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PML and high-accuracy boundary integral equation solver
for wave scattering by a locally defected periodic surface

Xiuchen Yu, Guanghui Hu, Wangtao Lu, Andreas Rathsfeld

Abstract

This paper studies the perfectly-matched-layer (PML) method for wave scattering in a half
space of homogeneous medium bounded by a two-dimensional, perfectly conducting, and lo-
cally defected periodic surface, and develops a high-accuracy boundary-integral-equation (BIE)
solver. Along the vertical direction, we place a PML to truncate the unbounded domain onto a strip
and prove that the PML solution converges to the true solution in the physical subregion of the
strip with an error bounded by the reciprocal PML thickness. Laterally, we divide the unbounded
strip into three regions: a region containing the defect and two semi-waveguide regions, sepa-
rated by two vertical line segments. In both semi-waveguides, we prove the well-posedness of an
associated scattering problem so as to well define a Neumann-to-Dirichlet (NtD) operator on the
associated vertical segment. The two NtD operators, serving as exact lateral boundary conditions,
reformulate the unbounded strip problem as a boundary value problem over the defected region.
Due to the periodicity of the semi-waveguides, both NtD operators turn out to be closely related
to a Neumann-marching operator, governed by a nonlinear Riccati equation. It is proved that the
Neumann-marching operators are contracting, so that the PML solution decays exponentially fast
along both lateral directions. The consequences culminate in two opposite aspects. Negatively,
the PML solution cannot converge exponentially to the true solution in the whole physical region
of the strip. Positively, from a numerical perspective, the Riccati equations can now be efficiently
solved by a recursive doubling procedure and a high-accuracy PML-based BIE method so that
the boundary value problem on the defected region can be solved efficiently and accurately. Nu-
merical experiments demonstrate that the PML solution converges exponentially fast to the true
solution in any compact subdomain of the strip.

1 Introduction

Due to its nearly reflectionless absorption of outgoing waves, perfectly matched layer (PML), since
its invention by Bérenger in 1994 [4], has become a primary truncation technique in a broad class
of unbounded wave scattering problems [11, 31, 16], ranging from quantum mechanics, acoustics,
electromagnetism (optics), to seismology. Mathematically, a PML can be equivalently understood as
a complexified transformation of a coordinate [12]. A wave outgoing along the coordinate is then
analytically continued in the complex plane and becomes exponentially decaying in the PML. How-
ever, it is such a double-edged feature that makes PML be placed only in the direction where the
medium structure is invariant so as to guarantee the validity of analytic continuation. Consequently,
PML loses its prominence for some complicated structures, such as periodic structures [20]. Motivated
by this, this paper studies wave scattering in a half space of homogeneous medium bounded by a two-
dimensional, perfectly conducting, and locally defected periodic surface, and investigates the potential
of PML in designing an accurate boundary integral equation (BIE) solver for the scattering problem.

Let a cylindrical wave due to a line source, or a downgoing plane wave be specified above the defected
surface. Then, a primary question is to understand clearly how the scattered wave radiates at infinity.
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Intrinsically, PML is highly related to the well-known Sommerfeld radiation condition (SRC), which,
arguably, is an alternative way of saying “the wave is purely outgoing at infinity”. However, SRC is
considered to be no longer valid for characterizing the scattered wave even when the surface is flat
[2]. Instead, upward propagation radiation condition (UPRC), a.k.a. angular spectrum representation
condition [14] is commonly used, and can well pose the present problem or even more general rough
surface scattering problems [5, 7, 8]. Milder than SRC, UPRC only requires that the scattered wave
contain no downgoing waves on top of a straight line above the surface, allowing waves incoming
horizontally from infinity.

If the surface has no defects, the total wave field for the plane-wave incidence is quasi-periodic so that
the original scattering problem can be formulated in a single unit cell, bounded laterally but unbounded
vertically. According to UPRC, the scattered wave at infinity can then be expressed in terms of upgoing
Bloch waves, so that a transparent boundary condition or PML of a local/nonlocal boundary condition
can be successfully used to terminate the unit cell vertically. Readers are referred to [3, 10, 26, 34] and
the references therein for related numerical methods as well as results on exponential convergence
due to a PML truncation. But, if the incident wave is nonquasi-periodic, e.g., the cylindrical wave, or
if the surface is locally defected, much fewer numerical methods or theories have been developed as
it is no longer straightforward to laterally terminate the scattering domain. Existing laterally truncating
techniques include recursive doubling procedure (RDP) [33, 15], Floquet-Bloch mode expansion [17,
19, 24], and Riccati-equation based exact boundary condition [21].

In a recent work [18], we proved that the total field for the cylindrical incidence, a.k.a. the Green func-
tion, satisfies the standard SRC on top of a straight line above the surface. Based on this, we further
revealed that for the plane-wave incidence, the perturbed part of the total field due to the defect satis-
fies the SRC as well. Consequently, this suggests to use a PML to terminate the vertical variable so as
to truncate the unbounded domain to a strip, bounded vertically but unbounded laterally. In fact, such
a natural setup of PML had already been adopted in the literature [33, 6, 32], without a rigorous jus-
tification of the outgoing behavior, though. It is worthwhile to mention that Chandler-Wilde and Monk
in [6] rigorously proved that under a Neumann-condition PML, the PML solution converges to the true
solution in the whole physical region of the strip at a rate of only algebraic order of PML thickness.
They further revealed that the PML solution due to the cylindrical incidence for a flat surface decays
exponentially at infinity of a rectangular strip. However, it remains unclear how the PML solution radi-
ates at infinity of the more generally curved strip under consideration. On the other hand, no literally
rigorous theory has been developed to clearly understand why this PML-truncated strip can further be
laterally truncated to a bounded domain by the aforementioned techniques without introducing artifi-
cial ill-posedness. In other words, the well-posedness of scattering problems in exterior regions of the
truncated domain is unjustified.

To address these questions, we first prove in this paper that, under a Dirichlet-condition PML, the
PML solution due to the cylindrical incidence, i.e., the Green function of the strip, converges to the
true solution in the physical subregion of the strip at an algebraic order of the PML thickness. Next,
we split the strip into three regions: a bounded region containing the defect and two semi-waveguide
regions of a single-directional periodic surface, separated by two vertical line segments. By use of
the Green function of the strip, transparent boundary conditions can be developed to truncate the
unbounded semi-waveguides. Based on this, we apply the method of variational formulation and Fred-
holm’s alternative to prove the well-posedness of the scattering problem in either semi-waveguide so
as to define a Neumann-to-Dirichlet (NtD) operator on its associated vertical segment. The two NtD
operators serve exactly as lateral boundary conditions to terminate the strip and to reformulate the
unbounded strip problem as a boundary value problem on the defected region. Due to the periodicity
of the semi-waveguides, both NtD operators turn out to be closely related to a Neumann-marching
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operator, which is the solution of a nonlinear Riccati equation. It is proved that the Neumann-marching
operators are contracting, indicating that the PML solution decays exponentially fast along both lateral
directions even for the curved strip. The consequences culminate in two opposite aspects. Positively,
from a numerical perspective, the Riccati equations can be efficiently solved by an RDP method so that
the strip can be laterally truncated with ease. Negatively, the PML solution shall never exponentially
converge to the true solution in the whole physical region of the strip. Nevertheless, as conjectured in
[6], exponential convergence is optimistically expected to be realizable in any compact subdomain of
the strip.

To validate the above conjecture numerically, we employ a high-accuracy PML-based boundary inte-
gral equation (BIE) method [28] to execute the RDP so that the two Riccati equations can be accurately
solved for the two Neumann-marching operators, respectively, and hence the two NtD operators ter-
minating the strip can be obtained. With the two NtD operators well-prepared, the boundary value
problem in the defected region can be accurately solved by the PML-based BIE method again. By car-
rying out several numerical experiments, we observe that the PML truncation error for the wave field
over the defected part of the surface decays exponentially fast as the PML absorbing strength or the
thickness increases. This indicates that there is a chance that the PML solution still converges to the
true solution exponentially in any compact subdomain of the strip, the justification of which remains
open.

The remaining part of this paper is organized as follows. In Section 2, we introduce the half-space
scattering problem and present some known well-posedness results. In Section 3, we introduce a
Dirichlet-condition PML, prove the well-posedness of the PML-truncated problem and study the prior
error estimate of the PML truncation. In Section 4, we study well-posedness of the semi-waveguide
problems. In Section 5, we establish lateral boundary conditions, prove the exponentially decaying
property of the PML solution at infinity of the strip, and develop an RDP technique to get the lateral
boundary conditions. In Section 6, we present a PML-based BIE method to numerically solve the scat-
tering problem. In Section 7, numerical experiments are carried out to demonstrate the performance
of the proposed numerical method and to validate the proposed theory. We draw our conclusion finally
in Section 8 and propose some future plans.

2 Problem formulation

Let Ω×R ⊂ R3 be an x3-invariant domain bounded by a perfectly-conducting surface Γ×R, where
Γ := ∂Ω ⊂ R2, bounding domain Ω ⊂ R2, is a local perturbation of a T -periodic curve ΓT ⊂ R2

periodic in x1-direction (cf. Figure 1(a)). We denote points in the Cartesian coordinate system of R3 by
(x1, x2, x3) and let x := (x1, x2) ∈ Ω. Throughout this paper, we shall assume that Γ is Lipschitz
and that Ω satisfies the following geometrical condition

(GC1) : (x1, x2) ∈ Ω⇒ (x1, x2 + a) ∈ Ω, ∀a ≥ 0.

For simplicity, suppose Γ only perturbs one periodic part of ΓT , say {x ∈ Γ : |x1| < T/2}.
Let the unbounded domain Ω × R be filled by a homogeneous medium of refractive index n. For
a time-harmonic transverse-electric (TE) polarized electro-magnetic wave excited by an x3-invariant
incoming field of time dependence e−iωt with angular frequency ω, the x3-component of the electric
field, denoted by utot, is x3-invariant. It has the same time dependence and satisfies the following
boundary value problem for the two-dimensional (2D) Helmholtz equation:

∆utot + k2utot = 0, on Ω, (1)
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(a) (b)

PML

Figure 1: (a) A sketch of the half-space scattering problem. (b) A PML placed above Γ. The scattering
surface Γ locally perturbs the periodic curve ΓT of period T . Point x∗ represents the point of an
exciting source. ΓH is an artificial interface, on which a DtN map is defined or above which a PML is
placed.

utot = 0, on Γ, (2)

where ∆ := ∂2
x1

+ ∂2
x2

is the 2D Laplacian and k := k0n with k0 := 2π/λ denoting the free-space
wavenumber for wavelength λ.

Let an incident wave uinc be specified in Ω and let x := (x1, x2) ∈ Ω. In this paper, we shall mainly
focus on the following two cases of incidence:

(i) plane wave uinc(x) = eik(cosθ x1−sinθ x2) for the incident angle θ ∈ (0, π)

(ii) cylindrical wave uinc(x;x∗) = G(x;x∗) := i
4
H

(1)
0 (k|x− x∗|) excited

by a source at x∗ := (x∗1, x
∗
2) ∈ Ω.

In the latter case, equation (1) should be replaced by

∆utot + k2utot = −δ(x− x∗) (3)

so that utot(x;x∗) in fact represents the Green function excited at the source point x∗. For simplicity,
we assume that |x∗1| < T/2 so that x∗ is right above the perturbed part of Γ.

Let usc := utot − uinc denote the scattered wave. One may enforce the following UPRC:

usc(x) = 2

∫
ΓH

∂G(x; y)

∂y2

usc(y)ds(y), (4)

where ΓH := {(x1, H) : x1 ∈ R} denotes a straight line strictly above Γ for some H > 0 and
where y := (y1, y2). According to [7], the UPRC helps to define the Dirichlet-to-Neumann map
T : H1/2(ΓH) → H−1/2(ΓH) for the domain ΩH := {x ∈ Ω : x2 > H}, such that, for any
φ ∈ H1/2(ΓH), we get T φ = F−1Mzφ̂, where φ̂(H; ξ) := [Fφ](H; ξ) denotes the following
normalized Fourier transform

[Fφ](H; ξ) :=
1√
2π

∫
R
φ(x1, H)e−iξx1dx1,

and the operator Mz in the space of Fourier transforms is the operator of multiplication by

z(ξ) :=

{
−i
√
k2 − ξ2, for |ξ| ≤ k,√

ξ2 − k2, for |ξ| > k.
(5)
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Then, we may enforce the boundary condition

∂νu
sc = −T usc, on ΓH , (6)

where ν always denotes the outer unit normal vector on ΓH . Condition UPRC guarantees the well-
posedness of our scattering problem [7], but does not force usc to be purely outgoing at infinity, largely
limiting its applications in designing numerical algorithms.

Nevertheless, our recent work [18] has shown a stronger Sommerfeld-type condition for the aforemen-
tioned two incidences, which still preserves the well-posedness. Note that [18] assumes further the
following condition:

(GC2): some (and hence any) period of ΓT contains a line segment,

which guarantees a local behavior of the Green function utot(x; y) for any x, y sufficiently close to
each line segment. Let SH := Ω ∩ {x : x2 < H} be the strip between ΓH and Γ. The radiation
condition reads as follows:

(i). In the case of plane-wave incidence, the outgoing wave is uog := utot − utot
ref , where utot

ref is
the reference scattered field for the unperturbed scattering curve ΓT , and satisfies the following
half-plane Sommerfeld radiation condition (hSRC): For a sufficiently large R>0 and any ρ<0,

lim
r→∞

sup
α∈[0,π]

√
r |∂ruog(x)− ikuog(x)| = 0, sup

r≥R

√
r|uog(x)| <∞, and uog ∈ H1

ρ(SRH),

(7)
where x = (r cosα,H + r sinα), SRH := SH ∩ {x : |x1| > R}, and H1

ρ(·) denotes the

weighted Sobolev space H1
ρ(·) := (1 + x2

1)−ρ/2H1(·). We defer the computation of utot
ref to

Section 6.3.

(ii). For the cylindrical incidence, the total field is the outgoing wave uog := utot and satisfies the
hSRC (7) in ΩH . Thus, the scattered field usc satisfies (7) as well since uinc satisfies (7).

Certainly, uog satisfies the UPRC condition (4) such that (6) holds for uog in place of usc [9, Them.
2.9(ii)]. In the following, we shall consider the cylindrical incidence only and the plane-wave incidence
case can be analyzed similarly.

We recall some important results from [7]. To remove the singularity of the right-hand side of (3), let

uog
r (x;x∗) := uog(x;x∗)− χ(x;x∗)uinc(x;x∗), (8)

where the cut-off function χ(x;x∗) is one in a neighborhood of x∗ and has a sufficiently small support
enclosing x∗. Let VH := {φ|SH : φ ∈ H1

0 (Ω)}. Then, it is equivalent to seek uog
r ∈ VH that satisfies

the following boundary value problem:

∆uog
r + k2uog

r = g, on SH ,

∂νu
og
r = −T uog

r , on ΓH ,

where g := −[∆χ]uinc−2
∑2

j=1 ∂xjχ∂xju
inc ∈ L2(SH) such that supp g is in the neighborhood of

x∗ contained in SH . An equivalent variational formulation reads as follows: Find uog
r ∈ VH such that,

for any φ ∈ VH , there holds the variational equation b(uog
r , φ) = −〈g, φ〉SH , where the sesquilinear

form b(·, ·) : VH × VH → C is given by

b(φ, ψ) :=

∫
SH

(
∇φ · ∇ψ̄ − k2φψ̄

)
dx+

∫
ΓH

T φ ψ̄ ds.
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It has been shown in [7] that b satisfies the following inf-sup condition: For all v ∈ VH ,

γ||v||VH ≤ sup
φ∈VH

|b(v, φ)|
||φ||VH

, (9)

where γ > 0 depends on H , k and Ω. Furthermore, b defines an invertible operator A : VH → V ∗H
such that 〈Aφ, ψ〉 = b(φ, ψ) and ||A−1|| ≤ γ−1. Thus, we obtain the representation uog

r = −A−1g
so that uog = −A−1g + χuinc.

The hSRC (7) suggests to compute the outgoing wave uog numerically, as the PML technique[4, 6]
could apply now to truncate the x2-direction. In the following sections, we shall first introduce the setup
of a PML to truncate x2 and then develop an accurate lateral boundary condition to truncate x1.

3 PML Truncation

Mathematically, the PML truncating x2 introduces a complexified coordinate transformation

x̃2 := x2 + iS

∫ x2

0

σ(t)dt,

where σ(x2) = 0 for x2 ≤ H and σ(x2) ≥ 0 for x2 ≥ H . Note that such a tilde notation can also be
used to define ỹ2 and x̃∗2 in the following. As shown in Figure 1(b), the strip SLH := R × [H,H + L]
with nonzero σ is called the PML region so that L represents its thickness. In this paper, we choose
an m ≥ 0 and

σ(x2) :=


2fm2

fm1 +fm2
, x2 ∈ [H,H + L/2]

2, x2 ≥ H + L/2,m 6= 0
1, x2 ≥ H + L/2,m = 0

, (10)

where we note that σ ≡ 1 if m = 0, and

f1 :=

(
1

2
− 1

m

)
ξ3 +

ξ

m
+

1

2
, f2 := 1− f1, ξ :=

2x2 − (2H + L/2)

L/2
.

Let Lc := x̃2(H + L)−H = L+ iScL, where Sc := S/L
∫ H+L

H
σ(t)dt≥ S. Both the real and

the imaginary part of Lc affect the absorbing strength of the PML (cf. [12]).

Now, let x̃ := (x1, x̃2). For x∗ ∈ Ω with x2 > H , by analytic continuation of (4) we can define

uog(x̃;x∗) := 2

∫
ΓH

∂G(x̃; y)

∂y2

uog(y;x∗)ds(y),

satisfying
∆̃uog(x̃;x∗) + k2uog(x̃;x∗) = −δ(x− x∗),

where ∆̃ = ∂2
x1

+ ∂2
x̃2

. By chain rule, we see that ũog(x;x∗) := uog(x̃;x∗) satisfies

∇ · (A∇ũog) + k2αũog = −δ(x− x∗), on ΩPML, (11)

ũog = 0, on Γ. (12)

where A := diag{α(x2), 1/α(x2))} with α(x2) := 1 + iSσ(x2) and where the PML region
ΩPML := Ω ∩ {x : x2 ≤ H + L} consists of the physical region SH and the PML region SLH .
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On the PML boundary ΓH+L := {x : x2 = H + L}, we use the homogeneous Dirichlet boundary
condition

ũog = 0, on ΓH+L. (13)

The authors in [6] adopted a Neumann condition on the PML boundary ΓH+L and proved the well-
posedness of the related PML truncation problem. Here, we choose the Dirichlet condition (13) since,
as we shall see, our numerical results indicate that the Dirichlet-PML seems more stable than the
Neumann-PML. Furthermore, we need the Green function of the strip ũog(x;x∗) for any x∗ ∈ ΩPML

and not only for x∗ ∈ SH to establish lateral boundary conditions. For completeness, we shall, follow-
ing the idea of [6], study the well-posedness of the problem (11-13) for any x∗ ∈ ΩPML.

The fundamental solution of the anisotropic Helmholtz equation (11) is (cf. [28])

G̃(x; y) := G(x̃; ỹ) :=
i

4
H

(1)
0

(
kρ(x̃; ỹ)

)
, (14)

where ỹ := (y1, ỹ2), where the complexified distance function ρ is defined to be

ρ(x̃, ỹ) :=
[
(x1 − y1)2 + (x̃2 − ỹ2)2

]1/2
,

and where the half-power operator z1/2 is chosen to be the branch of
√
z with nonnegative real part for

z ∈ C\(−∞, 0] such that arg(z1/2) ∈ [0, π). The special choice of the function σ in (10) ensures
G̃(x; y)=G̃(x; yimag) for any x∈ΓH+L, whenever y :=(y1, y2) and yimag :=(y1, 2(H+L)−y2),
the mirror image of y w.r.t. the line ΓH+L, are sufficiently close to ΓH+L so that ρ(x̃; ỹ) = ρ(x̃; ỹimag).

To remove the singularity of the right-hand side of (11), we introduce

ũog
r (x;x∗) := ũog(x;x∗)− χ(x;x∗)ũinc(x;x∗),

with the same cut-off function χ as in (8), where ũinc(x;x∗) := uinc(x̃; x̃∗). Then, ũog
r satisfies

∇ · (A∇ũog
r ) + k2αũog

r = g̃inc, on ΩPML, (15)

ũog
r = 0, on Γ, (16)

ũog
r = 0, on ΓH+L, (17)

where g̃inc := [∇ · (A∇) + k2α](1 − χ(x;x∗))ũinc(x;x∗) ∈ L2(ΩPML) with supp g̃inc included

in ΩPML = SH ∪ S
L

H . Taking into account that x∗ can be located in SLH , the support supp g̃inc may
not completely lie in the physical domain SH . To establish a Dirichlet-to-Neumann map on ΓH like (6),
we need to study the following boundary value problem in the PML strip SLH : Given q ∈ H1/2(ΓH),

s ∈ H1/2(ΓH+L), and g̃inc
PML := g̃inc|SLH ∈ L

2(SLH) with supp g̃inc
PML ⊂ S

L

H , find v ∈ H1(SLH) such
that

∇ · (A∇v) + k2αv = g̃inc
PML, on SLH ,

v = q, on ΓH ,

v = s, on ΓH+L.

Let

v0(x) := v(x)−vinc
PML(x), vinc

PML(x) :=

∫
SLH

[
G̃(x; y)− G̃(x; yimag)

]
g̃inc

PML(y)dy,

DOI 10.20347/WIAS.PREPRINT.2866 Berlin 2021
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where we recall that yimag is the mirror image of y w.r.t. the line ΓL+H . Thus, v0 satisfies

∇ · (A∇v0) + k2αv0 = 0, on SLH , (18)

v0 = qn, on ΓH ,

v0 = sn, on ΓH+L,

where qn := q − vinc
PML|ΓH ∈ H1/2(ΓH) and sn := s− vinc

PML|ΓH+L
∈ H1/2(ΓH+L).

Now (18) is equivalent to the complexified Helmholtz equation and the Fourier transform of this w.r.t.
x1 is a simple ordinary differential equation w.r.t. x̃2. The general solution of this differential equation
is in the span of two exponential functions of x̃2, i.e. of two complexified generalized plane waves. In
other words, looking for Fv0 in terms of these plane waves, we get

v̂0(x2; ξ) := [Fv0](x2; ξ) = A(ξ) exp
(
z(ξ)(x̃2 −H)

)
+B(ξ) exp

(
− z(ξ)(x̃2 −H)

)
, (19)

where we recall that z has been defined in (5),

A(ξ) =
ŝn(ξ)− exp

(
− z(ξ)Lc

)
q̂n(ξ)

exp
(
z(ξ)Lc

)
− exp

(
− z(ξ)Lc

) , B(ξ) =
−ŝn(ξ) + exp

(
z(ξ)Lc

)
q̂n(ξ)

exp
(
z(ξ)Lc

)
− exp

(
− z(ξ)Lc

) ,
ŝn(ξ) = [Fsn](H + L; ξ) and q̂n(ξ) = [Fqn](H; ξ). Here, to make A and B well-defined, we
could let ξ travel through a Sommerfeld integral path−∞+ 0i→ 0→∞− 0i instead of through R
(cf. [25]) such that z 6= 0. Consequently,

−∂v̂0

∂x2

∣∣∣∣
x2=H

= z
−2

exp(zLc)− exp(−zLc)
ŝn + z

exp(zLc) + exp(−zLc)
exp(zLc)− exp(−zLc)

q̂n.

Now define two bounded operators Tp : H1/2(ΓH)→ H−1/2(ΓH) by

F [Tpqn](H; ξ) = z(ξ)
exp(z(ξ)Lc) + exp(−z(ξ)Lc)

exp(z(ξ)Lc)− exp(−z(ξ)Lc)
q̂n(ξ),

andNp : H1/2(ΓH+L)→ H−1/2(ΓH) by

F [Npsn](H + L; ξ) = z(ξ)
−2

exp(z(ξ)Lc)− exp(−z(ξ)Lc)
ŝn(ξ).

Note that the above definitions allow ξ ∈ R now, since limits can be considered when z = 0.
Returning back to the PML-truncated problem (15-17), we reformulate it as an equivalent boundary
value problem on the physical region SH : Find ũog

r ∈ VH that satisfies

∇ · (A∇ũog
r ) + k2αũog

r = g̃inc|SH , on SH ,

∂ν ũ
og
r = −Tp (ũog

r |ΓH ) + fp, on ΓH ,

where

fp := Np
(
vinc

PML|ΓH+L

)
+ Tp

(
vinc

PML|ΓH
)

+ ∂νv
inc
PML|ΓH ∈ H−1/2(ΓH).

The associated variational formulation reads as follows: Find ũog
r ∈ VH , such that for any ψ ∈ VH ,

bp(ũ
og
r , ψ) = −

∫
SH

g̃inc|SH ψ̄ dx+

∫
ΓH

fpψ̄ ds, (20)
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where the sesquilinear form bp(·, ·) : VH × VH → C is given by

bp(φ, ψ) :=

∫
SH

(
∇φ · ∇ψ̄ − k2φψ̄

)
dx+

∫
ΓH

ψ̄Tpφ ds. (21)

As in [6], we define the k-dependent norm

||φ||2Hs(R) =

∫
R
(k2 + ξ2)s|[Fφ](ξ)|2dξ

for Hs(R). Then, the following lemma roughly characterizes the difference of Tp and T .

Lemma 3.1 For any L with kScL > 0, we have

||T − Tp|| ≤
1

kScL
+

2√
3

exp(−[2kL])

[2kL]
.

Proof. By a simple analysis, it can be seen that

||T − Tp|| = sup
ξ∈R

|z(ξ)|√
k2+ξ2

|1− coth(z(ξ)Lc)| = max{S1, S2},

S1 := sup
ξ∈R:|ξ|≤k

2
∣∣∣z(ξ) exp

(
− 2z(ξ)Lc

)∣∣∣√
k2+ξ2

∣∣∣1−exp
(
− 2z(ξ)Lc

)∣∣∣ ,
S2 := sup

ξ∈R:|ξ|≥k

2
∣∣∣z(ξ) exp

(
− 2z(ξ)Lc

)∣∣∣√
k2+ξ2

∣∣∣1−exp
(
− 2z(ξ)Lc

)∣∣∣ .
Recalling Lc = L+ iScL and setting t :=

√
|k2 − x2|/k, we arrive at

S1 = sup
0≤t≤1

2t exp(−2tkScL)√
2− t2

√
1 + exp(−4tkL)− 2 cos(2tkScL) exp(−2tkL)

= sup
0≤t≤1

2t exp(−2tkScL)
√

2− t2
√

(1− exp(−2tkScL))2 + 4 exp(−2tkScL) sin2(tkL)

and

S2 = sup
t≥1

2t exp(−2tkL)
√

2 + t2
√

(1− exp(−2tkL))2 + 4 exp(−2tkL) sin2(tkScL)
.

Since, for t ≥ 0, the function

f(t) =
t exp(−2tkScL)

1− exp(−2tkScL)

is nonincreasing, it is easy to see that S1 ≤ 2f(0) = 1/[kScL]. One similarly shows that

S2 ≤
2√
3

exp(−2kL)

2kL
.

�
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We do not intend to study the further relation of ||Tp−T || and parameter Sc as done in [6], where the
performance of the PML is optimized. For our purpose, the estimate in Lemma 3.1 is enough. Clearly,
the sesquilinear form bp in (21) defines a bounded linear functionalAp : VH → V ∗H such that, for any
φ ∈ VH , 〈

(A−Ap)φ, ψ
〉

= b(φ, ψ)− bp(φ, ψ) =

∫
ΓH

ψ̄(T − Tp)φ ds.

Analogous to [6, Sec. 3], we see immediately that

||A − Ap|| ≤ 2||T − Tp|| ≤
2

kScL
+

2√
3

exp(−[2kL])

[2kL]
.

Consequently, sinceA is invertible,Ap has a bounded inverse provided that ScL andL are sufficiently
large. Since the right-hand side of (20) defines a bounded functional in V ∗H , we in fact have justified
the following well-posedness result.

Theorem 3.2 Provided that L and ScL (note ScL ≥ SL) are sufficiently large, the PML-truncated
problem (11), (12) and (13) admits a unique solution ũog(x;x∗) = ũog

r (x;x∗) + χ(x;x∗)ũinc(x;x∗)
with ũog

r ∈ H1
0 (ΩPML) := {φ ∈ H1(ΩPML) : φ|Γ∪ΓH+L

= 0} for any x∗ ∈ ΩPML. Moreover, there
holds the estimate ||ũog

r (·;x∗)||H1(ΩPML) ≤ C||g̃inc||L2(ΩPML).

Remark 3.3 The well-posedness in Theorem 3.2 holds in general for any Lipschitz curve satisfying
(GC1).

Since, for any φ ∈ VH ,

bp(φ, ψ) = b(φ, ψ)−
∫

ΓH

ψ̄(T − Tp)φ ds,

the inf-sup condition (9) of b implies the inf-sup condition of bp: For any φ ∈ VH ,

sup
ψ∈VH

|bp(φ, ψ)|
||ψ||VH

≥ sup
ψ∈VH

|b(φ, ψ)|
||ψ||VH

−
{

2

kScL
+

2√
3

exp(−[2kL])

[2kL]

}
||φ||VH (22)

≥
(
γ − 2

kScL
− 2√

3

exp(−[2kL])

[2kL]

)
||φ||VH ,

provided ScL and L are sufficiently large. As a consequence of (22), we immediately obtain the prior
error estimate for the PML truncation if x∗ ∈ SH .

Corollary 3.4 Provided that ScL and L are sufficiently large, there holds

||uog(·;x∗)− ũog(·;x∗)||VH ≤
2

γmin
{

[kScL],
√

3[2kL] exp([2kL])
}
− 2
||uog

r (·;x∗)||VH (23)

whenever x∗ ∈ SH .

Proof. Since, for x∗ ∈ SH , (uog − ũog)|SH = (uog
r − ũog

r )|SH ∈ VH , we have, for any φ ∈ VH ,

bp(u
og
r − ũog

r , φ) = −
∫

ΓH

φ̄(T − Tp)uog
r ds
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so that by the inf-sup condition (22),

||uog
r − ũog

r ||VH

≤
(
γ − 2

kScL
− 2√

3

exp(−[2kL])

[2kL]

)
−1 sup

φ∈VH

|bp(uog
r − ũog

r , φ)|
||φ||VH

=

(
γ − 2

kScL
− 2√

3

exp(−[2kL])

[2kL]

)
−1 sup

φ∈VH

|
∫

ΓH
φ̄(T − Tp)uog

r ds|
||φ||VH

≤
(
γ − 2

kScL
− 2√

3

exp(−[2kL])

[2kL]

)−1(
2

kScL
+

2√
3

exp(−[2kL])

[2kL]

)
||uog

r ||VH .

�

4 Semi-waveguide problems

Unlike the exponential convergence results in [10, 34], (23) indicates only a poor convergence of the
PML method over SH . However, we believe that exponential convergence can be realized in a compact
subset of SH , which is indeed true if Γ is flat [6]. Then the vertical PML truncation is efficient and the
next essential question is how to accurately truncate ΩPML in the lateral x1-direction. To address
this question, as inspired by [21] and as illustrated in Figure 2 (a), we shall consider the following two
semi-waveguide problems:

(P±) :


∇ · (A∇ũ) + k2αũ = 0, on Ω±PML := ΩPML ∩

{
x : ±x1 >

T
2

}
,

ũ = 0, on Γ± := Γ ∩
{
x : ±x1 >

T
2

}
,

ũ = 0, on Γ±L+H := ΓL+H ∩
{
x : ±x1 >

T
2

}
,

∂νcũ = g±, on Γ±0 := ΩPML ∩
{
x : x1 = ±T

2

}
,

for given Neumann data g± ∈ H−1/2(Γ±0 ), where νc := Aν denotes the co-normal vector with ν
pointing towards Ω±PML, ũ denotes a generic field, and we note that Γ± ⊂ ΓT does not contain the
defected part Γ0. In this section, we shall study the well-posedness of the semi-waveguide problems
(P±). By Theorem 3.2, the following uniqueness result is easy to obtain.

(a) (b)

Figure 2: (a) Region ΩPML is divided into three regions Ω−PML, Ω0 and Ω+
PML; semi-waveguide prob-

lems (P±) are defined in Ω± bounded by Γ±H+L, Γ±0 and Γ±. (b) Domain Ω+
PML is further truncated

onto Ω0a by a smooth curve Γa intersecting Γ+ and Γ+
H+L perpendicularly at a and a′, respectively.

Ω+
a = Ω+

PML\Ω0a and the auxiliary line Lεa is chosen such that the domain Ωε is sufficiently narrow.
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Lemma 4.1 Provided that ScL and L are sufficiently large, problem (P±) has at most one solution in
H1(Ω±PML).

Proof. Suppose ũ ∈ H1(Ω+
PML) satisfies (P+) with g+ = 0. Let

Ωe
PML =

{
x ∈ R2 : (x1, x2) ∈ Ω+

PML or (T − x1, x2) ∈ Ω+
PML

}
∪ Γ+

0 ,

Γe =
{
x ∈ R2 : (x1, x2) ∈ Γ+ or (T − x1, x2) ∈ Γ+ or (T/2, x2) ∈ Γ

}
.

Then,

ũe(x1, x2) =

{
ũ(x1, x2), x1 ≥ T/2,
−ũ(T − x1, x2), x1 < T/2,

inH1(Ωe
PML) satisfies problem (15-17) with g̃, ΩPML and Γ replaced by 0, Ωe

PML and Γe, respectively.
Theorem 3.2 and Remark 3.3 imply that ũe = 0 on Ωe

PML so that ũ = ũe|Ω+
PML

= 0. The uniqueness

of problem (P−) can be established similarly. �

We are ready to study the well-posedness of problem (P±) by Fredholm’s alternative. Without loss of
generality, we shall study (P+) only. To make use of the Fredholm theory, we need first to truncate
Ω+

PML by an exact transparent boundary condition. Under condition (GC2), there exists a line segment
La ⊂ ΓT ∩ Γ with the midpoint a := (a1, a2) ∈ La for a1 > T/2. For a small fixed constant ε > 0,
we can find a vertical line segment Lεa and a simple and smooth curve Γa ⊂ ΩPML connecting La
and Γ+

H+L such that the distance of Lεa and Γa is ε, that {x ∈ Γa : x2 > H} is on a vertical line and
that Γa intersects La perpendicularly at a (cf. Figure 2 (b)). Let Ωε be the domain bounded by Γa, Lεa,
La and Γ+

H+L, and Ω+
a be the unbounded domain bounded by Γa, Γ+

H+L and Γ. For sufficiently small
ε, the above choice of Lεa and Γa guarantees that k2 > 0 is not an eigenvalue of

−∇ · (A∇ũ) = k2αũ, on Ωε, (24)

ũ = 0, on ∂Ωε. (25)

Now, for the unbounded domain Ω+
ε = Ωε ∪ Γa ∪ Ω+

a , by a symmetrical reflection w.r.t. the line
containing Lεa, the partial boundary ∂Ω+

ε ∩Γ can be extended to a Lipschitz boundary, denoted by Γε,
satisfying (GC1). Then, Theorem 3.2, with Γε in place of Γ, can help to construct the Dirichlet Green
function of Ω+

ε by G̃D(x; y) := ũog(x; y)− ũog(x; yεimag) satisfying G̃D(·; y)|∂Ω+
ε

= 0, where yεimag

is the mirror image of the source point y w.r.t. the line Lεa. Choosing Γa in such a special way, the
following local regularity property of G̃D(x; y) can be ensured.

Proposition 4.2 Under the geometrical conditions (GC1) and (GC2), for sufficiently large values of
L, ScL and m in (10), G̃D(x; y) admits the decomposition

G̃D(x; y) = G̃(x; y)− G̃(x; ylimag) +Rl(x, y), y ∈ Ωl, l = a, a′, x ∈ Ωl ∪ Ωc

such that Rl(x, y) is a sufficiently smooth function of (x, y) ∈ Ωl ∪ Ωc × Ωl, where G̃ is defined by
(14), Ωl is a sufficiently small neighborhood of point l in Ω+

ε , and Ωc can be any bounded subset of
Ω+
ε . Furthermore, yaimag and ya

′
imag are the mirror images of y w.r.t. the line containing the segment La

and the line ΓL+H , respectively.

Proof. We consider y close to point a′ only. Define

ũa′(x; y) := ũog(x; y)− χa′(x)
[
G̃(x; y)− G̃(x; ya

′

imag)
]
,
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where the cut-off function χa′ ≡ 1 in a neighborhood of a′ and has a small support that is independent
of y. Then, it can be seen that ũa′ satisfies (15-17) with g̃inc replaced by

[∇ · (A∇) + k2α]
(

1− χa′(x)
) [
G̃(x; y)− G̃(x; ya

′

imag)
]
∈ Cm−1

comp(ΩPML × Ωl),

where Cm−1
comp consists of m − 1 times differentiable functions with compact supports. Note that m

defined in (10) determines the smoothness of σ. By arguing the same way as in [18, Lem 2.4] and by
choosing m sufficiently large, Ra′(x, y) = ũa′(x; y) − ũog(x; yεimag) becomes a sufficiently smooth

function for (x, y) ∈ Ωl ∪ Ωc × Ωl. �

On Γa, we now define the following two integral operators:

[Saφ](x) = 2

∫
Γa

G̃D(x; y)φ(y) ds(y),

[Kaφ](x) = 2

∫
Γa

∂νc(y)G̃D(x; y)φ(y) ds(y),

Note that, in general, the complexified double layer operator is a strongly singular operator, which is
to be defined by principle value integrals. In our case, however, the complexification is given by (10)
and the curve Γa is vertical in the complexified region above ΓH . From the local asymptotics of the
Hankel function it is not hard to conclude that the double layer kernel is weakly singular. Proposition
4.2 reveals that classic mapping properties hold for the above two integral operators on the open arc
Γa.

Lemma 4.3 We can uniquely extend the operator Sa as a bounded operator from H−1/2(Γa) to
H̃1/2(Γa), operator Ka as a compact (and certainly bounded) operator from H̃1/2(Γa) to H̃1/2(Γa).
Moreover, we have the decomposition Sa = Sp,a +Lp,a such that Lp,a : H−1/2(Γa)→ H̃1/2(Γa) is

compact and Sp,a : H−1/2(Γa) → H̃1/2(Γa) has a positive definite real part, i.e., for some constant
c > 0,

Re

(∫
Γa

Sp,aφφ̄ ds

)
≥ c||φ||2H−1/2(Γa),

for any φ ∈ H−1/2(Γa).

Proof. By Proposition 4.2, the proof follows from arguments similar as in [18, Sec. 2.3]. It relies on
the Fredholmness of the single-layer potential and the compactness of the double-layer potential of
kernels corresponding to the uncomplexified Green function G, as has been studied in [30, Thm. 7.6]
and [18]. Note that the strongly singular contribution in the kernel function of the double-layer potential
corresponding to the complexified Green function G̃, the fundamental solution of (11), vanishes in the
kernel ∂νcG̃D. We omit the details. �

Analogous to [23, Lem. 5.1], one gets the Green’s representation

ũ(x) =

∫
Γa

[
∂νc(y)G̃D(x; y)ũ(y)− G̃D(x; y)∂νc(y)ũ(y)

]
ds(y). (26)

By the jump relations [23, Thm. 5.1], letting x approach Γa, we get the transparent boundary condition
(TBC)

ũ|Γa −Ka(ũ|Γa) = −Sa(∂νcũ|Γa). (27)
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As indicated in Figure 2 (b), let Ω0a be the domain bounded by Γ+
0 , Γa, Γ+

H+L and Γ+,

H1
D(Ω0a) :=

{
v|H1(Ω0a) : v ∈ H1(Ω+

PML), v|Γ+ = 0, v|ΓH+L
= 0
}
,

and Va :=H1
D(Ω0a)×H−1/2(Γa) be equipped with the natural cross-product norm. Problem (P+)

can be equivalently formulated as the following boundary value problem: Find (ũ, φ) ∈ Va satisfying

∇ · (A∇ũ) + k2αũ = 0, on Ω0a,

∂νcũ|Γ+
0

= g+, on Γ+
0 ,

∂νcũ|Γa = φ, on Γa,

ũ|Γa −Ka(ũ|Γa) = −Saφ, on Γa.

An equivalent variational formulation reads: Find (ũ, φ) ∈ Va such that

bps

(
(ũ, φ), (v, ψ)

)
=

∫
Γ+
0

g+v̄ ds, (28)

for all (v, ψ) ∈ Va, where the sesquilinear form bps(·, ·) : Va × Va → C is given by

bps

(
(ũ, φ), (v, ψ)

)
:=

∫
Ω0a

[
(A∇ũ)T∇v − k2αũv̄

]
dx−

∫
Γa

[
φv̄ − (ũ−Kaũ+ Saφ) ψ̄

]
ds.

We are now ready to establish the well-posedness of problems (P+).

Theorem 4.4 Under the geometrical conditions (GC1) and (GC2), provided that L and ScL are suffi-
ciently large, the semi-waveguide problem (P±) has a unique solution ũ ∈ H1(Ω±PML). There holds
||ũ||H1(Ω±PML) ≤ C||g±||H−1/2(Γ±0 ) for any g± ∈ H−1/2(Γ±0 ), where C is independent of g±.

Proof. We study (P+) only. For the variational problem (28), we can decompose bps = b1 + b2 where

b1

(
(ũ, φ), (v, ψ)

)
:=

∫
Ω0a

[
(A∇ũ)T∇v+ũv̄

]
dx−

∫
Γa

[
φv̄ − ũψ̄ − Sp,aφψ̄

]
ds,

b2

(
(ũ, φ), (v, ψ)

)
:= −

∫
Ω0a

[
1 + k2α

]
ũv̄ dx+

∫
Γa

[Lp,aφ−Kaũ] ψ̄ ds.

According to Lemma 4.3, b1 is coercive on V as

Re b1

(
(ũ, φ), (ũ, φ)

)
=

∫
Ω0a

[
|ũx1|2 + (1 + σ2(x2))−1|ũx2 |2+|ũ|2

]
dx+ Re

(∫
Γa

Sp,aφφ̄ds

)
≥ c||ũ||2H1(Ω0a) + c||φ||2H−1/2(Γa),

and the bounded linear operator associated with b2 is compact. Consequently, bps is Fredholm of index
zero [30, Thm. 2.34].

Now, we prove ũ = 0 and φ = 0 when g+ = 0. By (26), we can directly define

ũext(x) :=

∫
Γa

[
∂νc(y)G̃D(x; y)ũ(y)− G̃D(x; y)∂νc(y)ũ(y)

]
ds(y), x ∈ Ω+

ε \Γa.

Then, the TBC (27) implies γ+(ũext|Ω+
a

) = ũ|Γa so that, by the jump relations, γ−(ũext|Ωε) = 0,
where γ+ and γ− are the trace operators of ũext onto Γa from Ω+

a and Ωε, respectively. Using that
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the Green function G̃D vanishes on ∂Ω+
ε , function ũext|Ω+

a
is zero on ∂Ω+

ε too. Thus, ũ− = ũext|Ωε
satisfies (24) and (25). However, the special choice of ε and Ωε ensures ũ− ≡ 0 on Ωε so that the
trace of ∂νcũ

ext taken from Ωε is 0. The jump conditions then imply that the trace of ∂νcũ
ext taken

from Ω+
a is φ. Consequently,

w(x) :=

{
ũ(x), x ∈ Ω0a,
ũext(x), x ∈ Ω+

a ,

belongs to H1(Ω+
PML) and satisfies (P+) with g+ = 0. However, Lemma 4.1 already justifies that w

must be 0 on Ω+
PML, which indicates that ũ = 0 and φ = 0.

Finally, the assertion of the theorem follows from Fredholm’s alternative and the fact that the right-hand
side of (28) defines a bounded anti-linear functional in V ∗a . �

Remark 4.5 Like Theorem 3.2, Theorem 4.4 also holds for any Lipschitz curve Γ±, which are not
necessarily periodic, satisfying the geometrical conditions (GC1) and (GC2).

5 Lateral boundary conditions

According to Theorem 3.2, ∂νcũ
og(·;x∗)|±Γ0

∈ H−1/2(Γ±0 ) for any x∗ ∈ SH with |x∗1| < T/2. Thus,
ũ = ũog(·;x∗)|Ω±PML

satisfies (P±) with g± = ∂νcũ
og(·;x∗)|Γ±0 in the distributional sense. By The-

orem 4.4 we define vertical Neumann-to-Dirichlet (vNtD) operators N± : H−1/2(Γ±0 ) → H̃1/2(Γ±0 )
satisfying ũog|Γ±0 = N±(∂νcũ

og|Γ±0 ). Such transparent boundary conditions can serve as exact lat-
eral boundary conditions to terminate the x1-variable for the PML-truncated problem (11) and (12).
Consequently, the original problem (1) and (2) over an unbounded domain and equipped with the
hSRC condition (7) can be truncated onto the perturbed cell Ω0 := ΩPML ∩

{
x : |x1| < T

2

}
and be

reformulated as the following boundary value problem:

(BVP1):


∇ · (A∇ũog) + k2αũog = −δ(x−x∗), on Ω0,

ũog = 0, on Γ0 = Γ ∩{x : |x1|<T/2},
ũog = 0, on Γ0

H+L= ΓH+L∩{x : |x1|<T/2},
ũog = N±(∂νcũ

og), on Γ±0 .

Theorems 3.2 and 4.4 directly imply that (BVP1) admits the following unique solution

ũog(·;x∗) = ũog
r (·;x∗)|Ω0 + χ(·;x∗)|Ω0ũ

inc(x;x∗)|Ω0 ,

with ũog
r defined in Theorem 3.2. Nevertheless, it is challenging to get N± by directly solving the

unbounded problem (P±) in practice. To overcome this difficulty, in this section, we shall define two
closely related Neumann-marching operators, derive the governing Riccati equations, and design an
efficient RDP to accurately approximateN±.

5.1 Neumann-marching operatorsR±p

Now let

Γ±j :=
{

(x1 ± jT, x2) : x = (x1, x2) ∈ Γ±0
}
,

Ω±PML,j :=

{
x ∈ Ω±PML : ±x1 >

T

2
+ (j − 1)T

}
,

Ω±j := Ω±PML,j\Ω
±
PML,j+1
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(a) (b)

Figure 3: (a) The semi-waveguide region Ω+
PML is divided into domains Ω+

j , j = 1, · · · of the
same shape. The operator R+

p can then march Neumann data through the vertical line segments
Γ+
j , j = 0, · · · . (b) The boundary of Ωj consists of four parts: Γ+

j,1 (left), Γ+
j,2 (bottom), Γ+

j,3 (right),
Γ+
j,4 (top). Here, θin indicates the interior angle at a corner, as will be used in (45).

for j ∈ N∗, as illustrated in Figure 3(a) for the notation with superscript +.

As inspired by [21], the well-posedness of (P±) well defines two bounded Neumann-marching opera-
torsR±p : H−1/2(Γ±0 ) → H−1/2(Γ±1 ) such that ∂ν±c ũ

og|Γ±1 = R±p (∂ν±c ũ
og|Γ±0 ), where ν±c := Aν±

with ν± := (±1, 0)T . We have the following properties ofR±p , analogous to [21, Thm. 3.1].

Proposition 5.1 Under the conditions that (GC2) holds and kScL as well as kL are sufficiently large,
we can choose Γ±0 intersecting Γ at a smooth point such thatR±p are compact operators and

∂ν±c ũ
og|Γ±j+1

= R±p (∂ν±c ũ
og|Γ±j ) (29)

holds for any j ≥ 0. Furthermore,

ρ(R±p ) < 1, (30)

where ρ denotes the spectral radius.

Proof. We study only the property ofR+
p . The choice of Γ+

0 and the interior regularity theory of elliptic
operators directly imply the compactness ofR+

p .

It is clear that (29) holds for j = 0. We need only justify the case j = 1 as all others can be
done by induction. Consider the semi-waveguide problem (P+) with g+ = −∂ν+c ũ

og|Γ+
1

, where the

negative sign appears since ν+
c = −νc. Theorem 4.4 implies that ũog

n (x) = ũog(x1 + T, x2) for
x ∈ Ω+

PML is the unique solution. Then ∂ν+c ũ
og
n |Γ+

1
= R+

p (∂ν+c ũ
og
n |Γ+

0
), which reads exactly as

∂ν+c ũ
og|Γ+

2
= R+

p (∂ν+c ũ
og|Γ+

1
).

To prove (30) we take an arbitrary eigenfunction 0 6= g ∈ H−1/2(Γ+
0 ) such that R+

p g = λ0g.
Suppose the function ũ satisfies (P+) with g+ = g on Γ+

0 . Then, for any v ∈ H1(Ω+
PML), we arrive

at v(· − jT, ·) ∈ H1(Ω+
PML,j+1) for any j ≥ 0, and, by Green’s identity, that

|λ0|j
∣∣∣∣∫

Γ0

gv̄ ds

∣∣∣∣ =

∣∣∣∣∣
∫

Γj

(R+
p )jgv(· − jT, ·) ds

∣∣∣∣∣
=

∣∣∣∣∣
∫

ΩPML,j+1

[
(A∇ũog)T∇v(· − jT, ·)− k2αũogv(· − jT, ·)

]
dx

∣∣∣∣∣
≤ C||ũog||H1(Ω+

PML,j+1)||v||H1(Ω+
PML) → 0, j →∞.
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Choosing v such that
∫

Γ0
gv̄ ds 6= 0, we get |λ0| < 1 and (30) follows. �

By the identity ρ(R±p ) = limj→∞ ||(R±p )j||1/j (cf. e.g. [22]), there exists a sufficiently large integer

N0 > 0 such that (R±p )N0 is contracting, i.e., ||(R±p )N0 || < 1. Let Ω±,N0

j be the interior of N0

consecutive cells∪N0

j′=1Ω
±
(j−1)N0+j′ . From the corresponding recursion (29) with Ω±j andR±p replaced

by Ω±,N0

j and (R±p )N0 , respectively, we get that ũog decays exponentially at infinity of the strip.

Corollary 5.2 If (GC2) holds and kL as well as kScL are sufficiently large, then

||ũog(·;x∗)||
H1(Ω

±,N0
j )

≤ C||(R±p )N0||j−1||g̃inc||L2(ΩPML), (31)

where we recall g̃inc := [∇ · (A∇) + k2α](1 − χ(x;x∗))ũinc(x;x∗) and where the constant C is
independent of j ≥ 0. In other words, for any x∗ ∈ ΩPML, the PML truncated solution ũog(x;x∗)
decays exponentially fast to 0 in the strip as |x1| → ∞.

Remark 5.3 The authors in [6] have revealed a similar result as (31) for Γ being a flat surface. The
above corollary indicates that such an exponentially decaying property for the PML truncated solution
holds even for locally defected periodic curves. As a consequence, this reveals that the PML trunca-
tion cannot realize an exponential convergence to the true solution for numerical solutions at regions
sufficiently away from the source or local defects since the true solution is expected to decay only of
an algebraic rate at infinity: [7] has indicated that uog behaves asO(x

−3/2
1 ) as x1 →∞.

Though Corollary 5.2 provides disappointing results, we point out that (31) holds for L being fixed but
j → ∞. If, on the contrary, j is fixed but L → ∞, we believe exponential convergence can still
be achieved. Applying the Neumann-marching operators R±p in the numerical algorithm, we need a
description of R±p more efficient than that in [21]. Take R+

p as an example. Recall that Ω+
j denotes

the j-th unit cell on the right of Γ+
0 (cf. Figure 3(b)), which is unperturbed for j ≥ 1. To simplify the

presentation, we further denote the four boundaries of Ω+
j by Γj,1 = Γ+

j−1, Γj,3 = Γ+
j , Γj,2 = Ω

+

j ∩Γ,

and Γj,4 = Ω
+

j ∩ Γ+
H+L. Consider the following boundary value problem for a generic field ũ:

(BVP2) :


∇ · (A∇ũ) + k2αũ = 0, on Ω+

j ,
ũ = 0, on Γj,2 ∪ Γj,4,

∂νcũ = gi, on Γ+
i , i = j − 1, j,

for gi ∈ H−1/2(Γ+
i ), i = j − 1, j. We have the following well-posedness theorem.

Theorem 5.4 Provided that kT/π /∈ E := {i′/2j′ : j′ ∈ N, i′ ∈ N∗} and that L as well as ScL
are sufficiently large, (BVP2) is well-posed. The well-posedness even holds with Ω+

j replaced by the

interior domain of 2l consecutive cells, say ∪2l

j=1Ω
+

j , for any number l ≥ 0.

Proof. It is clear that only uniqueness is needed [30, Thm. 4.10]. Suppose j = 1 and gi = 0, i = 0, 1.
Then, by first an even extension over Γ+

0 and then a 2T - periodic extension, we get a 2T -periodic
solution ũe (corresponding to normal incidence) in a strip bounded in the x2-direction by ΓH+L and
a 2T -periodic grating surface, possibly different from Γ. However, according to the well-posedness
theory [5, Cor. 5.2] for the half-space scattering by the grating, the PML convergence theory in [10,
Thm. 2.4] can be readily adapted here to show that ũe ≡ 0, taking into account that kT/π /∈ E has
excluded horizontally propagating Bloch modes. �
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Remark 5.5 We note that the condition kT/π /∈ E is not necessary for the well-posedness of (BVP2).
Alternatively, if kT/π ∈ E , one may impose zero Neumann condition on Γ4,j to guarantee the unique-
ness of the modified (BVP2) (cf. [29, 34]).

Taking into account the just proved Theorem 5.4, we can introduce the bounded Neumann-to-Dirichlet
operatorN (0) : H−1/2(Γ+

j−1)×H−1/2(Γ+
j )→ H̃1/2(Γ+

j−1)× H̃1/2(Γ+
j ) such that[

ũ|Γ+
j−1

ũ|Γ+
j

]
= N (0)

[
∂ν−c ũ|Γ+

j−1

∂ν+c ũ|Γ+
j

]
, (32)

for all j ≥ 1. Due to the shape invariance of Ω+
j w.r.t. j, operator N (0) is in fact independent of j.

Suppose j=1. Then, by the linearity principle, operatorN (0) can be rewritten in the matrix form

N (0) =

[
N (0)

00 N (0)
01

N (0)
10 N (0)

11

]
,

where the bounded entryN (0)
i′j′ : H

−1/2(Γ+
j′)→ H̃1/2(Γi′) maps ∂νcũ|Γ+

j′
= gj′ to ũ|Γ+

i′
if g1−j′ = 0

for i′, j′ = 0, 1 in (BVP2). Due to the shape invariance of Γ+
j , we shall identify H−1/2(Γ+

j ) for all

j ≥ 0 with the space H−1/2(Γ+
0 ), and similarly H̃1/2(Γ+

j ) with the dual space of H−1/2(Γ+
0 ).

Returning back to the semi-waveguide problems (P±), we have, by the definition of R+
p and (32) for

j = 1 and 2, that

N (0)
10 ∂ν−c ũ

og|Γ+
0
−N (0)

11 R+
p ∂ν−c ũ

og|Γ+
0

= ũog|Γ+
1

= N (0)
00 R+

p ∂ν−c ũ
og|Γ+

0
−N (0)

01 (R+
p )2∂ν−c ũ

og|Γ+
0
.

Here and in the following, the product of two operators should be regarded as their composition. Thus,[
N (0)

10 +N (0)
11 R+

p +N (0)
00 R+

p +N (0)
01 (R+

p )2
]

(∂νcũ
og|Γ+

0
) = 0,

for any ∂νcũ
og|Γ+

0
∈ H−1/2(Γ+

0 ), so that we end up with the following Riccati equation forR+
p :

N (0)
10 +

[
N (0)

11 +N (0)
00

]
R+
p +N (0)

01 (R+
p )2 = 0. (33)

One similarly obtains the governing equation forR−p :

N (0)
01 +

[
N (0)

11 +N (0)
00

]
R−p +N (0)

10 (R−p )2 = 0. (34)

Analogous to [21], the previous results in fact indicate that the two Riccati equations (33) and (34)
must be uniquely solvable under the condition that ρ(R±p ) < 1. The vNtD operators N± mapping
∂νcũ

og|Γ±0 to ũog|Γ±0 are respectively given by

N+ = N (0)
00 −N

(0)
01 R+

p , N− = N (0)
11 −N

(0)
10 R−p .

However, due to the nonlinearity of the Riccati equations (33) and (34), it is not that easy to get N±
in practice [21]. To tackle this difficulty, we shall develop an RDP to effectively approximateR±p .
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5.2 Recursive doubling procedure

TakeR+
p as an example. We first study the NtD operator

N (l) =

[
N (l)

00 N (l)
01

N (l)
10 N (l)

11

]

on the boundary of ∪2l

j=1Ω
+

j for l ≥ 1, where N (l)
i′j′ is bounded from H−1/2(Γ+

0 ) to H̃1/2(Γ0) for

i′, j′ = 0, 1. If l = 1, we need to compute N (1) on the boundary of Ω
+

1 ∪ Ω
+

2 . Using (32) for j = 1
and 2 and eliminating ũog and ∂νcũ

og by the continuity condition on Γ+
1 , one gets(

N (l−1)
00 +N (l−1)

11

)
(∂ν+c ũ

og|Γ+
1

) = −N (l−1)
10 (∂ν−c ũ

og|Γ+
0

) +N (l−1)
01 (∂ν+c ũ

og|Γ+
2

). (35)

By Theorem 5.4 , the well-posedness of the modified (BVP2) for l = 1, indicates that there exist two
bounded operatorsAl−1,Bl−1 : H−1/2(Γ+

0 )→ H−1/2(Γ+
0 ) such that

∂ν+c ũ
og|Γ+

1
= −Al−1(∂ν−c ũ

og|Γ+
0

) + Bl−1(∂ν+c ũ
og|Γ+

2
).

Equation (35) implies that

Al−1 =
(
N (l−1)

00 +N (l−1)
11

)−1

N (l−1)
10 , Bl−1 =

(
N (l−1)

00 +N (l−1)
11

)−1

N (l−1)
01 ,

where (N (l−1)
00 +N (l−1)

11 )−1 is a generalized inverse from H̃1/2(Γ0) toH−1/2(Γ+
0 ). Thus, one obtains

N (l)
00 = N (l−1)

00 −N (l−1)
01 Al−1, N (l)

01 = N (l−1)
01 Bl−1, (36)

N (l)
10 = N (l−1)

10 Al−1, N (l)
11 = N (l−1)

11 −N (l−1)
10 Bl−1. (37)

Equations (36-37) can be recursively applied to getN (l) for all l ≥ 1, and the number of consecutive
cells {Ωj} doubles after each iteration, which form the origin of the term “recursive doubling proce-
dure” (RPD) in the literature (cf. [33, 15]). In the following, we shall see that RDP provides a simple
approach for solving (33) and (34).

Now, analogously to (33) and (34), we obtain fromN (l) and (29) the following equations

N (l)
10 +

[
N (l)

11 +N (l)
00

]
(R+

p )2l +N (l)
01 (R+

p )2(l+1)

= 0, (38)

N+ = N (l)
00 −N

(l)
01 (R+

p )2l .

Since ||(R+
p )N0 || < 1, the third term in (38) is expected to be exponentially small for l � log2N0,

so that we approximate

(R+
p )2l ≈ −

[
N (l)

11 +N (l)
00

]−1

N (l)
10 ,

N+ ≈ N (l)
00 +N (l)

01

[
N (l)

11 +N (l)
00

]−1

N (l)
10 , (39)

and we getR+
p iteratively from

(R+
p )2j = −

[
N (j)

11 +N (j)
00

]−1 [
N (j)

10 −N
(j)
01 (R+

p )2j+1
]
, j = l − 1, · · · , 0. (40)
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One similarly obtainsN− andR−p from

(R−p )2l ≈ −
[
N (l)

11 +N (l)
00

]−1

N (l)
01 ,

N− ≈ N (l)
11 +N (l)

01

[
N (l)

11 +N (l)
00

]−1

N (l)
10 , (41)

(R−p )2j = −
[
N (j)

11 +N (j)
00

]−1 [
N (j)

01 −N
(j)
10 (R−p )2j+1

]
, j = l − 1, · · · , 0. (42)

From the above, it can be seen that the essential step to approximate N± is to get the NtD operator
N (0) on the boundary of the unit cell Ω±1 . As no information of the field ũog in Ω±1 is required, it is
clear that the BIE method is an optimal choice since it treats only the boundary of Ω±1 . Since PML
is involved in domain Ω±1 , the high-accuracy PML-based BIE method developed in our previous work
[28] straightforwardly provides an accurate approximation of N (0), so as to effectively drive RDP to
getN±. We shall present the details in the next section.

6 The PML-based BIE method

In this section, we shall first review the PML-based BIE method of [28] to approximate the NtD operator
on the boundary of a unit cell, one with perturbation and one without, by an NtD matrix. Then, we shall
use these NtD matrices to approximate the two vNtD operatorsN± on Γ±0 and to solve (BVP1) finally.
From now on, we shall assume that the scattering surface Γ is piecewise smooth and satisfies (GC1),
but not necessarily (GC2). Though the previous well-posedness theory relies on (GC2), our numerical
solver does not rely on such an assumption, and we believe (GC2) can be weakened such that at least
piecewise smooth curves are admitted. We shall investigate this in a future work.

6.1 ApproximatingN±

Without loss of generality, consider (BVP2) in an unperturbed cell, say Ω+
1 , and we need to approxi-

mateN (0) first. According to [28], for any ũ satisfying

∇ · (A∇ũ) + k2αũ = 0, (43)

on Ω+
1 , we have the Green’s representation

ũ(x) =

∫
∂Ω+

1

{
G̃(x, y)∂νcũ(y)− ∂νcG̃(x, y)ũ(y)

}
ds(y), (44)

for all x ∈ Ω+
1 . We recall that ν denotes the outer unit normal vector on ∂Ω+

1 and νc := Aν the
co-normal vector. Moreover, as x approaches ∂Ω+

1 = ∪4
j=1Γj,1, the usual jump conditions imply

K[ũ](x)−K0[1](x)ũ(x) = S[∂νcũ](x) (cf. [28]), where we use the following integral operators

S[φ](x) := 2

∫
∂Ω+

1

G̃(x, y)φ(y) ds(y),

K[φ](x) := 2

∫
∂Ω+

1

∂νcG̃(x, y)φ(y) ds(y),

K0[φ](x) := 2

∫
∂Ω+

1

∂νcG̃0(x, y)φ(y) ds(y),
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where G̃0(x, y) := − log ρ(x̃, ỹ)/(2π) is the fundamental solution of the complexified Laplace equa-
tion ∆̃ũ(x) = 0. Note that

K0[1](x) = −θ
in(x)

π
, (45)

where θin(x) is defined as the interior angle at x (cf. Figure 3(b)). However, numerically evaluating
K0[1] near corners is more advantageous as has been illustrated in the literature (cf. [13, 27]). Thus,
ũ = (K−K0[1])−1S∂νcũ on ∂Ω+

1 . Consequently, the NtD operatorNu for any unperturbed domain
can be defined as Nu := (K − K0[1])−1S . Here and in the following, we denote the operator of
multiplication with a function by the same symbol as that for the function. Note that some authors
denote the operator of multiplication by K0[1] in the last formula by K0[1]I and would prefer to write
Nu := (K −K0[1]I)−1S .

To approximate Nu, we need to discretize the two integral operators and the multiplication operator
on the right-hand side of the definition. Suppose now the piecewise smooth boundary curve ∂Ω+

1 is
parameterized by {x(s) := (x1(s), x2(s))| 0 ≤ s ≤ L1}, which is close to the arclength parameter-
ization. Since corners may exist, ũ(x(s)) can have corner singularities in its derivatives at corners. To
smoothen ũ, we introduce a grading function s = w(t), 0 ≤ t ≤ 1. For a smooth segment of ∂Ω+

1

corresponding to s ∈ [s0, s1] and t ∈ [t0, t1] such that si = w(ti) for i = 0, 1, where s0 and s1 are
the parameters of the corners, we take (cf. [13, Eq. (3.104)])

s = w(t) :=
s0wp1 + s1wp2
wp1 + wp2

, t ∈ [t0, t1],

where the positive integer p ensures that the derivatives of w(t) up to order p vanish at the corners,

w1 :=

(
1

2
− 1

p

)
ξ3 +

ξ

p
+

1

2
, w2 := 1− w1, ξ :=

2t− (t0 + t1)

t1 − t0
.

To simplify notation, we shall use x(t) to denote x(w(t)), and x′(t) to denote dx
ds

(w(t))w′(t) in the
following. Assume that [0, 1] is uniformly sampled byN grid points tj := jh, j = 1, · · · , N with even
N and grid size h := 1/N and that the grid points contain all the corner points. Thus, S[∂νcũ] at
point x = x(tj) can be parameterized by

S[∂νcũ]
(
x(tj)

)
=

∫ 1

0

S(tj, t)φ
s(t) dt, (46)

where the kernel is S(tj, t) := i/2 H
(1)
0 (kρ(x(tj), x(t))) and where the scaled co-normal vector

φs(t) := ∂νcũ(x(t))|x′(t)| is introduced to regularize the approximation of Nu. Indeed, φs(t) is
smoother than ∂νcũ(x(t)).

Considering the logarithmic singularity of S(tj, t) at t = tj , we can discretize the integral in (46)
by Alpert’s 6th-order hybrid Gauss-trapezoidal quadrature rule (cf. [1]) and then get, by trigonometric
interpolation,

S[∂νcũ
s]

 x(t1)
...

x(tN)

 ≈ S

 φs(t1)
...

φs(tN)

 ,
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where theN ×N matrix S approximates S . Similarly, the integralsK[ũ](x(tj)) andK0[1](x(tj)) for
j = 1, · · · , N are approximated so that we obtain, on the boundary of ∂Ω+

1 ,
u1,1

u1,2

u1,3

u1,4

 = Nu


φs

1,1

φs
1,2

φs
1,3

φs
1,4

 , (47)

where u1,j′ and φs1,j′ for j′ = 1, 2, 3, 4 represent Nj′ × 1 column vectors of ũ and φs, respectively,

at the Nj′ grid points of Γ1,j′ . Note that N =
∑4

j′=1Nj′ and the grid points on Γ1,3 are obtained
by horizontally shifting the grid points on Γ1,1 to Γ1,3 so that N1 = N3. Clearly, the N × N ma-
trix Nu approximates the scaled NtD operator N s

u related to Nu by Nu∂νcũ = N s
uφ

s. Now, using
ũ|Γ1,2∪Γ1,4 = 0, we eliminate the vectors u1,2, u1,4, φ1,2 and φ1,4 in (47) so that we obtain two
2N1 × 2N1 matricesN (0) and T that satisfy[

u1,1

u1,3

]
= N (0)

[
φs

1,1

φs
1,3

]
,

[
φs

1,2

φs
1,4

]
= T

[
φs

1,1

φs
1,3

]
, (48)

where we denote

N (0) =

[
N

(0)
00 N

(0)
01

N
(0)
10 N

(0)
11

]

with N (0)
ij ∈ CN1×N1 . On the continuous level, a representation like (48) follows from the well-

posedness of (BVP2) in Theorem 5.4. So we presume that the elimination leading to (48) on the dis-
cretized level is stable. Note that, different from [28], we no longer simultaneously assume ũ = φs = 0
on Γ1,2 ∪ Γ1,4, which could cause pronounced errors in numerical results. Now compare (32) and (48).
Like Nu, the matrix N (0) approximates the scaled NtD operator N (0),s on Γ+

1 ∪ Γ+
3 related to N (0)

byN (0)∂νcũ = N (0),sφs.

Consequently, the previously developed RDP can be easily adapted here in terms of formally replac-
ing N by N for the equations (36-42), so that we get two N1 × N1 matrices R+

p and N+ approx-
imating the (scaled) Neumann-marching operator R+

p and the (scaled) vNtD operator N+ such that
φs

1,3 = −R+
p φ

s
1,1 and u1,1 = N+φs

1,1. One similarly obtains two N1 × N1 matrices R−p and N−

approximatingR−p andN−, respectively.

6.2 Solving (BVP1)

We are now ready to use the PML-based BIE method to solve the main problem (BVP1). Fix x∗ ∈ Ω0.
To eliminate the δ function, we consider ũsc(x;x∗) := ũog(x;x∗) − ũinc(x;x∗), satisfying (43). For
simplicity, we denote Γ0,1 := Γ−0 , Γ0,2 := Γ0, Γ0,3 := Γ+

0 , and Γ0,4 := ΓH+L
0 (cf. Fig.2 (a)). Then,

analogous to (47), on the four boundaries Γ0,j, j = 1, 2, 3, 4, we apply the PML-based BIE method
of the previous section to approximate the NtD operator for ũsc and ∂νcũ

sc on the boundary of the
perturbed cell Ω0 by a matrixNp,

usc
0,1

usc
0,2

usc
0,3

usc
0,4

 = Np


φsc,s

0,1

φsc,s
0,2

φsc,s
0,3

φsc,s
0,4

 , (49)
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where usc
0,j and φsc,s

0,j for j = 1, 2, 3, 4 represent column vectors of ũsc and ∂νcũ
sc|x′|, respectively, at

the grid points of Γ0,j . Rewriting the above in terms of ũog and ∂νcũ
og, we get

uog
0,1

uog
0,2

uog
0,3

uog
0,4

 = Np


φog,s

0,1

φog,s
0,2

φog,s
0,3

φog,s
0,4

+


uinc

0,1

uinc
0,2

uinc
0,3

uinc
0,4

−Np


φinc,s

0,1

φinc,s
0,2

φinc,s
0,3

φinc,s
0,4

 , (50)

where uinc
0,j and φinc,s

0,j represent column vectors of ũinc(x;x∗) and ∂νcũ
inc(x;x∗)|x′|, respectively, at

the grid points of Γ0,j , etc. The boundary conditions in (BVP1) imply

uog
0,2 = 0, uog

0,4 = 0,

uog
0,1 = N−φog,s

0,1 , uog
0,3 = N+φog,s

0,3 . (51)

Solving the linear system (50-51), we get ũog(x;x∗) and ∂νcũ
og(x;x∗) on all grid points of ∂Ω0.

Finally, we discuss how to evaluate ũog(x;x∗) in the physical domain SH . We distinguish two cases:

1. x ∈ Ω0: Since ũsc and ∂νcũ
sc|x′| are available on the grid points of ∂Ω0, we use Green’s

representation formula (44) with ∂Ω+
1 replaced by ∂Ω0 to compute ũsc(x;x∗) in Ω0 so that

ũog(x;x∗) becomes available in Ω0.

2. x ∈ Ω±j : Consider Ω+
1 first. Suppose uog

1,j′ and φog,s
1,j′ represent column vectors of ũog and

∂νcũ
og|x′| at the grid points of Γ1,j′ for 1 ≤ j′ ≤ 4. By the continuity of ∂νcũ

og on the curves
Γ1,1 = Γ0,3 = Γ+

0 , we obtain φog,s
1,1 = −φog,s

0,3 . Since φog,s
1,3 = −R+

p φ
og,s
1,1 , we get uog

1,j′ for
j′ = 1, 3 by (48), and φog,s

1,j′ for j′ = 2, 4. Using uog
1,2 = uog

1,4 = 0, the functions ũog(x;x∗) and
∂νcũ

og|x′| on ∂Ω+
1 become available. Hence, the Green’s representation formula (44) applies

and provides ũog(x;x∗) in Ω+
1 . Repeating the same procedure, one obtains ũog(x;x∗) in Ω+

j

for j ≥ 2. The case for x ∈ Ω−j can be handled similarly.

Consequently, utot(x;x∗)≈ ũog(x;x∗) becomes available for x∈SH⊂Ω0 ∪
[
∪∞j=1Ωj,+∪ Ωj,−

]
.

6.3 Computing utot for plane-wave incidence

To close this section, we briefly discuss how to compute utot for an incident plane wave given by
uinc = eik(cosθ x1−sinθ x2) with θ ∈ (0, π). First, we consider the unperturbed case Γ = ΓT so that
utot becomes the reference solution utot

ref . It is clear that usc
ref = utot

ref − uinc satisfies the following
quasi-periodic boundary condition

usc
ref

(
−T

2
, x2

)
= γ usc

ref

(
T

2
, x2

)
, (52)

∂x1u
sc
ref

(
−T

2
, x2

)
= γ ∂x1u

sc
ref

(
T

2
, x2

)
, (53)

where γ = eik cosθ T . On Γ, Equation (2) implies

usc
ref = −uinc. (54)
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Due to quasi-periodicity we could express usc
ref above ΓH in terms of a Fourier series, i.e.,

usc
ref(x1, x2) =

∞∑
j=−∞

Rje
iαjx1+iβjx2 , x2 ≥ H,

where αj = k cos θ + 2πj
T

, where βj =
√
k2 − α2

j for |αj| ≤ k and βj = i
√
α2
j − k2 otherwise,

and whereRj denotes the j-th Rayleigh coefficient of the reflected wave. Thus, on the PML boundary
ΓH+L the complexified field ũsc

ref(x1, x2) = usc
ref(x1, x̃2) satisfies

ũsc
ref(x1, H + L) =

∞∑
j=−∞

Rje
iαjx1+iβj(H+L)−βjScL.

For simplicity, we assume that all βj are sufficiently away from 0 so that, provided L and ScL are
sufficiently large, we can directly impose the Dirichlet boundary condition

ũsc
ref(x1, H + L) = 0. (55)

If βj is quite close to 0, alternative accurate boundary conditions can be developed. We refer the
readers to [26, 29, 34] for details. On the other hand, ũsc

ref satisfies the quasi-periodic conditions (52)
and (53) and the boundary condition (54), but with u replaced by ũ.

On the boundary ∂Ω0, the PML-BIE method gives, analogous to (49),
usc

1

usc
2

usc
3

usc
4

 = Np


φsc

1

φsc
2

φsc
3

φsc
4

 , (56)

where usc
j′ and φsc

j′ for 1 ≤ j′ ≤ 4 represent vectors of values of ũsc
ref and ∂νcũ

sc
ref |w′|, respectively, at

the grid points of Γ0,j′ . Note thatNp is the same asNu in (47) since Γ = ΓT . Equation (55) directly
implies usc

4 = 0. The quasi-periodic conditions (52) and (53) imply usc
3 = γusc

1 and φsc
3 = −γφsc

1 .
The boundary condition (54) indicates

usc
2 = −uinc

2 , (57)

where uinc
2 represents the vector of values of uinc at the grid points of Γ0,2. Solving the linear system

(56-57) gives rise to values of ũsc
ref and ∂νcũ

sc
ref |w′| on ∂Ω0. Green’s representation formula (44) can

help to compute ũsc
ref in Ω0. The quasi-periodicity helps to construct ũsc

ref in any other cell Ω±j for
j ∈ N∗. Consequently, utot

ref becomes available in the whole physical domain SH .

Now, if Γ is a local perturbation of ΓT , then ũsc
ref is available by the above arguments, and one follows

the same approach developed in Section 6.2 to get ũog = ũsc − ũsc
ref in any unperturbed cell and,

therewith, utot in the complete physical region SH . We omit the details here.

7 Numerical examples

In this section, we will carry out four numerical experiments to validate the performance of the PML-
based BIE method and the proposed theory. In all examples, we set the period to T = 1 and the
wavelength to the free-space value λ = 1 so that k0 = 2π. We consider two types of incidence: (1) a
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cylindrical incidence excited at the source point x∗ = (0, 1.5); (2) a plane-wave incidence of angle θ
to be specified. We suppose that only one unit cell of the periodic background structure is perturbed.
To setup the PML, we choose m = 0 in (10) to simplify the definition of σ. In the RDP iterations
(39), (40), (41) and (42), we take l= 20. Furthermore, we choose H = 3 and set the computational
domain to be [−5.5, 5.5]×[−2, 3], which contains 11 cells. To validate the accuracy of our method,
we compute the relative error

Erel :=
||(φsc,s

2,0 )num − (φsc,s
2,0 )exa||∞

||(φsc,s
2,0 )exa||∞

for φsc,s
2,0 representing the scaled normal derivative |w′|∂νusc on Γ2,0, the perturbed part of Γ, and

for different values of S and L in the setup of the PML. Here superscript “num” indicates numeri-
cal solution and superscript “exa” a sufficiently accurate numerical solution or, if available, the exact
solution.

7.1 Example 1: A flat curve

In the first example, we assume that Γ is the straight line {x : x2 =0}. Certainly, we can regard such
a simple structure as a periodic structure with period equal to one wavelength. Formally, we regard the
line segment Γ0,2 ⊂ Γ between x1 =−0.5 and x1 = 0.5 as the “perturbed” part. For the cylindrical
incidence, the total wave field utot is given by

utot(x;x∗) =
i

4

[
H

(1)
0 (k|x− x∗|)−H(1)

0 (k|x− x∗imag|)
]
,

where the image source point is x∗imag = (0,−1.5). Using this to compute the scaled co-normal
derivative on segment Γ0,2, we get the reference solution and can check the accuracy of our method.
We discretize each smooth segment of the “perturbed”/unperturbed unit cell by 600 grid points. To
check how the wavenumber condition in Theorem 5.4 affects the accuracy of our numerical solver, we
consider two values of the refractive index n in Ω: (1) n = 1.03 so that kT/π = 2.06 /∈ E ; (2) n = 1
so that kT/π = 2 ∈ E . For both cases, we compare results of Dirichlet and Neumann boundary
conditions on ΓH+L.

For n = 1.03, Figure 4 (a) and (b) compare the exact solution and our numerical solution for L=2.2
and S = 2.8. The two solutions are indistinguishable. To give a detailed comparison, Figure 4 (c)

(a) -5 0 5

-1

0

1

2

(b) -5 0 5
-2

-1

0

1

2

3

(c)
0.2 1 2
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1e-08

1e-06

0.0001
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(d)
0.2 1 2

1e-11

1e-10

1e-08

1e-06

0.0001

Dirichlet
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Figure 4: Example 1: Real part of utot in [−5.5, 5.5]×[−2.0, 3.0] excited by a source at y=(0, 1.5):
(a) exact solution; (b) numerical solution. Convergence history of relative error Erel versus: (c) PML
absorbing constant S; (d) Thickness of the PML L, for both Dirichlet and Neumann conditions on
ΓH+L.
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Figure 5: All four examples: (a) Convergence history of ERic in (58) against the number of iterations l;
(b) Radiation behavior of φog,s|Γ+

j
as j → ∞. (c) Performance of Dirichlet and Neumann conditions

in Example 1 for n = 1, at which kT/π ∈ E ; here ’D’ stands for Dirichlet and ’N’ for Neumann, and
100 indicates 100 grid points are used to discretize each smooth segment of the unit cells, etc.

and (d) show how the relative error Erel decays as one of the two PML parameters, the absorbing
constant S and the thickness L, increases for either zero Dirichlet or zero Neumann condition on
ΓH+L. In Figure 4(c), we take L= 2.2 and let S vary between 0.2 and 2.8, while in Figure 4(d), we
take S=2.8 and let the PML thickness L vary between 0.2 and 2.2. In both figures, the vertical axis
is logarithmically scaled so that the vertical dashed lines indicate that the relative error Erel decays
exponentially as L or S increases for both conditions. On the other hand, Neumann condition gives
faster convergence rates than Dirichlet condition. The convergence curves indicate that nearly 11
significant digits are revealed by the proposed PML-based BIE method. The ’o’ lines in Figure 5(a)
show the convergence curve of

ERic =
∥∥∥N (0)

10 +
[
N

(0)
11 +N

(0)
00

]
R+
p +N

(0)
01 (R+

p )2
∥∥∥
∞

(58)

against the number of iterations l. It can be seen that, after no more than 11 iterations, R+
p satisfies

its governing Riccati equation (33) up to round-off errors. The ’o’ lines in Figure 5(b) show the curve of
||φog,s|Γ+

j
||∞ against j. It can be seen that φog,s and, hence, ∂ν+c u

og indeed decays exponentially as

j or x1 increases, as has been claimed in Corollary 5.2.

In Figure 5(c), we compare Dirichlet and Neumann conditions for n = 1. We take L = 2.2 and let S
vary from 0.2 to 2.8. Among the four convergence curves, solid lines indicate 600 grid points chosen
on each smooth segment of each unit cell, while dashed lines indicate 100 grid points. Graphs with
’+’ indicates Neumann condition on ΓH+L, while ’o’ indicates Dirichlet condition. If 100 grid points are
used, the error Erel for Neumann condition starts decreasing after S ≥ 2, whereas Erel for Dirichlet
condition has already reached its minimal error. If 600 grid points are used, Neumann condition does
not lead to a converging Erel for S ∈ [0.2, 2.8], but Dirichlet condition still shows the same con-
vergence rate and accuracy as in the case n = 1.03. Consequently, Dirichlet condition outperforms
Neumann condition for n = 1.

7.2 Example 2: A sine curve

In the second example, we assume that the boundary Γ is the sine curve {x : x2 =sin(2πx1+π)} (cf.
Figure 6(a)) and that n = 1.03 to obtain kT/π /∈ E . For the cylindrical incidence, we discretize each
smooth segment of any unit cell by 600 grid points, and compare results of Dirichlet and Neumann
boundary conditions on ΓH+L. Taking S = 2.8 and L = 2.2, we evaluate the wave field in the
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Figure 6: Example 2: (a) Numerical solution of real part of the total wave field u in the domain
[−5.5, 5.5]× [−2.0, 3.0] excited by a point source at y = (0, 1.5). Convergence history of relative
error Erel versus: (b) PML absorbing constant S for fixed PML thickness L= 2, (c) PML thickness L
for fixed PML absorbing constant S=2.8; vertical axes are logarithmically scaled.
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Figure 7: Example 2: (a) Numerical solution of real part of the total wave field u in the domain
[−5.5, 5.5]× [−2.0, 3.0] excited by a plane-wave incidence of angle θ = π/3. Convergence his-
tory of relative error Erel versus: (b) PML absorbing constant S for fixed PML thickness L = 4, (c)
PML thickness L for fixed PML absorbing constant S=2.8; vertical axes are logarithmically scaled.

domain [−5.5, 5.5]× [−2.0, 3.0] and use this as the reference solution since the exact solution is
no longer available. In Figure 6, (a) shows the field pattern of the reference solution, and (b) and (c)
show the convergence history of relative error Erel versus one of the two PML parameters S and L,
respectively. Again, we observe that Erel decays exponentially as S or L increases. Unlike the flat
surface in Example 1, we no longer observe a faster convergence rate of Neumann condition, but find
that both conditions share the same convergence rate and accuracy. Comparing with the bad result
for Dirichlet condition and kT/π ∈ E and the impressive improvement for kT/π /∈ E , we conclude
that, in the sine curve example, Neumann condition is less superior than Dirichlet condition, and thus
we shall only use the latter one in the remaining experiments. With Dirichlet condition, the ’+’ lines in
Figure 5 (a) show the convergence curve of ERic in (58) against the number of iterations l. The ’+’
lines in Figure 5 (b) show the curve of ||φog,s|Γ+

j
||∞ against j.

For the plane-wave incidence, we take θ = π/3. Employing the method in Section 6.3, we discretize
each smooth segment of any unit cell by 700 grid points. Taking S= 2.8 and L= 4, we evaluate the
wave field in [−5.5, 5.5]× [−2.0, 3.0] and use this as the reference solution. In Figure 7, (a) shows
the field pattern, and (b) and (c) show the convergence history of relative error Erel versus one of the
two PML parameters S and L, respectively. For both incidences, the convergence curves in Figures
6 and 7 decay exponentially, indicating that nearly 12 significant digits are revealed by the proposed
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Figure 8: Example 3: Numerical solution of real part of the total wave field u in [−5.5, 5.5]×[−2.0, 3.0]
excited by: (a) a cylindrical wave with source at y=(0, 1.5); (b) a plane-wave incidence of angle θ set
to π/3. Convergence history of relative errorErel versus: (c) PML thickness L for fixed PML absorbing
constant S= 2.8 for both incidences; (d) PML absorbing constant S for fixed PML thickness L= 2.2
(4.0) for cylindrical (plane-wave) incidence.

PML-based BIE method.

7.3 Example 3: A locally perturbed sine curve

In the third example, we assume that Γ is the sine curve ΓT := {x : x2 = sin(2πx1 + π)} locally
perturbed such that the part between x1 = −0.5 and x1 = 0.5 is replaced by the line segment
{(x1, 0) : x1∈ [−0.5, 0.5]} (cf. Figure 8 (a)). For the cylindrical incidence, we discretize each smooth
segment of any unit cell by 600 grid points. Taking S=2.8 and L=2.2, we evaluate the wave field in
[−5.5, 5.5]×[−2.0, 3.0] and use this as the reference solution, the field pattern of which is shown in
Figure 8 (a). The ’x’ lines in Figure 5 (b) show the curve of ||φog,s|Γ+

j
||∞ against j.

For the plane-wave incidence, we take θ = π/3 and discretize each smooth segment of any unit cell
by 700 grid points. Taking S=2.8 and L=4, we evaluate the wave field in [−5.5, 5.5]×[−2.0, 3.0]
and use this as the reference solution, the field pattern of which is shown in Figure 8 (b).

For both incidences, Figure 8 (c) and (d) show the convergence history of relative error Erel versus
one of the two PML parameters S and L, respectively. The convergence curves decay exponentially
and indicate that nearly 11 significant digits are revealed by the proposed PML-based BIE method.

7.4 Example 4: A locally perturbed binary grating

In the last example, we assume that the boundary Γ consists of periodic rectangular grooves of depth
0.5 and width 0.25, with the part between x1 = −0.5 and x1 = 0.5 replaced by the line segment
{(x1, 0) : x1∈ [−0.5, 0.5]} (cf. Figure 9(a)). For the cylindrical incidence, we discretize each smooth
segment of any unit cell by 600 grid points. Taking S = 2.8 and L= 2.2, we evaluate the wave field
in [−5.5, 5.5]×[−2.0, 3.0] and use this as the reference solution, the field pattern of which is shown
in Figure 9 (a). The ’♦’ lines in Figure 5 (a) show the convergence curve of ERic in (58) against the
number of iterations l. The ’♦’ lines in Figure 5 (b) show the curve of ||φog,s|Γ+

j
||∞ against j.

For the plane-wave incidence, we take θ = π/6 and discretize each smooth segment of any unit cell
by 600 grid points. Taking S=2.8 and L=3, we evaluate the wave field in [−5.5, 5.5]×[−2.0, 3.0]
and use this as the reference solution, the field pattern of which is shown in Figure 9 (b).
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Figure 9: Example 4: Numerical solution of real part of the total wave field u in [−5.5, 5.5]×[−2.0, 3.0]
excited by: (a) a cylindrical wave with source at y= (0, 1.5); (b) a plane wave of incident angle θ =
π/6. Convergence history of relative error Erel versus: (c) PML thickness L for fixed PML absorbing
constant S= 2.8 for both incidences; (d) PML absorbing constant S for fixed PML thickness L= 2.2
(3.0) for cylindrical (plane-wave) incidence.

For both incidences, Figure 9 (c) and (d) show the convergence history of relative error Erel versus
one of the two PML parameters S and L, respectively. The convergence curves decay exponentially
and indicate that nearly 12 significant digits are revealed by the proposed PML-based BIE method.

8 Conclusion

This paper studied the perfectly-matched-layer (PML) theory for wave scattering in a half space of
homogeneous medium bounded by a two-dimensional, perfectly conducting, and locally defected pe-
riodic surface, and developed a high-accuracy boundary-integral-equation (BIE) solver. By placing a
PML in the vertical direction to truncate the unbounded domain to a strip, we proved that the PML
solution converges to the true solution in the physical subregion of the strip at an algebraic order of
the PML thickness. Laterally, the unbounded strip is divided into three regions: a region containing the
defect and two semi-waveguide regions of periodic subsurfaces, separated by two vertical line seg-
ments. We proved the well-posedness of an associated scattering problem in both semi-waveguides.
Based on this, we defined Neumann-to-Dirichlet (NtD) operators on the associated vertical segments.
The two NtD operators, serving as exact lateral boundary conditions, reformulate the unbounded strip
problem as a boundary value problem over the defected region. Each NtD operator is closely related to
a Neumann-marching operator, governed by a nonlinear Riccati equation, which was efficiently solved
by an RDP method and a high-accuracy PML-based BIE method so that the boundary value problem
on the defected region can be solved finally. Our future research plan shall focus on the following two
aspects:

(1). Extend the current work to study locally defected periodic structures of stratified media. In such
case, propagating Bloch modes may exist so that the related Neumann marching operatorsR±p
may not be contracting.

(2). Rigorously justify that the PML solution converges exponentially to the true solution in any
compact subset of the strip, as has been demonstrated by numerical experiments.
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