 1

)2m+1

.

Here, C is a constant depending only on w.

The proof of Lemma B.1 is analogous to the proof of Lemma 2.7. Additionally, Lemma 2.8 is replaced by the
following lemma.

Lemma B.2. In the setting of Theorem 2.10, we have∫ T

0

∣∣∣∣ ∫ ξn

ξ0

e−txw(x)dx−
N∑
i=1

wie
−txi

∣∣∣∣2dt ≤ C
n2m1−2(γ∧δ)

24m

(
eαβ − 1

)4m+2

.

The proof of Lemma B.2 is again almost the same as the proof of Lemma 2.8. The only difference is that one
first needs to note that we always have ξi+1/ξi = eαβ, and that thus, for all intervals [ξi, ξi+1], one of the two
cases of Lemma B.1 applies. Afterwards, we proceed as in the proof of Lemma 2.8.

Finally, the proof of Theorem 2.10 follows the same lines as the proof of Theorem 2.1. We also remark that an
optimization procedure similar to the one in Theorem 2.14 can be performed to improve the polynomial rate in
N in Theorem 2.10.
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C Proof of Theorem 2.14

This proof is split in three steps. First, we determine the dependence of a, b on T . In the second step, we
optimize a and b over H and N . In this step, we make some additional assumptions, which we verify in the last
step.

Step 1: Let us first consider the dependence of a and b on T . Considering the proof of Theorem 2.1, it is not so
difficult to see that we have

E
∣∣XT − X̂T

∣∣2 ≤ Cc2H

((
T 3

(3/2−H)2
a3−2H +

3

2H2
b−2H

)
exp

(
− 2α

A

√
N
)

+
5π3

12

A2−2HT 2H

β2−2HH
N1−H

(
1

2

(( b
a

)1/n
eαβ − 1

))4m+2
)
.

This bound can be made homogeneous in T by choosing a = a1T
−1 and b = b1T

−1. With some abuse of
notation, we again call a1 and b1 a and b, respectively.

Step 2: Now, we want to determine the dependence of a and b on other variables. Denote c :=
(

b
a

)1/n
. Then,(

1

2

(
ceαβ − 1

))4m+2

=

(
1

2

(
ceαβ − 1

eαβ − 1

(
eαβ − 1

)))4m+2

=

(
1

2

(
eαβ − 1

))4m+2(ceαβ − 1

eαβ − 1

)4m+2

.

Therefore, by our choice of α and β,

E
∣∣XT − X̂T

∣∣2 ≤ Cc2HT
2H

(
1

(3/2−H)2
a3−2H +

3

2H2
b−2H

+
5π3

48

(
eαβ − 1

)2 A2−2H

β2−2HH
N1−H

(
ceαβ − 1

eαβ − 1

)4m+2
)
exp

(
− 2α

A

√
N
)
.

Note that (
ceαβ − 1

eαβ − 1

)4m+2

=

(
1 + (c− 1)

eαβ

eαβ − 1

)4m+2

.

A simple argument shows that it is advisable to choose c < 1, i.e. b < a. Then, as c < 1, we have log c < 0,
and, hence,

c = elog c ≤ 1 + log c+
(log c)2

2
.

Then,(
1 + (c− 1)

eαβ

eαβ − 1

)4m+2

≤
(
1 +

eαβ

eαβ − 1

(
log c+

(log c)2

2

))4m+2

=

(
1 +

eαβ

eαβ − 1

(
β

A
√
N

log
b

a
+

β2

2A2N

(
log

b

a

)2))4m+2

.

Assume that N is so large that

− β

A
√
N

log
b

a
≥ β2

A2N

(
log

b

a

)2

,

i.e.

N ≥
(
β

A
log

b

a

)2

. (C.1)
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Then, (
1 +

eαβ

eαβ − 1

(
β

A
√
N

log
b

a
+

β2

2A2N

(
log

b

a

)2))4m+2

≤
(
1 +

eαβ

8(eαβ − 1)

4β

A
√
N

log
b

a

) 4β
A

√
N+2

≤ exp

(
eαβ

8(eαβ − 1)
log

b

a

)(
1 +

eαβ

8(eαβ − 1)

4β

A
√
N

log
b

a

)2

≤
(
b

a

) eαβ

8(eαβ−1)

.

Thus,

E
∣∣XT − X̂T

∣∣2 ≤ Cc2HT
2H

(
1

(3/2−H)2
a3−2H +

3

2H2
b−2H

+
5π3

48

(
eαβ − 1

)2 A2−2H

β2−2HH
N1−H

(
b

a

) eαβ

8(eαβ−1)

)
exp

(
− 2α

A

√
N
)
.

We now want to solve the optimization problem

min
0<b≤a

A1b
−q1 +A2

(
b

a

)q2

+A3a
q3 .

This is minimized in

a =

(
(q1A1)

q2(q2A2)
q1(q3A3)

−(q1+q2)

) 1
q1q2+q1q3+q2q3

,

b =

(
(q1A1)

q2+q3(q2A2)
−q3(q3A3)

−q2

) 1
q1q2+q1q3+q2q3

,

where,

q1 = 2H, q2 =
eαβ

8(eαβ − 1)
, q3 = 3− 2H,

A1 =
3

2H2
, A2 =

5π3

48

(
eαβ − 1

)2 A2−2H

β2−2HH
N1−H , A3 =

1

(3/2−H)2
.

Plugging in these values, we get precisely the statement of the theorem.

Step 3: We now need to verify that b < a, and that (C.1) holds. We start with b < a. Indeed,

b

a
=

(( 5π3

1152
eαβ
(
eαβ − 1

)A2−2H

β2−2H
N1−H

)−3( H

3(3/2−H)

)2H) 1

3eαβ

8(eαβ−1)
+6H−4H2

≤ 1

if and only if

N ≥
( 5π3

1152
eαβ
(
eαβ − 1

)A2−2H

β2−2H

)−3( H

3(3/2−H)

) 2H
3−3H

.

The right hand side can be uniformly (over H) bounded by 2. Hence, it suffices to choose N ≥ 2.
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Furthermore, we have made the assumption

N ≥
(
β

A
log

b

a

)2

in (C.1), which we also need to verify. We have∣∣∣∣ βA log
b

a

∣∣∣∣ = ∣∣∣∣ βA 1
3eαβ

8(eαβ−1)
+ 6H − 4H2

log

(( 5π3

1152
eαβ
(
eαβ − 1

)A2−2H

β2−2H
N1−H

)−3( H

3(3/2−H)

)2H)∣∣∣∣
≤ β

A

3
3eαβ

8(eαβ−1)
+ 6H − 4H2

log

(
5π3

1152
eαβ
(
eαβ − 1

)A2−2H

β2−2H
N

)

≤ 8β(eαβ − 1)

Aeαβ
log

(
5π3

1152
eαβ
(
eαβ − 1

)A2

β2

)
+

8β(eαβ − 1)

Aeαβ
logN.

Plugging in our values of α and β, we get(
β

A
log

b

a

)2

≤
(
1.26

A
log
(
0.67A2

)
+

1.26

A
logN

)2

≤
(
0.8 + 0.73 logN

)2
.

Now,
N ≥

(
0.8 + 0.73 logN

)2
holds for all N ≥ 1. This shows the theorem.

D Learning a better rate of convergence

We describe here how we got the results in Section 4.2. We make the ansatz

ξ0 = C1T
−1 exp

(
− α

(3/2−H)A

√
N

)
, (D.1)

ξn = C2T
−1 exp

(
− α

HA

√
N

)
, (D.2)

m =
β

A

√
N, (D.3)∫ T

0

∣∣G(t)− Ĝ(t)
∣∣2dt = C3T

2H exp

(
− 2α

A

√
N

)
, (D.4)

and our goal is to learn α and β in particular, and get some approximation for C1, C2 and C3, which may
depend on H and N . Here, (D.4) philosophically has a different meaning, as the left-hand side, i.e. the true
error, is determined by our choice for ξ0, ξn and m, and need not be of the form of the right-hand side of (D.4).
Nonetheless, we still choose to use the errors as well to estimate α with equation (D.4).

To do so, we proceed as follows. We take the error representation in Proposition 2.11 for T = 1. Then, we pick

H ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}

and N in a range from 1 to 1024. For each of these choices of H and N , we compute the optimal m, ξ0 and
ξn, as well as the corresponding error, using an optimization algorithm. Then we use this data to estimate α
and β.

First, using the optimal values of m, we can determine the corresponding values of β by reformulating equation
(D.3). Empirically, we observed that paths of the estimated values of β for different choices of H and N indeed
converge to the same number, independent of H , and we estimate β = 0.9.
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For α, we can use ξ0, ξn and the error as estimators. In other words, we set Ci = 1, and solve equations
(D.1), (D.2), and (D.4) for α. Again we empirically observe that all the paths seem to converge to some uniform
number, which we estimate as α = 1.8.

We can now plug these values for α and β into equations (D.1)-(D.4) and apply regression to get estimates for
the constants C1, C2 and C3. We get the results of Section 4.2.
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